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Adeno-associated viruses (AAVs) provide advantages in long-term, cardiac-specific
gene expression. However, AAV serotype specificity data is lacking in experimental
models relevant to cardiac electrophysiology and cardiac optogenetics. We aimed to
identify the optimal AAV serotype (1, 6, or 9) in pursuit of scalable rodent and human
models using genetic modifications in cardiac electrophysiology and optogenetics, in
particular, as well as to elucidate the mechanism of virus uptake. In vitro syncytia
of primary neonatal rat ventricular cardiomyocytes (NRVMs) and human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were infected with AAVs
1, 6, and 9 containing the transgene for eGFP or channelrhodopsin-2 (ChR2) fused
to mCherry. In vivo adult rats were intravenously injected with AAV1 and 9 containing
ChR2-mCherry. Transgene expression profiles of rat and human cells in vitro revealed
that AAV1 and 6 significantly outperformed AAV9. In contrast, systemic delivery of AAV9
in adult rat hearts yielded significantly higher levels of ChR2-mCherry expression and
optogenetic responsiveness. We tracked the mechanism of virus uptake to purported
receptor-mediators for AAV1/6 (cell surface sialic acid) and AAV9 (37/67 kDa laminin
receptor, LamR). In vitro desialylation of NRVMs and hiPSC-CMs with neuraminidase
(NM) significantly decreased AAV1,6-mediated gene expression, but interestingly,
desialylation of hiPSC-CMs increased AAV9-mediated expression. In fact, only very high
viral doses of AAV9-ChR2-mCherry, combined with NM treatment, yielded consistent
optogenetic responsiveness in hiPSC-CMs. Differences between the in vitro and in vivo
performance of AAV9 could be correlated to robust LamR expression in the intact heart
(neonatal rat hearts as well as adult human and rat hearts), but no expression in vitro in
cultured cells (primary rat cells and hiPS-CMs). The dynamic nature of LamR expression
and its dependence on environmental factors was further corroborated in intact adult
human ventricular tissue. The combined transgene expression and cell surface receptor
data may explain the preferential efficiency of AAV1/6 in vitro and AAV9 in vivo for cardiac
delivery and mechanistic knowledge of their action can help guide cardiac optogenetic
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efforts. More broadly, these findings are relevant to future efforts in gene therapy for
cardiac electrophysiology abnormalities in vivo as well as for genetic modifications
of cardiomyocytes by viral means in vitro applications such as disease modeling or

high-throughput drug testing.

Keywords: AAV, cardiac optogenetics, channelrhodopsin-2, LamR, sialic acid, iPS-CM, rat heart, gene therapy

INTRODUCTION

The use of adeno-associated viruses (AAVs) as transgene delivery
vehicles in disease treatment requires comprehensive assessments
of their performance and safety profiles. Advantages of AAVs
include long-term expression, tissue tropism from 13 serotypes,
and the ability to transduce both dividing and non-dividing cells
(Aikawa et al., 2002; Muller et al., 2006; Williams et al., 2010;
Srivastava, 2016). Recent clinical trials have explored the use of
AAVs in the treatment of electromechanical consequences of
heart failure, specifically in the upregulation of SERCA2a, a Ca?™
ATPase, known to be downregulated during the progression
of the disease (CUPID; Jessup et al., 2011). Although a recent
CUPID phase IIb trial concluded that the delivery of SERCA2a
by AAV serotype 1 did not improve symptoms of heart failure
in patients, no safety issues or adverse effects were observed
(Greenberg et al,, 2016). As of June 2017, there have been 183
clinical trials in humans using AAV".

Concurrent to the exploration of AAV use in clinical trials,
optogenetics has been rapidly developing as a promising tool
in cardiac electrophysiology research (reviewed in Entcheva,
2013; Ambrosi et al., 2014; Montgomery et al., 2016; Pianca
et al., 2017). Optogenetics relies on the genetic modification
of cells and tissues to induce the expression of light-sensitive
opsins for precise bi-directional control of activity. The technique
allows for functional manipulation of target cells/tissues with
high specificity through genetic modification, in addition to the
superior spatiotemporal resolution afforded by optical means
(Ambrosi et al., 2014). Consequently, the field of optogenetics
requires highly efficient transgene delivery vehicles for cardiac
applications. Such virally mediated optogenetic manipulations
are “scalable” as they permit the parallel investigation of
many cells in vitro for high-throughput all-optical cardiac
electrophysiology (Dempsey et al., 2016; Klimas et al., 2016) and
allow cardiac applications in vivo across different animal species,
beyond the usual mouse transgenic models.

In this study, we investigated the efficiency and mechanisms
of infection of three select AAV serotypes (1, 6, and 9) with
known affinity for cardiac tissue in pursuit of scalable in vitro
and in vivo models for cardiac optogenetics. Our study was
motivated by the inconsistency of available data and study
design evaluating serotype specificity in various animal models
(see Supplementary Table S1 for a brief literature review). For
instance, AAV9 has been shown to have highly efficient transgene
delivery to the heart in the mouse and rat in a variety of studies
(Inagaki et al., 2006; Pacak et al., 2006; Bish et al., 2008; Zincarelli
et al., 2008); however, AAV1 and AAV6 are identified as superior
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for the heart in other studies (Kawamoto et al., 2005; Wang et al.,
2005; Muller et al., 2006; Seiler et al., 2006; Palomeque et al.,
2007; Zincarelli et al., 2008; Zhu et al., 2012; Kuken et al., 2015).
In addition, developmental serotype specificity (i.e., preferential
transgene expression in neonates versus adults) has also been
suggested in studies involving dogs (Yue et al., 2008) and rhesus
macaques (Pacak et al., 2006). A more recent work identified
AAV6 as an efficient serotype for the infection of stem-cell
derived cardiomyocytes (Rapti et al., 2015). Clinically and in vivo,
AAV-mediated gene delivery is the approach of choice, including
for expression of optogenetic tools. While a number of suitable
options exist for gene delivery in vitro other than AAV-mediated
gene transfer, there is often convenience in being able to utilize
the same vectors for both studies in vitro and in vivo.

