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After the pioneering work of Garrett and Munk, the statistics of oceanic internal gravity

waves has become a central subject of research in oceanography. The time evolution of
the spectral energy of internal waves in the ocean can be described by a near-resonance

wave turbulence equation, of quantum Boltzmann type. In this work, we provide the

first rigorous mathematical study for the equation by showing the global existence and
uniqueness of strong solutions.
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1. Introduction

The study of wave turbulence has obtained spectacular success in the understanding

of spectral energy transfer processes in plasmas, oceans and planetary atmospheres.

Wave–wave interactions in continuously stratified fluids have been a fascinating

∗Corresponding author.
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subject of intensive research in the last few decades. In particular, the observation

of a nearly universal internal-wave energy spectrum in the ocean, first described

by Garrett and Munk (cf. Refs. 22, 23 and 11), plays a very important role in

understanding such wave–wave interactions. The existence of a universal spectrum

is generally perceived to be the result of nonlinear interactions of waves with dif-

ferent wavenumbers. As the nonlinearity of the underlying primitive equations is

quadratic, waves interact in triads (cf. Ref. 64). Furthermore, since the linear inter-

nal wave dispersion relation can satisfy a three-wave resonance condition, resonant

triads are expected to dominate the dynamics for weak nonlinearity (cf. Ref. 43).

Resonant wave interactions can be characterized by Zakharov kinetic equations

(cf. Refs. 71, 46, 42, 10, 69 and 68). The equations describe, under the assumption

of weak nonlinearity, the spectral energy transfer on the resonant manifold, which

is a set of wave vectors k, k1, k2 satisfying

k = k1 + k2, ωk = ωk1 + ωk2 , (1.1)

where the frequency ω is given by the dispersion relation between the wave fre-

quency ω and the wave number k. However, it is known that exact resonances

defined by ωk = ωk1 + ωk2 do not capture some important physical effects, such as

energy transfer to non-propagating wave modes with zero frequency, corresponding

to generation of anisotropic coherent structures,3,4,7,15,16,25,33–35,41,51,65,66 see also

Refs. 18 and 44 for analytical arguments on reduced isotropic models. Some authors

have included more physics by allowing near-resonant interactions (cf. Refs. 13, 32,

39, 36, 40, 37, 38, 47, 58, 53 and 54), defined as

k = k1 + k2, |ωk − ωk1 − ωk2 | < θ(f, k), (1.2)

where θ accounts for broadening of the resonant surfaces and depends on the wave

density f and the wave number k. When near resonances are included in the dynam-

ics, numerical studies have demonstrated the formation of the anisotropic, non-

propagating wave modes in dispersive wave systems relevant to geophysical flows

(cf. Refs. 12, 27, 32, 55, 57, 58, 59 and 60).

We consider in this paper the following near-resonance turbulence kinetic equa-

tion for internal wave interactions in the open ocean (cf. Refs. 13, 36, 40, 37 and 39),

∂tf(t, k) + µkf(t, k) = Q[f ](t, k), f(0, k) = f0(k), (1.3)

in which f(t, k) is the nonnegative wave density at wave number k ∈ Rd, d ≥ 2.

As proposed by Zakharov in Ref. 69 water wave models must include the term

µkf = 2ν|k|2f for viscous damping effects, with ν the viscosity coefficient.

This model equation consist in a kinetic three-wave interaction modeled by an

interaction (or collision) operator given by the nonlocal form

Q[f ](k) =

∫∫
R2d

[
Rk,k1,k2 [f ]−Rk1,k,k2 [f ]−Rk2,k,k1 [f ]

]
dk1dk2, (1.4)
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with

Rk,k1,k2 [f ] := |Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)(f1f2 − ff1 − ff2),

(1.5)

with the short-hand notation f = f(t, k) and fj = f(t, kj). The singular measure

given by the Dirac delta function δ(·) ensures that interactions are between triads

with

k = k1 + k2. (1.6)

The transition probability factor or collision kernel Vk,k1,k2 under consideration

is of the form (cf. Refs. 37, 13, 40, 39 and 36)

Vk,k1,k2 = C(|k||k1||k2|)
1
2 , (1.7)

with C is some physical constant.

Next, we consider the dispersion law

ωk =

√
F 2 +

g2

ρ2
0N

2

|k|2
m2

, (1.8)

where F is the Coriolis parameter, N is the (Brunt–Vaisala) buoyancy frequency, In

addition, the parameter m is the reference vertical wave number determined from

observations, g is the gravitational constant, ρ0 is the reference value for density,

or equivalently

ωk =
√
λ1 + λ2|k|2, for λ1 = F 2, and λ2 =

1

m2

(
g

ρ0N

)2

=
1

k2
z

, (1.9)

where kz Cartesian vertical wave number and m = kzg(ρ0N)
−1

. In the absence of

the Coriolis force, i.e. F = 0, the dispersion relation becomes

ωk =
|k|
m
≈ |k|
kz
. (1.10)

The operator Lf is defined as

Lf (ζ) =
Γk,k1,k2

ζ2 + Γ2
k,k1,k2

, (1.11)

with the condition that

lim
Γk,k1,k2→0

Lf (ζ) = πδ(ζ).

Thus, when Γk,k1,k2 tends to 0, (1.4) becomes the following exact resonance collision

operator (cf. Refs. 69, 68 and 26):

Qe[f ](k) = π

∫∫
R2d

[
R̃k,k1,k2 [f ]− R̃k1,k,k2 [f ]− R̃k2,k,k1 [f ]

]
dk1dk2, (1.12)
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with

R̃k,k1,k2 [f ] := |Vk,k1,k2 |2δ(k − k1 − k2)δ(ωk − ωk1 − ωk2)(f1f2 − ff1 − ff2).

Without loss of generality, one could ignore the constant π in the collision operator

Qe[f ] since it can be absorbed in the time variable.

Moreover, the resonance broadening frequency Γk,k1,k2 may be written

Γk,k1,k2 = γk + γk1 + γk2 , (1.13)

where γk is computed in Ref. 36 using a one-loop diagram approximation:

γk v c|k|2
∫
R+

|k|2|f(t, |k|)|d|k|,

and c is a physical constant, which can be normalized to be 1. Approximating the

integral ∫
R+

|k|2|f(t, |k|)|d|k| ≈
∫
R3

f(t, k)dk,

we obtain a formula for γk that will be used throughout the paper

γk = |k|2
∫
R3

f(t, k)dk. (1.14)

The above formulation of γk indicate the broadening resonance width θ defined

in (1.2). Note that the formulation of Γk,k1,k2 is given

Γk,k1,k2 = (|k|2 + |k1|2 + |k2|2)

∫
R3

f(t, k)dk. (1.15)

Observe that
√
nΓk,k1,k2 ≤ |ωk − ωk1 − ωk2 | ≤

√
n+ 1Γk,k1,k2 , n ∈ N,

then

1

(n+ 2)Γk,k1,k2
≤ Lf (ωk − ωk1 − ωk2) ≤ 1

(n+ 1)Γk,k1,k2
,

in other words, function Lf (ωk − ωk1 − ωk2) is mostly concentrated in the interval

where

|ωk − ωk1 − ωk2 | ≤ Γk,k1,k2 . (1.16)

In other words, the resonance width θ is proportional to Γk,k1,k2 , which depends on

f and k.

This fact will be used in the proof of Propositions 2.3, 2.1 and 3.1.

In the field of wave turbulence, the most commonly used asymptotical analysis

to derive the kinetic equation (1.3)–(1.6) is statistical closure of the infinite hierar-

chy of cumulants, in the weakly nonlinear and long-time limits (see, for example,

the review by Newell and Rumpf Ref. 48). Evolution of higher-order cumulants
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can be interpreted as a modification of the wave frequency, with real part corre-

sponding to a frequency shift and with imaginary part corresponding to resonance

broadening.

A Feynman-Dyson diagrammatic approach may also be used, adapted for tur-

bulence in fluids by Wyld,67 for more general classical systems by Martin et al.,56

and for Hamiltonian nonlinear wave fields by Zakharov and Lvov.70 In the context

of acoustic turbulence, Lvov et al.36 considered a one-loop approximation to the

resonance broadening, the form of which is the one to be adopted in our study.

It is noted that wave turbulence equation (1.3) shares a similar structure with

the quantum Boltzmann equation describing the evolution of the excitations in

thermal cloud Bose–Einstein condensate systems (cf. Refs. 21, 29, 30, 31, 45 and

72). Our recent progress on the classical Boltzmann equation (cf. Refs. 8, 19, 20

and 63) and the quantum Boltzmann equation (cf. Refs. 2, 14, 17, 24, 28, 50, 49,

62, 52 and 61) has shed some light on the open question of building a rigorous

mathematical study for (1.3). Different from the quantum Boltzmann cases (cf.

