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After the pioneering work of Garrett and Munk, the statistics of oceanic internal gravity
waves has become a central subject of research in oceanography. The time evolution of
the spectral energy of internal waves in the ocean can be described by a near-resonance
wave turbulence equation, of quantum Boltzmann type. In this work, we provide the
first rigorous mathematical study for the equation by showing the global existence and
uniqueness of strong solutions.
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1. Introduction

The study of wave turbulence has obtained spectacular success in the understanding
of spectral energy transfer processes in plasmas, oceans and planetary atmospheres.
Wave—wave interactions in continuously stratified fluids have been a fascinating
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subject of intensive research in the last few decades. In particular, the observation
of a nearly universal internal-wave energy spectrum in the ocean, first described
by Garrett and Munk (cf. Refs. 22, 23 and 11), plays a very important role in
understanding such wave—wave interactions. The existence of a universal spectrum
is generally perceived to be the result of nonlinear interactions of waves with dif-
ferent wavenumbers. As the nonlinearity of the underlying primitive equations is
quadratic, waves interact in triads (cf. Ref. 64). Furthermore, since the linear inter-
nal wave dispersion relation can satisfy a three-wave resonance condition, resonant
triads are expected to dominate the dynamics for weak nonlinearity (cf. Ref. 43).

Resonant wave interactions can be characterized by Zakharov kinetic equations
(cf. Refs. 71, 46, 42, 10, 69 and 68). The equations describe, under the assumption
of weak nonlinearity, the spectral energy transfer on the resonant manifold, which
is a set of wave vectors k, ki1, ko satisfying

k =k + ko, Wi = Wk, T Wy, (1].)

where the frequency w is given by the dispersion relation between the wave fre-
quency w and the wave number k. However, it is known that exact resonances
defined by wy, = wg, + wk, do not capture some important physical effects, such as
energy transfer to non-propagating wave modes with zero frequency, corresponding

3,4,7,15,16,25,33-35,41,51,65,66 o0 5]g0

to generation of anisotropic coherent structures,
Refs. 18 and 44 for analytical arguments on reduced isotropic models. Some authors
have included more physics by allowing near-resonant interactions (cf. Refs. 13, 32,

39, 36, 40, 37, 38, 47, 58, 53 and 54), defined as
k=ki+ ko, |0Jk — Wk, — ka‘ < H(f, ki)7 (1.2)

where 6 accounts for broadening of the resonant surfaces and depends on the wave
density f and the wave number k. When near resonances are included in the dynam-
ics, numerical studies have demonstrated the formation of the anisotropic, non-
propagating wave modes in dispersive wave systems relevant to geophysical flows
(cf. Refs. 12, 27, 32, 55, 57, 58, 59 and 60).

We consider in this paper the following near-resonance turbulence kinetic equa-
tion for internal wave interactions in the open ocean (cf. Refs. 13, 36, 40, 37 and 39),

8tf(t7 k) + ka(ta k) = Q[f](t’ k)v f(oa k) = fO(k)a (13)

in which f(¢,k) is the nonnegative wave density at wave number k € R, d > 2.
As proposed by Zakharov in Ref. 69 water wave models must include the term
prf = 2v|k|?f for viscous damping effects, with v the viscosity coefficient.

This model equation consist in a kinetic three-wave interaction modeled by an
interaction (or collision) operator given by the nonlocal form

QAWM = [[ | [Rukislf) = Rualf = R Fdbrdba, (1)
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with
Ry e [f] 1= Vi ko |26 (K — k1 — k2) Lp(wp — wiy — wiy)(frf2 — 1 — [ f2),
(1.5)

with the short-hand notation f = f(t,k) and f; = f(t, k;). The singular measure
given by the Dirac delta function §(-) ensures that interactions are between triads
with

k= ki + ko. (1.6)

The transition probability factor or collision kernel Vj g, x, under consideration
is of the form (cf. Refs. 37, 13, 40, 39 and 36)

Viesos ko = €[]k [K2]) 2, (1.7)

with € is some physical constant.
Next, we consider the dispersion law

g* _|k[?
= | F? 1.
wk + pgN2 mg) ( 8)

where F' is the Coriolis parameter, N is the (Brunt—Vaisala) buoyancy frequency, In

addition, the parameter m is the reference vertical wave number determined from
observations, ¢ is the gravitational constant, pg is the reference value for density,
or equivalently

1 g 2 1
=/ + Xo|k|2,  for Ay = F2, d v=—|(—) ==, (1.9
Wk 1 a|k| or A\ an 9 5 <p0N> 12 (1.9)

m z

where k, Cartesian vertical wave number and m = k,g(poN )71. In the absence of
the Coriolis force, i.e. F' = 0, the dispersion relation becomes

k| [K]
= — & —. 1.10
- (1.10)
The operator Ly is defined as
r
Ly(Q) = 5t — (1.11)

= 72 2 )
C A% ks

with the condition that

lim  £,() = m3(c).

Lh ey ko =0

Thus, when Ty, k, k, tends to 0, (1.4) becomes the following exact resonance collision
operator (cf. Refs. 69, 68 and 26):

QUNE) = [[ | (R alf) = R ald) = R b, (112)
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with

Ry oo [F] 7= Vi o |20 (ke — k1 — ko) 0 (wi — wiey — wiey)(frfo — ff1 — ffa).

