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Shock waves from the inhomogeneous Boltzmann equation
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We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann
kinetic equation. In a paper by Pomeau [Y. Pomeau, Transp. Theory Stat. Phys. 16, 727 (1987)], a self-similarity
approach was proposed for infinite total cross section resulting from a power-law interaction, but this self-similar
form does not have finite energy. Motivated by the work of Pomeau [Y. Pomeau, Transp. Theory Stat. Phys. 16,
727 (1987)] and Bobylev and Cercignani [A. V. Bobylev and C. Cercignani, J. Stat. Phys. 106, 1039 (2002)],
we started the research on the rigorous study of the solutions of the spatial homogeneous Boltzmann equation,
focusing on those which do not have finite energy. However, infinite energy solutions do not have physical
meaning in the present framework of kinetic theory of gases with collisions conserving the total kinetic energy.
In the present work, we provide a correction to the self-similar form, so that the solutions are more physically
sound in the sense that the energy is no longer infinite and that the perturbation brought by the shock does not
grow at large distances of it on the cold side in the soft potential case.
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I. INTRODUCTION

As is well known, the inner structure of shock waves
in simple gases is given by the solution of the Boltzmann
kinetic equation with the appropriate boundary conditions
far from the shock on the cold and hot side, supposing a
plane shock. Therefore the study of the solution of Boltzmann
equations relevant for shocks makes a nontrivial example of
application of kinetic theory to realistic physical problems. In
particular, outside the neighborhood of Mach numbers slightly
larger than 1, perturbation methods are not directly applicable,
as when computing the transport coefficients, for instance.
Besides a difficult numerical approach of the solution of
the Boltzmann equation to this problem, research has been
directed over the years toward cases where results can be
obtained in some limits. In this work we shall be concerned
with the infinite-Mach-number limit. In this limit one looks
at solution of spatially inhomogeneous and time-independent
Boltzmann equation. This very large Mach number limit was
studied in 1969 by Grad [1] for hard spheres. We shall write
the Boltzmann equation as follows:

E10f(x, &) = O(f, f(x, &),
x € R, E = (&,&, &) e R, (1)

in which the collision operator takes the form

O(f. (&) = / /R | BE— 6L~ ffMod.

where the notations f, f, f,, and f’ designate respectively the

values f(x, &), f(x, &), f(x,&)), and f(x, &) given in terms
of £, &,, and o by the formulas

/_€+€* |E_§*|
e I T
/_E+E*_ |‘§_‘§*|

with o € S? being any arbitrary vector. The function f(x, v)
is the time-independent distribution function and depends
on space (variable x) and velocity (variable v). As it is a
probability distribution, it must be positive and finite.

The collision kernel B(¢ — &,, o) depends on the solution
of the two-body scattering problem and can be formulated as
follows:

B(¢§ —&,,0) =B(£ —&,,cos0) = b(cos0)|§ — &,

E_ E* >
cosh = (—>—), “)
<|€ — &
where the exponent
s—5
v = )
s—1

is related to s and (s > 2), which is minus the exponent for
the assumed law of algebraic decay of the two-body forces,
where b is a locally smooth function given by the solution of
the scattering problem with the two-body potential and where

(2) the average is taken over all possible directions.
Grad assumed that, for a shock wave at infinite Mach
number, the distribution of the gas has the following form:
*yves.pomeau@gmail.com
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where ¢ = (up, 0, 0) (a constant vector) is the average speed
of cold particles entering into the shock, ¢(x, &) is the pertur-
bation to the distribution function brought by the shock wave,
and §(§ — ¢) is a Dirac distribution of velocities keeping all
velocities equal to the one on the cold side of the shock wave.
The physical idea behind this decomposition of f is that cold
particles have a finite probability to approach the shock at any
large, finite distance x without collisions. These cold particles
are represented by distribution «(x)§(§ — c¢), where a(x) is
the number density at the distance x from the shock. This
function satisfies the boundary condition lim,_, _ @(x) =n
at the cold side with » number density of the cold gas. On
the hot side lim,_, ;o o¢(x) = 0. The function ¢ represents
the particles having one or more collisions and satisfies the
boundary condition lim,_, _o, ¢(x, £) = 0. The system for «
and ¢ reads very far from the shock on the cold side:

updyor = —n/ P& — cldé,
R3

109 = n[/w o & — Edlp(E) + 0(E) — p(§)]ldods,.

