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A B S T R A C T

Transportation systems are being reshaped by ride sourcing and shared mobility services in recent years. The transportation network companies
(TNCs) have been collecting high-granular ride-sourcing vehicle (RV) trajectory data over the past decade, while it is still unclear how the RV data
can improve current dynamic network modeling for network traffic management. This paper proposes to statistically estimate network dis-
equilibrium level (NDL), namely to what extent the dynamic user equilibrium (DUE) conditions are deviated in real-world networks. Using the data
based on RV trajectories, we present a novel method to estimate the real-world NDL measure. More importantly, we present a method to compute
zone-to-zone travel time data from trajectory-level RV data. This would become a data sharing scheme for TNCs such that, while being used to
effectively estimate and reduce NDL, the zone-to-zone data reveals neither personally identifiable information nor trip-level business information if
shared with the public. In addition, we present an NDL based traffic management method to perform user optimal routing on a small fraction of
vehicles in the network. The NDL measures and NDL-based routing are examined on two real-world large-scale networks: the City of Chengdu with
trajectory-level RV data and the City of Pittsburgh with zone-to-zone travel time data. We found that, on weekdays in each city, NDLs are likely high
when travel demand is high (thus when congestion is mild or heavy). Generally, a weekend midnight exhibits higher NDLs than a weekday
midnight. Many NDL patterns are different between Chengdu and Pittsburgh, which are attributed to unique characteristics of both demand and
supply in each city. For instance, NDL in Pittsburgh is much more stable from day to day and from hour to hour, comparing to Chengdu. In addition,
we observe that origin-destination pairs with high NDLs are spatially and temporally sparse for both cities. For the Pittsburgh network, we evaluate
the effectiveness of NDL-based traffic routing, which shows great potential to reduce total travel time with routing a small fraction of vehicles (1% in
the experiments), even using dated NDL that is estimated in the prior hour.

1. Introduction

The emerging ride-sourcing services are reshaping the urban transportation systems. Their impacts are twofold. On one hand,
ride-sourcing services added complications to the transportation system, which presents challenges to traditional traffic modeling and
management. On the other hand, ride-sourcing services produce massive data (e.g. vehicle trajectories) that can be potentially
leveraged to better understand and manage the whole transportation system. Transportation network companies (TNCs) have been
collecting high-granular ride-sourcing vehicle (RV) data over the past decade, while there is a lack of studies on how the RV data can
improve current traffic network models and management strategies. In view of this, this paper presents a data-driven approach to
connect traffic network models with RV data, and to build an integrated traffic management framework. The main contributions of
this study are twofold: using RV data, (1) this paper evaluates whether the dynamic user equilibrium (DUE) holds and to what extent
it is violated in real-world networks; (2) this paper also proposes a holistic framework to manage the traffic network through
analyzing ride-sourcing vehicle data. The framework proposes a novel estimation method for network disequilibrium level (NDL)
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with RV data, a data sharing scheme for TNCs to release aggregated data based on RV without revealing personally identifiable
information, and an NDL-based user optimal routing algorithm.

With the boom of smartphones and mobile Internet, on-demand ride-sourcing services are emerging and becoming an indis-
pensable component of urban transportation systems (Rayle et al., 2016). The on-demand ride-sourcing service refers to a service
mode that private car owners drive their own vehicles to provide for-hire rides, and the service is usually operated by transportation
network companies (TNCs) such as Uber, Lyft and DiDi chuxing. TNCs match the riders and drivers in real-time and instruct drivers to
pick-up and drop-off riders through a real-time routing mechanism. According to a recent report (Sharespost, 2017), Uber alone has
covered 551 cities globally and surpassed two billion rides by July 2016.

The proliferation of ride-sourcing services has profoundly reshaped of transportation systems and hence stimulated broad dis-
cussions and research from various perspectives, including labor market of ride-sourcing drivers and rider behaviors (Hall and
Krueger, 2015; Rayle et al., 2016; Kooti et al., 2017), stochastic vehicle dispatching (Miao et al., 2017), pricing strategies (Chen and
Sheldon, 2016; Bimpikis et al., 2016), optimal parking provision (Xu et al., 2017) as well as policies and regulations (Ranchordás,
2015; Zha et al., 2016, 2017). RV-related data sets include, but are not limited to:

(i) Survey data. The survey data is obtained from surveys. A survey is usually conducted by researchers or public agencies to query
riders’ or drivers’ opinions associated with ride-sourcing services. For example, survey on people’s willingness to use ride-
sourcing services (Dias et al., 2017), and survey on riders’ incentives to switch between Uber and Lyft (Di et al., 2017).

(ii) Zone-to-zone travel time. Zone-to-zone travel time can be estimated from RV trajectories. For example, Uber Movement provides
high-granular zone-to-zone travel time data in many major cities. Pearson et al. (2018) studied mobility patterns and flow
characteristics using Uber Movement data.

(iii) Trip-level information: Trip-level information includes the location of trip origins and destinations, total trip length, and corre-
sponding fares. Zha et al. (2017) studied the supply-demand relationship on ride-sourcing market using DiDi chuxing trip-level
data, and Chen and Sheldon (2016) reveals a positive labor supply elasticity using Uber trip-level data. The trip-level data can
also estimate and predict the rider request demand (Ke et al., 2017; Li et al., 2018).

(iv) Trajectory-level information. Trajectory level information includes detailed second-by-second location of RVs. The main difference
between the trajectory-level information and trip-level information is that the trajectories of RVs can be reconstructed with the
trajectory-level information, but trip-level information only provides the origins and destinations. Yin et al. (2018) estimated
vehicle queue length at intersections and Zheng et al. (2018) optimized the traffic signal with DiDi chuxing trajectory-level data.

Rich RV datasets present great opportunities to address problems that would be challenging with traditional traffic data and
models. For example, there is a lack of research on whether dynamic user equilibrium (DUE) holds and to what extent it is violated in
real-world networks. The dynamic user equilibrium refers to the assumption of network conditions in which no traveler can reduce
his/hers disutility (including travel time and fares) by unilaterally changing his/hers route choices (including departure time and
route choice) (Mahmassani and Herman, 1984; Friesz et al., 1993; Boyce et al., 1995; Huang and Lam, 2002; Nie and Zhang, 2010;
Friesz, 2010). Essentially, DUE describes how people behave under recurrent traffic conditions. DUE is often used as the underlying
travel behavior model for a wide spectrum of applications including network design, traffic and signal control, origin-destination
demand estimation, etc. (Josefsson and Patriksson, 2007). Very few study validates the DUE due to the lack of vehicle trajectory data.

As DUE implies network traffic conditions are precisely known to all travelers and they all make the efforts reaching the optimal
routes, many studies challenged the DUE in modeling travelers’ behaviors and network conditions in real-world networks (Nakayama
et al., 2001). Levinson (2003), Ben-Elia et al. (2013), Nakayama (2016) showed the accuracy of traffic information provided to
travelers has a significant impact on their route selection and the resulting network conditions. Zhu and Levinson (2015), Jan et al.
(2000) conducted empirical studies using GPS data and found that most travelers do not follow shortest paths in the network, and
some studies indicate that travelers are likely to follow the shortest distance paths (Bekhor et al., 2006; Prato and Bekhor, 2006) or
hyperpaths (Ma and Fukuda, 2013). Studies also explored alternative models with milder assumptions, such as bounded rationality
(Mahmassani and Chang, 1987; Di and Liu, 2016), statistical traffic equilibrium (Nakayama and Watling, 2014; Ma and Qian, 2017),
and mean-excess traffic equilibrium (Chen and Zhou, 2010).

To the best of our knowledge, none of the previous literature has intensively studied whether and to what extent DUE is violated
in real-world networks. In this paper, we discuss and evaluate the concept of network disequilibrium level (NDL) to measure how far
real networks are away from DUE, and how NDL varies by location and time. High NDL may imply an inefficient network in which
travelers are unable to choose optimal paths based on their perceived traffic information (Ben-Akiva et al., 1991), while low NDL
implies that DUE is approximately achieved (Boyce et al., 1995).