Without loss of generality, one could ignore the constant 7 in the collision operator
Q.[f] since it can be absorbed in the time variable.
Moreover, the resonance broadening frequency I'y, i, r, may be written

Dlterke = Yo+ Yoo + Vo> (1.13)

where 7 is computed in Ref. 36 using a one-loop diagram approximation:
e lbl? [P DIl
Ry

and c¢ is a physical constant, which can be normalized to be 1. Approximating the
integral

[Pl ~ [ s R,
R, R3
we obtain a formula for 4 that will be used throughout the paper

Y = \k|2/RS f(t, k)dk. (1.14)

The above formulation of 7, indicate the broadening resonance width € defined
n (1.2). Note that the formulation of I'y, x, %, is given

i s = (K + a2 + ko) [ f(t, ) (1.15)
R
Observe that

VL ks ks < |k — Wiy — Wiy | <V +1Tg gy ks 1 EN,

then
1 1

< Lp(wp — why —Why) <
(1 + 2)Tk iy ko sl ' 2) (n + DTk ky ko

in other words, function £/(wy — wk, — wy,) is mostly concentrated in the interval
where

\wk - Wgy, — wk2| S Fk,kl,k2~ (116)

In other words, the resonance width 6 is proportional to I'y, x, ,, which depends on
f and k.

This fact will be used in the proof of Propositions 2.3, 2.1 and 3.1.

In the field of wave turbulence, the most commonly used asymptotical analysis
to derive the kinetic equation (1.3)—(1.6) is statistical closure of the infinite hierar-
chy of cumulants, in the weakly nonlinear and long-time limits (see, for example,
the review by Newell and Rumpf Ref. 48). Evolution of higher-order cumulants
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can be interpreted as a modification of the wave frequency, with real part corre-
sponding to a frequency shift and with imaginary part corresponding to resonance
broadening.

A Feynman-Dyson diagrammatic approach may also be used, adapted for tur-
bulence in fluids by Wyld,” for more general classical systems by Martin et al.,?%
and for Hamiltonian nonlinear wave fields by Zakharov and Lvov.”® In the context
of acoustic turbulence, Lvov et al.3® considered a one-loop approximation to the
resonance broadening, the form of which is the one to be adopted in our study.

It is noted that wave turbulence equation (1.3) shares a similar structure with
the quantum Boltzmann equation describing the evolution of the excitations in
thermal cloud Bose-Einstein condensate systems (cf. Refs. 21, 29, 30, 31, 45 and
72). Our recent progress on the classical Boltzmann equation (cf. Refs. 8, 19, 20
and 63) and the quantum Boltzmann equation (cf. Refs. 2, 14, 17, 24, 28, 50, 49,
62, 52 and 61) has shed some light on the open question of building a rigorous
mathematical study for (1.3). Different from the quantum Boltzmann cases (cf.
Refs. 62, 2 and 14), which could be considered as the exact resonance case (1.12)
with

W = Wk; + Wky,

the energy of solutions for the near-resonance kinetic equation (1.3) is not conserved.
The underlying shallow-water equations conserve a cubic energy, and the flow
restricted to exact resonances conserves the quadratic part of the total energy.%¢
However, conservation of the quadratic energy no longer holds when near resonant
three-wave interactions are included in the dynamics.

We also split @ as the sum of their positive and negative parts, referred to as a
gain and a loss operators, respectively,

Q[f] = anin[f] _Qloss[f]v (117)

as is done with the classical Boltzmann operator for binary elastic interactions.
Here, the gain operator is also defined by the positive contributions in the total
rate of change in time of the collisional form Q(f)(t, k)

Qeainf] = // [Viks ko |26 (K — Ky — ko) L p(wr, — Wiy — Wy ) f1 fodky dleo
Rd x R4

+2// |Vk1’k,k2|25(k1 —k—kg)ﬁf(wkl — Wy —wk2)
Ra xR
x (ff1+ fif2)dkidky (1.18)

and the loss operator models the negative contributions in the total rate of change
in time of the same collisional form Q(f)(¢, k)

Quoss[f] = [I[f], (1.19)
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with ¥[f] being the collision frequency or attenuation coefficient, defined by

I[f](k) =2 // [Vieks k|20 (k — k1 — ko) Ly (wi — w, — wiy) frdkydks
R4 xR4

—|—2// |Vk1,k,k2‘25(k1 — k- k‘g)ﬁf(wkl — W — wk2)f2d]€1d/€2.
R2 xR4
(1.20)

Inspired by recent work by Alonso and two of the authors of this paper? on the
quantum Boltzmann equation for cold bosonic gases, whose equation can also be
derived by diagrammatic techniques, we present here the existence and uniqueness
solution to a Cauchy problem associated to the model (1.3)—(1.11)

The strategy consists in finding a suitable convex, positive cone, time invariant
subspace St of the Banach space L}, (R4), for which the weak turbulence equation
has a unique strong solution, where this Banach space has norms defined by the
Nth moment as the expectation of the Nth-power of the dispersion relation, that
is for any given density g,

LY (RY) = {g € L'(RY), s.t. [lgllzy, == Mylg) = /]R wi g(k)dk < oo}, (1.21)

in which we recall the dispersion relation wy = /A1 + A2|k|? as defined in (1.9).
Notice that when g is positive, both 90, [g] and [|g|[z1 are equivalent. Hence, the
construction of such invariant subspace Sr depend on the control of higher order
moments defined as follows.

Our solution are global and unique in L (R) to (1.3), that is the satisfy

atf(t7 k) = anin[f](ta k) - f(ta k)ﬂ[f](ta k) - 2V|k|2f7 f(oa k) = fO(k) S ST-
(1.22)
A fundamental tool to accomplish our goal is to prove that there exists a differ-
ential equation of the following type, for the moments of the solution f of (1.22):
4
dt

for some positive constants C;, Cs, which leads to

My [f] < CiMy4i[f] — CoMup2[f],

L[] < Gy ),

with C3 being a positive constant. The above inequality then yields an exponential
bound on the Nth moment of f
My[f] < CeC'T.

