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ABSTRACT: Asymmetric synthesis of the biologically
active xanthone dimer griffipavixanthone is reported along
with its absolute stereochemistry determination. Synthesis
of the natural product is accomplished via dimerization of
a p-quinone methide using a chiral phosphoric acid
catalyst to afford a protected precursor in excellent
diastereo- and enantioselectivity. Mechanistic studies,
including an unbiased computational investigation of
chiral ion-pairs using parallel tempering, were performed
in order to probe the mode of asymmetric induction.

The dimeric natural product (+)-griffipavixanthone (1)1

has become a desirable synthetic target due to its
interesting framework and anticancer properties. Compound
(+)-(1) has been shown to increase intracellular reactive
oxygen species (ROS) and cleave caspase-3, thereby inducing
apoptosis in lung cancer cells.2 Recent studies have shown that
(+)-(1) is a B-Raf and C-Raf inhibitor in esophageal cancer cell
lines with comparable effects to FDA-approved drugs.3

We have previously reported the biomimetic synthesis of
(±)-1 wherein treatment of p-quinone methide (p-QM) 2 with
Lewis or Brønsted acids triggered an isomerization−cyclo-
addition−cyclization cascade affording the polycyclic core
(Scheme 1). The reaction sequence began with acid-mediated
isomerization of the vinyl p-QM 2 to 1,3-diene 3. Cationic,
stepwise [4+2] cycloaddition of 2 and 3 afforded the anti-
cycloadduct 4 and syn-cycloadduct 5, the latter which
underwent intramolecular arylation to afford griffipavixanthone
tetramethyl ether 6.4

The complexity and unique nature of this cationic cascade
prompted our interest to undertake an asymmetric synthesis.
In this regard, we considered that enantioselectivity could be
introduced via chiral ion-pairing catalysis.5−7 Asymmetric
[4+2] cycloadditions are mediated by both Brønsted and
Lewis acids.8,9 Scheme 2 depicts select literature reports of
chiral Brønsted acid-mediated asymmetric reactions involving
p-QMs. Sun and co-workers have reported CPA-mediated,
enantioselective 1,6-arylations of p-QMs (Scheme 2a).10,11 In
addition, Li and co-workers have demonstrated asymmetric α-
alkylations to p-QMs generating two contiguous stereocenters
(Scheme 2b).12 There is a single report of a diastereoselective,
CPA-mediated intramolecular [4+2] cycloaddition.13 These
studies further prompted our interest to develop an
intermolecular, asymmetric [4+2] cycloaddition of a p-QM

(Scheme 2c). Herein, we (1) describe a CPA-catalyzed
asymmetric synthesis of (+)-1, (2) demonstrate catalyst-
dependent diastereoselectivity, (3) assign absolute stereo-
chemical configuration to (+)-1, and (4) provide computa-
tional insight for the asymmetric induction observed using
parallel-tempering (PT) simulation methods.
Yamamoto and co-workers have demonstrated that chiral

Brønsted acid-mediated cycloadditions require specific pKa’s as
dictated by the substrate.14 With this in mind, our investigation
began by surveying chiral Brønsted acids with varying pKa
values including CPAs, imidodiphosphoric acids (IDPs), and
N-triflyl phosphorimides.14−17 While the latter two catalyst
classes chiefly led to isomerization of p-QM 2 to diene 3, use of
CPAs led to production of cycloadducts 4−6. A study of
electronically variable CPAs was performed (Table 1). We
found that treatment of 2 with CPA A18 (entry 1) generated
dimer 6 in high enantioselectivity along with products 3−5.
Electron rich CPAs B and C19 lowered the reactivity for
cycloadducts (entries 2 and 3). With the most promising result
observed using −CF3 catalyst (A), we expanded our assess-

Received: November 21, 2018
Published: December 19, 2018

Scheme 1. Brønsted Acid-Catalyzed Dimerization Cascade
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ment of electron-deficient, aryl-substituted CPAs and found
that the highly electron-deficient Yamamoto catalyst (CPA
D)20 favored the anti-cycloadduct 4 (entry 4). However, the
moderately electron deficient CPA E21 afforded several
products, while still maintaining high enantioselectivity for
dimer 6 (entry 5). Interestingly, use of CPA F19 bearing the
strongly electron-withdrawing nitro (NO2) substituent pro-
vided high diastereo- and enantioselectivity (entry 6). At
elevated temperatures (entry 7), the reaction was driven to
completion affording (+)-6 in 72% yield and 99% ee.
To determine the absolute stereochemistry of 1 prepared

using CPA F, global demethylation of (+)-6 using our
previously reported conditions4 was performed. By measuring
the optical rotation of 1, we found that (R)-CPA F provided
the natural (+)-enantiomer of 6 (Figure 1a). To elucidate the
absolute stereochemistry of (+)-1, an electronic circular
dichroism (ECD) spectrum was obtained. Comparison with

the theoretical ECD spectrum (CAM-B3LYP/def2-TZVP/
PCM (MeOH)//CAM-B3LYP/def2-SVP/PCM (MeOH) in-
dicates that (+)-1 has 8R,8aR,12S stereochemistry (Figure
1b).22