The real-time NDL can be used to infer network conditions and information inefficiency in traffic networks and thus can be used
for real-time traffic management. The traffic management problem has been extensively studied for decades, readers are referred to
Papageorgiou et al. (2003), Gao (2005), Braekers et al. (2016) for a comprehensive review. A number of traffic management studies
aim at achieving DUE conditions with in-vehicle communication devices. For example, Wang et al. (2001) proposed a feedback and
iterative routing scheme to drive the network towards DUE condition, and Du et al. (2015) presented a framework to allow travelers
to coordinate with each other to achieve DUE conditions. However, none of the previous studies have studied traffic management
strategies for DUE using RV data.

Data privacy is another important issue of using RV data for transportation management. TNCs are reluctant to share the trip-level
and trajectory-level information data, as the traveler’s identity and activities might be revealed from the data even with standard de-
identification process (De Montjoye et al., 2015). Especially after the Facebook–Cambridge Analytica data scandal (Wikipedia
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contributors, 2018b), IT companies become even more cautious about releasing any information that is potentially related to in-
dividuals. Till now, there is a lack of data sharing scheme that allows TNCs to share data based on RV that is (1) aggregated without
revealing personally identifiable information, (2) aggregated without revealing sensitive trip-level business information, and (3)
proven to be useful to transportation management and planning.

To conclude, the following four questions have not been addressed in the previous studies:

(1) What are the unique characteristics of RV data and how do the RV data contribute to traffic network models?
(2) How to evaluate the real-world network disequilibrium level (NDL) in dynamic traffic networks using RV data?
(3) Is there an effective data sharing scheme for TNCs to share aggregated data based on RV that contains neither personally

identifiable information nor business sensitive information?
(4) How do the RV data and the NDL estimates contribute to real-world traffic management?

By integrating the traffic network model and RV data, we address the above four questions in this paper. This paper develops a
novel theoretical framework for estimating real-world NDLs with trajectory-level or zone-to-zone data based on RVs. A data sharing
scheme with zone-to-zone RV data for TNCs is proposed to ensure protecting user privacy and sensitive business information, while
the zone-to-zone data still being effective in modeling and managing traffic. This paper also rigorously formulates the traffic man-
agement problem with NDL measures and proposes a real-time NDL-based traffic management method to achieve user optimal
routing. Finally, we examine the proposed NDL measures on two large-scale real networks using two sources of RV data, respectively.

The rest of this paper is organized as follows. Section 2 presents the notations used in this paper. Section 3 discusses the definition
and formulation of NDL measure, followed by Section 4 presenting the estimation of NDL with RV data and the NDL-based traffic
management method. In Sections 6 and 7, two large-scale networks are used to examine the proposed NDL measure and traffic
management method. Finally, conclusions are drawn in Section 8.

2. Notations

All the notations will be introduced in context, and Table 1 provides a summary of the basic notations to be referred in the
reminder of this paper.

3. Modeling the network disequilibrium level

In this section, we briefly review the concepts of dynamic user equilibrium (DUE). We discuss the violation of DUE conditions and
its consequences. The concept of network disequilibrium level (NDL) is proposed to quantitatively measure to what extent a network
deviates from DUE. We will also discuss difficulties to estimate NDL using traditional traffic data.

The Dynamic User Equilibrium (DUE) is presented in Definition 1.

Definition 1 (Dynamic User Equilibrium). In a road network = V E( , ), where V and E represent all the intersections and directed
road segments in the directed graph . We denote F t( )rs

k as the path flow departing at time t for kth path of origin-destination (OD)

Table 1
List of notations.

Network Variables
Kq The set of all origin–destination (OD) pairs
Krs The set of all paths between OD pair rs

Network flow related variables
t The departure time of path flow or OD flow, and t can be either time point in continuous time space or time interval in discrete time space
T The set of all possible departure time from all path and OD flow
F t( )rs

k The kth path flow for OD pair rs departing at time t

Q t( )rs The flow of OD pair rs departing at time t

C t( )rs
k The path cost for path k for OD pair rs departing at time t

C t( )rs The average OD cost for OD pair rs departing at time t

p t( )rs
k The route choice portion of choosing path k in all paths between OD pair rs at time t

RV related variables
N The set of all orders of ride-sourcing service (orders will be defined in Section 4)
vi Trajectory record of ith order
N t( )rs The set of all orders departing from r to s at time t
D t( )rs The network disequilibrium level for OD pair r s departing at time t
i The travel time to complete the trip for ride-sourcing vehicle vi

j The new travel time to complete the trip for the jth zone-to-zone ride-sourcing vehicle record

N t( )rs The set of all zone-to-zone ride-sourcing vehicle records departing from r to s at time t

C t( )rs The empirical cost for path k for OD pair rs departing at time t estimated by zone-to-zone ride-sourcing vehicle records

C t( )r s The alternative path cost for path k for OD pair rs departing at time t using as connecting points
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pair rs, and C t( )rs
k as the travel time to complete the trip for the flow of kth path of OD rs departing at time t. We note the time index t

can represent either a time point or a time interval in this paper. The network is in dynamic user equilibrium (DUE) if Eq. (1) holds.

=F t C t t k K rs K t T( )( ( ) ( )) 0, , ,rs
k

rs
k

rs rs q (1)

where

=t C t rs K t T( ) min ( ), ,rs
k K

rs
k

q
rs (2)

F t k K rs K t T( ) 0, , ,rs
k

rs q (3)

According to the direct interpretation of Definition 1, DUE represents the traffic conditions in which no travelers can unilaterally
change their routes to achieve earlier arrival time. Travelers do not choose the routes that exceed the minimal travel time, and only
the routes with minimal travel time t( )rs are chosen.

We can illustrate DUE from the perspective of perfect information assumption. DUE assumes that travelers have perfect in-
formation about network conditions, and they always choose the user optimal path in the network. To be precise, there are two
different concepts involved: (1) A travelers has incentives to choose a route that is the best one given his/her limited knowledge and
efforts. We view that route he/she takes as the actual path; (2) if the travel time of all roads at any particular time of day were known,
we can compute the optimal path based on the actual time-varying travel time. This path is viewed as a user optimal path. We note
the actual path taken by travelers can base on travelers’ experiences, traffic information (e.g. Google Maps) or en-route decisions,
while the user optimal path is determined by the actual road travel time. One can clearly see when DUE holds, the actual paths and
user optimal paths are the same. In contrast, the network disequilibrium level can be measured by the difference between the actual
path taken by travelers and the user optimal path.

In the following sections, we will discuss how the network disequilibrium level is quantitatively formulated and computed. First of
all, we formally discuss the general concept of network disequilibrium level.

3.1. Network disequilibrium level (NDL)

Any measure of network disequilibrium level should satisfy Definition 2.

Definition 2. Denote D t( )rs as the network disequilibrium level (NDL) for OD pair rs departing at time t, then D t( )rs satisfies the
following property:

• D t( ) [0, )rs

• =D t( ) 0rs when Eq. (1) holds for rs Kq and t T .

We first state two different definitions of NDL in Definition 4 and Definition 6, both of which stem from the merit function in DUE
formulations (Lu et al., 2009; Nie and Zhang, 2010).

Definition 3 (Merit function-based NDL). The merit function-based NDL is presented in Eq. (4).

=D t F t C t t( ) ( )( ( ) ( ))rs
k K

rs
k

rs
k

rs
rs (4)

Definition 3 is a direct adaptation of Eq. (1). It is also possible to measure the NDL by the percentage deviation of the minimal
path travel time. For example, Eq. (4) can be normalized by dividing t( )rs . In this paper, we focus on the original definition in Eq.
(4). We note the path flow can be computed through the route choice portion p t( )rs

k , the portion of flow choosing path k in all paths
between OD pair rs at time t, as presented in Eq. (5).

