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Scheme 1. Bronsted Acid-Catalyzed Dimerization Cascade

ABSTRACT: Asymmetric synthesis of the biologically
active xanthone dimer griffipavixanthone is reported along
with its absolute stereochemistry determination. Synthesis
of the natural product is accomplished via dimerization of
a p-quinone methide using a chiral phosphoric acid
catalyst to afford a protected precursor in excellent
diastereo- and enantioselectivity. Mechanistic studies,
including an unbiased computational investigation of
chiral ion-pairs using parallel tempering, were performed
in order to probe the mode of asymmetric induction.

T he dimeric natural product (+)-griffipavixanthone (1)
has become a desirable synthetic target due to its
interesting framework and anticancer properties. Compound
(+)-(1) has been shown to increase intracellular reactive
oxygen species (ROS) and cleave caspase-3, thereby inducing
apoptosis in lung cancer cells.” Recent studies have shown that
(+)-(1) is a B-Raf and C-Raf inhibitor in esophageal cancer cell
lines with comparable effects to FDA-approved drugs.”

We have previously reported the biomimetic synthesis of
(£)-1 wherein treatment of p-quinone methide (p-QM) 2 with

Lewis or Bronsted acids triggered an isomerization—cyclo- (Scheme 2c). Herein, we (1) describe a CPA-catalyzed
addition—cyclization cascade affording the polycyclic core asymmetric synthesis of (+)-1, (2) demonstrate catalyst-
(Scheme 1). The reaction sequence began with acid-mediated dependent diastereoselectivity, (3) assign absolute stereo-
isomerization of the vinyl p-QM 2 to 1,3-diene 3. Cationic, chemical configuration to (+)-1, and (4) provide computa-
stepwise [4+2] cycloaddition of 2 and 3 afforded the anti- tional insight for the asymmetric induction observed using
cycloadduct 4 and syn-cycloadduct S, the latter which parallel-tempering (PT) simulation methods.
underwent intramolecular arylation to afford griffipavixanthone Yamamoto and co-workers have demonstrated that chiral
tetramethyl ether 6. Bronsted acid-mediated cycloadditions require specific pK,’s as
The complexity and unique nature of this cationic cascade dictated by the substrate."* With this in mind, our investigation
prompted our interest to undertake an asymmetric synthesis. began by surveying chiral Brensted acids with varying pK,
In this regard, we considered that enantioselectivity could be values including CPAs, ir{lid;)diphosphoric acids (IDPs), and
introduced via chiral ion-pairing catalysis.~”  Asymmetric N-triflyl phosphorimides.'*™"” While the latter two catalyst
[4+2] cycloadditions are mediated by both Brensted and classes chiefly led to isomerization of p-QM 2 to diene 3, use of
Lewis acids.”” Scheme 2 depicts select literature reports of CPAs led to production of cycloadducts 4—6. A study of
chiral Brensted acid-mediated asymmetric reactions involving electronically variable CPAs was perfcg;med (Table 1). We
p-QMs. Sun and co-workers have reported CPA-mediated, found that treatment of 2 with CPA A" (entry 1) generated
enantioselective 1,6-arylations of p-QMs (Scheme 2a).'>'" In dimer 6 in high enantioselectivligy along with products 3—S.
addition, Li and co-workers have demonstrated asymmetric a- Electron rich CPAs B and C~ lowered the reactivity for

cycloadducts (entries 2 and 3). With the most promising result

alkylations to p-QMs generating two contiguous stereocenters
observed using —CF; catalyst (A), we expanded our assess-

(Scheme 2b)."” There is a single report of a diastereoselective,
CPA-mediated intramolecular [4+2] cycloaddition."> These
studies further prompted our interest to develop an Received: November 21, 2018
intermolecular, asymmetric [4+2] cycloaddition of a p-QM Published: December 19, 2018
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Scheme 2. Representative CPA-Catalyzed Asymmetric
Reactions of p-Quinone Methides

a. Sun and Coworkers:

OH
OH
+  Nu __CPA
A" OH A N
Nu= 2-naphthol or pyrrole
_99% Vi 999
b. Li and Coworkers: 42:99% yield, 61-99% ee
o
'Bu 'Bu R o)
) { CPA
+
N O
! Y
PMP Ar
R= alkyl or aryl
¢. This work: 68-85% vyield, 88-98% ee

