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Abstract. Floods are the product of complex interactions
among processes including precipitation, soil moisture, and
watershed morphology. Conventional flood frequency anal-
ysis (FFA) methods such as design storms and discharge-
based statistical methods offer few insights into these pro-
cess interactions and how they “shape” the probability dis-
tributions of floods. Understanding and projecting flood fre-
quency in conditions of nonstationary hydroclimate and land
use require deeper understanding of these processes, some or
all of which may be changing in ways that will be undersam-
pled in observational records. This study presents an alterna-
tive “process-based” FFA approach that uses stochastic storm
transposition to generate large numbers of realistic rainstorm
“scenarios” based on relatively short rainfall remote sens-
ing records. Long-term continuous hydrologic model simu-
lations are used to derive seasonally varying distributions of
watershed antecedent conditions. We couple rainstorm sce-
narios with seasonally appropriate antecedent conditions to
simulate flood frequency. The methodology is applied to the
4002 km2 Turkey River watershed in the Midwestern United
States, which is undergoing significant climatic and hydro-
logic change. We show that, using only 15 years of rainfall
records, our methodology can produce accurate estimates of
“present-day” flood frequency. We found that shifts in the
seasonality of soil moisture, snow, and extreme rainfall in
the Turkey River exert important controls on flood frequency.
We also demonstrate that process-based techniques may be
prone to errors due to inadequate representation of specific
seasonal processes within hydrologic models. If such mis-
takes are avoided, however, process-based approaches can

provide a useful pathway toward understanding current and
future flood frequency in nonstationary conditions and thus
be valuable for supplementing existing FFA practices.

1 Introduction

Riverine floods, among the most common natural disasters
worldwide, are the product of complex interactions between
heavy rainfall, watershed and river channel morphology, and
antecedent (i.e., initial) conditions including soil moisture
and snowpack. Their impacts are projected to increase in the
future due to hydrometeorological factors (e.g., Hyndman,
2014) and increased human development in flood-prone ar-
eas (e.g., Ntelekos et al., 2010; Ceola et al., 2014; Prosdocimi
et al., 2015). Estimating the relationships between flood like-
lihood and severity is central to flood risk management and
infrastructure design; these relationships are typically repre-
sented by flood frequency distributions (or curves), while the
broad family of procedures used to derive them is termed
flood frequency analysis (FFA). Most existing FFA meth-
ods belong to one of three approaches: statistical analysis of
streamflow observations, design storms, and continuous sim-
ulation or other so-called “derived” or “process-based” meth-
ods. Each has strengths and shortcomings, which are briefly
summarized in Sect. 2 (see Wright et al., 2014a, for a thor-
ough summary).

FFA is challenging even in stationary (i.e., unchanging)
watershed and hydroclimatic conditions due to the scarcity
of observations of large floods and the associated factors that
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generate them (Stedinger and Griffis, 2011). The role of soil
moisture in flood frequency, for example, is very important
(Berghuijs et al., 2016) but poorly understood due to a lack
of long-term observations. Furthermore, the individual and
joint flood causative factors will evolve as a watershed un-
dergoes changes in land use or hydroclimate (Machado et
al., 2015). Leading causes of change (i.e., nonstationarity)
include human intervention through land use change or reser-
voir construction (Konrad and Booth, 2002; Schilling and
Libra, 2003; Villarini et al., 2009), natural climate variabil-
ity (Enfield et al., 2001; Jain and Lall, 2000), and anthro-
pogenic climate change driven by increasing greenhouse gas
concentrations (Milly et al., 2008; Hirsch and Ryberg, 2012).
Combinations of these will lead to nonstationary flood fre-
quency, a challenge for which the bulk of existing FFA meth-
ods are ill-suited (El Adlouni et al., 2007; Gilroy and Mc-
Cuen, 2012).

In this study, we present an alternative FFA methodology
that aims to “construct” the flood frequency curve through
a combination of observations, stochastic methods, and hy-
drologic modeling that generates and combines the causative
factors (i.e., processes) such as rainfall and soil moisture that
produce floods. This concept is not new, and has traditionally
been called “derived FFA” (e.g., Eagleson, 1972; Franchini
et al., 2005; Haberlandt et al., 2008), though we prefer the
more descriptive term “process-based FFA” (following Siva-
palan and Samuel, 2009; see Clark et al., 2015a, b, and Lamb
et al., 2016, who discuss somewhat similar techniques). Siva-
palan and Samuel (2009) argue in favor of process-based ap-
proaches in the face of nonstationary conditions, though they
do not actually lay out a specific FFA procedure.

We present such a process-based procedure, and apply it
to an agricultural watershed in the Midwestern United States
that is undergoing substantial seasonal hydroclimatic and hy-
drologic changes that have led to nonstationary flood fre-
quency. We show that this procedure is useful for deciphering
the underlying physical processes that drive flooding, as well
as their changes in this watershed. Our methodology under-
scores the importance of seasonality in the joint contributions
of rainfall, soil moisture, and snow to flood frequency. To
our knowledge, this study is the first to explore the role that
seasonal changes in hydroclimatic and hydrologic processes
play in nonstationary flood frequency, though other studies
have explored the importance of such processes in flood oc-
currence more generally (e.g., Berghuijs et al., 2016).

The structure of the paper is as follows: Sect. 2 briefly re-
views the three aforementioned FFA approaches. Section 3
introduces the study region, watershed, and hydrometeo-
rological data. Section 4 outlines the process-based FFA
methodology used in this study, including the hydrologic
model, the stochastic storm transposition (SST) procedure
used to derive the synthetic rainfall scenarios, and elements
of both continuous and event-based rainfall–runoff simula-
tion. The nonstationary hydroclimate of the study watershed
and trends in relevant hydrometeorological variables are ana-

lyzed in Sect. 5.1. Model validation is presented in Sect. 5.2.
Process-based FFA results are presented and compared with
“conventional” statistical estimates in Sect. 5.3. Simulated
flood seasonality is explored in Sect. 5.4. The relationships
between rainfall and simulated peak discharge quantiles are
examined in Sect. 5.5. Section 6 includes a summary and
concluding remarks.