In order to do that, estimates on Qgain and Qioss are provided in Proposi-
tions 2.3 and 2.1. The proofs of these estimates are based on careful bounds of Ly
and I'y i k,, that reduces to bounding the Oth moment of f, My[f](¢), from below
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by e~ (2VR3H4R0L|| fox || 11, where yg, is the characteristic function of the ball
B(O, Ry) centered at the origin with radius Ry so that the quantity || foxr, ||z > 0.

Finally, on any arbitrary fixed time interval [0, T], we construct the solution of
(1.22) within a time-dependent invariant set St, based on the exponential in time
upper bound of My [f] and the lower bound of My[f].

More specifically, we define first the following two constants, C* and C,, for any
given any Ry by

Co(A1, ) (1 + e(WRGH8R0)T)
Hfo(k)XRoHLl ’

The specific value of Ry will be determined later to secure the conditions to obtain
a time invariant region.

Hence, for any number R* > 0, R, > 1, moment order N, and time t > 0, we
define the convex positive cone St as a subset on L} given by

C, = and C*:=4vR2+8Ry,.  (1.23)

Sr = {f € Ly43(RY) : S1)f > 0; S2)[fllry,, < co(t) := (2R« + e

R*e C7t
317 2 ()= =5 — . (121
where the ¢(t) is an increasing function and c¢;(t) is a decreasing function, so
Sy C Sy fOI‘OStSt/ST

Our main result is as follows.

Theorem 1.1. Let N > 0, and let fo(k) € So N B.(O, R.)\B.(O, R*) for some
R* > R, > 0, where B,(O,R*), B.(O, R.) is the ball centered at O with radius
R*, R, of Ly, 4(R%).

Then the weak turbulence equation (1.3) has a unique strong solution f(t,k) so
that

0< f(t.k) € O([0,T); Ly (R?)) N C*((0,T); Ly (RY)). (1.25)

Moreover, f(t,k) € St for allt € [0,T).
Since T can be chosen arbitrarily large, the weak turbulence equation (1.3) has
a unique global solution for all time t > 0.

The proof of Theorem 1.1 relies on the following abstract Ordinary Differential
Equations theorem in Banach spaces, which provides a framework to developed the
existence and uniqueness theory to space homogeneous Boltzmann type equations
ranging from the classical Boltzmann equation for binary interaction, to nonlo-
cal kinetic model for rods alignment, to quantum kinetic theory of bosonic cold
gases. 1269

Applied to the initial value problem (1.3)—(1.16), the framework is given by
the following abstract existence and uniqueness theorem in Banach spaces along

the lines proposed by Bressan in the unpublished notes,” whose application to the
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classical Boltzmann theory for hard potential and integrable angular cross section
has been recently completed in Ref. 1, as follows.

Let E := (E,|| - ||) be a Banach space of real functions on R%, (F,|| - ||«) be a
Banach subspace of E satisfying |u|| < ||u]|« Vu € F. Denote by B(O,r), B.(O,r)
the balls centered at O with radius r > 0 with respect to the norm || - || and || - [|+.
Suppose that there exists a function | - |, from F' to R such that

uls < lulls, YueF, |Ju+tol <|uls+vls, Vu,v€eF,
Mule = [Aule, Vue F,AeRy,
where C' is some positive constant.

Theorem 1.2. Let [0,T] be a time interval, and S;, (t € [0,T]), be a class of
bounded and closed subset of Fsatisfying S; C Sy for 0 < t < t' and containing
only nonnegative functions and

lul« = ||lu|l«, Yué€Sr.
Moreover, for any sequence {u,} in St,
Ifup, >0, ||luplls <C, lim |lu, —ul]| =0, then lim ||u, —ul.=0, (1.26)
n— oo n—oo

Set R, > R* > 0 and suppose Q : St — E is an operator satisfying the following
properties: There exist Ry, Cy,C* > 0 such that

() Holder continuity condition
Q] — Q]I < Cllu—v]?, B €(0,1), YuveSr.

(B) Sub-tangent condition
For an element u in Sy, there exists £, > 0 such that for 0 < & < &,, there
exists z in B(u+ £Qu], §) N Sr\{u + £Q[u]} for 6 small enough. Moreover,

.
|z —ule < —=lull,
1.27
v, (1.27)
XRy g sl 2 5

where X R, is the characteristic function of the ball Bga(0, Ry) of R.
(€) One-side Lipschitz condition

Qu] = Qv,u —v] < Cllu—v|, Vu,veSr,
where

(.61 = Tim B (1o + bl — lo1).

Moreover, St N B(O7 R%C*T) =0 and St C B(0, (2R, + 1)e%-T).
Then the equation

Ou=Qlul on[0,T)x E, u(0)=up€ SN B.(0,R)\B.(O,R*), (1.28)
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has a unique solution
ue CY(0,T),E)nC([0,T),Sr).

We end this introduction by giving the structure of the paper. In Sec. 2, we
provide an a priori estimate on the L norm of the solution. The Holder continuity
of the collision operator will be established in Sec. 3. The proof of Theorem 1.1 is
given in Sec. 4. The proof of Theorem 1.2 is given in Sec. 5.

Throughout the paper, we normally denote by C, C’ universal constants that
may vary from line to line.

2. A Priori Estimate

In this section, we shall derive uniform estimates on the Nth moment of f.

2.1. Preliminaries

The following lemma represents the weak formulation for the collision operator.
Lemma 2.1. There holds
[ aneoetae= [[[ | R lfle® - i) = olh)ldedi i,

for any test functions ¢ so that the integrals are well-defined.