MeO

2 catalyst (5 mol%)
4>
CH,Cl (50 mM) O O
t, 20 h

A: Ry= cF3 Rp=Rg=H
B:

F:R4=NO,, Rp=Ry=H

entry CPA 3 (%) 4 (%) 5 (%) 6% (%) (% ee)
1 A 7 30 9 34 (96)

2 B 51 18 8 -

3 C 49 11 3 -

4 D 10 48 - -

S E 8 36 10 36 (95)

6 F - 23 5 61 (99)

7° F - - - 72 (99)

“'H NMR ylelds determined using 1,2,4,5-tetramethylbenzene as
internal standard. "Reaction temperature is 40 °C. “Isolated yield.

ment of electron-deficient, aryl-substituted CPAs and found
that the highly electron-deficient Yamamoto catalyst (CPA
D)*° favored the anti-cycloadduct 4 (entry 4). However, the
moderately electron deficient CPA E*' afforded several
products, while still maintaining high enantioselectivity for
dimer 6 (entry 5). Interestingly, use of CPA F'’ bearing the
strongly electron-withdrawing nitro (NO,) substituent pro-
vided high diastereo- and enantioselectivity (entry 6). At
elevated temperatures (entry 7), the reaction was driven to
completion affording (+)-6 in 72% yield and 99% ee.

To determine the absolute stereochemistry of 1 prepared
using CPA F, global demethylatlon of (+)-6 using our
previously reported conditions® was performed. By measuring
the optical rotation of 1, we found that (R)-CPA F provided
the natural (+)-enantiomer of 6 (Figure 1a). To elucidate the
absolute stereochemistry of (+)-1, an electronic circular
dichroism (ECD) spectrum was obtained. Comparison with
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Figure 1. Absolute stereochemical determination of (+)-1. (a)
Synthesis of (+)-1. (b) Comparison of experimental and computa-
tional ECD spectra for (+)-1.

the theoretical ECD spectrum (CAM-B3LYP/def2-TZVP/
PCM (MeOH)//CAM-B3LYP/def2-SVP/PCM (MeOH) in-
dlcatzes that (+)-1 has 8R,8aR,12S stereochemistry (Figure
1b).

At this juncture, we were also interested to determine the
enantioselectivity of the anti-cycloadduct, the only dimeric
product formed upon treatment of 2 with CPA D. Upon
isolation of the dimeric p-QM cycloadduct 4, heterogeneous
reduction with H,/Pd/C afforded cycloadduct 7 in 33% yield
(2 steps) and 71% ee (Scheme 3). The absolute stereo-
chemistry of (+)-7 was determined using ECD analysis.*

Scheme 3. Reductive Trapping of anti-Cycloadduct 4 To
Determine Enantioselectivity

OH O 10% Pd/C (25 mol%)

I CPA D (5 mol%) . H, balloon
O ‘ CHZCIZ (50 mM) EtOAc (50 mM)
MeO’ [0} OMe t,12h
2 o]

7 (33% yield over 2 steps, 71% ee)

We also used in situ "H NMR analysis to monitor reactions
comparing both TFA and CPA F as catalysts. Using TFA as a
catalyst, production of the anti-cycloadduct 4 appears to be
more favorable than the syn-cycloadduct § (Figure 2a).
Remarkably, CPA F shows reversal of the TFA-catalyzed
preference for anti-cycloadduct 4, instead showing initial
formation of the syn-cycloadduct S (Figure 2b). Presumably,
CPA catalyst F reduces the energetic barrier to the syn-
cycloadduct § (vide infra). '"H NMR data (Figure 2) also
indicated formation of diene 3 in situ. To probe the potential
for decomposition or dimerization, diene 3 was subjected to
the standard conditions; in the event, 6 was isolated in 69%
yield and 96% ee.””