2 Review of FFA approaches

2.1 Discharge-based statistical approaches

Statistical FFA approaches involve fitting a statistical dis-
tribution to extreme discharge observations and extrapolat-
ing this distribution to estimate quantiles such as the 100-
or 500-year discharge. While these approaches utilize direct
observations of flooding (e.g., peak discharge or volume),
long streamflow records at or near the given river cross sec-
tion are needed for reliable quantile estimates. Such records
are lacking in many locations, even in developed countries.
Statistical approaches are limited by the available observa-
tions; thus, the estimation distribution may not represent the
“true” (unknown) distribution of possible outcomes (Lins-
ley, 1986; Klemeš, 1986, 2000a, b). In principle, regional-
ized FFA methods are able to improve quantile estimates at
both gaged and ungauged locations (Dawdy et al., 2012);
they make assumptions, however, regarding the transferabil-
ity of regional information to specific locations and in doing
so may neglect key geophysical processes that dominate the
spatiotemporal variability of floods (Ayalew and Krajewski,
2017).

Though streamflow observations are the result of a range
of complex factors including rainfall, soil moisture, and
channel routing, without concurrent observations of these
“upstream” variables, neither streamflow observations nor
distributions fitted to them provide much insight into flood
causes. Long-term records of such variables, particularly soil
moisture, are virtually nonexistent. There have been numer-
ous examples within the FFA literature pointing to situations
in which discharge-based analyses can be inferior to those
based on hydrologic modeling, including cases of basin stor-
age “discontinuities” (Rogger et al., 2012), reservoirs (Ay-
alew et al., 2013), and land use change (Cunha et al., 2011).

Finally, most statistical FFA methods assume that the mag-
nitudes of extreme flood events and quantiles are stationary.
This assumption conflicts with numerous examples in which
hydrological records exhibit various types of nonstationarity
(e.g., Potter, 1976; Villarini et al., 2009; Douglas et al., 2000;
Franks and Kuczera, 2002). Though nonstationary statistical
FFA techniques do exist (e.g., Cheng et al., 2014; Gilleland
and Katz, 2016; Serago and Vogel, 2018), they face severe
limitations in extrapolating to future conditions (Luke et al.,
2017; Sivapalan and Samuel, 2009; Stedinger and Griffis,
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2011) since they rarely consider the fundamental physical
causes of change.

2.2 Design storm approaches

Design storm (DS) approaches use idealized rainfall scenar-
ios of a given return period as inputs to a hydrologic model
to simulate flood peaks. DS is widely used in practice due
to its simplicity (Cudworth, 1989; Kjeldsen, 2007; Ball et
al., 2016). To some extent, the flood-producing physical pro-
cesses are captured via the hydrologic model, which also pro-
vides a complete simulated flood hydrograph, as opposed to
only the peak discharge or volume provided by statistical ap-
proaches. However, DS approaches rely on at least three ma-
jor assumptions: (1) point-based rainfall intensity–duration–
frequency (IDF) estimates (which are subject to some of the
same aforementioned statistical and data availability issues
as flood discharges) can be converted into hyetographs using
dimensionless temporal rainfall distributions and into basin-
averaged estimates using area reduction factors (e.g., Svens-
son and Jones, 2010); (2) IDF estimates, based on annual
rainfall maxima, produce flood peaks which are quantiles of
the distributions of flood annual maxima; and (3) there is a
1 : 1 equivalence between rainfall and simulated discharge
quantiles (i.e., return periods or recurrence intervals): for ex-
ample, a 100-year idealized rainfall event will produce a rea-
sonable estimate of the 100-year peak discharge. The last of
these assumptions discounts the possibility that watershed
initial conditions such as soil moisture and snowpack can
modulate the transformation of rainfall quantiles into dis-
charge quantiles.

These assumptions are not without their shortcomings.
Wright et al. (2014b), for example, showed significant dis-
parities between observed point and basin-averaged rain-
fall extremes that cannot be captured using conventional
ARF concepts. Using design storm in conjunction with a de-
rived distribution approach, Viglione and Blöschl (2009) and
Vigligone et al. (2009) demonstrated that the ratio of rain-
fall return period to flood peak return period is controlled
by storm duration, a runoff coefficient (which is related to
antecedent conditions), and a runoff threshold effect. An-
tecedent conditions can vary substantially by season, mean-
ing that high soil moisture may only infrequently coincide
with extreme rainfall. Wright et al. (2014a) discuss addi-
tional design storm shortcomings in greater detail, including
time of concentration concepts, while also pointing out that
design storm approaches (like other hydrologic model-based
FFA) can incorporate future projections in land use and rain-
fall more explicitly than can statistical discharge-based meth-
ods.

2.3 Continuous simulation and process-based FFA
approaches

Continuous simulation (CS) and process-based approaches
to FFA leverage the potential benefits of hydrologic models
while minimizing the simplifying assumptions of DS meth-
ods. CS approaches typically use long series of historical or
stochastically generated rainfall, temperature, and occasion-
ally other meteorological variables as model inputs, to simu-
late long discharge time series. Peak flows can be extracted
from these series and the flood frequency distribution can be
obtained. Thus, event rainfall return period and duration and
antecedent conditions do not need to be specified and the
equality between rainfall and discharge return period is not
assumed (Calver et al., 1999, 2009). In addition, projections
of future flood frequency can be developed by incorporating
general circulation model (GCM) rainfall and temperature
projections into the input meteorological series (Gilroy and
McCuen, 2012; Rashid et al., 2017). On the other hand, CS
approaches are limited by the general lack of reliable long-
term time series of extreme rainfall and other meteorological
data (Blazkova and Beven, 1997, 2002, 2009) and, in the case
of sophisticated distributed approaches, by potentially high
computational demands (Li et al., 2014; Peleg et al., 2017).
Stochastic rainfall generation techniques typically struggle
to produce the extremes that are critical for flooding (e.g.,
Cameron et al., 2000; Furrer and Katz, 2008), and training
such models for locations with rainfall nonstationarities and
strong seasonal variations is nontrivial. Camici et al. (2011)
and Li et al. (2014) present process-based FFA approaches
that couple long CS simulation results with event-based sim-
ulations.

One argument in favor of CS and process-based ap-
proaches is that the complex joint relationships between
flood drivers such as rainfall and soil moisture are resolved
within the modeling framework and thus do not rely on users’
assumptions. We demonstrate that caution is needed in the
representation of seasonality; to briefly summarize, it is criti-
cal that both seasonality in input variables as well as season-
ally varying processes within the model be “correct”. With-
out verifying this, process-based approaches may produce
seemingly correct results as a result of incorrect methods.