Proof. By definition, the integral of the product of Q[f] and ¢ is written

) Qf1(t, k)p(k)dk = ///M (R ky by — By ks — By ke k|9 (K)dbdEy diea.
R R

By employing the change of variables k <+ ki, k <> ko in the first integral on the
right, the lemma then follows. O

In this paper, we also need the following Holder-type inequality.

Lemma 2.2. For N >n > p, and g > 0 there holds

N—n n—p

Malg] <MY [g)MY " [g], (2.1)

where g is such that all of the integrals are well-defined.

Proof. The lemma follows from the definition of 9%, and the following Hoélder
inequality:

N—n n—p

/R L 9(kwidk < ( /R dg(k)wﬁdk>Np < /R ) g(k)w,fydk)” : -
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2.2. Estimate of the collision operator

The main result of this subsection is the following estimate on the gain part of the
collision operator Q[g] as defined in (1.17) and (1.18).

Lemma 2.3. Let N > 0. For any positive function g € L}v+17 there exists a
constant CC(A1, A2, N), depending on A1, A2, N, such that the following holds:

/ Q Ndk < C()\17)\27N)9“RN+1[9}
gam > .

Mo |g]
Remark 2.1. The proof below is based on the fact that the resonance broadening
width 6 defined in (1.2) is chosen proportional to

(2.2)

(K + Vs + 8af?) [ (0 Ry

as discussed in the introduction.

Proof. By the same argument used to obtain the weak formulation proved in
Lemma 2.1, the following identity holds true:

Q N dk = / / / Ry oo [g] [wh — wi) — wiY | dkdkydka,
R3d

where

Rk ko [9) 2= [Vikr ko |20 (ke — 1 — K2) L(wp — Wiy — Wiy ) (9192 + 991 + 992),

and the integration of the gain term in multiplying with the test function w,iv is

then

[ Quanlal(hye ar
Rd

K|+ |k1|? + ko |?)| k| k1| |E
:0// 5k — by — k) Molg](| |2+\ 1 +2| 2|2)| I 1|2\ )| _
R3d (W — Wiy — Wiy )2 4+ Molg]2(|k]2 + k1|2 + |k2)?)

X g1gowiy dkdkydky

Molgl (K[2 + [k 2 + (ko 2) [l 1]
+C// ok —k—k
o O 2) (o = won — iy )? + TGP RP + [l + a2

x (991 + 9192)wp dkdkydks,

which by the change of variable (k,k1) — (k1,k) in the second integral, whose
Jacobian is 1, could be expressed as

[ Quanlal g an
Rd

k|2 + k1| + |k2|?)|E|| k1 ||k
L . YR L
(= 0y — w2 + M P(IRPR + [For 2+ o)

X g1gowi dkdkydks
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Mo[g](|k]? + |k1]? + |ka|?)|K||K1 || k2]
+C// ok -k —k
s O R R ) T Talg (R + ka2 + hal?)?

x (991 + gg2)wp, dkdkydks.

By the symmetry of k; and ko in the second integral,
[ Qunlal (e a
Rd

2 2 2
B . L
(r = wn, — k)2 + D[GE(RE + a2+ ol

X g1gowi dkdkydks

Molg)(|k[* + k1] + [kl |K|[F1||E2]
+C// 0k —ki —k
R34 ( ' 2>(Wk*Wk1 — Wky )2+ Mo [g]2(|k|? + [k1]? + [k2]?)?

x ggu [wp, + wp | dkdky dks.
Let us now look at the fractional term in the above integral

Mo[g](1%[* + [k1|* + [Ka?) ]| Ka || 2|

K = .
(Wi — Wiy — Wiy )2 + Mo[g]? (k[ + |k1 [ + |k2]?)?

Since the denominator (wy, — Wk, — Wk, )% + M3(|k|? + |k1|* + |k2|?)? is greater than
Mo[g)2(|k|? + |k1]? + |k2|?)?, the whole fraction can be bounded as

|| [K1 || o
K< ,
= Mo[gl(|k[* + [k1[* + [k2]?)

which leads to the following:

/ anin [g](k)w,]cv dk
Rd

[l s .
=¢ JU I dkedky dk
- //RM (b= = k) TTTREE + a2 Tho By 1920k dktkadle

Il 12|
+C// 0k —k1—k
s T P R 2 )

x gg1 [wh, + wiy, | dkdkydks,

which can be rewritten in the following equivalent form, with the right-hand side
being the sum of I; and Is:

/}R ) Qeainlg)(kK)wp dk < I + I, (2.3)
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where

(k] o)
I ::C’// olk—Fky —k
1 o OB L = ) G TR a2 ¥ Tl

X g1gowi dkdkydks,

A
Ir = C’// ok —Fky —k
2 oo O = k) G e R 2 )

x gg1 w4+ wp, | dkdk: dks.

Let us first estimate ;. By the resonant condition k = k; + k2, we have
wg = \//\1 + Aolk|? < \//\1 + Ao (k1| + [k2])?
A+ )\2‘/{11|2 + 24/ A\ + )\2|k2‘2 = kal + 2wk2,

which, thanks to the Cauchy—Schwarz inequality, leads to
w < O, A, N)(wi +wi),

where C'(A1, A2, N) is some constant depending on Ay, Az, N
Thus, we obtain

I < C(A, A, N) // 50k — ky — ko)
R3d

[Fel[ K1 [ o |
Molg)([E* + [k |* + |k2[?)