=F t p t Q t( ) ( ) ( )rs
k

rs
k

rs (5)

Definition 4 is a flow-scale-free version of Definition 3, meaning the NDL is independent of the scale of path flow.

Definition 4 (Flow-scale-free NDL). The flow-scale-free NDL is presented in Eq. (6).

=D t p t C t t( ) ( )( ( ) ( ))rs
k K

rs
k

rs
k

rs
rs (6)

The merit function-based NDL can be viewed as the total NDL, while the flow-scale-free NDL can also be viewed as the average of
total NDL for each traveler in OD pair rs, as shown in Eq. (7).

=D t Q t D t rs K t T( ) ( ) ( ), ,rs rs rs q (7)

We further define the origin-based NDL and destination-based NDL by aggregating NDLs of all OD pairs to origins and
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destinations, as presented in Eqs. (8) and (9).

=D t D t( ) ( )r
s

rs
(8)

=D t D t( ) ( )s
r

rs
(9)

In this paper, we assume that the travelers’ “true” disutility is represented by travel time (Papinski et al., 2009), while other
factors such as distances, road tolls, route preferences are not considered (Zhu and Levinson, 2015). The definition of NDL can be
extended to include the generalized disutility of travelers, while additional information might be required to compute the NDL. The
NDL is attributed to travelers’ inability to know what the shortest-time route is. Many other possible causes of NDL exist (Mahmassani
and Chang, 1987; Shao et al., 2006; Di and Liu, 2016; Ma and Qian, 2017; Yu and Han, 2018). This paper will focus on evaluating and
reducing the NDL first, while exploring the causes of NDL will be left for future research.

Evaluating NDL requires full knowledge of path flow. However, obtaining time dependent path flow (or route choice) is notor-
iously difficult in large-scale networks given limited number of surveillance sensors (Lu et al., 2013). In addition, estimation methods
for dynamic path flow (or dynamic route choice) are usually based on the assumption that networks are in DUE. Therefore, com-
puting NDLs through Eqs. (6) and (4) becomes implausible on large-scale networks. To have a plausible definition of the NDL,
characteristics of ride-sourcing vehicle (RV) data will be discussed and utilized. In the following sections, we present two ways to
measure the network disequilibrium levels with either trajectory-level (Section 4.2) or zone-to-zone (Section 4.3) RV data.

4. Estimating NDL with ride-sourcing vehicle data

Section 3 has defined and discussed the concept of NDL. This section focuses on how to estimate the NDL measures in the real-
world using RV data only. We first discuss the characteristics of RV data, then the trajectory-level RV data is used to estimate the NDL.
Due to the privacy concerns for the trajectory-level data, we propose a data sharing scheme to compute and share RV data that are
aggregated to zone-to-zone. A method to estimate the NDL with the zone-to-zone RV data is further proposed. Lastly, we build a real-
time traffic management framework for user optimal routing based on NDL.

4.1. Ride-sourcing vehicle data

In this sub-section, we discuss the characteristics of RV data. We define an “order” as one transaction of a trip completed by a pair
of a driver and a rider, which starts from the pick-up of the rider and ends with the drop-off of the rider. The cruising process and the
process between accepting the rider request and picking up the rider are not considered, since the behaviors of RVs during these two
processes may not follow the pattern of a trip generated by travelers. For example, Uber allows drivers to accept a new rider request
before finishing current order, hence the trajectory of RV between accepting the order and picking up the riders can be very random.
For the behaviors of RVs during an order, we argue Assumption 1 holds.

Assumption 1 (Uniform sampling). The ride-sourcing vehicles from origin r to destination s departing at time t are uniformly
distributed among all vehicles that depart from origin r to destination s at time t. In other words, the route choice behaviors of RVs are
the same as conventional non-sharing vehicles. The probability of an RV departing from r to s at t to choose path k equals to p t( )rs

k ,
which is the route choice probability of all vehicles departing from r to s at t.

Assumption 1 claims that the route choice behaviors of RVs are the same as the conventional vehicles, hence the RV trajectories
are uniformly sampled from all trajectories in the network. Assumption 1 is attributed to that RV trips may approximate personal
vehicle trips. Both the drivers and riders of RVs are more likely to exhibit a wide spectrum of socio-demographics and driving
behavior that are close to non-sharing trips than other biased probe samples (such as taxis or trucks). We note the market penetration
rate of RVs for different OD pairs and departure times can be different as long as the RVs are uniformly distributed among all vehicles.

The behaviors of trucks usually do not follow Assumption 1. Trucks usually operate on highways and major roads due to the
prohibitions and road limitations in urban areas, and truck drivers usually follow fixed routes. The objectives of truck drivers are to
deliver goods on time, and some trucks may not be incentivized to arrive as early as possible. Instead, they may prefer behaviors that
save fuel use.

The behaviors of taxi drivers do not follow Assumption 1 either. Taxi drivers usually work full-time, and they generally have more
driving experiences than an average traveler (Shi et al., 2014). Therefore, using taxi data to represent the average drivers might
introduce a substantial bias. On the contrast, ride-sourcing vehicle drivers can work either full-time or part-time, and their socio-
demographics may be more representative (thus less biased) (Hall and Krueger, 2018).

Having randomly sampled personal vehicle data would be ideal. However, there is a significant portion of the personal vehicles
with no GPS or data transmission device installed, which also introduce a sampling bias. In addition, tracking personal vehicles is
controversial, as most of the Americans believe this kind of tracking is extremely invasive (Crump, Catherine, 2011). Till now, there is
no public dataset available for personal vehicle trajectories.

The unique characteristics of RVs enable them being a possibly representative trip sample in the complex real-world network.
Though drivers do their best to choose the optimal route, their actual paths may not turn out to be the optimal paths. This fact can be
utilized to construct a measure of network disequilibrium levels, and details will be discussed in the following sections. We will
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mathematically show that a very small fraction of RVs can actually approximate disequilibrium measures.

4.2. Estimating NDL with trajectory-level RV data

In this sub-section, we estimate NDL with trajectory-level RV data. We note that the trip-level RV data can also be used to estimate
NDL. We focus on the trajectory-level RV data from now on.

We denote an order as vi, where i is the index of order, and i N where N denotes the set of all orders. During each order, the RV
sends its location information to TNCs frequently. Each order contains a sequence of location and time information (which are
referred as messages), as presented in Eq. (10).

=v t l t l t l t l{( , ), ( , ), ( , ), , ( , )}i i i i i i i i
T

i
T0 0 1 1 2 2 1 1i i (10)

where Ti is denoted as the number of messages in order i. ti
h denotes the hth time stamp when the information is sent, and li

h is the
location of the RV at time ti

h. We divide all the orders into different subsets, and N t( )rs denotes the set of orders that departs from r at
time t and arrives at s, as presented in Eq. (11).

= = = =N t i N t t l r l s( ) { | , ( ) , ( ) }rs i i i
T0 0 1i (11)

where (·) matches the location to its corresponding traffic analysis zone (TAZ). We further denote i as the travel time to complete
the RV trip i, and it can be computed by Eq. (12).

= t ti i
T

i
1 0i (12)

For each OD pair rs i N t, , ( )i rs is a sample of path travel time C t( )rs
k if the RV trip vi takes route k and departs at time t. Based on

Assumption 1, the probability of vi being on path k is p t( )rs
k . We are now ready to present an estimator for NDL using trajectory-level

RV data in Eq. (13).

=D t
N t

( ) 1
| ( )|

minrs
rs i N t

i i N t i
( ) ( )

rs rs (13)

First we prove that D t( )rs approximates Drs when the number of sampled orders is sufficiently large, as presented in Proposition
1.