3 Study region and data

The study watershed of the Turkey River is situated in north-
eastern Iowa (Fig. 1a, b). The portion upstream of the US Ge-
ological Survey (USGS) stream gage at Garber (gage number
05412500) has a drainage area of 4002 km2, with elevations
ranging from approximately 426 m above sea level (m a.s.l.)
in the west to 197 m a.s.l. at the stream gage (Fig. 1c).
Streams in the upper part of the catchment have relatively
mild slopes, while the channels and hillslopes in the lower
part are steeper. Soils are mainly loams and silts (IFC, 2014).
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According to the USGS 2012 National Land Cover Dataset
(NLCD), the Turkey River watershed is predominantly agri-
cultural, with less than 2 % urban land cover (Fig. 1d). Com-
parisons of NLCD from 1992, 2001, 2006, and 2012 indicate
that land uses have not evolved significantly over time (re-
sults not shown), though the hydrologic impacts of subsur-
face tile drainage, which has become ubiquitous throughout
the region, are poorly understood and could exert meaningful
influence on flooding (see, e.g., Schilling et al., 2014).

We use daily discharge observations for 84 years (1933–
2016) from the USGS streamgage at Garber to understand
the hydroclimatology of flooding and to validate our FFA
results. Daily discharge observations for 69 years (1948–
2016), in conjunction with Global Historical Climate Net-
work (GHCN) daily temperature and snow data, are used
to configure, calibrate, and validate the hydrologic model,
as described in Sect. 4.1. CPC US Unified (CPC-Unified;
Chen et al., 2008) and Stage IV (Lin and Mitchell, 2005)
precipitation data, available through the National Oceanic
and Atmospheric Administration, are used for rainfall analy-
ses. CPC-Unified provides daily, 0.25◦ rainfall estimates in-
terpolated from rain gage observations, while Stage IV pro-
vides hourly, approximately 4 km estimates by merging data
from rain gages and the National Weather Service Next-
Generation Radar network (NEXRAD; Crum and Alberty,
1993). Analyses based on Stage IV use data from 2002 to
2016, while long-term analyses based on CPC-Unified use
data from 1948 to 2016.

4 Methodology

The FFA approach presented in this study combines continu-
ous simulation (CS), stochastic storm transposition (SST) us-
ing the RainyDay software, and event-based simulation. CS
provides large samples of seasonally varying antecedent con-
ditions, namely, soil moisture and snowpack. SST produces
large numbers of synthetic rainfall scenarios. Together, these
drive event-based simulations to generate the synthetic flood
peaks that are used to derive flood frequency distributions.
The approach is illustrated schematically in Fig. 2 and sum-
marized in the following subsections.

4.1 Hydrologic model, calibration, and continuous
simulation

We used the lumped Hydrologiska Byråns Vattenavdelning
(HBV) model (Bergström, 1992, 1995; Lindström et al.,
1997). HBV has been widely used to study hydrologic re-
sponse in the United States (Vis et al., 2015; Niemeyer et al.,
2017) and other regions of the world (Harlin and Kung, 1992;
Osuch et al., 2015; Seibert, 2003; Chen et al., 2012). The
“HBV-Light” version (henceforth referred to as HBV; Seib-
ert and Vis, 2012) used in this study consists of four main
routines: the snowpack, soil moisture, catchment response,

and runoff routines. HBV simulates daily discharges based
on time series of precipitation and air temperature, as well as
estimates of long-term daily potential evapotranspiration. A
list of model parameters is shown in Table 1.

The process-based FFA methodology employed in this
study could be coupled with other hydrologic models. A dis-
tributed model would allow for more realistic representation
of important characteristics like changing land use, rainfall
spatiotemporal structure, and flood wave attenuation in river
channels, and could operate at higher (i.e., subdaily) tempo-
ral resolution. We selected HBV at the daily time step due
to its simplicity, its computational speed, and its ability to
represent multiple watershed hydrological processes.

We calibrated separate HBV models using both CPC and
Stage IV rainfall. Most parameter values were the same for
CPC- and Stage IV-based models, except for three snow rou-
tine parameters (TT, CFMAX, SFCF) and three recession co-
efficients (K0, K1, K2), allowing for the variability of model
parameters for different climate conditions. For each model
setup, we first calibrated the model with the snowpack rou-
tine “turned off” (by setting the TT parameter to a very low
value) to obtain parameters that can simulate summer floods
adequately. Then, keeping these optimized non-snow routine
parameters unchanged, we calibrated the snow routine pa-
rameters.

To determine the optimized model parameter sets in each
procedure, we followed the Genetic Algorithm and Powell
(GAP) optimization method as presented by Seibert (2000),
which is briefly summarized here. First, 5000 parameter sets
are randomly generated from a uniform distribution of the
values of each parameter (Table 1), which were then ap-
plied to the HBV model in order to maximize the Kling–
Gupta efficiency (Gupta et al., 2009) of simulated daily dis-
charge. After the GAP has finished, the optimized parame-
ter sets were fine-tuned using Powell’s quadratic convergent
method (Press, 1996) with 1000 additional runs. Lastly, the
optimized parameter set was manually adjusted to improve
the fits between observed and simulated annual peak flow
(see Lamb, 1999). More elaborate calibration and uncertainty
estimation procedures such as generalized likelihood uncer-
tainty estimation (GLUE; Beven and Binley, 1992, 2014;
Beven, 1993) could be used, but are outside the scope of our
study.

The two different HBV models were then used to perform
CS with historical CPC and Stage IV rainfall and temper-
ature data to derive long-term simulated soil moisture and
snowpack values, which are usually difficult to obtain via
measurement. We “pair” samples of these initial conditions
with synthetic rainfall events to simulate hypothetical floods,
as described in Sects. 4.2 and 4.3.

4.2 Stochastic storm transposition

Stochastic storm transposition (SST) is a bootstrap method
to generate realistic probabilistic rainfall scenarios through
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Figure 1. Study region. (a) Contiguous United States with the state of Iowa highlighted in grey. (b) Zoomed-in map showing Iowa (black
outline) and the Turkey River watershed (red) and the extent of the stochastic storm transposition region (blue dashed line). (c, d) The Turkey
River watershed showing land surface elevation (based on the USGS National Elevation Dataset) and land use (based on the USGS 2012
NLCD), respectively.

Table 1. Overview of HBV model parameters and upper and lower parameter limits used for calibration.