(7

Following Grad [1] for hard spheres B(§ — &,, o) has been
taken as equal to | — &,|. The second equation is linearized
because it applies to the cold side of the shock and far from
it where the dominant contribution to the velocity distribution
function is the § function of the cold particles. This allows us
to linearize the equation for the small part of the distribution
representing particles having made few collisions with the
cold ones at large distances from the shock on this cold side.
There the dominant contribution to the velocity distribution is
the one of the cold particles having no collision.

Let us note that the same strategy can also be applied
to the Boltzmann-Nordheim equation to obtain the system
describing the interaction between the thermal clouds and the
Bose-Einstein condensates in finite-temperature trapped Bose
gases [2].

In Ref. [3], the same problem for infinite total cross section
of a power-law interaction was studied by one of the authors.
In this case, one cannot use the same method as Grad did for
hard spheres since the gain and loss terms of the Boltzmann
collision operator would diverge separately proportional to
an infinite cross section. However, it is natural to expect a
continuous increase of the temperature on the cold side when
approaching the shock. As a result, an alternative approach
was proposed where the § distribution in (6) is replaced by
an approximated self-similar solution. The key idea is that
there is an asymptotic solution for x — —oo of (1) having the
following form:

f(x, &) = |xI"Glvlx|*sgn(x)], (8)

where v = & — ¢. Denoting v = (v, v2, v3), we then have
& = v; + up. However, the second-order moment of this so-
lution cannot exist [see discussion around Eq. (12) below].
Motivated by the interest in solutions of the type (8), Bobylev
and Cercignani started a research direction on the study of
the solutions of the space-homogeneous Boltzmann equation,
with a specific concern for those which do not have finite
energy [4,5]. Note that infinite-energy solutions do not have

physical meaning in the present framework of kinetic theory
of gases with collisions conserving the total kinetic energy,
which is why it makes sense, as done in this paper, to look
for a strategy of solution of the Boltzmann equation in shocks
where the velocity distribution has finite energy.

This made one problem for this approach by self-similar
solutions of the decay of the perturbed velocity distribution
on the cold side of the shock. As pointed out in Ref. [3], there
is also another problem with this idea of self-similar decay:
If the exponent s is smaller than 5, then the power of the
“decaying” solution on the cold side becomes positive so that
the solution so calculated does not decay but grows. Therefore
there is the need to improve this idea of self-similar solution
decaying on the cold side of the shock. Specifically, we look at
two problems. In Sec. II, we look at the case s > 5, where the
exponent of decay of the self-similar solution has the desired
sign and yields a decaying solution far from the shock. This
solution is consistent with the requirement of finite energy.
We explain how to deal with this problem by adding another
variable without breaking the self-similar structure of the
solution but by getting rid of the energy problem.

Section III is devoted to the case s < 5, where the exponent
of the self-similar solution has the (wrong) positive sign. In
this case we argue that the solution for the perturbation does
not decay smoothly to infinity but has compact support in this
direction and stops at finite distance from the shock.

In Sec. IV, we consider the case s =5 of Maxellian
molecules. The corresponding self-similar form is introduced
and the relation with the simplified spatial inhomogeneous
Boltzmann equation is also discussed.

The general goal of this work is to provide a correction
to the self-similar form (8), so that the solutions are more
physically sound in the sense that the energy is no longer
infinite and that if s < 5 the perturbation brought by the shock
does not grow at large distances on the cold side. We hope that
those changes of the self-similar solutions would lead to some
hints for the numerics of the shock waves coming from (1).