As we identified catalyst diastereoselectivity, we were also
interested to probe the point at which enantioselectivity was
introduced. Treatment of (+)-5 with CPA F resulted in the
formation of (+)-6 in 78% ee (Scheme 4a). In a control
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b. To investigate the mode of enantioinduction, we used a
computational methodology that has not been employed as a
tool in organic synthesis. As we were unsure of the mode of
asymmetric induction leading to 5, we used an enhanced-
sampling”® computational method to explore configurations
with CPA F in an unbiased manner. Parallel tempering (PT)
simulations”” were conducted using a molecular-mechanics

1=2min force field” In these calculations, multiple independent
45 3 5 3 simulations are run in parallel at a range of temperatures;

this enables frequent crossing of energetic barriers, thereby

M fully sampling the thermal equilibrium distribution. Applica-

D U S B — tions of PT methodology primarily include biomolecular
¢=25 min dynamics to further understand protein structure.’’ ™ A
s 3 p p representative video from a simulation 1nvolv1ng the preferred

enantiomeric TS and CPA F is provided. 36

\ /_L_‘ The ensembles of configurations of the transition-states (TS-
J_. N 1 = major, ent-TS-1 = minor) and CPA F generated by these

(=164 PT simulations contain many structures exhibiting simulta-
neous double hydrogen-bonds (DHBs), where the catalyst acts
as a Bronsted acid and a Lewis base. Representative structures
of TS-1-CPA F and ent-TS-1-CPA F complexes sampled
during these simulations are presented in Figure 3a,b,

respectively. Hydrogen bonding interactions between two
. . L phenols on both xanthone fragments’” with the phosphate
95 9085 80 07 06 95 90 .85 80 07 06 moie;y of the CPA provide a template for long-range chirality
transfer.

a. i \u\“/ b. \{i |

Figure 2. In situ '"H NMR analysis over time upon treatment of 2 with
TFA (a) and CPA F (b).

Scheme 4. Enantioenrichment of (+)-p-Quinone Methide
Dimers

a. Me Me  OMe

CPAF (5 mol%)
CH,Cl, (50 mM)
40°C, 46 h

anti= (+/--4 OH OMe
syn= (+1-)-5 from (+/-)-anti=74% yield, 99% ee
from (+/-)-syn=84% yield, 78% ee

b. '\‘
OH O |
CPAF (5 mo\%)
O ‘ CH,Cly (50 mM)
MeQ Me i, 3 min
2 0

5 (53% yield, 99% ee)

experiment, (+)-4 was subjected to the same conditions,
affording (+)-6 in 99% ee. These results indicate that
reorganization to the syn-cycloadduct $ is the enantiodetermin-
ing step. To further understand enantioinduction, the reaction
was stopped after 3 min and the syn-cycloadduct § was purified
and isolated in 53% yield and 99% ee (Scheme 4b). This
reaffirmed that the formation of the syn-cyclohexene moiety is
the enantiodetermining step (cf. 5, Scheme 1). In addition, we
performed kinetics studies using React IR analysis. The data
obtainec% 2is consistent with a first-order reaction with respect to 2H-bon d1/A 4 ZH-bon d1/A o
catalyst.

Previous literature has shown that CPAs promote reactivity
through the Brensted acidic site, the Lewis basic site, or both.

H-bond2 /A
kcal / mol

Figure 3. Representative configurations of TS-1 (pink) doubly
hydrogen bonding with CPA F (green). DFT-optimized (a) TS-1—

This interaction generates tran51ent diastereomeric ion- pairs, CPA F (O keal/mol) and (b) ent-TS-1—CPA F (7 keal/mol). Free
one of which is more favorable.”> Notably, density functional energy surface cuts at T = 298 K for (c) TS-1—=CPA F simulation
theory (DFT) calculations have been used to elucidate the shows free energy minima with single hydrogen bonds (SHB) and
primary phosphate interaction and the secondary stereo- DHB. (d) ent-TS-1-CPA F simulation reveals a single DHB

24-27

electronic interactions imparting enantioselectivity. minimum only.
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Consequently, histograms of the probability distributions
were used to compute free energy surfaces of hydrogen
bonding distances for both TS-1 and ent-TS-1 (Figure 3c,d,
respectively). As expected, the lowest free energy structures are
observed when CPA F is doubly hydrogen bound. The
simulation of the TS-1—CPA F reveals evidence of significantly
more complexes 1n which TS-1 hydrogen bonds to a single
phosphate oxygen®” (Figure 3c) compared to ent-TS-1 (Figure
3d). The increased frequency of these intermediate SHB
structures results from the enhanced flexibility of TS-1—CPA F
compared to the ent-TS-1-CPA F. The intermolecular
dihedral distribution in Figure 4a shows that the conforma-