Parameter Description Units Min value Max value

Snow routine

TT Threshold temperature for liquid and solid precipitation ◦C −3 3
CFMAX Degree-day factor mm d−1 ◦C−1 0.5 4
SFCF Snowfall correction factor – 0.5 1.2
CFR Refreezing coefficient – 0.01 0.1
CWH Water holding capacity of the snow storage – 0.1 0.3

Soil moisture routine

FC Maximum soil moisture storage (field capacity) mm 100 550
LP Relative soil water storage below which AET is reduced linearly – 0.3 1
BETA Exponential factor for runoff generation – 1 5

Response routine

PERC Maximum percolation from upper to lower groundwater box mm d−1 0 10
UZL Threshold of upper groundwater box mm 0 50
K0 Recession coefficient 0 d−1 0.5 0.9
K1 Recession coefficient 1 d−1 0.15 0.5
K2 Recession coefficient 2 d−1 0.01 0.15

Routing routine

MAXBAS Length of triangular weighting function d 1 2.5
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Figure 2. Flowchart showing the process-based FFA approach. Dotted outlines delineate components associated with Sects. 4.1, 4.2, and 4.3.

temporal resampling and spatial transposing of observed
storms from the surrounding region. SST effectively “length-
ens” the rainfall record via “space-for-time substitution”. Un-
like rainfall IDF curves, SST can preserve observed rain-
fall space–time structure, and, unlike design storm meth-
ods, obviates the need to equate rainfall duration with catch-
ment response time (Wright et al., 2013, 2014a, b). Alexan-
der (1963), Foufoula-Georgiou (1989), and Fontaine and Pot-
ter (1989) provide general descriptions of SST. Wilson and
Foufoula-Georgiou (1990) apply the method for regional
rainfall frequency analysis, while Gupta (1972), Franchini et
al. (1996), England et al. (2014), and Nathan et al. (2016) use
it for FFA.

Wright et al. (2013) used SST with a 10-year high-
resolution radar rainfall dataset to estimate spatial IDF re-
lationships. Wright et al. (2014a) used this approach with
a physics-based distributed hydrologic model for FFA in a
heavily urbanized watershed, demonstrating its usefulness in
evaluating multi-scale flood response.

RainyDay is open-source, Python-based SST software that
couples SST methods with rainfall remote sensing data.
A more detailed description can be found in Wright et
al. (2017); not all of its features are used in this study. The
following steps describe how RainyDay is used here.

We define a 6◦ (longitude) by 4◦ (latitude) geographic
transposition domain (40 to 44◦N, 90 to 96◦W; blue dashed
line of Fig. 1 inset) which encompasses the Turkey River wa-
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tershed. This same domain was used in Wright et al. (2017)
and, importantly for the SST approach, extreme rainfall prop-
erties are roughly homogeneous within it.

The RainyDay software creates a “storm catalog” from
15 years of Stage IV (69 years of CPC) precipitation data that
consists of the 450 (2070) most intense precipitation events
within the transposition domain. These intense storms are in
terms of 96 h rainfall accumulation and have the same size,
shape, and orientation of the Turkey River watershed, which
is oriented roughly northwest–southeast and with an area of
4002 km2. In order to avoid overlapping storms, these se-
lected events must be separated by at least 24 h. Storms that
exhibit “radar artifacts” such as major bright band contami-
nation or beam blockage are excluded from subsequent steps.

The RainyDay software generates a Poisson-distributed
integer k that represents a “number of storms per year”. The
rate parameter λ of this Poisson distribution is calculated by
dividing the total number of rainfall events in the storm cat-
alog by the number of years in the historical rainfall record
(e.g., λ= 450/15= 30.0 storms per year).

RainyDay randomly selects k storms from the storm cat-
alog and transposes the associated rainfall fields within the
transposition domain by an east–west distance 1x and a
north–south distance 1y, where 1x and 1y are drawn from
a two-dimensional Gaussian kernel density estimate based
on the locations of the original storms in the storm catalog.
For each of the k-transposed storms, the time series of rain-
fall over the Turkey River watershed is computed. It must
be noted that some of the k-transposed storms may not “hit”
the Turkey River watershed, and thus their calculated wa-
tershed rainfall is zero. Steps 3 and 4 can be understood as
temporal resampling of observed rainfall events to “synthe-
size” a hypothetical year of rainfall events over the transposi-
tion domain and, by extension, over the watershed. Although
the rainfall events for the “synthetic” year do not form a
continuous series, the dates associated with each observed
storm event are recorded, thus facilitating seasonally consis-
tent flood simulations.

All k events within a synthetic year are assigned a new,
randomly selected year from 1948 to 2016 (2002–2016) for
CPC (Stage IV) rainfall data which used to select antecedent
conditions. This ensures that the k rainfall events are all “em-
bedded” within a single realistic annual representation of wa-
tershed conditions. This ensures that “wet” and “dry” years in
terms of snowpack and soil moisture can potentially produce
wet or dry years of flood response. Antecedent conditions are
randomly selected from within 7 days of the updated storm
date to ensure realistic seasonality of storms and watershed
conditions. A storm that occurred on 15 July 2016, for ex-
ample, could be paired with initial conditions selected from
a date ranging between 8 and 22 July from a randomly se-
lected year, while the remaining k−1 events would be paired
with seasonally appropriate initial conditions from the same
selected year.

RainyDay repeats Steps 3–5 500 times to create one real-
ization of 500 synthetic years of rainfall events for the Turkey
River. Twenty such realizations of 500 synthetic years each
are generated. Unlike in the existing version of RainyDay, all
rainfall events within a synthetic year are retained for sub-
sequent event-based flood simulations, since the modulating
effects of antecedent conditions mean that the largest rainfall
event in a given year does not necessarily produce that year’s
largest flood peak (this is explored in Sect. 5.4).

4.3 Event-based flood simulation

Using the seasonally consistent “paired” watershed initial
conditions derived from CS (Sect. 4.1) and SST-based rain-
fall events (Sect. 4.2), HBV simulates the “event peak” (the
maximum daily discharge). The largest peak among the k
events that comprise a synthetic year represents the simu-
lated annual maximum daily streamflow. As mentioned in
Step 5 of the SST procedure (Sect. 4.2), each synthetic rain-
fall event is randomly paired with seasonally appropriate ini-
tial conditions (soil moisture, snowpack) and air tempera-
ture drawn from the continuous simulation (15 years in the
case of Stage IV; 69 years for CPC). This creates combina-
tions of initial conditions and forcing that in principle reflect
the true variability of these processes. This procedure is re-
peated for all 500 synthetic years within each realization, re-
sulting in 500 annual maximum streamflow values, which
are then ranked in descending magnitude. The annual ex-
ceedance probability pe (i.e., the probability in a given year
that an event of equal or greater magnitude will occur) of
each maximum streamflow is calculated by dividing its rank
by 500 (the total number of simulated annual maximum daily
streamflow). The 20 realizations provide estimates of vari-
ability for each flood quantile.

5 Results

5.1 Hydroclimatology and nonstationarity

Four distinct time periods (Fig. 3a) are considered for ana-
lyzing the changing hydroclimatology in the Turkey River:
the USGS daily mean streamflow period of record (1933–
2016), a more recent period of apparent elevated flood activ-
ity (1990–2016), the period of the Stage IV rainfall record
(2002–2016), and the period of the CPC rainfall record
(1948–2016). Results here and in subsequent subsections
“align” with one or more of these time periods.