Taking into account the definition of the Dirac function §(k — k; — ko) the above

9192 [wh + wp | dkdky dk.

integral on R3? can be reduced to an integral on R?? only

\k1 + ka|[k1]|F2| N, N
I < CO s, dki dks.
v V) [ G e e e ek,

Due to the inequality |ky + ko|? + |k1|? + |k2|? > 2|k1]||k2|, the kernel of the above
integral can be bounded as

k1 + kol k1 ||Fol o it k| R+ ko

kv + ko2 + P+ ke~ 02— 2 7
yielding
I < C();n% // (k1| + k2l 9192 [wh, + wiy | dky dks.
Observing that
b < ko < 222

vl v

we can bound

(Ia| + Ika]) [why +wit] < Clwn, +wiy) [wiy +wit] < Clup™ +wl*,
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which yields the following estimate on I; in terms of the functional defined in (1.21):

Il S )\1’)\2; // 9192 WIJCV+1 N+1]dk1dk2
(2.5)

< Molg ]meﬂ[ gl

Let us now estimate I>. Using the resonant condition ky = k — k1, we obtain the
following relation between wy, and wy, wg,:

Wy = VA1 + Aalkal? < VA1 + Aa([a | + [K])?
< 2/ A1+ Xolk|? 4 20/ A1 + o] k1|? = 2wy, + 2wy,

which, by the Cauchy—Schwarz inequality, leads to
w,i\; < C(A1, A2, N) (wiY —i—w,ﬁ),

where C' is some universal positive constant.
Thus, we obtain

||| K || ez |
I, < C(A, A, N 0k —k1—k
2 < C(A1, A2 )//RM (k= k1 2)Djto[g](|k|2+|k1|2+|k‘2|2)

x gg1 [wp 4wy | dkdky dks.

By the definition of the Dirac function §(k — k1 — ka), we can reduce the above
triple integral into an integral on R?? only

[l [Ra [k — K | NN
I, < C(A1, A dkdk; .
2 1, 27 \//R"’d mo |k/’|2 I |k1‘2 + |I€2|2)ggl [(Uk +Wk1] 1

It is straightforward from Cauchy—Schwarz inequality that |k|? + |k1|? + |k — k1]? >
2|k1||k|, yielding the following estimate on the kernel of the above integral:

K[|k ||k — ki < |k — ki < k| + [F1 |

|&]2 + k12 + |k — k1> — 2 - 2 ’
which implies the following bound on I
C (A1, Mg,
I < (9:1)?%// (k[ + [k D) ggr [wi + wil |dkdks.

The same argument used to estimate I; can now be applied again, that leads
to a similar bound on I

C(A1, A
IL < ——m7— 1’ 2, // 991 N+1 JFW/IgVH]dkdkl
R2d

C()q, /\2’ ) (2.6)

My +1[g]-

Combining (2.3)-(2.6), we get (2.2) so the conclusion of Lemma 2.3 follows. m|
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2.3. Lower bound of the solution (the choice of Rg)

Proposition 2.1. For any initial data fo > 0 and fo € LY(R3). Suppose that
f € LY(R?) is a positive, strong solution of (1.3), then

Qlf] = Qgain[f] — Quoss[f] = —Quoss[f] = —4[kl, (2.7)

pointwise in k and f satisfies the following lower bound:
F(R) = fo(kyem CHIRFHRDE, (2:8)
which implies
£t Ryl = 90(8) = e~ B RoTAR fo (R | 1, (2.9)

where X g, s the characteristic function of the ball Bra(O, Ry) in R, Ry is any
positive constant.

Proof. Let us first recall the formulation of Q[f]

Q[f] = //Rd y [Viks ka [20(k — k1 — ko) L g (wr — wry, — wiy) (f1f2 — 21 f1)dkrds

+2// ‘Vkl,k,k2|25(k‘1 —k‘—kg)[,f(wk-l —wk—wk2)
R4 xRd

X (=ffo+ ffi+ fif2)dkidks.

and in order to get (2.8), we will work with

Q[f] = anin[f} - Qloss[f]a

where the formulation of Qloss|f]

Qualf] = —2f / Vs a2k — By — ko) £ (ke — why — i) frdbendy
R4 xRd

—2f Vi koka |20 (k1 — k — ko) L p(wr, — Wi — wh, ) fadkydks
R4 x R4

= —I]_ —IQ. (210)

In order to get the lower bound (2.7), we discard the gain operator defined in
(1.18) and estimate from below the loss part.

Let us estimate the double integral Z;, which can be reduced to an integral on
R? by taking into account the definition of §(k — k; — ko) as follows:

I = 2f/d Vit b [P L (Wi = Wy — Wiy ) frds.
R
By the definition of Vi by =k » ,Cf (wk — Wk, — wk_;ﬁ), Urokr koo and the inequality

2, 12 2
(Wi =Wy = Wk—k)” + 0%y ket = Dby ks
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we obtain the following inequality on the kernel of Z;:
kK1 ||k — F1 |y o=ty

(Wi = why = Wkk)2 + T3 ek

A

Lkoky h—ks
|l ||k — K1

= Mol fI(EI? + [k ]? + [k — k1[?)
By the positivity of |k|? and the Cauchy—Schwarz inequality, the following holds
true:

Viks b 2L g (wr — why — Wh—,) =

(6 + [ka]? + [k = Eaf? > [k * + [k = ko ? > 20k [k = Kl

which implies

2|k|
Vs ki 2L (Wr — Wy — wh—k,) < Mol f]’
As a result, we have the following estimate on Zy:
2|k dk
I < 2RI Jpa Srdky < 2[k|f. (2.11)

- MNMo[f]

T, can be estimated in a similar way. We can reduce Z, to an integral on R? by
taking into account the definition of d(k; — k — ko) as follows:

Iy = f/d Vit bk | L (Whiy — Wi — wiy ) fodka.
R

Taking into account the definite of Viik, kkayr L£f(Whkithy — Wk — Why)s Dhtkon koo »
and the inequality
(Wit = W — Why)® + Trgkg bke = Dby kokas
the following estimate on the kernel of 7o can be obtained:
|k + oK k2| Tkt ks b ko
Whihy — Wk — Why)?2 + Fi-‘,—kg,k,kz

|k + ko[ k|[ k2]
= Molf1(|E + k2| + [k]? + |k2]?)