Refs. 62, 2 and 14), which could be considered as the exact resonance case (1.12)

with

ωk = ωk1 + ωk2 ,

the energy of solutions for the near-resonance kinetic equation (1.3) is not conserved.

The underlying shallow-water equations conserve a cubic energy, and the flow

restricted to exact resonances conserves the quadratic part of the total energy.66

However, conservation of the quadratic energy no longer holds when near resonant

three-wave interactions are included in the dynamics.

We also split Q as the sum of their positive and negative parts, referred to as a

gain and a loss operators, respectively,

Q[f ] = Qgain[f ]−Qloss[f ], (1.17)

as is done with the classical Boltzmann operator for binary elastic interactions.

Here, the gain operator is also defined by the positive contributions in the total

rate of change in time of the collisional form Q(f)(t, k)

Qgain[f ] =

∫∫
Rd×Rd

|Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)f1f2dk1dk2

+ 2

∫∫
Rd×Rd

|Vk1,k,k2 |2δ(k1 − k − k2)Lf (ωk1 − ωk − ωk2)

× (ff1 + f1f2)dk1dk2 (1.18)

and the loss operator models the negative contributions in the total rate of change

in time of the same collisional form Q(f)(t, k)

Qloss[f ] = fϑ[f ], (1.19)
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with ϑ[f ] being the collision frequency or attenuation coefficient, defined by

ϑ[f ](k) = 2

∫∫
Rd×Rd

|Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)f1dk1dk2

+ 2

∫∫
Rd×Rd

|Vk1,k,k2 |2δ(k1 − k − k2)Lf (ωk1 − ωk − ωk2)f2dk1dk2.

(1.20)

Inspired by recent work by Alonso and two of the authors of this paper2 on the

quantum Boltzmann equation for cold bosonic gases, whose equation can also be

derived by diagrammatic techniques, we present here the existence and uniqueness

solution to a Cauchy problem associated to the model (1.3)–(1.11)

The strategy consists in finding a suitable convex, positive cone, time invariant

subspace ST of the Banach space L1
N (Rd), for which the weak turbulence equation

has a unique strong solution, where this Banach space has norms defined by the

Nth moment as the expectation of the Nth-power of the dispersion relation, that

is for any given density g,

L1
N (Rd) :=

{
g ∈ L1(Rd), s.t. ‖g‖L1

N
:= MN [g] =

∫
Rd
ωNk g(k)dk <∞

}
, (1.21)

in which we recall the dispersion relation ωk =
√
λ1 + λ2|k|2 as defined in (1.9).

Notice that when g is positive, both Mn[g] and ‖g‖L1
n

are equivalent. Hence, the

construction of such invariant subspace ST depend on the control of higher order

moments defined as follows.

Our solution are global and unique in L1
N (Rd) to (1.3), that is the satisfy

∂tf(t, k) = Qgain[f ](t, k)− f(t, k)ϑ[f ](t, k)− 2ν|k|2f, f(0, k) = f0(k) ∈ ST .
(1.22)

A fundamental tool to accomplish our goal is to prove that there exists a differ-

ential equation of the following type, for the moments of the solution f of (1.22):

d

dt
MN [f ] ≤ C1MN+1[f ]− C2MN+2[f ],

for some positive constants C1, C2, which leads to

d

dt
MN [f ] ≤ C3MN [f ],

with C3 being a positive constant. The above inequality then yields an exponential

bound on the Nth moment of f

MN [f ] ≤ CeC
′T .

In order to do that, estimates on Qgain and Qloss are provided in Proposi-

tions 2.3 and 2.1. The proofs of these estimates are based on careful bounds of Lf
and Γk,k,k1 , that reduces to bounding the 0th moment of f , M0[f ](t), from below
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by e−(2νR2
0+4R0)t‖f0χR0

‖L1 , where χR0
is the characteristic function of the ball

B(O,R0) centered at the origin with radius R0 so that the quantity ‖f0χR0‖L1 > 0.

Finally, on any arbitrary fixed time interval [0, T ], we construct the solution of

(1.22) within a time-dependent invariant set ST , based on the exponential in time

upper bound of MN [f ] and the lower bound of M0[f ].

More specifically, we define first the following two constants, C∗ and C∗, for any

given any R0 by

C∗ :=
C0(λ1, λ2)

(
1 + e(4νR2

0+8R0)T
)

‖f0(k)χR0‖L1

, and C∗ := 4νR2
0 + 8R0. (1.23)

The specific value of R0 will be determined later to secure the conditions to obtain

a time invariant region.

Hence, for any number R∗ > 0, R∗ > 1, moment order N , and time t > 0, we

define the convex positive cone ST as a subset on L1
N given by

ST :=

{
f ∈ L1

N+3(Rd) : S1)f ≥ 0; S2)‖f‖L1
N+3
≤ c0(t) := (2R∗ + 1)eC∗t;

S3)‖f‖L1 ≥ c1(t) :=
R∗e−C

∗t

2

}
, (1.24)

where the c0(t) is an increasing function and c1(t) is a decreasing function, so

St ⊂ St′ for 0 ≤ t ≤ t′ ≤ T
Our main result is as follows.

Theorem 1.1. Let N > 0, and let f0(k) ∈ S0 ∩ B∗(O,R∗)\B∗(O,R∗) for some

R∗ > R∗ > 0, where B∗(O,R
∗), B∗(O,R∗) is the ball centered at O with radius

R∗, R∗ of L1
N+3(Rd).

Then the weak turbulence equation (1.3) has a unique strong solution f(t, k) so

that

0 ≤ f(t, k) ∈ C
(
[0, T );L1

N (Rd)
)
∩ C1

(
(0, T );L1

N (Rd)
)
. (1.25)

Moreover, f(t, k) ∈ ST for all t ∈ [0, T ).

Since T can be chosen arbitrarily large, the weak turbulence equation (1.3) has

a unique global solution for all time t > 0.

The proof of Theorem 1.1 relies on the following abstract Ordinary Differential

Equations theorem in Banach spaces, which provides a framework to developed the

existence and uniqueness theory to space homogeneous Boltzmann type equations

ranging from the classical Boltzmann equation for binary interaction, to nonlo-

cal kinetic model for rods alignment, to quantum kinetic theory of bosonic cold

gases.1,2,6,9

Applied to the initial value problem (1.3)–(1.16), the framework is given by

the following abstract existence and uniqueness theorem in Banach spaces along

the lines proposed by Bressan in the unpublished notes,9 whose application to the
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classical Boltzmann theory for hard potential and integrable angular cross section

has been recently completed in Ref. 1, as follows.

Let E := (E, ‖ · ‖) be a Banach space of real functions on Rd, (F, ‖ · ‖∗) be a

Banach subspace of E satisfying ‖u‖ ≤ ‖u‖∗ ∀u ∈ F . Denote by B(O, r), B∗(O, r)

the balls centered at O with radius r > 0 with respect to the norm ‖ · ‖ and ‖ · ‖∗.
Suppose that there exists a function | · |∗ from F to R such that

|u|∗ ≤ ‖u‖∗, ∀u ∈ F, |u+ v|∗ ≤ |u|∗ + |v|∗, ∀u, v ∈ F,

λ|u|∗ = |λu|∗, ∀u ∈ F, λ ∈ R+,

where C is some positive constant.

Theorem 1.2. Let [0, T ] be a time interval, and St, (t ∈ [0, T ]), be a class of

bounded and closed subset of F satisfying St ⊂ St′ for 0 ≤ t ≤ t′ and containing

only nonnegative functions and

|u|∗ = ‖u‖∗, ∀u ∈ ST .

Moreover, for any sequence {un} in ST ,

If un ≥ 0, ‖un‖∗ ≤ C, lim
n→∞

‖un − u‖ = 0, then lim
n→∞

‖un − u‖∗ = 0, (1.26)

Set R∗ > R∗ > 0 and suppose Q : ST → E is an operator satisfying the following

properties: There exist R0, C∗, C
∗ > 0 such that

(A) Hölder continuity condition

‖Q[u]−Q[v]‖ ≤ C‖u− v‖β , β ∈ (0, 1), ∀u, v ∈ ST .