The hydroclimate of the Turkey River is changing, as
shown using the Mann–Kendall (MK) test for monotonic
trends (Mann, 1945), a nonparametric method used to de-
termine trend direction and significance (Table 2). Since
1948, annual precipitation and discharge have shown sig-
nificant increases (p < 0.05) and their variability has also
increased, while annual maximum daily discharge has de-
creased, though not significantly. It is important to note, how-
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ever, that there are two counteracting seasonal trends (see
also Fig. 3a): annual daily discharge maxima have decreased
significantly in March–April, but have increased somewhat
in May–September. Thus, the lack of statistically significant
change in annual maximum daily discharge in the Turkey
River masks changes in the seasonality of flooding.

We examine this flood seasonality, both in observations
and in our continuous HBV simulations (Fig. 3b). The sea-
sonal distribution of flood occurrence for 1948–2016 shows a
March–April maximum, with elevated flood activity continu-
ing through May and June. This is distinct from though over-
laps somewhat with the seasonality of both the 4-day annual
maxima of rainfall, which occur most frequently in the June–
September period, and simulated daily annual maxima soil
moisture, which only tends to occur in March–April. These
results highlight that flood activity is the product of seasonal
variations in both soil moisture and rainfall. (Four-day rain-
fall shown in Fig. 3b since it is used in SST; seasonality in
1-day rainfall is similar; results not shown).

The March–April peak of flood occurrence corresponds
to relatively high soil moisture associated with snowmelt,
rain on or frozen soil, and frequent spring rains. The sec-
ondary peak of flood occurrence in May–June is associated
with larger flood magnitudes (including the flood of record,
in 2004) due to organized thunderstorm systems. Widespread
flooding in Iowa in June 2008 showed that such thunderstorm
systems make critical contributions to the upper tail of flood
peak distributions in the region (Smith et al., 2013). Although
the frequent August–September heavy rainfall events evident
in Fig. 3b have not triggered any recorded annual flood peaks
in the Turkey River, our process-based FFA demonstrates
that they may still be relevant to current and future flood fre-
quency, as shown in Sect. 5.4.

The largest annual maxima (over 800 m3 s−1) occur in
May–July (Fig. 3c), consistent with the broader climatology
of flooding in Iowa (Smith et al., 2013; Villarini et al., 2011).
Furthermore, both the seasonality and magnitude of flood
peaks have shifted since approximately 1990 (Fig. 3a, c),
with March–April (May–September) floods decreasing (in-
creasing) in magnitude, leading to a shift in the seasonality
of the overall distribution of annual maximum daily stream-
flow from a high in March prior to 1990 to a prolonged high
from April to June post-1990. Although the small sample
size of the annual maximum daily discharge during this el-
evated 1990–2016 late-spring and summertime flood period
may affect the reliability of the derived distribution of flood
occurrence, Park and Markus (2014) also reported a signif-
icant shift toward summertime flooding in the nearby Peca-
tonica River. Statistically based FFA (including nonstation-
ary methods) based on annual maxima discharges may fail to
capture the impact of this shifting seasonality on flood fre-
quency.

Figure 3. (a) Linear trends for two groups of annual maximum daily
discharge: March–April floods (blue) and May–September floods
(red) using the nonparametric Thiel–Sen estimator (Sen, 1968). The
October–February maximum daily discharges are in black dots and
their trend line is not calculated because only nine annual maxima
occur during this period. The four critical time ranges are shown
in black lines. (b) Occurrence densities of the date during the year
for the observed annual daily maximum discharge, observed annual
4 d maximum precipitation, and simulated annual daily maximum
soil moisture in the Turkey River watershed from 1948 to 2016.
(c) The magnitude and date during the year for annual flood peaks
(black dots) and sample probability density functions (PDFs) for
floods in different periods (1933–1989, 1990–2016). In this study,
all probability densities for the occurrence date are estimated using
Gaussian kernel smoothing.

5.2 Model validation

We validated the performance of continuous HBV simula-
tions with respect to flood seasonality, frequency of annual
daily discharge maxima, and normalized peak flow (i.e., the
simulated or observed daily discharge divided by the 2-year
flood), using both Stage IV and CPC as precipitation inputs
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Table 2. Mann–Kendall trend test (two-sided) for hydrological variables. p-values are given in parentheses; bold values are significant at the
5 % level. Analyses of trends in variances examine changes in the absolute values of residuals obtained from a linear regression using the
Thiel–Sen estimator (Sen, 1968).

Data Time range Trend

Annual discharge 1933–2016 ↑(0.001)
Annual max. daily discharge 1933–2016 ↓ (0.447)
Variance of annual max. daily discharge 1933–2016 ↑ (0.056)
Annual max. daily discharge in March–April 1933–2016 ↓(0.002)
Annual max. daily discharge in May–September 1933–2016 ↑ (0.089)
Annual precipitation 1948–2016 ↑(0.003)
Annual max. daily precipitation 1948–2016 ↑ (0.362)
Annual max. 4 d precipitation 1948–2016 ↑ (0.419)
Annual mean temperature 1948–2016 ↓ (0.462)
March–May mean temperature 1948–2016 ↑ (0.443)

(Fig. 4). We also validated two model structures: one with
and the other without the HBV snowpack module. The pur-
pose of this latter validation effort is to highlight the impor-
tance of proper process representation (and subsequent vali-
dation) in process-based FFA.

Simulated flood seasonality varies substantially during the
CPC period of record (1948–2016) depending on the inclu-
sion of the snowpack routine (Fig. 4a). Differences are less
for the Stage IV period of record (2002–2016), due to the de-
creasing role of snowpack in deriving the floods in recent
years (Fig. 4b). In both cases, the seasonality of flooding
simulated using HBV is improved with the inclusion of the
snowpack module, with a higher (lower) frequency of spring-
time (summertime) floods which more closely resembles ob-
servations. Empirical (i.e., plotting position-based) distribu-
tions for the simulated annual daily discharge maxima are
mostly within the 90 % confidence interval (obtained by non-
parametric bootstrap) of the observations (Fig. 4c, d). CPC-
based simulation results differ considerably depending on the
inclusion of the snowpack module for more common events,
but differences in simulated maxima vanish as flood mag-
nitude increases (e.g., AEP< 0.1). This is because the most
extreme flood events occur later in the season and are thus in-
dependent of snowpack or snowmelt processes. Differences
are generally negligible between Stage IV-based simulations
with and without snowpack, since floods in this more recent
period are generally driven by summertime thunderstorms.
These findings are consistent with the general understanding
of the regional seasonality of flooding in the region, as dis-
cussed in Sect. 5.1.