We used several experimental platforms relevant to
the development of viral models for cardiac optogenetics.
In vitro we assessed serotype performance in commonly used
multicellular models of cardiac tissue — neonatal rat ventricular
cardiomyocytes (NRVMs) and human induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CM; Klimas et al., 2016).
Adult rats were also systemically infected with AAVs as their
larger size compared to mice allows for in vivo manipulations
for cardiac research, including the insertion and implantation
of fiber-based devices for long-term cardiac recording and
stimulation (Klimas and Entcheva, 2014).

MATERIALS AND METHODS

Procedures involving animals were performed in accordance
with institutional guidelines at both Stony Brook University
(SBU) and George Washington (GW) University and conform
to NIH guidelines for the care and use of laboratory animals.
The reported experiments were prospectively approved by the
GW Animal Care and Use Committee (IACUC) under numbers
#A335 (for the neonatal rat culture) and #A339 (for the adult
rat experiments).

Human heart tissue for protein analysis was procured through
the Washington Regional Transplant Community (WRTC)
program in Washington, DC, United States, and was provided
to GW after de-identification by the procurement company.

Further details of the methods are provided in the
Supplementary Material.

In vitro

Cardiomyocyte Preparation

Neonatal rat ventricular cardiomyocytes were isolated using
a previously published technique (Jia et al., 2011; Ambrosi
et al, 2015). In short, cardiomyocytes from the ventricles
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of 2-3 day old Sprague-Dawley rats were enzymatically
isolated with trypsin (USB, Cleveland, OH, United States) and
collagenase (Worthington Biochemical Corporation, Lakewood,
NJ, United States) and the presence of fibroblasts was
minimized by pre-plating.

Frozen hiPSC-CMs (iCell Cardiomyocytes?; Cellular
Dynamics, Madison, W1, United States) were thawed according
to the manufacturer’s instructions. Cells were plated on
fibronectin-coated (50 pg/mL; Fisher Scientific) glass-bottomed
96-well plates at a density of 156,000 cells/cm?.

Infection With AAV Serotypes and

Ad-hChR2(H134R)-eYFP
Viral particles for pseudotyped AAV serotypes 1, 6, and

9 containing the transgene for eGFP were obtained
from the University of Pennsylvania Vector Core
(Philadelphia, PA, United States) or UPenn Core -

AAV1/6/9.CB7.CL.eGFP.WPRE.rBG). The adenovirus (AdV)
containing the transgene for channelrhodopsin2 fused to the
reporter eYFP [Ad-CMV-hChR2(H134R)-eYFP] was prepared
at the SBU Stem Cell Facility and characterized previously
(Ambrosi and Entcheva, 2014).

Viral infection of NRVMs was completed in suspension
immediately after cell isolation as described previously (Ambrosi
and Entcheva, 2014). NRVMs were exposed to viral doses ranging
in multiplicity of infection (MOI) from 100 to 2000 for AAV and
25 for AdV. Cells were plated on fibronectin-coated (50 pg/mL)
glass-bottomed 96-well plates at a density of 400,000 cells/cm?.

hiPSC-CMs were infected after 5 days of culture once
confluent monolayers had formed. Cells were exposed to viral
doses ranging in MOI from 100 to 100,000 for AAV and 250 for
AdV for a total of 2 h at 37°C.

Desialylation Treatment

To investigate the role of cell surface N-linked sialic acid in
AAV infection, NRVMs and hiPSC-CMs were pre-treated with
neuraminidase (NM; Type III, from Vibrio cholera; 25, 250, and
500 mU/mL; Sigma-Aldrich, St. Louis, MO, United States) for 2 h
at 37°C prior to exposure to AAV particles as described above.
NM, a broad-spectrum sialidase, has been shown to significantly
reduce cell surface sialic acid and directly impact infectivity
by AAVs 1 and 6 in a variety of other non-cardiac cell types
(Wu et al., 2006).

TGF-B1 Treatment

To investigate the role of the 37/67 kDa laminin cell surface
receptor in AAV9 infection, hiPSC-CMs were treated with
recombinant human transforming growth factor-p1 (10 ng/mL;
EMD Millipore) for 24 h at 37°C prior to infection. An existing
report has shown upregulated LamR protein expression in
cardiomyocytes upon TGF-B1 treatment (Wenzel et al., 2010).

Localization and Quantification of AAV Infection by
eGFP

Monolayers were fixed with 3.7% formaldehyde 5 days after
AAV infection. Cells were stained with DAPI (Fisher Scientific)
and imaged using either an Olympus Fluoview FV1000

confocal system (for NRVMs) or a Nikon Eclipse TE2000U
fluorescent system (for hiPSC-CMs) to quantify transgene
(eGFP) expression.