Using the positivity of |k|? and the Cauchy—Schwarz inequality, we find
[k + ko|® + [k|* + [ko|* > |k + k| + [ka|* > 2|k + ko|[ko,

Vb oo | L7 (Whephy — W — Wiy ) = (

which implies

2|k|
Vit o e o |2 L (Wh iy — Wk — Wiy) < Mol /]’
We then obtain the following estimate on Zs:
2|k dk
7, < M Jpa Sodkz 21kl . (2.12)

- Mol f]
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Combining (2.10)—(2.12) yields
Q] = —4lk|f. (2.13)
By plugging the above inequality into (1.3), we obtain a differential inequality on f
O f = QU = 2v[kI*f = 8 f + (2v]k[* + 4|k[) f > 0.
A Gronwall inequality argument applied to the above differential inequality leads to
Pt R) = fo(kyem CIRFEHIRDE,

and so (2.8) holds.

Multiplying both sides of the above inequality with y g, is the characteristic
function of the ball Bga (O, Ro) in R?, and taking the integral with respect to k on
R?, yield

x> | xno SRy
2/ o fo (e CvIRE+AIRDE g
Rd

2
> e GBI [ v o)k 2 [ o
R

and so (2.9) holds true. The proof of Proposition 2.1 is completed. |

2.4. Weighted L}, (N > 0) estimates

For a given function g, let us recall the Nth moment of g
Malo] = [ gkt
Rd
Proposition 2.2. Let N > 0. Suppose that fo(k) is a nonnegative initial data
satisfying
fo(k)wl dk < oo,
Rd
and that nonnegative solutions f(t,k) of (1.3) satisfies
Mo[F](t) > Mo (t) = e~ PR fo (k) x g, || 10 > 0,

where 95”(0(1?) is the quantity considered in Proposition 2.1.
Then, there exists a positive constant Co(A1,A2) is a constant depending on
A1, A2 and independent of N such that

M1 [QLAN(E) — 20 K2 1)1
— [ anwme k-2 [ s k)
R4 Rd

e(4vR3+8Ro)t

<Cohyho) (14 S
ol ”( G

) ft, k)wr dk, (2.14)
]Rri
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which implies that nonnegative solutions f(t,k) of (1.3), with f(0,k) = fo(k),
satisfy

My[fl) = | SRy dh

e(4uRg+8R0)t

T folb)l¥ dk,  (2.15)
Rd

C()\l,/\z) <t+
<e

where C(A\1, \2) is a constant depending on A1, Aa.

Remark 2.2. Note that (2.14) says that the Nth moment of f only depends on the
Nth moment of the initial data and the parameter Ry defined in Proposition 2.1.

Proof of Proposition 2.2. Using ¢ = w} as a test function in (1.3), we obtain

d
— [ ft, k) dk + 2y/ \k|2f(t, k)wp dk
dt Rd Rd

S [f] + 2 Ik

[ @t ldr.

As a direct consequence of Lemma 2.3, the following inequality holds true:

4 f(t,k)w,@vdkwu/ k2 f(t, k)wp dk
dt R R4

c

o e
< Mol/] My 1[f(1)] = Mof] e [t k)w, T dk. (2.16)

Notice that

2
wk7>\1
Ay

|k =

we get the following moment equation:

21/>\1
A2

GINLFO] + Ml 0] = SN O] < e £

olf]
Using the fact that
Mo[f] > e~ CrROFARIT| £ (k) x gy || 11

we deduce from (2.16)

4 f(t,k)w{jd/cwu/ k2 f(t, k)wp dk
dt Rd' Rd
C Ce(2vRE+4R0)T
< — My [fO)] < ——— | flt k)N T dE.
o O = i Jea T
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Now since
Ce(2vR3+4Ro)t
ein'H — 2V\k|2wk
| fo(k)Xx R Il L1

Ce(2vR3+4Ro)t - ,
= (AL + Aolk[D)Z m()\ﬁ-)\ﬂ/ﬂ )z —2v|k[* |,
0

¢ Ce(2uR0+4R0)t
[fo(k)xRe Il 21

(41/R0+8R0)t
some constant C(Ay, A1) (1 + & o)

and observing tha (A1 + Xak|?)2 — 20]k|? is bounded uniformly by

) we can bound

€(4yR§+8Ro)t

I fo (k)X R, 17

N
2

¢ wi T — 20|k Pwh <(XAhA2)<

o 1) > (A1 + A2k[%)

The above estimate means that the difference

06(2VR§+4RO)t

- tk’ N+1dk*2l// k'2 t,kdekj
oloxmlis Jua? LR

Ce(2ng+4R0)t

oy (S0 NV gk 2w! | dk,
R /e )<||f0(k)XR0|L1 o 2 )

is smaller than C()\l,)\g)(l + %) Jra f( N'dk, which immediately
leads to

d e(4vR3+8Ro)t N

o7 f(t E)w dk < C(\1, X2) (1 + HfOU‘C)XRo|%1> g ft kwy, dk.
Inequality (2.15) then follows as a consequence of the above inequality. O

3. Holder Estimates for Q[f]

In this section, we study the Hélder continuity of the collision operator Q[f] with
respect to weighted L} norm.