We compared all simulated and observed flood peaks that
can be associated with a USGS-observed daily streamflow
value that is at least 3 times the mean annual daily dis-
charge (Fig. 4e, f). When associating simulated and ob-
served flood peaks, we look within a 2 d window to allow
for modest errors in simulated flood peak timing. All peaks
in Fig. 4e and f are normalized by the median annual (i.e.,
2-year) flood, which, as a rule of thumb, can be considered

the “within-bank” threshold. Again, HBV with the snow-
pack routine outperforms the model without it, especially for
the small to modest flood events in CPC-based simulations.
The model without snowpack underestimates small to mod-
est flood events in two cases due to the neglect of potential
snowmelt contributions. While modest scatter exists in the
Stage IV-based simulated peaks, there is no obvious system-
atic bias with event magnitude when the snowmelt routine is
included. The good performance of the Stage IV simulations
suggests that, when focusing on the recent period of elevated
flood activity, Stage IV may be a more suitable rainfall in-
put than CPC-Unified. In addition, CPC rainfall is known to
contain errors in the extreme tail, due to gage “undercatch”,
insufficient gage density to properly sample convective rain
cells, and spatial averaging of such cells over large areas,
which effectively reduces peak rainfall depths.

We also validate HBV’s snowpack routine using observed
GHCN daily snow depth for two simulation periods (Fig. 5a,
b) and using USGS daily streamflow observations for a
Stage IV-based period (Fig. 5c). Because of their differ-
ing spatial resolutions and physical representations, point-
scale GHCN daily snow depths cannot be directly compared
to the watershed-scale snow water equivalent simulated by
HBV. Instead, we validate snowpack simulations in terms of
the snowpack occurrence, defined as the number of nonzero
snowpack on a particular date divided by the total number
of years in the historical or simulated record. For example,
there are 50 d in the GHCN observations when snowpack
is present on 1 January in the 69-year period from 1948
to 2016; thus, the occurrence rate is 0.72 (50 divided by
69). The HBV model with the snowpack routine captures
the central tendency of observed snowpack dynamics, show-
ing that snowpack frequently exists from early November to
mid-February, with frequency of snow decreasing from late
February until disappearing in early April.

Model hydrograph validation is provided in Fig. 5c for the
Stage IV period (2002–2016), when major flooding occurred
throughout Iowa. Model performance shows no obvious ev-
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Figure 4. HBV model validation for flood seasonality (a, b), frequency of annual maximum daily discharge (c, d), and normalized peak
flow (e, f) for CPC and Stage IV-based continuous simulations. Model validation is performed for HBV simulations with and without using
CPC for 1948–2016 (a, c, e) and Stage IV for 2002–2016 (b, d, f). The 90 % confidence intervals for the empirical distributions of observed
maximum daily discharges (c, d) are derived using nonparametric bootstrapping. Flood peak discharge in (e) and (f) is defined as a data point
with an USGS-observed value that is at least 3 times the average observations. Peak discharges are normalized by the median of annual daily
discharge maxima (i.e., the 2-year flood). Straight solid black lines indicate 1 : 1 correspondence, while dashed lines denote an envelope
within which the modeled values are within 50 % of those observed.

idence of systematic bias in the streamflow simulations (see
also Fig. 4f). Although flood seasonality derived from Stage
IV-based simulation differs slightly from observations (see
also Fig. 4a), these mismatches are associated with flood
events smaller than the median annual flood (blue dashed
line in Fig. 5c). Stage IV-based simulations do not show bias
flood magnitude in late summer. In other words, remaining
biases in terms of flood seasonality generally correspond to
frequent, small-magnitude events that are typically of less in-
terest in FFA. We therefore conclude that the HBV model

with snowpack is generally suitable for subsequent process-
based FFA.

5.3 Flood frequency analyses

RainyDay-based flood frequency distributions for the Turkey
River at Garber using both Stage IV and CPC precipitation
are compared with the distribution based on statistical anal-
yses of discharge observations using 1933–2016 USGS an-
nual maximum daily streamflows (Fig. 6). The latter is es-
timated using the HEC-SSP software (Bartles et al., 2016),
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Figure 5. Percentage of days with nonzero snowpack present in observations and simulations (a, b) and hydrograph validation for Stage IV-
based simulation (c). For each day within a year, the percent with nonzero snowpack is calculated as the ratio of the number of years in which
snowpack is present on that day to the total years (69 years for CPC and 15 years for Stage IV). Observed and simulated hydrographs are
normalized by the median annual flood, which is indicated by the dashed blue line.

which implements methods from Bulletin 17B (Interagency
Advisory Committee on Water Data, 1982) using “station
skew” to fit the log-Pearson Type III distribution. Observed
annual daily streamflow maxima from 1933 to 2016 are also
shown, where plotting position (pe) is estimated using the
Cunnane plotting position (Cunnane, 1978). As mentioned
above, different HBV parameters are used for the Stage IV
and CPC-based simulations; this is necessary due to the dif-
fering time periods and error properties of these two precipi-
tation datasets.

The Stage IV-based flood frequency curve agrees reason-
ably well with the Bulletin 17B results for pe > 0.3 ( panel
(a) of Fig. 6), but yields higher estimates for rarer events. The
CPC-based curve, on the other hand, matches closely with
Bulletin 17B. The Stage IV analyses use shorter but more
recent (2002–2016) meteorological and hydrological records
than the other frequency curves. When streamflow observa-
tions are divided into two groups (1933–1989 and 1990–
2016), it becomes clear that the recent peak flood observa-
tions align well with the Stage IV-based SST results (panel
(b) of Fig. 6). This, along with the increasing trend of annual
mean precipitation and discharge shown in the previous sub-
section, suggests that, despite the relatively short (15-year)
rainfall record used, Stage IV-driven process-based FFA ad-
equately reflects flood frequency in the wetter recent climate
(a similar result is shown in Wright et al., 2017), while the

CPC-based and Bulletin 17B methods, both based on much
longer data records, fail to do so.

The results shown in Fig. 6 suggest that the recent shift
from spring to summer flood activity is accompanied by
a substantial shift in the flood frequency distribution. The
close agreement between process-based results using CPC
and the statistically based analysis using Bulletin 17B sug-
gests that even in stationary situations with long records, sta-
tistical methods do not necessarily produce superior results
to process-based approaches. Process-based FFA using CPC
precipitation from 2002 to 2016 closely resembles the Stage
IV-based FFA (results not shown), suggesting that rainfall
process nonstationarity, rather than differences between dif-
ferent input datasets, is the primary driver of the differences
in the CPC-based and Stage IV-based results in panel (a) of
Fig. 6.