Immunohistochemistry

Monolayers were permeabilized with 0.2% Triton-X 100 (Fisher
Scientific) and stained with antibodies either for sarcomeric
a-actinin (Sigma-Aldrich, St. Louis, MO, United States) or the
37/67 kDa laminin receptor (LamR) (Abcam, Cambridge, MA,
United States). Secondary antibodies were conjugated to either
AlexaFluor 488 or AlexaFluor 647 (Invitrogen).

Western Blots of LamR

Protein was extracted from adult human hearts available through
the transplant program (ventricular portion of a middle-aged
male and a middle-aged female patients hearts) and from human
iPS-CMs (cultured for 7 days).

The antibody for the 37/67 kDa LamR receptor from Abcam
was used in tandem with a fluorescent secondary antibody from
Invitrogen to run the Western blots using protein collected from
the cells and tissue samples. GAPDH antibody labeling (Abcam)
was used as a normalization protein band, and Image] was used
for quantification.

Optogenetic Control of the Engineered Cardiac
Syncytium

Cell monolayers infected with Ad-CMV-hChR2(H134R)-eYFP
(MOIs 25 and 250, respectively) or AAV9.CAG.hChR2(H134R)-
mCherry. WPRE.SV40 (MOI 50,000-100,000 £ 500 mU/mL
NM) were stained with the calcium- and voltage-sensitive dyes
and optically mapped using our recently published all-optical,
high-throughput system for dynamic cardiac electrophysiology,
termed OptoDyCE (Klimas et al., 2016, 2018). The excitation
filter for the actuating LED was 470/28 nm, the LED illumination
for the voltage (di-4-ANBDQBS or Berstl) and calcium (Rhod-
4AM) measurements was filtered as follows: 655/40 nm and
535/50, respectively. Fluorescence was collected by iXon Ultra
897 EMCCD; Andor, after passing through the emission filter
595/40 nm+700LP. Note that the UPenn Core considers
the CAG and the CB7 promoters equivalent and uses them
interchangeably; both are ubiquitous promoters, derivatives of
CMYV (Miyazaki et al., 1989).

In vivo

Systemic Infection With AAV Serotypes

Adult male Sprague-Dawley rats (n = 4, 7-8 weeks old)
were systemically injected with 0.5 x 10'? pseudotyped viral
particles of serotypes 1 and 9 obtained from the UPenn Core -
AAV1/9.CAG.hChR2(H134R)-mCherry.WPRE.SV40. The
weight of the rats at the time of injection was between 220 and
250 g, therefore, the viral delivery was about 2.14 x 102 vp/kg.

Localization and Quantification of AAV Infection by
mCherry

Rats were anesthetized with a ketamine (75-95 mg/kg)/xylazine
(5 mg/kg) cocktail and maintained on 1.5% isoflurane while a
variety of tissues (including the heart, brain, liver, and kidney)

Frontiers in Physiology | www.frontiersin.org

March 2019 | Volume 10 | Article 168


https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Ambrosi et al.

AAV Gene Delivery for Cardiac Optogenetics

were excised 4 weeks after viral injection. The tissues were fixed
in 3.7% formaldehyde and imaged both macroscopically (IVIS
Lumina Series III, PerkinElmer) and microscopically (Olympus
Fluoview FV1000) for the presence of mCherry indicating
successful transgene delivery.

Immunohistochemistry for LamR

Neonatal (2-3 days old, n = 2) and adult (11-12 weeks old, n = 2)
rat hearts were fixed in 3.7% formaldehyde and embedded in
paraffin. Tissue sections were stained with the polyclonal rabbit
antibody for the 37/67 kDa LamR (Abcam, Cambridge, MA,
United States) followed by a biotinylated anti-rabbit secondary
antibody (Vector Laboratories, Burlingame, CA, United States).
Breast carcinoma sections were used as a positive control.

Optogenetic Control of the Heart in the Open Chest
Functional assessment of transgene expression was tested by
applying an epicardial S1 pacing protocol in situ in the
open chest. Briefly, the rat was anesthetized with a ketamine
(75-95 mg/kg)/xylazine (5 mg/kg) cocktail, intubated, and
maintained on 1.5% isoflurane supplemented with oxygen
throughout the procedure. The heart was exposed via a
median sternotomy and optical stimulation was delivered with
a fiber optics-coupled diode-pumped solid-state laser (470 nm;
Shanghai Laser, Shanghai, China) directed on the left ventricular
free wall. An ECG (Simple Scope, 2000; UFI, Morro Bay, CA,
United States) was continuously recorded as the optical energy
was increased in order to achieve 100% capture in the heart.

The heart, brain, liver, and kidney were excised from the
animal and fixed in 3.7% formaldehyde. Fluorescent macroscopic
and microscopic imaging for mCherry was then completed as
described above.

Statistics

All data are shown as the mean =+ standard error of the mean
(SEM). Statistically significant differences were identified using
ANOVA followed by Tukey-Kramer’s test with a significance
level of p < 0.05.

RESULTS

AAV6 Outperforms AAV1 and AAV9

in vitro

Recent applications of cardiac optogenetics in vitro, illustrating
increased-throughput electrophysiology, require the use of viral
vectors to deliver genetically encoded optical sensors or actuators
(Leyton-Mange et al., 2014; Zhuge et al., 2014; Dempsey et al.,
2016; Klimas et al., 2016). While typically AdV or lentiviral
(LV) delivery has been employed in such applications, there is
also interest in assessing the potential utilization of AAV vectors
developed for in vivo applications as very few studies have been
conducted in this area (Rapti et al., 2015). To systematically
quantify serotype-specific and dose-dependent AAV infection,
NRVMs and hiPSC-CMs were infected with AAVs 1, 6, and
9 containing the transgene for eGFP (Figure 1). Transgene
expression was cardiomyocyte-specific, as eGFP was consistently

co-localized in the same cells with positive immunostaining
for a-actinin (Figure 1A). Although we employed strategies
in the isolation of the NRVMs to reduce the presence of
fibroblasts, a small number of fibroblasts are co-cultured with
the cardiomyocytes, as can be seen in the non-eGFP/a-actinin-
positive areas of Figure 1A. The hiPSC-CMs are, however, a
purified population of cardiomyocytes and we have not observed
any fibroblasts during culture.