Proposition 1. When N t rs K t T| ( )| , ,rs q , we have

D t D t( ) ( )rs
P

rs (14)

Proof. We compute the expectation of i in each subset N t( )rs based on Assumption 1,

= p t C t i N t[ ] ( ) ( ), ( )i i
k K

rs
k

rs
k

rs
rs (15)

By Law of Large Numbers (LLN), we have

N t
p t C t i N t1

| ( )|
( ) ( ), ( )

rs i N t

i P

k K
rs
k

rs
k

rs
( )rs rs (16)

Then the cumulative distribution function y( )· of mini N t i( )rs is presented in Eq. (17).

=y y( ) 1 (1 ( ))
i N t

min
( )i Nrs t

i
rs

i
( ) (17)

where

=
>

y y t i N t( ) 0 if ( ) and ( )
0 else

rs rs
i (18)

When N t| ( )|rs , we have

=y y t( ) 0 if ( )
1 else

rs
min

i Nrs t
i

( ) (19)

Hence,

tmin ( )
i N t i

P
rs

( )rs (20)

Therefore Proposition 1 holds based on continuous mapping theorem. □

Secondly, we show that D t( )rs is a biased estimator with finite data, as presented in Proposition 2.

Proposition 2 (Biased NDL estimator). If <N t| ( )|rs , then
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D t D t[ ( )] ( )rs rs (21)

Proof. Since the minimum function is convex, we have Eq. (22) holds by Jensen’s inequality.

C t[ min ] min ( )
i N t i k K

rs
k

( )rs rs (22)

Further by Proposition 1, we have = p t C t i N t[ ] ( ) ( ), ( )i i k K rs
k

rs
k

rsrs
. Then we can get

=D
N t

[ ] 1
| ( )|

[ min ]rs
rs i N t

i i N t i
( ) ( )

rs rs (23)

p t C t C t( ) ( ) min ( )
k K

rs
k

rs
k

k K
rs
k

rs rs (24)

= Drs (25)

As can be seen from Proposition 1, the estimator D t( )rs approximates D t( )rs when N t| ( )|rs . However, there are two issues
regarding to the NDL measure estimator D t( )rs : (1) based on Proposition 2, Estimating NDL may not be accurate when N t( )rs is small.
This is oftentimes the case given a very small penetration rate of RVs currently; (2) the trajectory-level (or trip-level) data may reveal
personally identifiable information, and thus TNCs will not share the trajectory (or trip-level) data to public sectors. Hence the
trajectory-level data is extremely difficult to obtain.

To further address these issues, we present a new method to estimate NDL using zone-to-zone travel time. The new method relies
only on the zone-to-zone travel time of RV data, and it potentially requires fewer data since the travel time is estimated by re-using
the trajectory data. In addition, the trajectory data is aggregated to provide zone-level travel time information only, which does not
contain personally identifiable information.

4.3. Estimating NDL with zone-to-zone aggregated RV data

In this sub-section, we first present a method to compute the zone-to-zone travel time using RV data. An unimode testing is
presented to validate the zone-to-zone travel time. We also provide a scheme for TNCs to release RV data without revealing per-
sonally identifiable information. Finally the method to estimate NDL using the zone-to-zone travel time will be presented.

4.3.1. Zone-to-zone travel time
We first denote i as the set of all tuples such that each tuple represents a pair of intermediate points along the RV trajectory vi. i

can be computed by Eq. (26).

= < <e e e e T e e{( , )|0 , , }i i (26)

where represents the set of integers. Each tuple e e( , ) represents a segment of the whole trajectory of vi, and e e, represent the
starting point and ending point of the segment, respectively. We compute the travel time ij for each segment, as presented in Eq.
(27).

= t tij i
j

i
j( ,1) ( ,0)i i (27)

where j( , 0)i and j( , 1)i denote the first and second element in the jth tuple in set i. ij can be viewed as a new trajectory travel time
sample from li

j( ,0)i to li
j( ,1)i . We divide the new trajectory travel time into different sets by its origin and destination, as presented in

Eq. (28).

= = = =N t j t t l r l s( ) { | , ( ) , ( ) }rs
i

i
j

i
j

i
j( ,0) ( ,0) ( ,1)i i i (28)

To simplify the notation, we further denote

=N t N t( ) ( )rs i N rs
i

(29)

where the trajectories of all orders are used to form a much richer data set N t( )rs . Within N t( )rs , we can drop the index i in ij and re-
index the j to make j. Now j is the element index in set N t( )rs instead of N t( )rs

i . j represents a segment of trajectories from all orders in
the data set, and thus can be seen irrelevant to a particular order in N t( )rs .

We define C t( )rs as the average sample (or observed) travel time for OD rs departing at time t. For each N t j N t( ), , ( )rs j rs can be
viewed as a sample of C t( )rs . Hence, C t( )rs can be computed by Eq. (30).

=C t
N t

rs K t T( ) 1
| ( )|

, ,rs
rs j N t

j q
( )rs (30)

By using the above-discussed approach, TNCs will not share the trajectory-level information, instead they can simply share statistics
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related to C t( )rs (e.g. Uber Movement data). The zone-to-zone travel time C t( )rs is aggregated over the zones, containing neither
personally identifiable information nor any trip information.

Example 1 (Processing trajectory data). In this example, we will demonstrate how to process the trajectory data to get the zone-to-zone
travel time information. The map and two RV trajectories are presented in Fig. 1. Each cell in the map represents one traffic analysis
zone. We use the x-coordinate and y-coordinate to determine the location of the zone we are referring to, for example (1, 2) denotes
the zone in which point t l( , )0

1
0
1 is located. We also assume =t t0

2
1
0.For both trajectories, we have

= {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}0 (31)

= {(0, 1), (0, 2), (1, 2)}1 (32)

Then the segmented travel time is computed as follows:

= = = = =t t t t t t t t t t00 0
1

0
0

01 0
2

0
1

02 0
3

0
0

03 0
4

0
0

04 0
5

0
0 (33)

= = = = =t t t t t t t t t t06 0
2

0
1

07 0
3

0
1

08 0
4

0
1

09 0
5

0
1

0(10) 0
3

0
2 (34)

= = = = =t t t t t t t t t t0(11) 0
4

0
2

0(12) 0
5

0
2

0(13) 0
4

0
3

0(14) 0
5

0
3

0(15) 0
5

0
4 (35)

= = =t t t t t t1(15) 1
1

1
0

1(16) 1
2

1
0

1(17) 1
2

1
1 (36)

We then omit index i in the ij and re-index to get , , , ,j0 17. Then the index set of each OD pair N t( )rs is computed as follows:

=N t( ) {0}(1,1)(1,2) 0
0 (37)

=N t( ) {1}(1,1)(2,3) 0
0 (38)

=N t( ) {11, 16}(2,3)(6,5) 0
2

(39)

Finally, the segmented travel time j can be used to estimate C t( )rs between any OD pair.

4.3.2. Unimodality test
When converting the trajectory data to zone-to-zone travel time data, we divide the new trajectory travel time j into different sets

N t( )rs by its origin and destination, while the travel time within the origin and destination zones is ignored, as demonstrated in
Example 1. In fact, the travel time within the zone can be very large if the traffic analysis zones are not partitioned properly. For
example, if there is a highway and a local road in region A. The highway passes by region A and there is no exiting ramp connecting
the highway and region A. Hence vehicles on the highway have to drive out of region A to get off the highway and then come back to
cell A through local roads. In this case, the travel time of RV within cell A cannot be ignored. We still use Example 1 as an example, if
l20 is on the highway while l1

0 is on the local road (suppose cell A is zone (2, 3)). Based on the discussions above, 11 and 16 can be very
different. Therefore the estimation of C t( )(2,3)(6,5) 0

2 using 11 and 16 is not accurate.
We observe that the distribution of travel time from one zone to other zones usually contains multiple modes when the network

0 1 2 3 4 5 6

0

1

2

3

4

5

Fig. 1. Example of two RV trajectories.
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topology or road properties are substantially heterogeneous for that zone. To ensure the estimation accuracy of the zone-to-zone
travel time, we adopt a unimodality testing method called dip test (Hartigan and Hartigan, 1985). The dip test is run for j N t, ( )j rs
to check if the travel time is uni-modal. If the dip test fails, we would need to further partition the cell into smaller zones and re-
compute the zone-to-zone travel time for the smaller zones. An example of the dip test and region segmentation is further provided in
Example 2.