II. CASE 1:5 > 5

In the research for finite-energy self-similar solutions of (1)
as x — —oo, let us consider the following ansatz:

[0, &) = 1xP*F (vlx|*sgn(x), A8 In |x]), (C))

in which B is any real constant. Since the function F' depends
on the two quantities v|x|*sgn(x) and A In |x|, we then intro-
duce the new variables

v|x|xsgn(x) =w
and
ABIn|x| = p.
Inserting (9) into (1), we obtain
(uo + v)BAXPALF 4+ Alx|*Lsgn(x)vd, F
+ BAlx* 19, F ] = QIF, Fllx[*®77),

where the differentiation in w and the integration in the
collision operator Q[F, F'] are with respect to the variable
w = v|x|*sgn(x). Note that y is defined in (5).
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Rewriting the above equation in terms of w =

(wy, wy, wsz), we find
[uo + wilx| *sgn)IBAXIP ' F + Alx P wd, F
+ BAlxP*18,F] = QIF, Fllx[*G~7).
Note that for a fixed value of w, the term ug + w1 |x| *sgn(x)
tends to ug as x tends to —oo and A > 0. As a conse-

quence, one could neglect the second term in the sum uy +
wi|x|~*sgn(x) to have

up[BAX PP UF + Alx PP wd, F 4 Balx P19, F ]
= Q[F, F]|x[*®77.
Balancing powers of |x|, we arrive at
Ay = 1. (10)

To make sense for the solution, this value of A must be
positive: Otherwise, the self-similar solution increases far
from the shock. The condition A > 0 imposes s > 5.

We finally obtain the equation
up[3AF + Awd, F + BAd,F] = Q[F, F]. an

If we use the ansatz (8), then the following equation can be
derived:

uo[3AF + Awd, F] = Q[F, F]. (12)
Multiplying both sides of (12) with w?, and integrating with
respect to w, we find
/ SughF |lw|?dw + / upAwd, Fw’dw = 0, (13)
]R} ]R}

which, after integrating by parts the second term on the left-
hand side, implies

3
/ 3uohFlwlPdw — ) f ugAF 3y, wilw[*dw = 0. (14)
R i=1 YR

After rearranging the terms, the above equation can be written
as

—2f upAF|w)*dw = 0, (15)
R}

which leads to a contradiction. Notice that solutions of the
form (8) motivated the study of infinite-energy solutions [4,5].
However, thanks to the new variable p, we obtain

/ 3u0AF|w|2dw +/ uprwdy, Fw?dw
R3 R3

+/\uoﬁap/ Flw|*dw = 0,
RS
leading to
xuoﬁap/ Flw|*dw —2/ uAF |lwl?dw =0,  (16)
]RS R3

which is no longer a contradiction and guarantees the bound-
edness of the energy of the solutions.

Notice that the above computation holds true for any choice
of the constant 8, which plays the role of a scaling parameter
for the variable p.

III. CASE2:5 <5

Besides the difficulty due to the conservation of energy,
solved thanks to the introduction of the logarithmic variable
p, the case s < 5 remains problematic because the self-similar
stretching leads to a perturbation growing (instead of decay-
ing, as it should) far from the shock on the cold side. This
is to be changed to yield scaling laws in agreement with the
expected behavior of the solution. A first indication in the
direction of a possible solution comes from the observation
that if for x large and negative a solution decays like a
negative power of x and if this power becomes positive as
a parameter changes, then the positive exponent can be put
in the expansion of a solution tending to zero at a finite
value of x, called x* thereafter and taken negative. In other
words the perturbation decaying like (—x)~* with A positive
at x tends to minus infinity becomes a function equal to zero
for (—x) > (—x*) and behaving like |x — x,|* for x < x* and
|x — x| small. Because of the algebra giving the exponent A
(see below), this exponent, as a function of s, keeps the same
formal expression for s bigger or smaller than 5. In the limit
case s = 5 the exponent is formally infinite and the solution
decays exponentially (instead of algebraically) as (—x) tends
to infinity (see Sec. IV). This makes a transition from an
algebraic decay for s > 5 to a solution becoming exactly zero
for (—x) > (—x%).

Let us consider the following ansatz:

fx, &) = |x— x| F (v]x — x,*sgn(x— x,), A8 In |x— x,|),

A7)
in which B is again any real constant and x, is a fixed vector.
We again denote

vjx — x*|Asgn(x —Xy) =W
and
ABIn|x — x.| = p.
Plugging (17) into (1), we obtain also
(o + v)BAX — x P2 7UF + Alx — x| ¥ Lsgn(x — x,)vd, F
+ Brlx — x| 19, F] = OIF, Fllx — x, /"7,

where y is defined in (5). In terms of w, the equation can be
rewritten as

[uo + wilx — x| *sgn(x — x)B3Ax — x| P F
+ Al — PP wd, F 4 BAlx — x P19, F]
= QIF, Fllx — x,| 77,
Now the term uy + wy|x — x| “*sgn(x — x,) tends to ug as x
tends to x, and A < 0. As a consequence, we have
up[3Alx — x| 71F 4+ Ax — x| 'wd, F
+ Brlx — x| 79,F] = QIF, Fllx — x,|"C77.