AAVI- and AAV6-mediated eGFP expression was
dose (MOI)-dependent in both NRVMs and hiPSC-CMs
(Figures 1B-E). Quantification of the AAV-mediated dose-
dependency of expression showed that infection by AAV6
resulted in significantly higher transgene expression at all MOIs
for NRVMs and MOIs greater than 10,000 for hiPSC-CMs.
Transgene expression due to AAV1 infection was also observed,
but at significantly lower levels than AAV6-mediated expression.
AAV9-mediated eGFP expression was not detected at these viral
doses in either cell type (Figure 1F). It should also be noted
that hiPSC-CMs require viral doses two orders of magnitude
greater than NRVMs (MOI 10,000 versus 100) to show baseline
eGFP expression.

Viral doses greater than those shown in Figure 1 resulted
in significant cell death within the monolayers. Supplementary
Figure S1 shows representative images of propidium iodide
uptake (as a marker of dead cells) in NRVMs as a function
of MOI. We quantified no significant differences in cell death
across MOIs and serotypes; however, there is a trend toward
increasing cell death with AAVI1 infection at MOI 2000
(Supplementary Figure S1D).

AAV9 Outperforms AAV1 in vivo

A prior report on cardiac optogenetics, involving systemic
delivery of AAV9 encoding for the channelrhodopsin-2 (ChR2)
transgene, showed robust and long-lasting expression and
functionality in mice (Vogt et al., 2015). However, except for a
recent brief report (Nyns et al., 2016), to date this minimally
invasive transduction approach has not been extended to larger
animals, which may be more suitable for the study of cardiac
arrhythmias due to size and ease of endoscopic access (Klimas
and Entcheva, 2014). Here, systemic delivery of viral particles
in the adult rat was employed through the lateral tail vein
to assess the in vivo specificity of AAVs 1 and 9 (Figure 2).
Unfortunately, the UPenn core does not offer AAV6 with ChR2,
hence that serotype was not tested in vivo here. Four weeks after
viral injection, excised hearts, brains, livers, and kidneys were
assessed macroscopically for mCherry fluorescence (Figure 2A).
AAV9-mediated infection resulted in global ventricular mCherry
expression, while AAV1-mediated infection resulted in no
cardiac transgene expression (with fluorescence comparable to
sham viral injections) at a dose of 0.5 x 102 viral particles
per rat (equivalent to about 2.14 x 10'2 vp/kg). Other excised
organs (brain, liver, and kidney) showed little to no signs of
AAV-mediated infection in all animals.

In rats infected with AAV9, mCherry expression in
cardiomyocytes was robust and, not only expressed from
apex to base as was observed with the macroscopic fluorescent
imaging, but also expressed from the epicardium to the
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FIGURE 1 | In vitro AAV6-mediated transgene expression is superior to the use of AAV1 and AAVS in rat and human cardiomyocytes. (A) Cardiomyocyte-specific
eGFP expression in NRVMs and hiPSC-CMs using AAV1, 6, and 9. AAV9-mediated expression did not exhibit levels of fluorescence above that of autofluorescence
in non-infected control cells. Cell nuclei were labeled with DAPI (blue, NRVMS only), AAV-infected cells expressed eGFP (green), and cardiomyocytes were labeled
with a-actinin (red); MOI 1000. (B,D) AAV1-mediated and (C,E) AAV6-mediated eGFP expression at four viral doses 5 days post-infection. hiPSC-CMs required viral
doses two orders of magnitude greater than NRVMs (MOI 10,000 versus MOI 100) to show threshold eGFP expression. All scale bars are 50 um and
color-enhanced images are shown. (F) Quantification of the dose-dependent increase in eGFP expression in NRVMs and hiPSC-CMs. AAV6-mediated eGFP
expression was significantly higher than AAV1-mediated expression at all viral doses. Data are presented as mean + SEM (n = 3-7 independent samples per group).
*Significance level at p < 0.05.
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FIGURE 2 | In vivo AAV9-mediated mCherry expression in the adult rat heart provides robust, predominantly cardiomyocyte-specific transgene delivery. (A) Systemic
delivery of 0.5 x 10'2 viral particles resulted in robust cardiac-specific expression of mCherry in 4 weeks using AAV9, but not AAV1 as measured using radiant
efficiency. Other major organs (including brain, liver, and kidney) showed little to no signs of AAV-mediated infection. Scale bars are 500 wm. (B) AAV9-mediated
transgene delivery resulted in transmural ChR2-mCherry expression in both the LV and RV free walls. Scale bars are 250 pm. (C) High-resolution images (brightfield
and fluorescence) show cardiomyocyte-specific ChR2-mCherry expression using AAV9-mediated delivery. Scale bars are 50 pm.
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endocardium in both the left ventricular and right ventricular
free walls (Figure 2B). Higher resolution microscopic imaging
of AAV9-infected and sham hearts confirmed that observed
fluorescence was not due to tissue auto-fluorescence and was
localized to myocytes (Figure 2C).