(B) Sub-tangent condition

For an element u in ST , there exists ξu > 0 such that for 0 < ξ < ξu, there

exists z in B(u+ ξQ[u], δ) ∩ ST \{u+ ξQ[u]} for δ small enough. Moreover,

|z − u|∗ ≤
C∗ξ

2
‖u‖∗,

χR0

z − u
ξ
≥ −C

∗χR0

2
u,

(1.27)

where χR0 is the characteristic function of the ball BRd(0, R0) of Rd.

(C) One-side Lipschitz condition

[Q[u]−Q[v], u− v] ≤ C‖u− v‖, ∀u, v ∈ ST ,

where

[ϕ, φ] := lim
h→0−

h−1(‖φ+ hϕ‖ − ‖φ‖).

Moreover, ST ∩B
(
0, R

∗e−C
∗T

2

)
= ∅ and ST ⊂ B(0, (2R∗ + 1)eC∗T ).

Then the equation

∂tu = Q[u] on [0, T )× E, u(0) = u0 ∈ S0 ∩B∗(O,R∗)\B∗(O,R∗), (1.28)
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has a unique solution

u ∈ C1((0, T ), E) ∩ C([0, T ),ST ).

We end this introduction by giving the structure of the paper. In Sec. 2, we

provide an a priori estimate on the L1
N norm of the solution. The Hölder continuity

of the collision operator will be established in Sec. 3. The proof of Theorem 1.1 is

given in Sec. 4. The proof of Theorem 1.2 is given in Sec. 5.

Throughout the paper, we normally denote by C, C ′ universal constants that

may vary from line to line.

2. A Priori Estimate

In this section, we shall derive uniform estimates on the Nth moment of f .

2.1. Preliminaries

The following lemma represents the weak formulation for the collision operator.

Lemma 2.1. There holds∫
Rd
Q[f ](t, k)ϕ(k)dk =

∫∫∫
R3d

Rk,k1,k2 [f ][ϕ(k)− ϕ(k1)− ϕ(k2)]dkdk1dk2

for any test functions ϕ so that the integrals are well-defined.

Proof. By definition, the integral of the product of Q[f ] and ϕ is written∫
Rd
Q[f ](t, k)ϕ(k)dk =

∫∫∫
R3d

[Rk,k1,k2 −Rk1,k,k2 −Rk2,k,k1 ]ϕ(k)dkdk1dk2.

By employing the change of variables k ↔ k1, k ↔ k2 in the first integral on the

right, the lemma then follows.

In this paper, we also need the following Hölder-type inequality.

Lemma 2.2. For N > n > p, and g ≥ 0 there holds

Mn[g] ≤M
N−n
N−p
p [g]M

n−p
N−p
N [g], (2.1)

where g is such that all of the integrals are well-defined.

Proof. The lemma follows from the definition of Mn and the following Hölder

inequality: ∫
Rd
g(k)ωnkdk ≤

(∫
Rd
g(k)ωpkdk

)N−n
N−p

(∫
Rd
g(k)ωNk dk

)n−p
N−p

.
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2.2. Estimate of the collision operator

The main result of this subsection is the following estimate on the gain part of the

collision operator Q[g] as defined in (1.17) and (1.18).

Lemma 2.3. Let N ≥ 0. For any positive function g ∈ L1
N+1, there exists a

constant CC(λ1, λ2, N), depending on λ1, λ2, N, such that the following holds:∫
Rd
Qgain[g](k)ωNk dk ≤ C(λ1, λ2, N)MN+1[g]

M0[g]
. (2.2)

Remark 2.1. The proof below is based on the fact that the resonance broadening

width θ defined in (1.2) is chosen proportional to

(|k|2 + |k1|2 + |k2|2)

∫
R3

f(t, k)dk,

as discussed in the introduction.

Proof. By the same argument used to obtain the weak formulation proved in

Lemma 2.1, the following identity holds true:∫
Rd
Q[g](k)ωNk dk =

∫∫∫
R3d

R̃k,k1,k2 [g]
[
ωNk − ωNk1 − ω

N
k2

]
dkdk1dk2,

where

R̃k,k1,k2 [g] := |Vk,k1,k2 |2δ(k − k1 − k2)L(ωk − ωk1 − ωk2)(g1g2 + gg1 + gg2),

and the integration of the gain term in multiplying with the test function ωNk is

then∫
Rd
Qgain[g](k)ωNk dk

= C

∫∫∫
R3d

δ(k − k1 − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× g1g2ω
N
k dkdk1dk2

+C

∫∫∫
R3d

δ(k1 − k − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk1 − ωk − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× (gg1 + g1g2)ωNk dkdk1dk2,

which by the change of variable (k, k1) → (k1, k) in the second integral, whose

Jacobian is 1, could be expressed as∫
Rd
Qgain[g](k)ωNk dk

= C

∫∫∫
R3d

δ(k − k1 − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× g1g2ω
N
k dkdk1dk2
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+C

∫∫∫
R3d

δ(k − k1 − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× (gg1 + gg2)ωNk1dkdk1dk2.

By the symmetry of k1 and k2 in the second integral,∫
Rd
Qgain[g](k)ωNk dk

= C

∫∫∫
R3d

δ(k − k1 − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× g1g2ω
N
k dkdk1dk2

+C

∫∫∫
R3d

δ(k − k1 − k2)
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2

× gg1

[
ωNk1 + ωNk2

]
dkdk1dk2.

Let us now look at the fractional term in the above integral

K :=
M0[g](|k|2 + |k1|2 + |k2|2)|k||k1||k2|

(ωk − ωk1 − ωk2)2 + M0[g]2(|k|2 + |k1|2 + |k2|2)2
.

Since the denominator (ωk −ωk1 −ωk2)2 +M2
0(|k|2 + |k1|2 + |k2|2)2 is greater than

M0[g]2(|k|2 + |k1|2 + |k2|2)2, the whole fraction can be bounded as

K ≤ |k||k1||k2|
M0[g](|k|2 + |k1|2 + |k2|2)

,

which leads to the following:∫
Rd
Qgain[g](k)ωNk dk

≤ C
∫∫∫

R3d

δ(k − k1 − k2)
|k||k1||k2|

M0[g](|k|2 + |k1|2 + |k2|2)
g1g2ω

N
k dkdk1dk2

+C

∫∫∫
R3d

δ(k − k1 − k2)
|k||k1||k2|

M0[g](|k|2 + |k1|2 + |k2|2)

× gg1

[
ωNk1 + ωNk2

]
dkdk1dk2,

which can be rewritten in the following equivalent form, with the right-hand side

being the sum of I1 and I2:∫
Rd
Qgain[g](k)ωNk dk ≤ I1 + I2, (2.3)

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

TY
 O

F 
N

EW
 E

N
G

LA
N

D
 o

n 
01

/0
3/

20
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



2nd Reading

December 17, 2019 18:46 WSPC/103-M3AS 2050003

12 I. M. Gamba, L. M. Smith & M.-B. Tran

where

I1 := C

∫∫∫
R3d

δ(k − k1 − k2)
|k||k1||k2|

M0[g](|k|2 + |k1|2 + |k2|2)

× g1g2ω
N
k dkdk1dk2,

I2 := C

∫∫∫
R3d

δ(k − k1 − k2)
|k||k1||k2|

M0[g](|k|2 + |k1|2 + |k2|2)

× gg1

[
ωNk1 + ωNk2

]
dkdk1dk2.

(2.4)

Let us first estimate I1. By the resonant condition k = k1 + k2, we have

ωk =
√
λ1 + λ2|k|2 ≤

√
λ1 + λ2(|k1|+ |k2|)2

< 2
√
λ1 + λ2|k1|2 + 2

√
λ1 + λ2|k2|2 = 2ωk1 + 2ωk2 ,

which, thanks to the Cauchy–Schwarz inequality, leads to

ωNk ≤ C(λ1, λ2, N)
(
ωNk1 + ωNk2

)
,

where C(λ1, λ2, N) is some constant depending on λ1, λ2, N .

Thus, we obtain

I1 ≤ C(λ1, λ2, N)

∫∫∫
R3d

δ(k − k1 − k2)

× |k||k1||k2|
M0[g](|k|2 + |k1|2 + |k2|2)

g1g2

[
ωNk1 + ωNk2

]
dkdk1dk2.

Taking into account the definition of the Dirac function δ(k − k1 − k2) the above

integral on R3d can be reduced to an integral on R2d only

I1 ≤ C(λ1, λ2, N)

∫∫
R2d

|k1 + k2||k1||k2|
M0[g](|k|2 + |k1|2 + |k2|2)

g1g2

[
ωNk1 + ωNk2

]
dk1dk2.