Proposition 3.1. Let M, N >0, and let Vs be any bounded subset of L, o(R?),
with the LNJr2 norms bounded from above by M and the L' norms bounded from
below by M'. Then, there exists a constant Carnr N, depending on M,M', N, so
that

C C 1
ol - e, < (g + ) 19~ 1

1
< Currllg = Pl (3.1)

for all g, h € V.

We first prove the following lemma.



Math. Models Methods Appl. Sci. Downloaded from www.worldscientific.com

by UNIVERSITY OF NEW ENGLAND on 01/03/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

On the wave turbulence theory for stratified flows in the ocean 19

Lemma 3.1. Let M,N > 0, and let Vi; be any bounded subset of L'(R?) N
LY. 1 (RY), with the Ly, norms bounded from above by M and the L' norms
bounded from below by M'. Then, there exists a constant Car v, depending on
M, M’ so that
C C
Qla - @l < ( + g ) o=l
|Qls) = QMlles, = \ gy igfamalial] * maflgl) 19~ e

< Cunrrllg = hllry

N+1

for all g,h € V.
Proof. We first compute the difference between @Q[g] and QIh]

Qlg] — Q[h] = //de [Ri ks ko [9] = Rieer ko 1] — 2( Ry ko [9] — Ry ko [B]) ] dky o,

whose L} -norm is

1Qls) ~ Qlblluy, = [ w2'GQlal(h) - QUi war
< / / /R N Wi | Rio oy ks [9] — R oy ko [B]] dkedkey dks
+2///R3d Wi | Riy ko [9] — Ry ok [1] | dedy do

=[] VRt salo] = R s I + o+ st
R<
Recalling that

Ricky ko 9] = ClViey 1o |*0(k = by = k) Lg(wie — wiy — wiy) (9192 — 991 — 992),
we find the following estimate on [[Q[g] — Q[R][ L1 :

1Qlg) — QAlllLy, < J1+ 2, (3.3)

where
Jy = /// ) |Vk,k1,k2|25(k — k1 = k2)|Lg(wr — wiy — w,)g192
R3

— Lp(wk — Wy, — Wiy )haha| (wh + wpy + wiy ) dkdky dka,

Jo = 2/// , Vs ko |26 (k1 — b — ko) | Lg(wh, — wi — wiy) 992
R3

— Lp(wk, — Wk — Wiy )hha|(wp + wp + wp ) dkdky dks. (3.4)
Let us now split the proof into two steps.

Step 1: Estimating J;. Define the quantity inside the triple integral of J; after
dropping (w,iv + wljx + w,i\g) to be Jp

J1 = [Vieky ko [20(k — oy — ko) | Ly (wr — Why — Wiy ) 9192 — L (Wk — Wiy — Wiy )h1hoal,
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which, by the triangle inequality, can be bounded as
J1 < Ve ka6 (k — k1 — ko) Lg(wi — wiy, — Wiy )[g192 — haha
+ [Visko ke [0 (k — 1 — ko) | Lg (i — why — wiy) — Lawi — wiy — wis)[[haha-

Define the two terms on the right-hand side of the above inequality to be Ji; and
Ji2, respectively.

Let us now study Ji; in details. Using the definition of £, and the triangle
inequality

l9192 — hiha| < |g1l|g2 — ha| + |ha||g1 — hal,

yields the following estimate on Ji1:

| APy
J11 SC|]€HI€1||I€2|5(/€*]€1*]€2) 9,1%,%1,%2 ‘g1‘|927h2|
(Wi = why —wWio)2 T2, 04
r
+ Okl |20 (k — Ky — ko) AL |hallgr — M.

(Wi —wry —wiy)2+T2 50 4
By the inequality
2, 12 2
(Wi = wry = Wky)” TG ks ke 2 Ty by ko

we can bound Jq; as

1
Jin < Olk|[k|[k2|6(k — k1 — kz)mh}l”gz — hol

g,k,k1,R2

1
+ Clk||k1||k2[6(k — k1 —kz)mmzﬂ% — hql.
g,Kk,Kk1,Kk2

The right-hand side of the above inequality can be estimated by employing the
following Cauchy—Schwarz inequality:

L ks ke = Mollg (K> + [k1|* + [k2?)
> Mollgl](|k1]? + |k2l?) = 290 [|gl][Kx||k2],

where we have just used the lower bound of £m0[| gl], yielding

|k|6(k — k1 — 2)|91||92—h2|+ |k|6(k — k1 — k2)|ha]lg1 — ha].

C
M= STl n ]

Multiplying the above inequality with (wfgv + wkl + w,i\g) and integrating in k, ki
and ks lead to

// Jii(w + wpy + wiy ) dkdky dk,
R3d

C
< (k|6 — ky — K bl 4 hollan — B
—///Rad WOUQHH |6 1 — k2)[lg1llg2 — ha| + |hallgr — hal]
s (wl + wp +wl ) dkdky dks.
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Using the resonant condition k& = ki + ko, we reduce the triple integral on the
right-hand side to a double integral

C
/// Jin (wp +wp +wpy )dkdkydks < 7// |k1 + E2|[lg1]|g2 — hel
R3 mOHQH R2d

+[hallgr — bl (wiy + wiy ) dk1dks,
where we have just used the inequality
N N N
Wy 4y < Cwy) + Cup,

proved in Proposition 2.3, to bound the sum w,iv + w{x + w,i\g by C(w,ﬁ + w,i\’;)
Observing that

|k + k2|(w,]€\§ —|—w,]€\;) < (k1| + \k2|)(w,[€\§ —i—w,i\g) < C’(w,ﬁ“ —l—w,ﬁ“),

we find

/// Jin (Wi + wiy + wiy ) dkdkydks
R3d
< st [ lonlon = sl + hallgn = al) (¥ + ) b,
Mollgl] J Jrea ' :

which immediately leads to

/// Jii () + wpy + wpy ) dkdky dk;
R3d

lg = hllz + 1Al + [l Ly

N+1)

gl +llglley (3.5)

o
N+1 N+1

L —

= Molgl]
C

< ———— — hl|;1 1 + ||| 2 .