AAV Serotype Infection Is Mediated by
Different Receptors on the
Cardiomyocyte Surface

Previous studies have shown that infection by different AAV
serotypes is mediated by a variety of cell surface receptors
(for review, see Vance et al, 2015). Specifically, cell surface
N-linked sialic acid has been proposed as the primary receptor
for AAV1 and AAV6 to infect and transduce cells (Wu et al.,
2006). There are at least two mechanisms of AAV9-mediated
cell infection/transduction involving two different receptors:
terminal galactose on cell surface glycoproteins (Shen et al., 2011)
(that can be made available for AAV9 entry upon desialylation)
and the 37/67 kDa LamR (Akache et al, 2006). Figure 3
provides a visual overview of the mechanisms of infectivity of
cardiomyocytes we investigated in this study.

In order to probe the mechanisms of our differential
observations of AAV serotype specificity in vitro (Figure 1) and
in vivo (Figure 2), we explored the roles of both sialic acid and
LamR in AAV-mediated transgene expression in cardiomyocytes.
As indicated in Figure 3A by the arrow, we hypothesized that
the removal of sialic acid by NM would block AAV1- and AAV6-
mediated infection of cells. On the other hand, the same removal
of sialic acid would also free up terminal galactose on the cell
surface thus enhancing AAV9-mediated infection (Figure 3B,
left panel). Similarly, AAV9 infection would be enhanced by the
presence of LamR on the cell surface (Figure 3B, right panel).

In vitro Desialylation Modulates

AAV-Mediated Gene Expression

Treatment of both NRVMs and hiPSC-CMs with NM, a
broad spectrum sialidase, to remove cell surface sialic acid
significantly reduced eGFP expression via AAV1 and AAV6
(Figure 4). In NRVMs, AAV1-mediated eGFP expression was
completely abolished by 25 mU/mL NM, whereas AAV6-
mediated expression was reduced to the point where only a
few individual cells were eGFP-positive (Figures 4A,B). AAV9-
mediated eGFP expression was unaffected in NRVMs as we did
not observe the purported enhanced entry of AAV9 (Figure 3B)
even at higher NM doses.

The same dose of NM in hiPSC-CMs never completely
eliminated transgene expression, but AAV1 and AAV6-mediated
infection was significantly reduced (Figures 4C,D), similar to
the effect observed in NRVMs and in line with the predictions
from Figure 3A. Interestingly, the application of NM to hiPSC-
CMs in combination with AAVY infection significantly increased
transgene expression (Figures 4C,D). The additional application
of 20x our standard NM dose (500 mU/mL), resulted in a
further increase in AAV9-mediated gene expression, beyond
that of AAV1-mediated expression without NM (Figure 4D),
presumably by exposing terminal cell surface galactose for
infection by AAVY, as illustrated in Figure 3B, and in contrast
to our findings in NRVM.

Expression of the 37/67 kDa Laminin
Receptor (LamR) in the Intact Heart:
Adult and Neonatal Rat Hearts and Adult

Human Hearts
The observed discrepancies in AAV serotype-mediated transgene
expression in vitro (where AAV6 was most efficient) and in vivo
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FIGURE 3 | Proposed mechanisms of infectivity for AAV1, 6, and 9. (A) Cell surface N-linked sialic acid has been proposed as the primary receptor for AAV1 and 6
to infect and transduce cells. The removal of sialic acid by neuraminidase (targeting the portion of the glycoprotein indicated by the arrow) is expected to block the
AAV1,6-mediated transduction of cells. (B) AAV9-mediated cell infection/transduction has been attributed to two receptors: terminal galactose on cell surface
glycoproteins (left panel) and the 37/67 kDa laminin receptor (LamR) (right panel).
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FIGURE 4 | In vitro desialylation modulates AAV-mediated eGFP expression in NRVMs and hiPSC-CMs. Cardiomyocyte-specific eGFP expression with (+NM,

25 mU/mL) and without (—NM) neuraminidase treatment prior to viral infection in (A) NRVMs at MOI 2000 and (C) hiPSC-CMs at MOI 30,000. Cell nuclei were
labeled with DAPI (blue, NRVMs only) and AAV-infected cells expressed eGFP (green). All scale bars are 50 pm and color-enhanced images are shown.
Quantification of eGFP expression with and without desialylation in all three serotypes in (B) NRVMs and (D) hiPSC-CMs. eGFP expression mediated by AAV1 and 6
significantly decreased in both cell types, whereas transgene expression mediated by AAV9 significantly increased in hiPS-CMs only. Application of a higher dose of
NM (500 mU/mL) in hiPSC-CMs infected with AAV9 resulted in even greater eGFP expression. Data are presented as mean 4+ SEM (n = 3-7 independent samples
per group). *Significance level at p < 0.05.

(where AAV9 was most efficient) were further elucidated by data show that LamR is not present in vitro in monolayers of

investigating the presence of LamR which is purported to be
a cell surface receptor for AAVY, as previously discussed. Our

NRVMs, nor in hiPSC-CMs (Figure 5A and Supplementary
Figure S2A), but appears to be globally present in vivo in both
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the adult and neonatal rat heart (Figure 5B and Supplementary
Figure S3B). Wild-type HeLa cells served as our in vitro
positive control (Figure 5A) and tissue sections of breast
carcinoma served as our in vivo positive control (Figure 5B and
Supplementary Figure S3A). Experimental samples without the
primary antibody showed that in vivo the secondary antibody did
not yield any non-specific staining (Figure 5C).