2
a. b.
E 9 20
58, 10 -,\_/—\_/\/\/ 10- k_/\/,
S . 0 ;
g -180° 0° 180°  -180° 0° 180°

reactant-catalyst-dihedral reactant-catalyst-dihedral

=

Figure 4. (a and b) Free energy surfaces as a function of
intermolecular dihedral angle, @p, for TS-1 and ent-TS-1 with CPA
F, respectively. Areas with a barrier of >20 kcal/mol were not
sampled. Greater rotation and flexibility is observed in TS-1 (c) as
assessed by the free energy obtained from the intermolecular dihedral
angle than in ent-TS-1, where free rotation relative to CPA F is
inaccessible at the reaction temperature.

tional space for TS-1 relative to CPA F permits free rotation of
the bis-xanthone transition state (cf. Figure 4c for atoms
involved). In Figure 4b, insurmountable barriers hinder relative
rotation of ent-TS-1—CPA F, dramatically reducing conforma-
tional space (cf. Figure 3b) in the presence of CPA F. Figure
4c depicts the rotational freedom of TS-1 around the catalyst
while maintaining long-range chirality transfer. These findings
suggest that enantioinduction is derived, in part entropically,
by reducing the configuration space available to ent-TS-1.
Thus, TS-1—CPA F can interact by a SHB or DHB while the
minor can only bind to the transition state in a DHB
configuration.

In addition, 7-stacking 1nteract10ns with the catalyst were
also found to be prominent.”” Previous studies have observed
electrostatic donor—acceptor aromatic stacking effects wherein

nitrophenyl substituents are among the strongest acceptors.*®
These strong s-interactions play an important role in
stabilizing the TS-1—CPA F complex, driving enantioselectiv-
ity.
The CPA F catalyst also promotes enthalpic stabilization of
the major TS-1 enantiomer. A random selection of complexes
from PT simulations were DFT-optimized (B3LYP/6-
31G(d)/IEF-PCM [CH,Cl,] to obtain energies for the
catalyst-transition state complexes in the presence of a
polarizable continuum model (PCM) solvent. On average,
the major TS-1-CPA F complex is energetically more
favorable than its minor enantiomeric counterpart by nearly
7 kcal/mol.”

On the basis of this model, we were interested in developing
a catalyst that may perturb enantioinduction by steric
interactions (Scheme S). Use of the sterically modified CPA

Scheme 5. Disruption of Enantioselectivity Using a
Modified CPA

_CPAG (5mol%) _

I
O ‘ CHgCIQ(SOmM)
o OMe 40°C, 16
o

OH HO
6 (23% yield, 42% ee)

G permitted the formation of dimer 6, albeit in lower yield and
ee (23% and 42%, respectively). Erosion of enantioselectivity
may be explained by steric interference between the substrate
and the methyl groups of CPA G. To rationalize this outcome,
PT simulations were also conducted. Interestingly, the major
enantiomeric transition state (TS-1—CPA G) deviated from
that of CPA F. In the TS-1-CPA F system, the nitro aryl
groups are stacking with the xanthone moieties (Figure Sa).
However, the added sterics of CPA G prevent 7z-stacking,
resulting in the nitro aryl groups being forced out of plane with
the xanthone (Figure Sb). DFT assessment revealed only a 1.5
kcal/mol energy difference between transition states, providing

a. Py b. )
- TR b TR

Figure S. Structural comparison of DFT-optimized (a) TS-1—CPA F
and (b) TS-1—CPA G highlighting the altered complexation resulting
from the sterically modified catalyst.
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computational support for the erosion of enantioselectivity.
The calculated free energy surfaces and energy distributions for
the TS-1-CPA G system are provided in the Supporting
Information.>”

In summary, we have reported asymmetric syntheses and
absolute stereochemistry assignment of (+)- and (—)-griffipa-
vixanthone, a biologically active xanthone dimer. The key
cascade reaction utilizes a chiral phosphoric acid (CPA)-
catalyzed cycloaddition of a para-quinone methide (p-QM)
monomer in which a specific aryl nitro-substituted CPA
catalyst provides high diastereo- and enantioselectivity. In
addition, we have interrogated the mechanism and mode of
enantioinduction through catalyst electronic effects, in situ 'H
NMR reaction profiles, kinetic studies, and computational
studies using parallel tempering (PT) simulations to broadly
sample chiral ion pair complexes. Further studies on the
synthesis of xanthone dimers as well as applications of parallel
tempering (PT) to address problems in organic synthesis are
currently in progress and will be reported in due course.
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