Example 2. In this example, we describe how the dip test is conducted on a simplified network. We consider a network with one OD
pair, as presented in the upper part of Fig. 2. There is a highway and a local road connecting the origin r and destination s.

Suppose we have ten RV trajectory data, five of them indicate the travel time between rs is 10 min, while the other five trajectories
show a 5 min travel time. To be precise, we have =N t| ( )| 10rs for a certain rst, and = 5, 5, 5, 5, 5, 10, 10, 10, 10, 10j , respectively.
We ran the dip-test and found the p-value is zero, which indicates the travel time is clearly not unimodal.

The difference in the travel time is because five drivers took the highway and the other five drivers took the local road, To
eliminate this discrepancy, we can segment the destination zone s into two zones. One zone s1 contains the end of highway while the
other zone s2 contains the end of the local road, as presented in the lower part of Fig. 2. We re-ran the dip-test, the p values are now
0.9029 for both s1 and s2, which suggest the travel time is unimodal, respectively. By conducting the unimodality test and zone
segmentation iteratively, we can eliminate the multi-modal issue appeared in the travel time data.

4.3.3. Measuring the network disequilibrium level
We present the estimation method of NDL using C t( )rs . Before that, we first review the definition of the segmented trajectory

j N t( )rs . Each actual trajectory i corresponds to multiple segmented trajectories, and we can view this as that there are multiple
virtual RV drivers on the roads and they depart from r to s at time t. Each virtual RV driver is experiencing the travel time j. The set
N t( )rs can be viewed as an enlarged trajectory set driven by the virtual drivers. Based on this observation, we further claim
Assumption 2 is true.

Assumption 2. The route choice behaviors of the virtual RV drivers are the same as the actual RV drivers.

Assumption 2 implies that the drivers’ route choice behavior will not change even if they only drive part of the route. An easy way
to think of Assumption 2 is that when one takes a RV and the route (which is selected by drivers) is displayed on one’s phone, if one
adds a stopping point along the provided route, Assumption 2 claims that the updated route will not change. Assumption 2 is stronger
than Assumption 1 because it constrains on each segment of a trajectory, while Assumption 1 only constrains on the whole trajectory.

We assume C t( )rs is known for all rs K t T,q . The flow-scale-free NDL can be reformulated in Eq. (40).

=

=

D t C t C t

C t C t

( ) ( ) min ( )

max ( ( ) ( ))

rs rs
k K

rs
k

k K
rs rs

k
rs

rs (40)

where

=C t p t C t( ) ( ) ( )rs
k K

rs
k

rs
k

rs (41)

The OD travel timeC t( )rs is the average time to complete a trip for all path flowQ t( )rs on OD pair r s, and departing at time t. Base
on Assumption 2, we use zone-to-zone RV data to estimate C t( )rs , as presented in Proposition 3.

Proposition 3. Based on Assumption 2, we have

Fig. 2. An example of dip test and zone segmentation.
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C t C t( ) ( )rs
P

rs (42)

when N t| ( )|rs .

Proof. We compute the expectation of j in each subset N t( )rs based on Assumption 2,

= p t C t j N t[ ] ( ) ( ), ( )j j
k K

rs
k

rs
k

rs
rs (43)

By Law of Large Numbers (LLN), we have

= =C t
N t

p t C t j N t C t( ) 1
| ( )|

( ) ( ), ( ) ( )rs
rs j N t

j
P

k K
rs
k

rs
k

rs rs
( )rs rs (44)

when N t| ( )|rs . □

Now we are ready to present a new estimator for NDL using zone-to-zone travel time data,

=D t C t C t( ) max ( ( ) ( ))rs rs r s (45)

where is a set of connecting (intermediate) points that connect path flows from one OD pair to another, and is the set of all
possible . C t( )r s may be virtual in the sense that there may not exist such an RV which complete the trip following r, to s (denoted
byC t( )r s ), but the travel time of this virtual trip can be estimated through the “relay” of multiple trips that are actually completed by
RVs (in this case, a trip from r to , and another trip from to s). We define the average travel time among all paths from r to s through
as C t( )r s in Eq. (46).

= + +
=

C t C t C t C t( ) ( ) ( ) ( )r s r
u

u u
u

s[0]
1

| | 1

[ 1] [ ] [| |]
| |

(46)

where [0] is the first element (i.e., connecting or intermediate point) in , [1] is the second, etc. Note the travel time of alternative
pathC t( )r s is defined in the same manner with Eq. (46). To simplify the computation, we only consider the alternative paths with one
connecting point. When only has one element, the scalar = [0] is used to simplify the notation. Then the travel time of the
alternative path C t( )r s with one connecting point is presented in Eq. (47).

= + +C t C t C t C t( ) ( ) ( ( ))r s r s r (47)

Example 3 (Alternative path). In this example, we illustrate the idea of alternative path and the definition of C t( )r s . The layout of the
map and notations are the same as Example 1. Fig. 3 presents the trajectories of three RV trips, and we assume = =t t t0

0
1
0 and

=t t2
0

1
2.One can clearly see t t0

5
0
0 is a sample of C t( )(1,1)(6,5) . The trajectories 1 and 2 form an alternative path from origin (1, 1) to

destination (6, 5), so t t2
2

0
0 is a sample of C t( )(1,1)(5,3)(6,5) . We note here = (5, 3) (or = [(5, 3)] if we do not use a simplified form),

meaning zone (5, 3) is a connecting point.

We further prove the asymptotic property of the estimated NDL by zone-to-zone travel time in Proposition 4.

Proposition 4. When N t| ( )|rs and enumerates all the possible selections of , we have
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Fig. 3. Example of three RV trajectories.
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D t D t( ) ( )rs
P

rs (48)

Proof. By Proposition 3, we have

C t C t( ) ( )rs
P

rs (49)

C t C t( ) ( )r s
P

r s (50)

We also have

=C t C tmin ( ) min ( )r s k K rs
k

rs (51)

by choosing as the list of intermediate points of path k. Again by continuous mapping theorem, the proposition holds. □

5. Traffic management through user optimal routing with limited control ability

In this section, we present an NDL-based traffic management framework. The framework aims at achieving user optimal routing
through minimizing NDLs in the network. The mathematical formulation for the user optimal routing problem is presented in Eq.
(52).

=
=
=

Q t C t dt Q t t dt

p t Q t F t rs K k K t T
p t t C rs K k K t T
C t t F rs K k K t T
F t rs K k K t T

min ( ) ( ) ( ) ( )

s. t. ( ) ( ) ( ) , ,
( ) ( , ) , ,
( ) ( , ) , ,
( ) 0 , ,

F t t T
rs K

rs rs t T
rs K

rs rs

rs
k

rs rs
k

q rs

rs
k

rs
k

t q rs

rs rs
k

t q rs

rs
k

q rs

{ ( )}rs
k

rskt q q

(52)

where t( , ·)rs
k is the route choice portion function for path k in OD rs departing at time t, and t( , ·)rs

k denotes the path cost function
for path k in OD rs departing at time t. Ct and Ft represent all the cost and path flow information before time t, respectively.

Instead of system optimal routing, the proposed traffic management framework aims at the user optimal routing due to the
following reasons: (1) Travelers’ compliance issue: Under the system optimal routing, some travelers who are routed to a longer route
may not follow the guidance; by contrast, travelers tend to follow the guidance under user optimal routing since the provided route is
always the shortest; (2) Fairness issue: similar to (1), the system optimal routing can be unfair to some travelers (Schulz and Stier-
Moses, 2006); (3) Small gap: the gap between user optimal and system optimal is small in terms of total travel time (Roughgarden,
2002); (4) Data constraints: current RV dataset does not support an effective system optimal routing method.