These observations were extended to the adult human heart.
Western blots of LamR protein in samples of fresh human
hearts versus hiPS-CMs corroborated the difference in LamR
expression between the intact heart and cardiomyocytes in
culture (Figure 6).

Given our LamR expression data in NRVMs, hiPSC-CMs, rat
and human hearts, it is important to note that the expression of
LamR is dynamic and significantly affected by the tissue/culture
environment. Specifically, we have observed the paucity of
LamR expression in the in vitro environment with isolated
cells (Figure 5A and Supplementary Figure S2) compared
to its robust presence in intact tissues (Figures 5B, 6 and
Supplementary Figure S3).

TGF-p1 Treatment Does Not Significantly
Affect AAV9-Mediated Gene Expression

Since the presence of LamR was not detected in vitro in
NRVMs and hiPSC-CMs, we followed up on an earlier report

Y NRVMs hiPSC-CMs

Hela (in vitro control)

B

Breast Carcinoma
(invivo control)

FIGURE 5 | The 37/67 kDa LamR is expressed in the rat heart, but not in
cultured NRVMs and hiPSC-CMs. (A) Negative in vitro immunostains of
NRVMs and hiPSC-CMs for LamR. Concurrent immunostaining of Hela cells,
serving as a positive in vitro control for LamR. Scale bars are 50 um.

(B) Positive immunostains of adult and neonatal rat hearts. Concurrent
immunostaining of breast carcinoma tissue, serving as a positive in vivo
control for LamR. (C) Negative controls of tissue (stained with no primary
LamR antibody) showed no contribution to the positive stain by non-specific
secondary antibody staining. Scale bars in B,C are 3 mm.

Western Blots of LamR in
human hearts vs. human iPS-CMs

—=— 0

human  adult human

iPS-CMs heart ventricle

I S N S ™)
e W | omR

FIGURE 6 | The 37/67 kDa LamR is expressed in the intact human heart.
Western blots of LamR protein in fresh samples from male and female human
hearts and from cultured hiPS-CMs corroborate the difference in expression
(lack of LamR in the cultured myocytes and abundance in the intact human
heart). GAPDH was used as a loading control and for normalization purposes.

(Wenzel et al., 2010) and pre-treated the monolayers with TGF-
B1 (10 ng/mL for 24 h) in an attempt to increase LamR expression
and facilitate AAV infectivity. Our data, however, show that TGF-
B1 application does not significantly increase the expression of
LamR (Supplementary Figures S2A,B) and minimally increases
AAV9-mediated eGFP expression (Supplementary Figure S4).

Viral Delivery of Optogenetic Tools

The growing use of optogenetics in cardiac applications
motivated our search for optimized parameters for the optical
control of the heart under various experimental conditions. One
such application is the development of high-throughput all-
optical electrophysiology for drug screening and cardiotoxicity
testing (Dempsey et al., 2016; Klimas et al., 2016). The current
study revealed that the environment (i.e., in vitro versus in vivo)
is of great importance with regard to preferential serotype
specificity. Cultured cardiomyocytes tend to lose cell surface
receptors (LamR) critical to mediating in vivo AAV9 infection
(Figure 5), although those receptors are present to some degree
in situ in cultured explanted human cardiac tissue. Consequently,
the specific environment may require different means for
efficiently inscribing optical control.

AAV6-mediated transgene delivery resulted in acceptable
expression levels, similar to those of our previous studies using
AdV delivery (Ambrosi and Entcheva, 2014; Ambrosi et al.,
2015; Klimas et al., 2016). However, the required dose (MOI)
was orders of magnitude higher (Supplementary Figure S5),
and the time required for transgene expression with AAV is
not optimal for primary cells. Here AAV infection required 5
days for the cells to reach peak transgene expression, whereas
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FIGURE 7 | Robust in vitro and in vivo optogenetic control of the heart. (A) Adenoviral (AdV)-mediated ChR2-eYFP expression and functional measurements in
NRVMs (MOI 25) and hiPSC-CMs (MOI 250) 2 days post-infection. Functional measurements were acquired using voltage- (di-4-ANBDQBS) and calcium- (Rhod4)
sensitive dyes and example traces with optical pacing are shown. Cell nuclei were labeled with DAPI (blue) and AdV-infected cells expressed eYFP (green).
Alpha-actinin staining (red) showed the cardiospecificity of the ChR2-eYFP infection. (B) Strength-duration curves for AAV9-mediated ChR2 expression in
hiPSC-CMs. Conditions for infection included MOls of 50,000-100,000 and NM applications of 500 mU/mL. Black arrows show the effect of NM treatment on
lowering irradiance (mW/mm?) requirements; shown are voltage and calcium traces for the case of using MOI 50,000 without and with NM treatment. Data are
presented as mean + SEM (n = 3 per group). (C) AAV9-mediated ChR2-mCherry expression in the intact adult rat heart after 4 weeks results in optically sensitive
myocardium in situ (left panel). A 0.8 mm diameter optical fiber was used to optically control electrical activity from the LV free wall as recorded using ECG (middle
panel). Optical pacing resulted in an increased heart rate, as well as significant morphological changes in the QRS complex (right panel); the irradiance needed for
this point stimulation was substantially higher than in vitro. Spatial scale bars are 50 wm in B,C. Temporal scale bars are as indicated.
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in our previous studies >95% of NRVMs and hiPSC-CMs
expressed ChR2 within 24-48 h using an AdV (Figure 7A;
Ambrosi et al., 2015; Klimas et al., 2016). In vitro optical control
was confirmed using all-optical electrophysiology (combining
optical mapping by voltage- and calcium-sensitive dyes with
simultaneous optogenetic stimulation; Klimas et al., 2016).
Although in vitro AAV9-mediated transgene delivery was
deemed less optimal than AAV1,6-mediated delivery (Figure 1),
successful expression of ChR2-mCherry using AAV9 was
achieved under very specific conditions, as hypothesized and
explored in this study (Figure 7B). A pre-treatment of hiPSC-
CM monolayers with 500 mU/mL NM (20x the dose required
to cause desialylation, Figure 4), followed by AAV9 infection
at very high MOIs of 50,000-100,000 (5-10x the minimum
dose for baseline transgene expression, Figure 1) resulted in
optogenetic responsiveness. In all four cases (MOI 50,000 £ NM
and MOI 100,000 £ NM), ChR2-mCherry was expressed
resulting in an optically sensitive cardiac syncytium. However,
at the lower concentration of MOI 50,000 only (no NM) and
relevant low-light stimulation, only one out of three samples was
optically excitable, and it only responded to long light pulses.
As illustrated in Figure 7B, the strength-duration relationship
showed the effect of NM treatment on improving optical