At this juncture, we were also interested to determine the
enantioselectivity of the anti-cycloadduct, the only dimeric
product formed upon treatment of 2 with CPA D. Upon
isolation of the dimeric p-QM cycloadduct 4, heterogeneous
reduction with H2/Pd/C afforded cycloadduct 7 in 33% yield
(2 steps) and 71% ee (Scheme 3). The absolute stereo-
chemistry of (+)-7 was determined using ECD analysis.22

We also used in situ 1H NMR analysis to monitor reactions
comparing both TFA and CPA F as catalysts. Using TFA as a
catalyst, production of the anti-cycloadduct 4 appears to be
more favorable than the syn-cycloadduct 5 (Figure 2a).
Remarkably, CPA F shows reversal of the TFA-catalyzed
preference for anti-cycloadduct 4, instead showing initial
formation of the syn-cycloadduct 5 (Figure 2b). Presumably,
CPA catalyst F reduces the energetic barrier to the syn-
cycloadduct 5 (vide inf ra). 1H NMR data (Figure 2) also
indicated formation of diene 3 in situ. To probe the potential
for decomposition or dimerization, diene 3 was subjected to
the standard conditions; in the event, 6 was isolated in 69%
yield and 96% ee.22

As we identified catalyst diastereoselectivity, we were also
interested to probe the point at which enantioselectivity was
introduced. Treatment of (±)-5 with CPA F resulted in the
formation of (+)-6 in 78% ee (Scheme 4a). In a control

Scheme 2. Representative CPA-Catalyzed Asymmetric
Reactions of p-Quinone Methides

Table 1. Assessment of BINOL-Derived CPAs

entry CPA 3 (%) 4 (%) 5 (%) 6a (%) (% ee)

1 A 7 30 9 34 (96)
2 B 51 18 8 −
3 C 49 11 3 −
4 D 10 48 − −
5 E 8 36 10 36 (95)
6 F − 23 5 61 (99)
7b F − − − 72c (99)

a1H NMR yields determined using 1,2,4,5-tetramethylbenzene as
internal standard. bReaction temperature is 40 °C. cIsolated yield.

Figure 1. Absolute stereochemical determination of (+)-1. (a)
Synthesis of (+)-1. (b) Comparison of experimental and computa-
tional ECD spectra for (+)-1.

Scheme 3. Reductive Trapping of anti-Cycloadduct 4 To
Determine Enantioselectivity
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experiment, (±)-4 was subjected to the same conditions,
affording (+)-6 in 99% ee. These results indicate that
reorganization to the syn-cycloadduct 5 is the enantiodetermin-
ing step. To further understand enantioinduction, the reaction
was stopped after 3 min and the syn-cycloadduct 5 was purified
and isolated in 53% yield and 99% ee (Scheme 4b). This
reaffirmed that the formation of the syn-cyclohexene moiety is
the enantiodetermining step (cf. 5, Scheme 1). In addition, we
performed kinetics studies using React IR analysis. The data
obtained is consistent with a first-order reaction with respect to
catalyst.22

Previous literature has shown that CPAs promote reactivity
through the Brønsted acidic site, the Lewis basic site, or both.
This interaction generates transient diastereomeric ion-pairs,
one of which is more favorable.23 Notably, density functional
theory (DFT) calculations have been used to elucidate the
primary phosphate interaction and the secondary stereo-
electronic interactions imparting enantioselectivity.24−27

To investigate the mode of enantioinduction, we used a
computational methodology that has not been employed as a
tool in organic synthesis. As we were unsure of the mode of
asymmetric induction leading to 5,4 we used an enhanced-
sampling28 computational method to explore configurations
with CPA F in an unbiased manner. Parallel tempering (PT)
simulations29 were conducted using a molecular-mechanics
force field.30 In these calculations, multiple independent
simulations are run in parallel at a range of temperatures;
this enables frequent crossing of energetic barriers, thereby
fully sampling the thermal equilibrium distribution. Applica-
tions of PT methodology primarily include biomolecular
dynamics to further understand protein structure.31−35 A
representative video from a simulation involving the preferred
enantiomeric TS and CPA F is provided.36

The ensembles of configurations of the transition-states (TS-
1 = major, ent-TS-1 = minor) and CPA F generated by these
PT simulations contain many structures exhibiting simulta-
neous double hydrogen-bonds (DHBs), where the catalyst acts
as a Brønsted acid and a Lewis base. Representative structures
of TS-1−CPA F and ent-TS-1−CPA F complexes sampled
during these simulations are presented in Figure 3a,b,
respectively. Hydrogen bonding interactions between two
phenols on both xanthone fragments37 with the phosphate
moiety of the CPA provide a template for long-range chirality
transfer.

Figure 2. In situ 1H NMR analysis over time upon treatment of 2 with
TFA (a) and CPA F (b).