Now we analyze the objective function in Eq. (52) by Proposition 5.

Proposition 5 (Total travel time decomposition). The total travel time for each OD pair departing at time t can be decomposed into two parts:
the merit function-based NDL and the minimum achievable total travel time, as presented in Eq. (53).

= +Q t C t D t Q t t( ) ( ) ( ) ( ) ( )rs rs rs rs rs (53)

where Q t t( ) ( )rs rs is denoted as the minimum achievable total travel time for OD pair rs departing at time t.

Proof.

= +Q t C t Q t C t Q t t Q t t( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( )rs rs rs rs rs rs rs rs (54)

= +D t Q t t( ) ( ) ( )rs rs rs (55)

We substitute Eq. (53) to Eq. (52), then the original optimization problem is simplified to Eq. (56) (route choice and travel time
constraints are omitted).

=

D t

F t Q t t T rs K

F t t T rs K k K

min ( )

s. t. ( ) ( ) ,

( ) 0 , ,

F t t T
rs K

rs

k K
rs
k

rs q

rs
k

q rs

{ ( )}rsk rskt q

rs

(56)

Eq. (56) claims that user optimal routing problem is equivalent to NDL minimizing problem, hence it can be solved by adaptive (i.e.
reactive) user optimal routing using the instantaneous travel information (Kuwahara and Akamatsu, 2001). However, controlling all
the vehicles may not be feasible in real-world networks. Instead, many studies have shown that traffic delay can be considerably
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reduced by controlling a relatively small portion of vehicles (Pi and Qian, 2017; Zhang and Nie, 2018; Sharon et al., 2018). Our
approach focuses on solving the user optimal routing with limited control ability using NDL measures of sampled vehicles.

We note formulation (52) and (56) are conceptual formulations because t( )rs cannot be obtained in real-world networks. Both
formulations are used to exploit the connection between the user optimal routing and NDL minimization problem, and the connection
further yields the real-time management framework presented in the following context.

We now propose a real-time traffic management framework to achieve user optimal routing with limited resources. In general, the
frameworks is similar to a standard user optimal routing method that routes travelers to the optimal paths. The major contribution of
the proposed framework is that NDL can be estimated in real time and used to prioritize routing vehicles/trips. NDLs provide a
routing method that identifies the path flow that is the most distant from user optimum (i.e. user optimal paths), and controlling
vehicles/trips from those OD pairs is likely to reduce traffic congestion the most effectively based on Eq. (56).

Generally, the algorithm lean to control the flow along an OD pair with highest NDL, such that the limited control resources can
be fully utilized. Provided that a routing platform is able to control up to portion of the total demand, a traffic management method
is presented in Algorithm 1.

Algorithm 1. NDL-based user optimal routing algorithm

In the algorithm, denotes the maximum ratio of total demand that can be controlled, path flow F t( )rs
k is the original path flow

without any control, F t( )rs
k is the path flow after control (i.e. routing). Note the vehicles controlled in each time t can be different. The

NDL D t( )rs is estimated by RV data based on Eq. (13) or Eq. (45), and its estimation is usually delayed, meaning that D t( )rs is not
immediately available at time t. It may be available after lag amount of time intervals. To address this issue, any time series prediction
methods can be adopted to obtain a forecast of D t( )rs . In the experiments, we will show that simply using D t( lag)rs as a prediction
for D t( )rs can achieve reasonably effective congestion reduction. The term lag refers to the time delay of NDL estimation, and
D t( lag)rs is the latest NDL available for OD pair rs at time t.

6. Case study I: metropolitan Chengdu area with DiDi chuxing data

In this section, we conduct a case study with RV trajectory data in Chengdu, China. Chengdu is a sub-provincial city which serves
as the capital of Sichuan Province. As of 2014, its urban population is around 10 million. Chengdu also serves as a tourism city with
multiple large shopping districts, food plazas and cultural attractions (Wikipedia contributors , 2018a). Therefore, both commuting
traffic and non-recurrent traffic by tourists are critical when analyzing traffic conditions in Chengdu.

The dataset we use includes the trajectory of all RVs operated by DiDi Chuxing from November 1st, 2016 to November 30th,
2016. Each trajectory record is represented by a sequence of temporal and spatial stamps for a trip order containing a pick-up and a
drop-off. Since the network topology and traffic flow data in Chengdu are not available, the effectiveness of the NDL-based traffic
management method cannot be tested in this case study. Hence the objective for first case study is to demonstrate the spatio-temporal
patterns of NDL. We will conduct a second case study in Section 7 to exam the traffic management algorithm.

The trajectory data contains duplicate records and outliers, which need to be cleaned before processing. The duplicates are
identified by the unique order ID, and the outliers are identified by unrealistic trajectory and travel time. The metropolitan area of
Chengdu is segmented into 545,305 cells in the grid, and each cell is a 300 m × 300 m square. The origin and destination of each RV
trip are matched to the cells by (·) function defined in Eq. (11). For example, Fig. 4 demonstrates how the trajectories look like for
one OD pair. Part of the trajectory may be off the road because of measuring errors, but it is clearly that two RVs take the same route
and a third RV takes a different route.

6.1. NDL aggregated over all OD pairs

With the cleaned and processed RV data, we compute the NDL measure using Eq. (13) for each hour. We first visualize the average
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NDL aggregated over all OD pairs on each day. In this sub-section, we will use the term “average NDL”, which is defined as
D t( )K rs K rs

1
| |q q

. Note the “average NDL” reflects the trend of NDL in different time intervals, while it does not reflect the average

difference between current travel time and the shortest travel time. The latter one is denoted by Q t D t( ) ( )Q t rs K rs rs
1

( )rs Kq rs q
instead,

and it cannot be obtained as the demand Q t( )rs is unknown in this study.

6.1.1. Weekdays v.s. weekends
We examine the weekly patterns of NDL for weekdays and weekends. We plot time-of-day NDL for each day (in transparent

colors), along with the daily average (in solid colors), in Fig. 5. The average NDL patterns on weekdays and weekends are quite
different. There are three major spikes on weekdays, two corresponding to the morning peaks and one corresponds to the afternoon
peak. There is only one spike on weekends, and the average NDL steadily increases from 4:00am to 14:00 pm.

As an approximation to D t( )rs , the estimated NDL is independent of travel demand. However, the average NDL and total demand

Fig. 4. Three trajectories with the same OD in 11:00–12:00, Nov 1st, 2016.

(a) Weekdays (b) Weekends

Fig. 5. Average NDL by time of day, on weekdays and weekends (solid lines are the average of average NDL taken over all weekdays and weekends,
respectively).
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follow similar time-of-day patterns in Chengdu, which is not always the case as we will show later in another example. The positive
correlation between NDLs and travel demand indicates that high demand level can induce high NDLs in this case. The spikes of NDL
can also be explained by the nature of travel demand for the Chengdu network. On weekdays, the two spikes in morning peaks are
probably due to the various working start time of travel demand, and the spike in afternoon peaks is due to the evening commute. On
weekends, the only spike is largely attributed to traffic demand for weekend entertainments.

6.1.2. Day of week and time of day effects on NDL measure
We compute the average NDL by hour, averaged over all days in each day of week, as well as the percentage change in average

NDL by hour where the base is set as the average of NDL taken over all days of a week. The results are presented in Fig. 6.
Travelers on the weekdays are largely attributed to recurrent commuters, so the traffic condition is considered to be more stable

than the weekends. As a result, NDL is generally lower on weekdays. On the contrary, weekend activities are less likely to follow a
fixed pattern for travelers, hence the NDL becomes much higher. In particular, NDL during midnight of weekends is significantly

(a) Average NDL

(b) Percentage change

Fig. 6. Average NDL and its percentage change by hour by day of week, comparing to the daily average of NDL taken over all days of week.
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higher than that on weekdays, possibly as a result of weekend midnight activities.