responsiveness as compared to infection alone (black arrows).
The strength-duration curve with NM treatment is similar to
what we have reported previously with AdV in NRVM (for
example, Yu etal., 2015). Despite successful transgene expression,
infection at such high MOIs resulted in significant cell death
(data not shown).

Extending this to the whole animal, here we show systemic
delivery and successful expression of ChR2-mCherry in the adult
rat heart 4 weeks after viral injection using AAV9 with a generic
promoter (Figure 7C). Optical sensitivity was confirmed by rate
and QRS morphology changes in the ECG, when using an optical
fiber to deliver light to the left ventricle in the open chest of the
anesthetized rat.

DISCUSSION

We investigated in vitro and in vivo AAV serotype specificity
in rat and human models suitable as scalable experimental
platforms for cardiac optogenetics. Different optimal serotypes
were identified for in vivo and in vitro use. Namely, in vitro
AAV6-mediated transgene expression was superior to AAV1,9-
mediated delivery due to the presence of cell surface N-linked
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sialic acid (Figures 1, 4). The subsequent enzymatic removal
of sialic acid significantly reduced or abolished AAV6- and
AAV1-mediated gene delivery, independent of cell type. AAV1
and AAV6 are 99% homologous and belong to the same
branch of the phylogenetic tree; the N-linked sialic acid
receptor has been suggested as the primary receptor for both
of these serotypes (as also corroborated by our data), yet
it is recognized that the AAV viral entry is more complex
(Vance et al., 2005). For example, the secondary receptor for
AAV6 is reported to be the epidermal growth factor receptor
(EGFR), while for AAV1 the secondary receptor remains
unknown. These differences can explain the quantitatively
different performance of the two serotypes in our cells despite
qualitatively similar response.

AAVY9, on the other hand, belongs to a separate branch on
the phylogenetic tree and shares 82% homology with AAV1, 6
and with the most widely used in clinical trials AAV2(Vance
et al., 2005). Interestingly, the same desialylation process that
suppressed AAV6 and AAV1 entry enhanced AAV9-mediated
expression but only in hiPSC-CMs (Figure 4). In contrast,
in vivo serotype specificity in the adult rat favored delivery by
AAV9Y, likely mediated by the presence of cell surface LamR
(Figures 2, 5). The latter appears ubiquitous in the intact heart
but could not be found in cultured cardiomyocytes (absence
confirmed in primary neonatal rat myocytes and in human iPS-
CMs). An argument against cardiomyocyte maturity being the
central driver for LamR expression or its loss is presented by the
observation that the intact neonatal rat heart, with presumably
less mature cells, has just as strong expression of LamR as the
adult rat heart (Figure 5B). In this study, fibronectin-coated
dishes were used only. The composition of the extracellular
matrix may affect viral uptake - for example, for cancer cells
expressing LamR (e.g., HeLa), addition of laminin decreased the
expression of the receptor and the viral uptake (Akache et al,
2006). Other culture-related conditions, including proper mass
transport, oxygenation, proper fuel/nutrients in the medium,
may influence the LamR expression.

The emergence of human stem-cell derived cardiomyocytes
and their combination with genetically encoded sensors and
actuators (Leyton-Mange et al., 2014; Zhuge et al., 2014; Dempsey
et al,, 2016; Klimas et al., 2016) has prompted a closer look
at the performance of various viral vectors, including AAVs
(Rapti et al., 2015) due to the convenience of sharing the usage
of such vectors for both in vivo and in vitro applications.
The results presented here, showing preferential infectivity of
cardiomyocytes in vitro (AAV6 > AAV1 >> AAV9), are
consistent with a recent report in human stem-cell derived
cardiomyocytes (Rapti et al., 2015). Interestingly, we find that
the ease of viral infection in the in vitro environment seems
to be dependent on two major factors: the viral vector itself
(AAV, AdV, or lentivirus) and the state of differentiation of
the target cell (Supplementary Figure S5). In our experience,
primary cardiomyocytes are the easiest to infect (i.e., requiring
the lowest viral doses for >80% cell transgene expression)
using AdV (Ambrosi and Entcheva, 2014; Ambrosi et al., 2015)
and AAV (explored in this study). iPSC-CMs require 10-100x
increased viral doses compared to primary cardiomyocytes for

the same efficiency of expression, and the presumably least
differentiated cells, cardiac fibroblasts, require the highest viral
doses (Yu and Entcheva, 2016), although we have not tested
AAV:s on the latter cell type (Supplementary Figure S5). Similar
observations have been reported for pluripotent stem cells
before and after differentiation into cardiomyocytes (Rapti et al.,
2015). While AAV delivery appears sub-optimal for in vitro use
(compared to LV or AdV application), our dissection of the
mechanism of viral entry suggests some strategies to improve
infectivity with select AAVs, e.g., desialylation enhances AAV9-
mediated entry, while sialic acid on the cardiomyocyte surface
promotes AAV6 entry.