Balancing power of |x — x,|, we obtain

1
A=—<0. (18)
14
We finally have the equation
up[3AF + Awd,F + AB0,F] = Q[F, F]. (19)
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Again, thanks to the new variable p, the boundedness of the
energy density of the solutions is guaranteed.

IV. CASE3:5s =5
For Maxwell molecules, we could use the ansatz
fx, &) = &MF (v, Bax) (20)
and define
w=ve™, p=Bix.
The same argument as above also leads to the same equation,
A(uo + v1)[3F + wd,F + B3,F] = Q[F, F1, (2D
which then leads to

Ao + wie ™)BF 4+ wd, F + Bd,F1 = Q[F, F].  (22)

Ax Ax

Dropping wie™" in the factor uy + wie™

at

, we finally arrive

Aug[3F + wd,F + Bd,F] = Q[F, F]. (23)

Notice that in this case A does not have an explicit value, as
given in Eq. (18). On the other hand, Eq. (23) looks similar
to an eigenvalue problem. However, different from classical
eigenvalue problems, the right-hand side of (23) is nonlinear
and the left-hand side of (23) involves a transport process.
This nonlinear eigenvalue problem could result in multiple
values of A as nonlinear eigenvalues or there could be no
nonlinear eigenvalue at all.

In the next step, we will start from a completely different
equation and then introduce a self-similar form for the solu-
tion of this equation, and derive (23) in this new context. Let
us consider a function K(¢, t, ¥), being the solution of the
Boltzmann equation,

&K + 0. K = Q[K, K]. (24)

In the above equation ¢ € [0, 00) is the time variable, T €
(—o00, 00) is the space variable, and ¥ € R3 is the velocity
variable. Suppose that K takes the self-similar form

K(t,t,9) =" H(Brugt, 9e™™), (25)
and denote

W = 9™, p = Prugt. (26)

Plugging this anszart into (24), we arrive at
"M 3ughH + "M ugh 995 H + Bughe™ " 95 H
= ™M Q[H, H], (27)
leading to
Aup[3H +w - 05H + Bo;H] = Q[H, H], (28)

which has exactly the same formulation as Eq. (23), where w
and p play the roles of w and p. As a result, starting from
an unrelated equation (24), by a self-similar argument, we can
still obtain (28). Thus, to study (23), one possibility is to study
the two-time spatial homogeneous Boltzmann equation for
Maxwell molecules (24) instead. In (24), the first time variable
t belongs to R and the second time variable t belongs to R.

The operator d,K + 9. K is a transport operator, with 7 be-
ing the one-dimensional spatial variable. As a result, Eq. (24)
is a simplified spatial inhomogeneous Boltzmann equation,
in which the coefficient associated to the term 0.K in the
transport operator is one.

In any case, to be physically sound, one could look for
solutions of (24) with finite energy.

V. SUMMARY AND CONCLUSION

Besides the (unrealistic) case of hard spheres, the way the
velocity distribution behaves on the cold side of shocks at
infinite Mach number was unknown for realistic potential with
an infinite total cross section. This was for two reasons. For
hard potentials (s > 5) the equation for the self-similar decay
was unable to satisfy the conservation of energy. For soft
potentials (s < 5) the self-similar solution does not even decay
far from the shock. This paper introduces three new ansatz
permitting to circumvent both difficulties. First the energy
problem is eliminated thanks to the introduction of another
logarithmic variable in the similarity assumption. Then, in
the case of soft potentials, it is shown that the perturbation
brought by the shock on the cold side stops exactly at a
finite distance from the shock. Indeed our derivation is not
supported by detailed mathematical stimulates, but it yields
at least a coherent schema for the solution of an interesting
problem in kinetic theory.
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