Due to the inequality |k1 + k2|2 + |k1|2 + |k2|2 ≥ 2|k1||k2|, the kernel of the above

integral can be bounded as

|k1 + k2||k1||k2|
|k1 + k2|2 + |k1|2 + |k2|2

≤ |k1 + k2|
2

≤ |k1|+ |k2|
2

,

yielding

I1 ≤
C(λ1, λ2, N)

M0[g]

∫∫
R2d

(|k1|+ |k2|)g1g2

[
ωNk1 + ωNk2

]
dk1dk2.

Observing that

|k1| ≤
ωk1√
λ2

, |k2| ≤
ωk2√
λ2

,

we can bound

(|k1|+ |k2|)
[
ωNk1 + ωNk2

]
≤ C(ωk1 + ωk2)

[
ωNk1 + ωNk2

]
≤ C

[
ωN+1
k1

+ ωN+1
k2

]
,
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which yields the following estimate on I1 in terms of the functional defined in (1.21):

I1 ≤
C(λ1, λ2, N)

M0[g]

∫∫
R2d

g1g2

[
ωN+1
k1

+ ωN+1
k2

]
dk1dk2

≤ C

M0[g]
MN+1[g].

(2.5)

Let us now estimate I2. Using the resonant condition k2 = k − k1, we obtain the

following relation between ωk2 and ωk, ωk1 :

ωk2 =
√
λ1 + λ2|k2|2 <

√
λ1 + λ2(|k1|+ |k|)2

≤ 2
√
λ1 + λ2|k|2 + 2

√
λ1 + λ2|k1|2 = 2ωk + 2ωk1 ,

which, by the Cauchy–Schwarz inequality, leads to

ωNk2 ≤ C(λ1, λ2, N)
(
ωNk + ωNk1

)
,

where C is some universal positive constant.

Thus, we obtain

I2 ≤ C(λ1, λ2, N)

∫∫∫
R3d

δ(k − k1 − k2)
|k||k1||k2|

M0[g](|k|2 + |k1|2 + |k2|2)

× gg1

[
ωNk + ωNk1

]
dkdk1dk2.

By the definition of the Dirac function δ(k − k1 − k2), we can reduce the above

triple integral into an integral on R2d only

I2 ≤ C(λ1, λ2, N)

∫∫
R2d

|k||k1||k − k1|
M0[g](|k|2 + |k1|2 + |k2|2)

gg1

[
ωNk + ωNk1

]
dkdk1.

It is straightforward from Cauchy–Schwarz inequality that |k|2 + |k1|2 + |k−k1|2 ≥
2|k1||k|, yielding the following estimate on the kernel of the above integral:

|k||k1||k − k1|
|k|2 + |k1|2 + |k − k1|2

≤ |k − k1|
2

≤ |k|+ |k1|
2

,

which implies the following bound on I2

I2 ≤
C(λ1, λ2, N)

M0[g]

∫∫
R2d

(|k|+ |k1|)gg1

[
ωNk + ωNk1

]
dkdk1.

The same argument used to estimate I1 can now be applied again, that leads

to a similar bound on I2

I2 ≤
C(λ1, λ2, N)

M0[g]

∫∫
R2d

gg1

[
ωN+1
k + ωN+1

k1

]
dkdk1

≤ C(λ1, λ2, N)

M0[g]
MN+1[g].

(2.6)

Combining (2.3)–(2.6), we get (2.2) so the conclusion of Lemma 2.3 follows.
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2.3. Lower bound of the solution (the choice of R0)

Proposition 2.1. For any initial data f0 ≥ 0 and f0 ∈ L1(R3). Suppose that

f ∈ L1(Rd) is a positive, strong solution of (1.3), then

Q[f ] = Qgain[f ]−Qloss[f ] ≥ −Qloss[f ] ≥ −4|k|f, (2.7)

pointwise in k and f satisfies the following lower bound:

f(t, k) ≥ f0(k)e−(2ν|k|2+4|k|)t, (2.8)

which implies

‖f(t, k)χR0
‖L1 ≥ M̃0(t) := e−(2νR2

0+4R0)t‖f0(k)χR0
‖L1 , (2.9)

where χR0 is the characteristic function of the ball BRd(O,R0) in Rd, R0 is any

positive constant.

Proof. Let us first recall the formulation of Q[f ]

Q[f ] =

∫∫
Rd×Rd

|Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)(f1f2 − 2ff1)dk1dk2

+ 2

∫∫
Rd×Rd

|Vk1,k,k2 |2δ(k1 − k − k2)Lf (ωk1 − ωk − ωk2)

× (−ff2 + ff1 + f1f2)dk1dk2.

and in order to get (2.8), we will work with

Q[f ] = Qgain[f ]−Qloss[f ],

where the formulation of Qloss[f ]

−Qloss[f ] = −2f

∫
Rd×Rd

|Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)f1dk1dk2

− 2f

∫
Rd×Rd

|Vk1,k,k2 |2δ(k1 − k − k2)Lf (ωk1 − ωk − ωk2)f2dk1dk2

=: −I1 − I2. (2.10)

In order to get the lower bound (2.7), we discard the gain operator defined in

(1.18) and estimate from below the loss part.

Let us estimate the double integral I1, which can be reduced to an integral on

Rd by taking into account the definition of δ(k − k1 − k2) as follows:

I1 := 2f

∫
Rd
|Vk,k1,k−k1 |2Lf (ωk − ωk1 − ωk−k1)f1dk1.

By the definition of Vk,k1,k−k1 , Lf (ωk − ωk1 − ωk−k1), Γk,k1,k2 , and the inequality

(ωk − ωk1 − ωk−k1)2 + Γ2
k,k1,k−k1 ≥ Γ2

k,k1,k−k1 ,
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we obtain the following inequality on the kernel of I1:

|Vk,k1,k−k1 |2Lf (ωk − ωk1 − ωk−k1) =
|k||k1||k − k1|Γk,k1,k−k1

(ωk − ωk1 − ωk−k1)2 + Γ2
k,k1,k−k1

≤ |k||k1||k − k1|
Γk,k1,k−k1

≤ |k||k1||k − k1|
M0[f ](|k|2 + |k1|2 + |k − k1|2)

.

By the positivity of |k|2 and the Cauchy–Schwarz inequality, the following holds

true:

|k|2 + |k1|2 + |k − k1|2 ≥ |k1|2 + |k − k1|2 ≥ 2|k1||k − k1|,

which implies

|Vk,k1,k−k1 |2Lf (ωk − ωk1 − ωk−k1) ≤ 2|k|
M0[f ]

.

As a result, we have the following estimate on I1:

I1 ≤
2|k|f

∫
Rd f1dk1

M0[f ]
≤ 2|k|f. (2.11)

I2 can be estimated in a similar way. We can reduce I2 to an integral on Rd by

taking into account the definition of δ(k1 − k − k2) as follows:

I2 := f

∫
Rd
|Vk+k2,k,k2 |2Lf (ωk+k2 − ωk − ωk2)f2dk2.

Taking into account the definite of Vk+k2,k,k2 , Lf (ωk+k2 − ωk − ωk2), Γk+k2,k,k2 ,

and the inequality

(ωk+k2 − ωk − ωk2)2 + Γ2
k+k2,k,k2 ≥ Γ2

k+k2,k,k2 ,

the following estimate on the kernel of I2 can be obtained:

|Vk+k2,k,k2 |2Lf (ωk+k2 − ωk − ωk2) =
|k + k2||k||k2|Γk+k2,k,k2

(ωk+k2 − ωk − ωk2)2 + Γ2
k+k2,k,k2

≤ |k + k2||k||k2|
M0[f ](|k + k2|2 + |k|2 + |k2|2)

.

Using the positivity of |k|2 and the Cauchy–Schwarz inequality, we find

|k + k2|2 + |k|2 + |k2|2 ≥ |k + k2|2 + |k2|2 ≥ 2|k + k2||k2|,

which implies

|Vk+k2,k,k2 |2Lf (ωk+k2 − ωk − ωk2) ≤ 2|k|
M0[f ]

.

We then obtain the following estimate on I2:

I2 ≤
2|k|f

∫
Rd f2dk2

M0[f ]
= 2|k|f. (2.12)

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

TY
 O

F 
N

EW
 E

N
G

LA
N

D
 o

n 
01

/0
3/

20
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



2nd Reading

December 17, 2019 18:46 WSPC/103-M3AS 2050003

16 I. M. Gamba, L. M. Smith & M.-B. Tran

Combining (2.10)–(2.12) yields

Q[f ] ≥ −4|k|f. (2.13)

By plugging the above inequality into (1.3), we obtain a differential inequality on f

∂tf −Q[f ]− 2ν|k|2f ≥ ∂tf + (2ν|k|2 + 4|k|)f ≥ 0.