6.1.3. Spatial pattern of average NDL
We compute the NDL between a random subset of OD pairs averaged over each day, and present the results in Fig. 7. To improve

the visualization effects, we visualize the NDL lower than 50s all in the same white color.
As can be seen from Fig. 7, NDL is sparsely distributed among all OD pairs. The NDL can be as high as 100s, while most of NDLs

are nearly zero. The sparsity and high variability of NDL between OD pairs are attributed to the demand pattern that are spatially
imbalanced and inefficient/inaccurate information available to demand for certain OD pair. Those OD pairs with high NDL can be
considered as “bottlenecks” of the urban networks, and hence controlling flow along these crucial OD pairs can considerably help
traffic management.

6.2. NDL for individual OD pairs

Now we examine the spatio-temporal NDL of each OD pair over the course of the study time horizon.

6.2.1. Time of day effects on NDL measure for single OD pair
We draw a figure with ( ×n m) pixels, n is the number of days and m is the number of time intervals on each day. We set y axis to

be the dates in Nov. 2016, and x axis to be the time of day from 00: 00 to 23: 59. Each pixel is color coded to indicate the value of
NDL, and color grey means the NDL is not available. This figure demonstrates the daily time-of-day NDL change over the month for
each OD pair in high granularity. We randomly selected 12 OD pairs and plot them in Fig. 8. Generally, NDLs on most of days follow a
similar pattern. One can clearly see NDL measures of OD pairs (22615, 22844) and (22845, 22616) are higher than those of OD pairs
(23754, 25514) and (28361, 30362). In addition to the NDL spatial sparsity presented in Section 6.1.3, the occurrence of high NDL for
each OD pair is also sparse.

Another interesting observation is that the NDLs for different ODs are quite random in one specific hour of day, though the general
patterns aggregated over all ODs are similar. The randomness of NDL at each particular location and time reflects the nature of dynamic
stochastic networks: traffic conditions of each specific time interval and location may be sensitive to demand patterns and non-recurrent
factors such as accidents and events. However, NDLs aggregated in the network still exhibit a spatial and time-of-day pattern.

6.2.2. Origin-base and destination-based NDL measures
Before presenting the visualization results, we first overview the layout of Chengdu. Fig. 9 presents an overview of the Chengdu

network and some of its points of interests (POIs).
We compute the origin-based and destination-based NDL by hour with Eqs. (8) and (9), averaged over all weekdays and week-

ends, and the results are presented in the supplementary materials. Each figure is color coded from green to red, representing the NDL
from low to high. We select four interesting figures presented in Fig. 10.

Fig. 7. Average NDL between a random subset of OD pairs (unit: seconds).
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Generally, NDLs for all the sightseeing spots and shopping districts are considerably higher than that for residential areas and
office areas, on both weekdays and weekends. One can read from Fig. 10a that most of the inefficient trips are associated with
destination Chunxi Road (3), which is the largest shopping district in Chengdu. The destination-based NDL in Fig. 10a and the origin-
based NDL in Fig. 10b have a similar pattern, since they represent the same group of travelers during the morning peak and afternoon
peak. In addition, the NDL for Chunxi Road in the afternoon is higher than that in the morning, because more travelers head for night
activities from region 9 (an office area).

Fig. 8. Time-of-day NDL profile for randomly selected 12 OD pairs.
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Fig. 9. Overview of Chengdu network and its POIs.

(a) Destination-based NDL from 8:00 AM to 12:00 AM on weekdays (b) Origin-based NDL from 16:00 PM to 20:00 PM on weekdays

(c) Destination-based NDL from 0:00 AM to 4:00 AM on weekends (d) Destination-based NDL from 16:00 PM to 20:00 PM on weekends

Fig. 10. Selected origin and destination based NDL (Red color represents high NDL and green color represents low NDL). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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7. Case study II: Pittsburgh metropolitan area with Uber Movement data

In this section, we conduct a case study using zone-to-zone travel time data in Pittsburgh provided by the Uber Movement.
Pittsburgh is a city in the Commonwealth of Pennsylvania with an urban population of 2.3 million (Wikipedia contributors , 2018c).
Pittsburgh is known for its medical, education, manufacture and high-tech industries, more so than a tourist city.

In 2017, Uber released the zone-to-zone travel time data in Pittsburgh on Uber Movement. This dataset is consistent with our
proposal of data sharing scheme. The Uber Movement data contains the mean, minimum and maximum of j for all TAZ pairs (or
census tract pairs) over the years. The Uber Movement data we use here includes the hourly zone-to-zone travel time within the
Allegheny County from January 1st, 2016 to June 30th, 2017. In this case study, we omit those results that are similar to Case Study I,
and only highlight the differences between Pittsburgh and Chengdu.

Following the steps described in Section 4.3, NDLs can be computed based on Eq. (45).

7.1. NDL aggregated over all OD pairs

We start with the average NDL aggregated over all OD pairs on each day. We note that the definition of “average NDL” is the same
as that in Section 6.1.

7.1.1. Weekdays v.s. weekends
We plot time-of-day average NDL for each day (in transparent colors), along with the daily average (in solid colors), in Fig. 11. As

can be seen, different from the case in Chengdu, the NDL in Pittsburgh on weekdays is fairly close and stable both from hour to hour
and from day to day, except for midnight to early morning. The NDL in Pittsburgh shows a slightly positive correlation with the
demand level, not as pronounced as in Chengdu. On weekends, the NDL shows higher day-to-day variation than weekdays. However,
NDLs are substantially more stable throughout the entire day than the NDLs in Chengdu. We speculate that the stable patterns of NDL
in Pittsburgh (in terms of both time of day and day to day) are attributed to: (1) drivers’ choices of departure time and routes that are
relatively stable; and (2) limited roadway alternatives (e.g., limited by tunnels and bridges).

7.1.2. Day of week and time of day effects on NDL measure
Similar to Section 6.1.2, we plot NDL by time of day and day of week presented in Fig. 12.
As can be seen from Fig. 12a, NDLs on weekdays are generally close from day to day, and the major spike occurs in the afternoon

peak, possibly due to heavy congestion. From Fig. 12b, midnight NDLs on weekends are significantly higher, possibly as a result of
night activities. The NDL of early morning is the lowest over all weekends, probably because there is no congestion and trips are made
straight to the destinations.

7.2. NDL for individual OD pairs

Now we examine the spatio-temporal NDL of each OD pair over the course of study time horizon.

7.2.1. Time of day effects on NDL measures for a single OD pair
Similar to Section 6.2.1, we plot the time-of-day NDLs over the 18 months for randomly selected 12 OD pairs in Fig. 13. One can

clearly observe the two majors spikes in the morning peak and afternoon peak.
There are several OD pairs with high NDL over the 18 months, such as (418, 407) and (412, 8). To verify the results, we further

query the weekday travel times on Google Maps. The Google Maps query configurations are set such that departure time is 16:30 PM
and traffic pattern is on an average Wednesday, then the results are presented in Fig. 14.

One can read from Fig. 14 that there are multiple routes to choose from and the variation of estimated travel time is high for both

(a) Weekdays (b) Weekends

Fig. 11. Average NDL by time of day, on weekdays and weekends (solid lines are the average of average NDL taken over all weekdays and weekends,
respectively).
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OD pairs. With high day-to-day variation, travelers can hardly decide which route is the user optimal path. It partially explains why
the NDL is high for both OD pairs.

7.2.2. Origin-based and destination-based NDL measures
Fig. 15 presents an overview of Pittsburgh metropolitan area and some traffic analysis zones. Again, Pittsburgh is not a city with

much tourism demand, so most of its traffic is likely made by local residents.
Similar to Section 6.2.2, we compute the origin-based and destination-based NDL by hour, averaged over all days on weekdays/

weekends, and the results are presented in the supplementary materials. Four interesting origins/destinations are selected and
presented in Fig. 16.