5.4 Simulated flood seasonality

As shown in Sect. 5.1, the recent climatology of flooding
in the Turkey River watershed shows a peak in flood occur-
rence during March–April, with elevated activity (including
high-magnitude events) continuing through July, reflective of
the regional flood “mixture distribution” (e.g., Smith et al.,
2011). March–April flooding is associated with springtime
rains, high soil moisture, and potentially snowmelt processes,
while May–July flooding results from warm-season orga-
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Figure 6. Peak discharge analyses for the Turkey River at Garber, IA. (a) RainyDay with Stage IV (2002–2016) and CPC (1948–2016)
rainfall and USGS frequency analyses using Bulletin 17B methods. All observed USGS annual maximum daily streamflows from 1933 to
2016 are also shown. Shaded areas denote the ensemble spread (RainyDay-based results) and the 90 % confidence intervals (Bulletin 17B-
based analysis), respectively. (b) Same as (a), but with the USGS observations divided into pre-1990 and post-1990 groups, and replotted to
highlight recent changes in flood frequency.

nized thunderstorm systems. It is important that any process-
based FFA approach capture the influence of this mixture on
the flood frequency curve.

The seasonal distribution of simulated flood occurrence
and magnitude using Stage IV- and CPC-based results shows
that most simulated floods in our process-based approach oc-
cur between March and June (Fig. 7), in accordance with ob-
served annual maximum daily discharge (Fig. 3c). The peak
of occurrence using Stage IV is shifted several weeks later
than the CPC-based results, which agrees with the recent
shift in seasonality of flood observations shown in Fig. 3c.
Although many simulated events still occur in April, our re-
sults show the largest peaks occur later, in May–September.
This is consistent with Villarini et al. (2011), who showed
that warm-season organized convective systems are respon-
sible for some of the largest peaks in Iowa.

Our process-based results show that August–September
storms have the potential to cause severe flooding (Fig. 7),
despite the lack of large floods during this time of year in the
stream gage record. Stage IV- and CPC-based storm catalogs
generated by RainyDay include major storms from the sur-
rounding region, including several large late-summer events
capable of producing substantial flood response, and which
indeed induce large floods within our process-based analy-
sis. This suggests that the general lack of major late-summer
floods in the watershed’s observational record may not be a
feature of the “true” (unknown) distribution of flooding in
the watershed, but is rather due to limited size of the obser-
vational record. This result is supported by regional analysis
of floods (Villarini et al., 2011) and points to the potential for

Figure 7. Time of occurrence during the year for simulated peak
discharge in the Turkey River at Garber using (a) CPC and
(b) Stage IV.

SST to improve understanding of flood frequency seasonality
relative to discharge-based approaches alone.

To demonstrate that the discrepancies between the
process-based FFA results generated using CPC and using
Stage IV are driven by changes in physical processes, rather
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Figure 8. The simulated flood magnitude using CPC rainfall during the 1948–2016 (a) and 2002–2016 (b) periods, and corresponding
antecedent conditions. The blue triangles denote the snow-related flood events (e.g., snowmelt was nonzero in the simulation) and grey dots
represent the non-snow-related flood events (e.g., rainfall driven). The sizes of the triangles or dots indicate the antecedent soil moisture with
a higher value in a larger shape. The black dashed line indicates the 1000 m3 s−1 flood magnitudes.

than by differences in model structure (i.e., parameter val-
ues), we compared FFA results generated using CPC-based
simulation for 1948–2016 and 2002–2016, in terms of event
rainfall, initial soil moisture, flood type, and peak magni-
tude (Fig. 8). Compared with the 1948–2016 period (Fig. 8a),
there are fewer flood events driven by snowmelt or rain-on-
snow during 2002–2016 (Fig. 8b), but more driven by rain-
fall. This is particularly true for flood events (larger than
1000 m3 s−1). In addition, some of the rainfall-driven floods
from 2002 to 2016 were caused by relatively low rainfall but
high initial soil moisture, in accordance with the significant
increasing trend of annual precipitation and discharge (Ta-
ble 2).

5.5 Comparison of rainfall and peak discharge
quantiles

We examined the relationships between the return periods
of 96 h basin-averaged rainfall accumulations and simulated
peak discharge for the Turkey River at Garber using Stage
IV-based results (Fig. 9; CPC-based results show similar pat-
terns and thus are not shown here). Antecedent soil moisture
for each simulated event is also shown. Similar to Wright
et al. (2014a), Fig. 9 shows that simulated peak discharge
quantiles can differ substantially from the rainfall quantiles
of the rainfall that produces them. For instance, 500-year
(pe = 0.002) rainfall events can cause simulated peak dis-
charges ranging from 11 years (pe = 0.091) to 500 years
(pe = 0.002), corresponding to a range in peak discharge of
1072 to 2743 m3 s−1. Peak discharge quantiles are always
larger (in terms of return period) than the quantiles of rainfall
that produced them in wet antecedent soil moisture condi-
tions, while the reverse is true in for dry conditions. These re-
sults also demonstrate that the DS assumption of 1 : 1 equiv-
alency between rainfall and peak discharge quantiles does

Figure 9. Relationships between rainfall and simulated peak dis-
charge return periods estimated via our process-based method us-
ing Stage IV rainfall data. Spearman rank correlation ρs is given.
Color indicates the normalized modeled antecedent soil moisture
value calculated as soil moisutre−min. soil moisture

field capacity−min. soil moisture · 100 %.

not hold in the Turkey River. Rainfall spatial variability and
drainage network structure, which are ignored in this study
due to the lumped (i.e., non-distributed) nature of HBV, fur-
ther complicate the relationship between rainfall and dis-
charge quantiles.

We further examine the relationship between annual rain-
fall and annual flood peak maxima. In Sect. 2.2, we pointed
out that DS methods utilize IDF curves, which are usually
estimated using annual maxima from rain gage records and
which depict quantiles from the distribution of annual rain-
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Table 3. Percentages of simulated annual maximum daily flows
driven by 96 h rainfall annual maximum.