Scheme 4. Enantioenrichment of (±)-p-Quinone Methide
Dimers

Figure 3. Representative configurations of TS-1 (pink) doubly
hydrogen bonding with CPA F (green). DFT-optimized (a) TS-1−
CPA F (0 kcal/mol) and (b) ent-TS-1−CPA F (7 kcal/mol). Free
energy surface cuts at T = 298 K for (c) TS-1−CPA F simulation
shows free energy minima with single hydrogen bonds (SHB) and
DHB. (d) ent-TS-1−CPA F simulation reveals a single DHB
minimum only.
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Consequently, histograms of the probability distributions
were used to compute free energy surfaces of hydrogen
bonding distances for both TS-1 and ent-TS-1 (Figure 3c,d,
respectively). As expected, the lowest free energy structures are
observed when CPA F is doubly hydrogen bound. The
simulation of the TS-1−CPA F reveals evidence of significantly
more complexes in which TS-1 hydrogen bonds to a single
phosphate oxygen22 (Figure 3c) compared to ent-TS-1 (Figure
3d). The increased frequency of these intermediate SHB
structures results from the enhanced flexibility of TS-1−CPA F
compared to the ent-TS-1−CPA F. The intermolecular
dihedral distribution in Figure 4a shows that the conforma-

tional space for TS-1 relative to CPA F permits free rotation of
the bis-xanthone transition state (cf. Figure 4c for atoms
involved). In Figure 4b, insurmountable barriers hinder relative
rotation of ent-TS-1−CPA F, dramatically reducing conforma-
tional space (cf. Figure 3b) in the presence of CPA F. Figure
4c depicts the rotational freedom of TS-1 around the catalyst
while maintaining long-range chirality transfer. These findings
suggest that enantioinduction is derived, in part entropically,
by reducing the configuration space available to ent-TS-1.
Thus, TS-1−CPA F can interact by a SHB or DHB while the
minor can only bind to the transition state in a DHB
configuration.
In addition, π-stacking interactions with the catalyst were

also found to be prominent.22 Previous studies have observed
electrostatic donor−acceptor aromatic stacking effects wherein

nitrophenyl substituents are among the strongest acceptors.38

These strong π-interactions play an important role in
stabilizing the TS-1−CPA F complex, driving enantioselectiv-
ity.
The CPA F catalyst also promotes enthalpic stabilization of

the major TS-1 enantiomer. A random selection of complexes
from PT simulations were DFT-optimized (B3LYP/6-
31G(d)/IEF-PCM [CH2Cl2] to obtain energies for the
catalyst-transition state complexes in the presence of a
polarizable continuum model (PCM) solvent. On average,
the major TS-1−CPA F complex is energetically more
favorable than its minor enantiomeric counterpart by nearly
7 kcal/mol.22

On the basis of this model, we were interested in developing
a catalyst that may perturb enantioinduction by steric
interactions (Scheme 5). Use of the sterically modified CPA

G permitted the formation of dimer 6, albeit in lower yield and
ee (23% and 42%, respectively). Erosion of enantioselectivity
may be explained by steric interference between the substrate
and the methyl groups of CPA G. To rationalize this outcome,
PT simulations were also conducted. Interestingly, the major
enantiomeric transition state (TS-1−CPA G) deviated from
that of CPA F. In the TS-1−CPA F system, the nitro aryl
groups are stacking with the xanthone moieties (Figure 5a).
However, the added sterics of CPA G prevent π-stacking,
resulting in the nitro aryl groups being forced out of plane with
the xanthone (Figure 5b). DFT assessment revealed only a 1.5
kcal/mol energy difference between transition states, providing

Figure 4. (a and b) Free energy surfaces as a function of
intermolecular dihedral angle, φD, for TS-1 and ent-TS-1 with CPA
F, respectively. Areas with a barrier of >20 kcal/mol were not
sampled. Greater rotation and flexibility is observed in TS-1 (c) as
assessed by the free energy obtained from the intermolecular dihedral
angle than in ent-TS-1, where free rotation relative to CPA F is
inaccessible at the reaction temperature.

Scheme 5. Disruption of Enantioselectivity Using a
Modified CPA

Figure 5. Structural comparison of DFT-optimized (a) TS-1−CPA F
and (b) TS-1−CPA G highlighting the altered complexation resulting
from the sterically modified catalyst.
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computational support for the erosion of enantioselectivity.
The calculated free energy surfaces and energy distributions for
the TS-1−CPA G system are provided in the Supporting
Information.22

In summary, we have reported asymmetric syntheses and
absolute stereochemistry assignment of (+)- and (−)-griffipa-
vixanthone, a biologically active xanthone dimer. The key
cascade reaction utilizes a chiral phosphoric acid (CPA)-
catalyzed cycloaddition of a para-quinone methide (p-QM)
monomer in which a specific aryl nitro-substituted CPA
catalyst provides high diastereo- and enantioselectivity. In
addition, we have interrogated the mechanism and mode of
enantioinduction through catalyst electronic effects, in situ 1H
NMR reaction profiles, kinetic studies, and computational
studies using parallel tempering (PT) simulations to broadly
sample chiral ion pair complexes. Further studies on the
synthesis of xanthone dimers as well as applications of parallel
tempering (PT) to address problems in organic synthesis are
currently in progress and will be reported in due course.
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