Generally, the origin/destination-based NDL verifies the observations in Fig. 11. From 4:00 AM to 8:00 AM on weekdays, NDL is
high for the airport area as destination (the zones in red). High NDL indicates there exist substantial demand during this time window
and they all have multiple routes to choose from to the airport with similar travel times. From 8:00 AM to 12:00 PM on weekdays,

(a) Average NDL

(b) Percentage change

Fig. 12. Average NDL and its percentage change by hour by day of week, compared to the daily average of NDL taken over all days of week.

W. Ma and S. Qian Transportation Research Part C 110 (2020) 222–246

240



high NDL largely occurs in the downtown area, possibly as a result of morning commute to an area with heavy congestion. The origin-
based NDL around the downtown area is also high from midnight to 4:00 AM, as a result of late night weekend activities. In contrast,
the NDL from 8:00 AM to 12:00 PM on weekends is relatively low across the entire region.

Fig. 13. Time-of-day NDL profile for randomly selected 12 OD pairs.
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7.3. NDL based traffic management

Now we examine the proposed traffic management method. We have made efforts on calibrating the traffic flows, route choice
models and OD demand in the Pittsburgh metropolitan area in a separate project (Ma and Qian, 2015), and we adopt OD demand and
path flow from that project, and use Uber Movement data (namely the average zone-to-zone travel time) as the expected network
conditions by hour of day.

The proposed method routes the vehicles to user optimal paths. Thus, the total time can be effectively reduced if the management
method can accurately detect vehicles that deviates from user optimal paths and identify their user optimal paths. The objective of
this experiment is to show that NDL can potentially be used as a criterion to identify such vehicular flow and their optimal paths. In
addition, we would like to show that the proposed management method is still effective, even the estimated NDL is not up to date
with an estimation delay. Since the control effects are mainly determined by whether the proposed method can find optimal user
paths for a small fraction of vehicles based on NDL rather than the change in travel time if those vehicles are re-routed, we make a
bold assumption that network conditions (in terms of travel time) will remain the same before and after the NDL-based control. This
assumption is based on three reasons: (1) the hypothetical network conditions after control are unknown in the experiments since the
field testing is too costly to do; (2) at most 5% of the total demand will be re-routed, so the impact to network traffic conditions is
secondary comparing to the impact of re-routed vehicles; (3) when evaluating the effectiveness of routing in terms of total travel
time, the change in network conditions upon re-routing a small fraction of vehicles is likely to alleviate the total reduction (namely
the effectiveness), but not the trend of reduction. Our goal in this experiment is to show that NDL has potentials to reduce total travel
time, more so than to what extent it reduces congestion.

(a) From O 418 to D 407 (b) From O 412 to D 8

Fig. 14. Estimated travel time and routes from Google Maps.

Fig. 15. Overview of the Pittsburgh network and some of its main traffic analysis zones.
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We study the time period 5:00 AM - 10:00 AM from Jan. 1st, 2016 to Jun. 30th, 2017, and we assume the route choice and traffic
demand are identical within all weekdays and weekends, respectively. On each day, we apply Algorithm 1 with different control ratio

[0.01, 0.02, 0.03, 0.04, 0.05] and time delay of NDL estimation lag [0, 1, 2, 3, 4] hours at the beginning of each hour. The control
effectiveness is evaluated by the reduction of total travel time of the network, and the results are presented in Table 2.

The control with =lag 0 is the ideal situation in which the real-time NDL is immediately available. In this case, controlling 1% of
the vehicle will reduce the total travel time by 13.54%, almost as effective as re-routing 5% of vehicles. Traffic routing with =lag 1
hour is a more realistic situation in which we can obtain NDL information that is estimated one hour ago. We directly use C t( lag)rs
as C t( )rs and the control effect is still significant. Fig. 17 compares total travel time before and after the NDL-based control on each
day when =lag 1 h. It indicates that the control is effective for most of those days. With ratio greater than 2%, the improvement in
control effectiveness becomes marginal.

7.4. Key observations

Combining the experiment results in Section 6 and Section 7, we summarize the following key observations regarding the NDL
measure.

(a) Destination-based NDL from 4:00 AM to 8:00 AM on weekdays (b) Destination-based NDL from 8:00 AM to 12:00 PM on weekdays

(c) Origin-based NDL from 0:00 AM to 4:00 AM on weekends (d) Origin-based NDL from 8:00 PM to 12:00 PM on weekends

Fig. 16. Selected origin and destination based NDL (Red color represents high NDL and green color represents low NDL). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Total travel time reduction by percentage (%).

lag (h) 0.01 0.02 0.03 0.04 0.05

0 13.54 14.15 14.18 14.19 14.19
1 7.56 8.05 8.06 8.07 8.07
2 5.93 6.22 6.23 6.23 6.23
3 4.20 4.27 4.28 4.28 4.28
4 3.14 3.39 3.50 3.55 3.56
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• The NDL does not necessarily depend on the traffic demand. Instead, it is dependent on whether the travels are recurrent or non-
recurrent.
• High NDL is spatially and temporally sparse.
• Though the NDL pattern varies substantially from day to day, the average NDL pattern is stable and interpretable.
• Real-world networks are not under user equilibrium based on individual travel times. The use of information provision can
significantly reduce traffic congestion.

8. Conclusion

This paper first reviews the formulations for DUE and discuss how the DUE conditions may be violated in real networks. We
discuss the concept of network disequilibrium level (NDL) and formulate the NDL measure based on merit function. We further
discuss why NDL measure is practically implausible to estimate in real networks using conventional traffic data.

Next, this paper summarizes the characteristics of ride-sourcing vehicle (RV) data. An estimation method for the NDL is proposed
with the trajectory-level (or trip-level) RV data. We propose a data sharing scheme for TNCs so that TNCs can release zone-to-zone
aggregated data to the public without revealing either personally identifiable information or trip-level information that may be
business sensitive. An estimation method for NDL with the zone-to-zone aggregated data is further proposed. We prove that the user
optimal routing problem can be reduced to the NDL minimization problem, and an NDL-based traffic routing method is proposed. The
traffic routing method basically prioritizes vehicles that deviate the most from their user optimal paths, and re-routing those vehicles
may achieve effective reduction in total travel time by controlling a small fraction of those vehicles.

The NDL measure and NDL-based traffic management framework are examined in two real-world large-scale networks: the City of
Chengdu with trajectory-level RV data, and the Pittsburgh metropolitan area with zone-to-zone travel time data. We found that, for
each city, NDLs are likely high when travel demand is high (thus when congestion is mild or heavy) on weekdays. Generally weekend
midnight exhibits higher NDLs than weekday midnight. Many NDL patterns are different between Chengdu and Pittsburgh, which are
attributed to unique characteristics of both demand and supply in each city. In Pittsburgh, weekend NDLs are generally less than
weekdays except late evening and midnight, and day-to-day NDLs vary more substantially on weekend than on weekdays. NDLs of
Chengdu are generally larger than Pittsburgh. In Chengdu, weekend NDLs are greater than weekdays. On the othe hand, NDL in
Pittsburgh is much more stable from day to day, and from hour to hour, comparing Chengdu. It is likely attributed to (1) drivers’
choices of departure time and routes that are relatively stable in Pittsburgh; and (2) limited roadway alternatives (e.g., limited by
tunnels and bridges). In addition, we observe that OD pairs with high NDL are spatially and temporally sparse for both cities. For the
Pittsburgh network, we evaluate the effectiveness of NDL-based traffic routing, which shows great potential to reduce total travel
time with routing a small fraction of vehicles (1% in the experiments), even with dated NDL that is estimated in the prior hour.

In the near future, we will further explore the NDL patterns. Since NDL is closely related to the non-recurrent factors such as
incidents, weather, and construction plans, we will collect non-recurrent incidents data in Pittsburgh and identify their impact to
NDL. This will help us better understand the mechanism of NDL and propose more effective control strategies to traffic management.

Fig. 17. Comparison of before and after control in terms of total travel time (seconds).
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