Optogenetics in the intact organism requires the genetic
modification of cells and tissues, and hence it necessitates
the development of efficient, safe tools for gene therapy.
Methods for non-viral transfer of genetic material, including
electroporation, ballistic DNA transfer, and cationic lipid-based
gene transfer, are known to be less efficient and the persistence of
transgene expression is short-lived (Ramamoorth and Narvekar,
2015). Therefore, viral transfer of genetic material through
the use of AdVs, lentiviruses, and AAVs is desirable. AAVs
are preferred due to their comparatively low immunogenicity
(Zaiss et al.,, 2002). In vivo, AAV-mediated transgene delivery
has been used for cardiac optogenetics in rodent hearts
(Nussinovitch and Gepstein, 2015; Vogt et al., 2015; Nyns
et al., 2016). AAV9-mediated expression of ChR2 in the mouse
heart yielded highly efficient and cardiac-specific transduction
when applied by a minimally invasive systemic route (Vogt
et al, 2015); a recent report used a similar delivery but
with a very high dose of cardiac-specific viral vector in the
rat (Nyns et al, 2016). Direct cardiac injections of AAV9
encoding for the ChR2 transgene also resulted in optical
responsiveness of the rat heart (Nussinovitch and Gepstein,
2015). However, systemic delivery is preferred not only because
of its minimally invasive nature (and hence, suitability for
translation), but also because of better uniformity of expression
(Prasad et al., 2011; Vogt et al., 2015).

The purpose of this study was to provide practical information
to users of commercially available viral constructs as much
as possible to ensure easy reproducibility. Here, we used only
commercially available constructs for the tested AAV viruses,
obtainable through the UPenn Core, and we stayed consistent
when comparing the different serotypes. No commercial version
was available for AAV6 with ChR2 through the UPenn
Core; therefore, it was not included in the in vivo tests.
For the AdV studies in vitro, we have developed viral
vectors, and these are available to outside investigators upon
request. Different promoters were used for different portions
of this study, limited by the commercially available viral
vectors. All serotypes of AAV (1,6,9) used either CAG or
CB7 promoter, while the AdV constructs had the CMV
promoter. CMV, CAG, and CB7 are all strong ubiquitous
promoters that are commonly used. CAG/CB7 are considered
identical and interchangeable by the UPenn Core and there
is no literature to differentiate between the performance of
the two. CAG/CB7 is a synthetic promoter, a derivative of
CMYV with added transcribed sequence from chicken beta-actin
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gene and enhancer elements (Miyazaki et al., 1989). In most cases,
CAG/CBY is considered a stronger version of CMV.

The direct comparisons between AAV serotypes were
done using identical promoters to avoid influence by this
factor. For example, the revealed superior performance of
AAV6 in vitro compared to AAV1 and 9 is not impacted
by the promoter itself. Similarly, the superior performance
of AAV9 over AAV1 for in vivo optogenetics is not
influenced by the promoter itself, CAG/CB7. Considering
the more potent CAG/CB7, compared to the CMV used
with the AdV vectors in vitro, the dramatically better
performance of AdV delivery over AAV serotypes in vitro
also holds true.

AAV serotypes 1, 6, and 9 have shown different degrees of gene
transfer to the heart (Supplementary Table S1). The specificity
of cardiac transduction is dose-dependent. For example, AAV9
delivered systemically in mice at 10! MOI is rather cardiac-
specific without affecting other organs; however, at 102 MOI,
it also transduces liver, skeletal muscle, and pancreas (Inagaki
et al, 2006). Scaling of viral dose from mice to rats by
body weight ratio yields about 5-10 times higher amount of
virus needed for cardiac-specific transduction. Indeed, 10'2
MOI in rats showed heart-specific transduction with AAV9
(no expression in liver, kidney, brain, lung; Cataliotti et al,
2011). Our results are similar. In addition to the AAV tissue
tropism, the use of cardiac-specific promoters, such as cardiac
troponin T (cTnT), has been shown to further increase specificity;
however, the level of expression derived from tissue-restricted
promoters may not be as high as from ubiquitous viral promoters
(Prasad et al., 2011).

Of critical importance in the use of AAV serotypes
for optimized gene therapy applications is consideration
of the mechanism of infectivity. In this study, we not
only identified optimal serotypes for in vitro and in vivo
use, but also explored the mechanism of infection and
fundamental differences between experimental platforms.
Specifically, our results are consistent with AAV9 infection
being mediated by either terminal galactose (Figure 4,
only in hiPS-CMs) or LamR (Figure 5). Identification of
unique cell surface receptors in the heart and other organs
will continue to drive the design of truly optimized AAV
serotypes for cardiac electrophysiology applications, such as
optogenetics, and beyond.
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