A Gronwall inequality argument applied to the above differential inequality leads to

f(t, k) ≥ f0(k)e−(2ν|k|2+4|k|)t,

and so (2.8) holds.

Multiplying both sides of the above inequality with χR0 is the characteristic

function of the ball BRd(O,R0) in Rd, and taking the integral with respect to k on

Rd, yield

‖fχR0
‖1 ≥

∫
Rd
χR0

f(t, k)dk

≥
∫
Rd
χR0f0(k)e−(2ν|k|2+4|k|)tdk

≥ e−(2νR2
0+4R0)t

∫
Rd
χR0

f0(k)dk ≥ ‖f0χR0
‖1,

and so (2.9) holds true. The proof of Proposition 2.1 is completed.

2.4. Weighted L1
N (N ≥ 0) estimates

For a given function g, let us recall the Nth moment of g

MN [g] =

∫
Rd
ωNk g(k)dk.

Proposition 2.2. Let N ≥ 0. Suppose that f0(k) is a nonnegative initial data

satisfying ∫
Rd
f0(k)ωNk dk <∞,

and that nonnegative solutions f(t, k) of (1.3) satisfies

M0[f ](t) ≥ M̃0(t) = e−(2νR2
0+4R0)t‖f0(k)χR0

‖L1 > 0,

where M̃0(t) is the quantity considered in Proposition 2.1.

Then, there exists a positive constant C0(λ1, λ2) is a constant depending on

λ1, λ2 and independent of N such that

MN+1[Q[f ]](t)− 2νMN [|k|2f ](t)

=

∫
Rd
Q[f ](t, k)ωN+1

k dk − 2ν

∫
Rd
|k|2f(t, k)ωNk dk

≤ C0(λ1, λ2)

(
1 +

e(4νR2
0+8R0)t

‖f0(k)χR0
‖2L1

)∫
Rd
f(t, k)ωNk dk, (2.14)
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which implies that nonnegative solutions f(t, k) of (1.3), with f(0, k) = f0(k),

satisfy

MN [f ](t) =

∫
Rd
f(t, k)ωNk dk

≤ e
C(λ1,λ2)

(
t+ e

(4νR2
0+8R0)t

(4νR2
0+8R0)‖f0(k)χR0

‖2
L1

) ∫
Rd
f0(k)ωNk dk, (2.15)

where C(λ1, λ2) is a constant depending on λ1, λ2.

Remark 2.2. Note that (2.14) says that the Nth moment of f only depends on the

Nth moment of the initial data and the parameter R0 defined in Proposition 2.1.

Proof of Proposition 2.2. Using ϕ = ωNk as a test function in (1.3), we obtain

d

dt
MN [f ] + 2νMN [|k|2f ] =

d

dt

∫
Rd
f(t, k)ωNk dk + 2ν

∫
Rd
|k|2f(t, k)ωNk dk

=

∫
Rd
Q[f ](t, k)ωNk dk.

As a direct consequence of Lemma 2.3, the following inequality holds true:

d

dt

∫
Rd
f(t, k)ωNk dk + 2ν

∫
Rd
|k|2f(t, k)ωNk dk

≤ C

M0[f ]
MN+1[f(t)] =

C

M0[f ]

∫
Rd
f(t, k)ωN+1

k dk. (2.16)

Notice that

|k|2 =
ω2
k − λ1

λ2
,

we get the following moment equation:

d

dt
MN [f(t)] +

2ν

λ2
MN+2[f(t)]− 2νλ1

λ2
MN [f(t)] ≤ C

M0[f ]
MN+1[f(t)].

Using the fact that

M0[f ] ≥ e−(2νR2
0+4R0)T ‖f0(k)χR0

‖L1 ,

we deduce from (2.16)

d

dt

∫
Rd
f(t, k)ωNk dk + 2ν

∫
Rd
|k|2f(t, k)ωNk dk

≤ C

M0[f ]
MN+1[f(t)] ≤ Ce(2νR2

0+4R0)T

‖f0(k)χR0
‖L1

∫
Rd
f(t, k)ωN+1

k dk.
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Now since

Ce(2νR2
0+4R0)t

‖f0(k)χR0
‖L1

ωN+1
k − 2ν|k|2ωNk

= (λ1 + λ2|k|2)
N
2

(
Ce(2νR2

0+4R0)t

‖f0(k)χR0
‖L1

(λ1 + λ2|k|2)
1
2 − 2ν|k|2

)
,

and observing that Ce(2νR
2
0+4R0)t

‖f0(k)χR0
‖L1

(λ1 + λ2|k|2)
1
2 − 2ν|k|2 is bounded uniformly by

some constant C(λ1, λ1)
(
1 + e(4νR

2
0+8R0)t

‖f0(k)χR0
‖2
L1

)
, we can bound

C

M̃0(t)
ωN+1
k − 2ν|k|2ωNk ≤ C(λ1, λ2)

(
1 +

e(4νR2
0+8R0)t

‖f0(k)χR0‖2L1

)
(λ1 + λ2|k|2)

N
2 .

The above estimate means that the difference

Ce(2νR2
0+4R0)t

‖f0(k)χR0‖L1

∫
Rd
f(t, k)ωN+1

k dk − 2ν

∫
Rd
|k|2f(t, k)ωNk dk

=

∫
Rd
f(t, k)

(
Ce(2νR2

0+4R0)t

‖f0(k)χR0
‖L1

ωN+1
k − 2ν|k|2ωNk

)
dk,

is smaller than C(λ1, λ2)
(
1 + e(4νR

2
0+8R0)t

‖f0(k)χR0
‖2
L1

) ∫
Rd f(t, k)ωNk dk, which immediately

leads to

d

dt

∫
Rd
f(t, k)ωNk dk ≤ C(λ1, λ2)

(
1 +

e(4νR2
0+8R0)t

‖f0(k)χR0‖2L1

)∫
Rd
f(t, k)ωNk dk.

Inequality (2.15) then follows as a consequence of the above inequality.

3. Holder Estimates for Q[f ]

In this section, we study the Hölder continuity of the collision operator Q[f ] with

respect to weighted L1
N norm.

Proposition 3.1. Let M,N ≥ 0, and let VM be any bounded subset of L1
N+2(Rd),

with the L1
N+2 norms bounded from above by M and the L1 norms bounded from

below by M ′. Then, there exists a constant CM,M ′,N , depending on M,M ′, N, so

that

‖Q[g]−Q[h]‖L1
N
≤
(

C

M0[|g|]M0[|h|]
+

C

M0[|g|]

)
‖g − h‖

1
2

L1
N

≤ CM,M ′‖g − h‖
1
2

L1
N

(3.1)

for all g, h ∈ VM .

We first prove the following lemma.
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Lemma 3.1. Let M,N > 0, and let VM be any bounded subset of L1(Rd) ∩
L1
N+1(Rd), with the L1

N+2 norms bounded from above by M and the L1 norms

bounded from below by M ′. Then, there exists a constant CM,M ′ , depending on

M,M ′, so that

‖Q[g]−Q[h]‖L1
N
≤
(

C

M0[|g|]M0[|h|]
+

C

M0[|g|]

)
‖g − h‖L1

N+1

≤ CM,M ′‖g − h‖L1
N+1

(3.2)

for all g, h ∈ VM .

Proof. We first compute the difference between Q[g] and Q[h]

Q[g]−Q[h] =

∫∫
R2d

[
Rk,k1,k2 [g]−Rk,k1,k2 [h]− 2(Rk1,k,k2 [g]−Rk1,k,k2 [h])

]
dk1dk2,

whose L1
N -norm is

‖Q[g]−Q[h]‖L1
N

=

∫
Rd
ωNk |Q[g](k)−Q[h](k)|dk

≤
∫∫∫

R3d

ωNk |Rk,k1,k2 [g]−Rk,k1,k2 [h]| dkdk1dk2

+ 2

∫∫∫
R3d

ωNk |Rk1,k,k2 [g]−Rk1,k,k2 [h]|dkdk1dk2

=

∫∫∫
R3d

|Rk,k1,k2 [g]−Rk,k1,k2 [h]|
(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2.