Return period Driven by annual maximum rainfall

CPC-based results Stage IV-based results

1–2 24 % 37 %
2–5 32 % 45 %
5–10 39 % 67 %
10–20 48 % 77 %
20–50 60 % 80 %
50–100 72 % 84 %
100–200 77 % 85 %
200–500 93 % 95 %

fall maxima. DS methods use quantiles from this distribution
to generate flood estimates, implicitly assuming that annual
rainfall maxima produce annual discharge maxima. In our
process-based FFA approach, we do not assume that annual
discharge maxima are the result of the largest rainfall event of
the year. Rather, lower-magnitude rainfall events, combined
with high soil moisture, could produce the highest discharge.
Table 3 shows the percentage of annual peak flow driven by
annual maximum gains with increasing return periods for
both CPC-based and Stage IV-based results. For simulated
peak flow with pe > 0.01, a large portion of simulated annual
peak flow is not caused by the annual maximum rainfall. For
rarer peak flows (pe ≤ 0.01), over 90 % of these flood events
are driven by the annual maximum rainfall, pointing to the
fact that the tail of flood peaks is driven by extreme rainfall,
with antecedent conditions playing a modulating role.

6 Summary and conclusions

Interactions between rainfall, land cover, river channel mor-
phology, and watershed antecedent conditions are important
drivers of flood response. Standard approaches to estimate
extreme flood quantiles (termed flood frequency analysis;
FFA), however, often take a superficial view of these inter-
actions, as argued in Sect. 2. This study presents an alterna-
tive FFA framework that combines elements of observational
analysis, stochastic rainfall generation, and continuous and
event-scale hydrologic simulation. We apply the framework
to the Turkey River, an agricultural watershed in the Mid-
western United States that is undergoing significant hydro-
climatologic and hydrologic change which is increasing the
magnitude of the largest flood events and shifting their oc-
currence from the spring to summer.

We use stochastic storm transposition (SST) to create
and resample from “storm catalogs” developed from both
15 years of high-resolution bias-corrected radar rainfall and
from 69 years of gridded rain gage observations to produce
large numbers of rainfall scenarios for the Turkey River.
These scenarios, when coupled with seasonally realistic wa-

tershed conditions, can help to reconstruct the seasonal and
secular variations in meteorological and hydrological pro-
cesses and their interactions, providing an alternative FFA
approach which is well-suited to nonstationary environments
(see also Sivapalan and Samuel, 2009). While statistical ap-
proaches can in principle be applied to investigate the im-
pacts of seasonality on FFA (e.g., Ouarda et al., 2006), such
methods still do not directly provide process-level under-
standing of the factors that “shape” flood frequency. Unlike
design storm approaches to FFA, the synthetic rainfall sce-
narios derived by the SST-based procedure do not require any
assumptions regarding the spatial and temporal structure of
rainfall, since they are driven by the structure and variability
of historical observed storms.

Our analyses show that using the most recent 15 years of
rainfall can produce realistic “present-day” flood quantile es-
timates that reflect the nonstationarities in rainfall and water-
shed conditions. The use of longer records, within both our
procedure and conventional statistical FFA methods, leads to
underestimates of current flood frequency due to their inabil-
ity to represent recent shifts in flood activity in the Turkey
River. Our results challenge some common FFA assump-
tions, including the design storm presumption that rainfall
annual maxima produce discharge annual maxima and the
assumption of 1 : 1 equivalence in rainfall and flood quan-
tiles. We paint a more complex picture in the Turkey River, in
which the shifting seasonality in rainfall and watershed con-
ditions combine to shape the flood frequency. Spatial vari-
ability in rainfall structure, soil moisture, land use, and wa-
tershed morphology, which are ignored in this study due to
the use of a lumped hydrologic model, add further complex-
ity to the flood-generating processes. The proposed frame-
work can be employed with more sophisticated distributed
hydrologic models, thus facilitating the examination of rain-
fall spatial variability and its interactions with other factors
(e.g., heterogeneous watershed characteristics and river net-
work processes; Zhu et al., 2018; Viglione et al., 2010a, b).
This coupling may prove particularly useful for FFA in large
watersheds in which there is a practically infinite number of
different combinations of such spatially and temporally vary-
ing processes that could produce floods – a population that is
almost certain to be undersampled in stream gage records and
poorly served by design storm assumptions.

A number of issues remain that make broader usage of our
process-based framework challenging. Perhaps the biggest
limitation of process-based approaches is the necessity of
discharge observations, which are central to both identify-
ing hydrologic changes and to calibrating and validating the
hydrologic model. Thus, usage of the approach in ungauged
basins may not produce satisfactory results. This issue is fun-
damental to other FFA techniques as well. Statistically based
discharge analyses, for example, similarly rely on streamflow
observations, while design storm approaches also require hy-
drologic model calibration.
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We also note that caution is needed when attempting to
employ process-based FFA. We were able to produce very
similar flood frequency distributions using our approach, re-
gardless of whether or not the HBV hydrologic model’s
snowpack routine was “turned on” or off (results omitted
for brevity), despite very different simulated seasonality of
flooding. This highlights that process-based frequency anal-
yses can be influenced by poor model process representation
that can lead to seemingly “correct” results for the wrong
reasons. This implies that the modeler must have sufficient
data and experience to recognize such issues. It also illus-
trates a key issue in FFA using both statistical approaches and
process-based methods: flood quantiles, though the product
of interactions between physical processes, reveal relatively
little about those underlying processes that produce them.
This is particularly problematic in changing hydroclimatic
or watershed conditions, because nonstationary behavior is
likely the result of seasonal shifts in one or more processes
that may affect flooding in ways that are not well-reflected in
observational records. Our results showing that major floods
could occur in the Turkey River in the late summer under
current hydroclimatic conditions, despite their absence in the
instrumental record, are one example of this. Failure to rec-
ognize and model such shifts could lead to results for past
or present flood conditions that appear to be correct but that
may lead to incorrect inferences about future conditions.

In summary, our framework and results highlight the op-
portunity and challenge with process-based FFA approaches,
namely, that progress in understanding and estimating flood
frequency and how it is evolving in an era of unprecedented
changes in land use and climate requires better understand-
ing of how the underlying physical processes, and the in-
teractions between them, are changing. Poor model repre-
sentation of key hydrological processes, however, can lead
to incorrect conclusions about present or future flood fre-
quency. Despite the challenge, we share the view of Siva-
palan and Samuel (2009) that process-based approaches hold
great potential for advances in FFA research and practice,
particularly in projecting future flood hazards in conjunction
with data and modeling advances in the climate science com-
munity. We do not propose that process-based approaches
should necessarily supplant more conventional discharge-
based analyses, and acknowledge that discharge observations
are essential in such studies. Rather, we anticipate a gradual
“merging” of statistical and process-based stochastic simula-
tion techniques as well as of the associated observations and
synthetic data.

Code availability. The RainyDay software is available at
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