Recalling that

Rk,k1,k2 [g] = C|Vk,k1,k2 |2δ(k − k1 − k2)Lg(ωk − ωk1 − ωk2)(g1g2 − gg1 − gg2),

we find the following estimate on ‖Q[g]−Q[h]‖L1
N

:

‖Q[g]−Q[h]‖L1
N
≤ J1 + J2, (3.3)

where

J1 :=

∫∫∫
R3d

|Vk,k1,k2 |2δ(k − k1 − k2)|Lg(ωk − ωk1 − ωk2)g1g2

−Lh(ωk − ωk1 − ωk2)h1h2|
(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2,

J2 := 2

∫∫∫
R3d

|Vk1,k,k2 |2δ(k1 − k − k2)|Lg(ωk1 − ωk − ωk2)gg2

−Lh(ωk1 − ωk − ωk2)hh2|
(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2. (3.4)

Let us now split the proof into two steps.

Step 1: Estimating J1. Define the quantity inside the triple integral of J1 after

dropping
(
ωNk + ωNk1 + ωNk2

)
to be J1

J1 := |Vk,k1,k2 |2δ(k − k1 − k2)|Lg(ωk − ωk1 − ωk2)g1g2 − Lh(ωk − ωk1 − ωk2)h1h2|,
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which, by the triangle inequality, can be bounded as

J1 ≤ |Vk,k1,k2 |2δ(k − k1 − k2)Lg(ωk − ωk1 − ωk2)|g1g2 − h1h2|

+ |Vk,k1,k2 |2δ(k − k1 − k2)|Lg(ωk − ωk1 − ωk2)− Lh(ωk − ωk1 − ωk2)||h1h2|.

Define the two terms on the right-hand side of the above inequality to be J11 and

J12, respectively.

Let us now study J11 in details. Using the definition of Lg and the triangle

inequality

|g1g2 − h1h2| ≤ |g1||g2 − h2|+ |h2||g1 − h1|,

yields the following estimate on J11:

J11 ≤ C|k||k1||k2|δ(k − k1 − k2)
Γg,k,k1,k2

(ωk − ωk1 − ωk2)2 + Γ2
g,k,k1,k2

|g1||g2 − h2|

+C|k||k1||k2|δ(k − k1 − k2)
Γg,k,k1,k2

(ωk − ωk1 − ωk2)2 + Γ2
g,k,k1,k2

|h2||g1 − h1|.

By the inequality

(ωk − ωk1 − ωk2)2 + Γ2
g,k,k1,k2 ≥ Γ2

g,k,k1,k2 ,

we can bound J11 as

J11 ≤ C|k||k1||k2|δ(k − k1 − k2)
1

Γg,k,k1,k2
|g1||g2 − h2|

+C|k||k1||k2|δ(k − k1 − k2)
1

Γg,k,k1,k2
|h2||g1 − h1|.

The right-hand side of the above inequality can be estimated by employing the

following Cauchy–Schwarz inequality:

Γg,k,k1,k2 = M0[|g|](|k|2 + |k1|2 + |k2|2)

≥M0[|g|](|k1|2 + |k2|2) ≥ 2M0[|g|]|k1||k2|,

where we have just used the lower bound of M0[|g|], yielding

J11 ≤
C

M0[|g|]
|k|δ(k − k1 − k2)|g1||g2 − h2|+

C

M0[|g|]
|k|δ(k − k1 − k2)|h2||g1 − h1|.

Multiplying the above inequality with
(
ωNk + ωNk1 + ωNk2

)
and integrating in k, k1

and k2 lead to∫∫∫
R3d

J11

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2

≤
∫∫∫

R3d

C

M0[|g|]
||k|δ(k − k1 − k2)[|g1||g2 − h2|+ |h2||g1 − h1|]

×
(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2.
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Using the resonant condition k = k1 + k2, we reduce the triple integral on the

right-hand side to a double integral∫∫∫
R3

J11

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2 ≤

C

M0[|g|]

∫∫
R2d

|k1 + k2|[|g1||g2 − h2|

+ |h2||g1 − h1|]
(
ωNk1 + ωNk2

)
dk1dk2,

where we have just used the inequality

ωNk1+k2 ≤ Cω
N
k1 + CωNk2 ,

proved in Proposition 2.3, to bound the sum ωNk + ωNk1 + ωNk2 by C
(
ωNk1 + ωNk2

)
.

Observing that

|k1 + k2|
(
ωNk1 + ωNk2

)
≤ (|k1|+ |k2|)

(
ωNk1 + ωNk2

)
≤ C

(
ωN+1
k1

+ ωN+1
k2

)
,

we find∫∫∫
R3d

J11

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2

≤ C

M0[|g|]

∫∫
R2d

[|g1||g2 − h2|+ |h2||g1 − h1|]
(
ωN+1
k1

+ ωN+1
k2

)
dk1dk2,

which immediately leads to∫∫∫
R3d

J11

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2

≤ C

M0[|g|]
‖g − h‖L1

N+1

(
‖g‖L1 + ‖g‖L1

N+1
+ ‖h‖L1 + ‖h‖L1

N+1

)
(3.5)

≤ C

M0[|g|]
‖g − h‖L1

N+1

(
‖g‖L1

N+1
+ ‖h‖L1

N+1

)
.

Now, let us look at J12, which can be written as

J12 = C|k||k1||k2|δ(k − k1 − k2)|h1h2|

×

∣∣∣∣∣∣∣∣∣∣
Γg,k,k1,k2 [(ωk − ωk1 − ωk2)2 + Γ2

h,k,k1,k2
]

−Γh,k,k1,k2 [(ωk − ωk1 − ωk2)2 + Γ2
g,k,k1,k2

]

[(ωk − ωk1 − ωk2)2 + Γ2
g,k,k1,k2

][(ωk − ωk1 − ωk2)2 + Γ2
h,k,k1,k2

]

∣∣∣∣∣∣∣∣∣∣
= C|k||k1||k2|δ(k − k1 − k2)|h1h2|

× |(ωk − ωk1 − ωk2)2 − Γg,k,k1,k2Γh,k,k1,k2 ||Γg,k,k1,k2 − Γh,k,k1,k2 |
[(ωk − ωk1 − ωk2)2 + Γ2

g,k,k1,k2
][(ωk − ωk1 − ωk2)2 + Γ2

h,k,k1,k2
]
.

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

TY
 O

F 
N

EW
 E

N
G

LA
N

D
 o

n 
01

/0
3/

20
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



2nd Reading

December 17, 2019 18:46 WSPC/103-M3AS 2050003

22 I. M. Gamba, L. M. Smith & M.-B. Tran

It follows from the Cauchy–Schwarz inequality that[
(ωk − ωk1 − ωk2)2 + Γ2

g,k,k1,k2

][
(ωk − ωk1 − ωk2)2 + Γ2

h,k,k1,k2

]
≥ |(ωk − ωk1 − ωk2)2 − Γg,k,k1,k2Γh,k,k1,k2 ||(ωk − ωk1 − ωk2)2

+ Γg,k,k1,k2Γh,k,k1,k2 |

≥ |(ωk − ωk1 − ωk2)2 − Γg,k,k1,k2Γh,k,k1,k2 |Γg,k,k1,k2Γh,k,k1,k2 ,

from which, we obtain the following estimate on J12:

J12 ≤ C|k||k1||k2||h1h2|δ(k − k1 − k2)
|Γg,k,k1,k2 − Γh,k,k1,k2 |

Γg,k,k1,k2Γh,k,k1,k2
.

The numerator of the fraction on the right-hand side has the following interesting

property:

|Γg,k,k1,k2 − Γh,k,k1,k2 | = C|(k2 + k2
1 + k2

2)M0[|g| − |h|]|,

which can be bounded as follows:

|Γg,k,k1,k2 − Γh,k,k1,k2 | ≤ C(k2 + k2
1 + k2

2)‖g − h‖L1 ,

yielding an upper bound on J12

J12 ≤ C|k||k1||k2||h1h2|δ(k − k1 − k2)
‖g − h‖L1 ,

(k2 + k2
1 + k2

2)M0[|g|]M0[|h|]
.

By the Cauchy–Schwarz inequality

k2 + k2
1 + k2

2 ≥ k2
1 + k2

2 ≥ 2|k1||k2|,

and the lower bound on M0[|g|] and M0[|h|], the following estimate on J12 then

follows:

J12 ≤
C

M0[|g|]M0[|h|]
|k||h1h2|δ(k − k1 − k2)‖g − h‖L1 .

Multiplying the above inequality with
(
ωNk + ωNk1 + ωNk2

)
and integrate in k, k1

and k2, the same argument used to deduce (3.5) leads to∫∫∫
R3d

J12

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2 ≤

C

M0[|g|]M0[|h|]
‖g − h‖L1

N+1
. (3.6)

Note that C is a constant depending on
(
‖g‖L1

N+1
+‖h‖L1

N+1

)
. Combining (3.5) and

(3.6) yields

J1 ≤
(

C

M0[|g|]M0[|h|]
+

C

M0[|g|]

)
‖g − h‖L1

N+1
, (3.7)

where C is a constant depending on
(
‖g‖L1

N+1
+ ‖h‖L1

N+1

)
.

Step 2: Estimating J2. The proof of estimating J2 follows exactly the same

argument used in Step 1. As a consequence, we omit some details and give only the
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main estimates in the sequel. First, define the quantity inside the triple integral of

J2 after dropping
(
ωNk + ωNk1 + ωNk2

)
to be J2

J2 := |Vk1,k,k2 |2δ(k1 − k − k2)|Lg(ωk1 − ωk − ωk2)gg2 − Lh(ωk1 − ωk − ωk2)hh2|,

which, by the triangle inequality, can be bounded as

J2 ≤ |Vk1,k,k2 |2δ(k1 − k − k2)Lg(ωk1 − ωk − ωk2)|gg2 − hh2|

+ |Vk1,k,k2 |2δ(k1 − k − k2)|Lg(ωk1 − ωk − ωk2)− Lh(ωk1 − ωk − ωk2)||hh2|.

We set the two terms on the right-hand side of the above inequality to be J21 and

J22, respectively.

The following estimate on J21 is a direct consequence of the triangle inequality:

J21 ≤ |k||k1||k2|δ(k1 − k − k2)
Γg,k,k1,k2

(ωk1 − ωk − ωk2)2 + Γ2
g,k,k1,k2

|g||g2 − h2|

+C|k||k1||k2|δ(k1 − k − k2)
Γg,k,k1,k2

(ωk1 − ωk − ωk2)2 + Γ2
g,k,k1,k2

|h2||g − h|.

The same argument used in Step 1 can be employed, implying the following estimate

on J21:

J21 ≤
C

M0[|g|]
|k1|δ(k − k1 − k2)|g||g2 − h2|+

C

M0[|g|]
|k1|δ(k − k1 − k2)|h2||g − h|.

Multiplying the above inequality with
(
ωNk +ωNk1 +ωNk2

)
and integrate in k, k1 and

k2 yields

C

∫∫∫
R3d

J21

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2 ≤ C

(
‖g − h‖L1 + ‖g − h‖L1

N+1

)
, (3.8)

where C is a constant depending on
(
‖g‖L1 + ‖g‖L1

N+1
+ ‖h‖L1 + ‖h‖L1

N+1

)
.

Now, similar to J12, J22 can be bounded as

J22 ≤ C|k||k1||k2||hh2|δ(k1 − k − k2)
|Γg,k,k1,k2 − Γh,k,k1,k2 |

Γg,k,k1,k2Γh,k,k1,k2
.

The same argument used in Step 1 can be applied and the following estimate on

J22 then follows:

J22 ≤ |k||hh2|δ(k − k1 − k2)‖g − h‖L1 .

Multiplying the above inequality with
(
ωNk +ωNk1 +ωNk2

)
and integrate in k, k1 and

k2, we obtain ∫∫∫
R3d

J22

(
ωNk + ωNk1 + ωNk2

)
dkdk1dk2

≤ C

M0[|g|]M0[|h|]
(
‖g − h‖L1 + ‖g − h‖L1

N+1

)
, (3.9)

where C is a constant depending on
(
‖g‖L1

N+1
+ ‖h‖L1

N+1

)
.
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Combining (3.8) and (3.9) yields

J2 ≤
(

C

M0[|g|]M0[|h|]
+

C

M0[|g|]

)(
‖g − h‖L1 + ‖g − h‖L1

N+1

)
≤
(

C

M0[|g|]M0[|h|]
+

C

M0[|g|]

)
‖g − h‖L1

N+1
.

(3.10)

Putting the two estimates (3.7) and (3.10) together with (3.3) and (3.4), the con-

clusion of the lemma then follows.

Proof of Proposition 3.1. The proposition now follows straightforwardly from

the previous lemma. Indeed, we recall the interpolation inequality (see Lemma 2.2):

‖g‖L1
n
≤ ‖g‖

q−n
q−p
L1
p
‖g‖

n−p
q−p
L1
q

for q > n > p. Together with the boundedness of g, h in L1
1 ∩ L1

N+2, we obtain

‖g − h‖L1
N+1
≤ ‖g − h‖

1
2

L1
N
‖g − h‖

1
2

L1
N+2
≤ CM‖g − h‖

1
2

L1
N
.

Lemma 3.1 yields

‖Q[g]−Q[h]‖L1
N
≤ CM,M ′,N‖g − h‖

1
2

L1
N
,

which holds for all N ≥ 0. The proposition follows.

4. Proof of Theorem 1.1

We shall apply Theorem 1.2 for (1.3), which reads

∂tf = Q̃[f ], Q̃[f ] := Q[f ]− 2ν|k|2f.

Fix an N > 1. We choose the Banach spaces E = L1
N (Rd), F = L1

N+3(Rd),
endowed with the norms

‖f‖E := ‖f‖L1
N
, ‖f‖∗ := ‖f‖L1

N+3
.

We also define

|f |∗ := MN+3[f ],

then

|f |∗ ≤ ‖f‖∗, ∀ f ∈ F, |f + g|∗ ≤ |f |∗ + |g|∗, ∀ f, g ∈ F,

λ|f |∗ = |λf |∗, ∀ f ∈ F, λ ∈ R+,

and

|f |∗ = ‖f‖L1
N+3

, ∀ f ∈ ST .

Moreover, condition (1.26) is automatically satisfied due to the Lebesgue dominated

convergence theorem and Theorem 1.2.7.5
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Clearly, ST is a bounded and closed set with respect to the norm ‖ · ‖∗. By

Proposition 2.2, for f0 ∈ S0 ⊂ ST , solutions to (1.3) will remain in ST . Thus, it

suffices to verify the three conditions (A), (B), (C) of Theorem 1.2, then Theorem

1.1 is a consequence of Theorem 1.2. Notice that continuity condition (A) follows

directly from Proposition 3.1, we therefore only need to verify (B) and (C).

4.1. Condition (B): Subtangent condition

Let f be an arbitrary element of the set ST . It suffices to prove the following claim:

for all ε > 0, there exists h∗ depending on f and ε such that

B(f + hQ̃[f ], hε) ∩ ST 6= ∅, 0 < h < h∗. (4.1)

For R > 0, let χR(k) be the characteristic function of the ball B(0, R), and set

wR := f + hQ̃[fR], fR(k) = χR(k)f(k), (4.2)

recalling Q̃[g] = Q[g] − 2ν|k|2g. We shall prove that for all R > 0, there exists

an hR so that wR belongs to ST , for all 0 < h ≤ hR. It is clear that wR ∈
L1(Rd) ∩ L1

N+3(Rd).
We now check the conditions S1, S2 and S3 in (1.24).

Condition (S1): Positivity of the set ST . Note that one can write Q[f ] =

Qgain[f ]−Qloss[f ], with Qgain[f ] ≥ 0 and Qloss[f ] = fQ−[f ]. Since fR is compactly

supported, it is clear that χRQ−[fR] is bounded by a universal positive constant

4R, computed in Proposition 2.1. Hence,

wR = f + h(Q[fR]− 2ν|k|2fR)

≥ f − hfR(4R+ 2νR2),

which is nonnegative, for sufficiently small h; precisely, h < hR
2 := 1

2(4R+2νR2) .

Suppose that R > R0 are chosen large enough such that

‖χRu0‖∗ > ‖χR0
u0‖∗ > R∗.

Let us check (1.27) for R0 < R. By Proposition 2.1

χR0

wR − f
h

= χR0Q̃[fR] ≥ −(4R0 + νR2
0)fR0 . (4.3)

Moreover

|wR − f |∗ = h|Q[fR]− 2ν|k|2fR|∗ ≤ C0‖fR‖∗,

where the last inequality follows from Proposition 2.2. That leads to

|wR − f |∗ ≤
C(λ1, λ2)e(2νR2

0+4R0)T

‖f0(k)χR0
‖L1

‖f‖∗. (4.4)

with C0(λ1,λ2)e(2νR
2
0+4R0)T

‖f0(k)χR0
‖L1

computed in Proposition 2.2.
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Condition (S2): Upper bound of the set ST . Since

‖f‖∗ < (2R∗ + 1)eC∗T ,

and

lim
h→0
‖f − wR‖∗ = 0,

we can choose h∗ small enough such that for 0 < h < h∗

‖wR‖∗ < (2R∗ + 1)eC∗T .

Condition (S3): Lower bound of the set ST . Since

‖f‖∗ > R∗e−C
∗T /2,

and

lim
h→0
‖f − wR‖∗ = 0,

we can choose h∗ small enough such that

‖wR‖∗ > R∗e−C
∗T /2.

This proves the claim (4.1), and hence condition (A) is verified.

4.2. Condition (C): One side Lipschitz condition

By the Lebesgue’s dominated convergence theorem, we have that

[ϕ, φ] = lim
h→0−

h−1(‖φ+ hϕ‖E − ‖φ‖E)

= lim
h→0−

h−1

∫
Rd

(|φ+ hϕ| − |φ|)(ωk + ωNk )dk

≤
∫
Rd
ϕ(k)sign(φ(k))

(
ωk + ωNk

)
dk.

Hence, recalling Q̃[f ] = Q[f ]− 2ν|k|2f , we estimate[
Q̃[f ]− Q̃[g], f − g

]
≤
∫
Rd

[Q̃[f ](k)− Q̃[g](k)]sign((f − g)(k))ωNk dk

≤ ‖Q[f ]−Q[g]‖E − 2ν‖|k|2(f − g)‖E .

Using Lemma 3.1 and recalling ‖ · ‖E = ‖ · ‖L1
N

, we have

‖Q[f ]−Q[g]‖E ≤ CN‖f − g‖L1
N
.

Since C|k|N − 2ν|k|N+2 is always bounded by C ′|k|N for C ′ > 0, we obtain[
Q̃[f ]− Q̃[g], f − g

]
≤ CN‖f − g‖E .

The condition (C) follows. The proof of Theorem 1.1 is complete.
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5. Proof of Theorem 1.2

The proof is divided into four parts.

Part 1: According to our assumption, ST is bounded by a constant CS in the norm

‖ · ‖, due to the Hölder continuity property of Q[u],

‖Q[u]‖ ≤ CQ, ∀u ∈ ST .

By our assumption, for an element u in S0 ⊂ ST , there exists ξu > 0 such that for

0 < ξ < ξu,

B(u+ ξQ[u], δ) ∩ ST \{u+ ξQ[u]} 6= Ø,

for δ small enough.

For a fixed u and ε > 0, there exists ξ > 0 such that ‖u− v‖ ≤ (CQ + 1)ξ then

‖Q(u)−Q(v)‖ ≤ ε
2 . Let z be in B

(
u+ ξQ[u], εξ2

)
∩ ST \{u+ ξQ[u]} satisfying∣∣∣∣z − uξ

∣∣∣∣
∗
≤ C∗

2
‖u‖∗, χR0

z − u
ξ
≥ −χR0

C∗

2
u,

and define

t 7→ Θ(t) = u+
t(z − u)

ξ
, t ∈ [0, ξ].

Now, we also have the following lower bound on Θ:

χR0
Θ(t) = χR0

(
u+

t(z − u)

ξ

)
≥ χR0

(
1− tC∗

2

)
u

≥ χR0
e−tC

∗
Θ(0),

(5.1)

for ξ and 0 ≤ t ≤ ξ ≤ log 2
C∗ .

Hence

‖χR0Θ(t)‖∗ >
R∗e−C

∗t

2
. (5.2)

We also have that

‖Θ(t)‖∗ = |Θ(t)|∗ =

∣∣∣∣u+
t(z − u)

ξ

∣∣∣∣
∗

≤ |u|∗ +

∣∣∣∣ t(z − u)

ξ

∣∣∣∣
∗
≤ |u|∗ + |u|∗

tC∗
2

= ‖Θ(0)‖∗
(

1 +
tC∗
2

)
.

We then obtain

‖Θ(t)‖∗ ≤ (‖Θ(0)‖∗ + 1)eC∗t − 1 < (2R∗ + 1)eC∗t. (5.3)
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Therefore, Θ maps [0, ξ] into ST . It is straightforward that

‖Θ(t)− u‖ ≤
∥∥∥∥ t(z − u)

ξ

∥∥∥∥ ≤ ξ‖Q[u]‖+
εξ

2
< (CQ + 1)ξ,

which implies

‖Q[Θ(t)]−Q[u]‖ ≤ ε

2
, ∀ t ∈ [0, ξ].

Combining the above inequality and the fact that

‖Θ̇(t)−Q[u]‖ =

∥∥∥∥z − uξ −Q[u]

∥∥∥∥ ≤ ε

2
,

we obtain

‖Θ̇(t)−Q[Θ(t)]‖ ≤ ε, ∀ t ∈ [0, ξ]. (5.4)

Part 2: Let Θ be a solution to (5.4) on [0, ξ] constructed in Part 1. Using the

procedure of Part 1, we assume that Θ can be extended to the interval [τ, τ + τ ′].

The same arguments that lead to (5.3) imply

‖Θ(τ + t)‖∗ ≤
(
(‖Θ(τ)‖∗ + 1)eC∗t − 1

)
, t ∈ [0, τ ′].

Combining the above inequality with (5.3) yields

‖Θ(τ + t)‖∗ ≤
((
‖Θ(0)‖∗ + 1

)
eC∗τ − 1 + 1

)
eC∗t − 1

≤
(
‖Θ(0)‖∗ + 1

)
eC∗(τ+t) − 1

< (2R∗ + 1)eC∗(τ+t),

(5.5)

where the last inequality follows from the fact that R∗ ≥ 1.

Similar, we also have

χR0
Θ(τ + t) ≥ χR0

e−(τ+t)C∗Θ(0), (5.6)

which implies

‖χR0Θ(τ + t)‖∗ >
R∗e−C

∗(τ+t)

2
. (5.7)

Part 3: From Part 1, there exists a solution Θ to Eq. (5.4) on an interval [0, ξ].

Now, we have the following procedure:

• Step 1: Suppose that we can construct the solution Θ of (5.4) on [0, τ ] (τ < T ),

where Θ(0) ∈ S0 ∩B∗
(
O,R∗

)
\B∗

(
O,R∗

)
. Since due to Part 2 Θ(τ) ∈ Sτ , by the

same process as in Part 1 and by (5.3), (5.1), (5.2), (5.5)–(5.7) the solution Θ

could be extended to [τ, τ + hτ ] where τ + hτ ≤ T .
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• Step 2: Suppose that we can construct the solution Θ of (5.4) on a series of

intervals [0, τ1], [τ1, τ2], . . . , [τn, τn+1], . . . . Since the increasing sequence {τn} is

bounded by T , it has a limit, noted by τ. Moreover

‖Θ(t)‖∗ ≤(‖Θ(0)‖∗ + 1)eC∗t − 1 < (2R∗ + 1)eC∗t, ∀ t ∈ [0, τ),

χR0Θ(t) ≥χR0e
−tC∗Θ(0), ∀ t ∈ [0, τ),

(5.8)

and

‖χR0
Θ(t)‖∗ >

R∗e−C
∗t

2
, ∀ t ∈ [0, τ). (5.9)

Recall that ‖Q(Θ)‖ is bounded by CQ on [τn, τn+1] for all n ∈ N, then ‖Θ̇‖ is

bounded by ε + CQ on [0, τ). As a consequence, Θ(τ) can be defined to be the

limit of Θ(τn) with respect to the norm ‖ · ‖. That, together with (1.26) and the

fact that Sτ is closed with respect to ‖ · ‖∗, implies that Θ is a solution of (5.4)

on [0, τ ]. In addition (5.8) and (5.9) also hold true on [0, τ ].

As a consequence, if the solution Θ can be defined on [0, T0), T0 < T , it could be

extended to [0, T0]. Now, we suppose that [0, T0] is the maximal closed interval that

Θ could be defined, by Steps 1 and 2. Θ could be extended to a larger interval

[T0, T0 +Th], which means that T = T0 and Θ is defined on the whole interval [0, T ].

Part 4: Finally, let us consider a sequence of solution {uε} to (5.4) on [0, T ]. We

will prove that this is a Cauchy sequence. Let {uε} and {vε} be two sequences of

solutions to (5.4) on [0, T ]. We note that uε and vε are affine functions on [0, T ].

Moreover by the one-side Lipschitz condition

d

dt
‖uε(t)− vε(t)‖ =

[
uε(t)− vε(t), u̇ε(t)− v̇ε(t)

]
≤
[
uε(t)− vε(t),Q[uε(t)]−Q[vε(t)]

]
+ 2ε

≤ C‖uε(t)− vε(t)‖+ 2ε,

for a.e. t ∈ [0, T ], which leads to

‖uε(t)− vε(t)‖ ≤ 2ε
eLT

L
.

By letting ε tend to 0, uε → u uniformly on [0, T ]. It is straightforward that u is a

solution to (1.28).
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