mOHg” ||g ||LN+1(HgHLN+1 || HLN+1)

Now, let us look at Ji5, which can be written as

Ji2 = C|k||k1|[k2]0(k — k1 — k2)|h1hs|

Ly ke ko [(Wk = Why — Wiy )2+ T kg o)
= Dhik ko ko [(wk — Wk T wk2)2 + F?J,k,kl,kg]

X
[(w — wiy, —wky)? + Fﬁ,k7k1,k2][(wk — Wk, —Wky)2 + Fizz,hkl,kz]

= Clkl||k1]|k2]0(k — k1 — k2)|h1hs|

[(wr = Wiy = Wky)® = gk ko Dbk ko | Tk ks ks = Dhookes |
[(wr — Wiy — wiy)? + F?;,k,kl,kz][(wk — Wy — Wiy )2+ Fi,k,kl,kz]
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It follows from the Cauchy—Schwarz inequality that
[(wk — Wh, — Wiy )2 F F?]’k)kl’k?] [(wk —Wh, — Wy )2 F%7k7k17k2]
> |(wr — Wiy — Wka)® = Dy oo Dok or ko | (Wh — Wiy — Wiy )
+ g kkr ko Uik by o |
> |(wr — Wiy — Wka)® = Dgosestey oo Dhokeer koo | Dgokesken oo Dok o o »

from which, we obtain the following estimate on Jyo:

r T
Jia < C|k||ky||ka||h1ha|0(k — ki — k2)| gokshiky ~ Dhkobikal
P

The numerator of the fraction on the right-hand side has the following interesting
property:

Dy ker ks — Dok ko | = Cl(E* + k7 + K3)Molg] — [A]]l,
which can be bounded as follows:
Dy bea ks = Dok kol < C(K? + K 4+ K3)llg — hll 1,
yielding an upper bound on Ji2

lg = Al

J12 < C|k||k1”k2||h1h2|6(k - kl - k2) (k2 + ]{72 + kz)mougumo[lh'] .
1 2

By the Cauchy—Schwarz inequality

k2 4+ k2 + k2 > k2 4+ k2 > 2|ky] |k,

and the lower bound on My[|g|] and My|[|h|], the following estimate on Ji2 then
follows:
C

Jio € ——————|k||hahol6(k — ky — k2)|lg — hl| 11
12 < gy P2l = = Ro)llg = bl

Multiplying the above inequality with (w{f + w,i\i + w,i\g ) and integrate in k, k;
and ks, the same argument used to deduce (3.5) leads to

C
Jio (W + Wi MYdkdkidks < —————|lg — h . (36
///]Rad 12(wk + Wi, +wk2) 10K2 = Mo[lgl1 7] g ||L}V+1 (3.6)

Note that C is a constant depending on (HgHL}VH + ||h||L}V+1). Combining (3.5) and
(3.6) yields
C C
Ji < ( + ) g—nhlry 3.7
v= \aora w10 e &7
where C'is a constant depending on (|lg|lzy,, +IIhllLy . )-

Step 2: Estimating Js. The proof of estimating J, follows exactly the same
argument used in Step 1. As a consequence, we omit some details and give only the
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main estimates in the sequel. First, define the quantity inside the triple integral of
Jo after dropping (w,iv + wé\i + w,i\g) to be J
Jo = Vi koo |20 (k1 — b — E2) | L (why, — Wi — Wiy )g92 — L (Why — Wk — Wiy )hhal,
which, by the triangle inequality, can be bounded as

Jo < Vi ks |20(k1 — k — ko) Ly (wr, — Wk — W, )|9g2 — hha|
| Viey eokea |20 (k1 — b — k2) | Ly (wr, — Wk — Wry) — Ln(wh, — Wk — W, )|[ha).

We set the two terms on the right-hand side of the above inequality to be Js; and
Jag, respectively.
The following estimate on Jo; is a direct consequence of the triangle inequality:

| Ry
Jo1 < |Ek|lk1||k2|6 (k1 — k — k 9,70, 72 —h
21 < |K[|K1 ]| k2|0 (Ky 2)(wk1*wk*wk2) +F2kk1,k2 |g[lg2 2]
I
+Ck| [k || al 6k —  — ko) plb b |hallg — B

(Wi, — Wi — Wk, )? + Fg Kk, ks

The same argument used in Step 1 can be employed, implying the following estimate
on J212

[k1l0(k — k1 = k2)lgllgz — he| + g k1|0(k — Ky — k2)lhzllg — hl.

C
TS ol n ]

Multiplying the above inequality with (w,iv + wkl + wk2) and integrate in k, k1 and
ko yields

c/// ) Jor (Wi +wpy +wiy)dkdkidks < C(|lg = hlls +lg = hllzy, ) (3:8)
R3

+ 1Al + N2l Ly

where C is a constant depending on (||g||z + |9l 2 N+1)

Now, similar to Ji2, J22 can be bounded as

N+1

r -T
Jaz < C|k|[kx k2| |hha|6 (k1 — k — kg)‘ gk = Db
PN

The same argument used in Step 1 can be applied and the following estimate on
Jos then follows:

Jag < |k||hho|6(k — kv — k2)|lg — bl L1

Multiplying the above inequality with (w,JCV + wﬁ + w,i\; ) and integrate in k, k1 and

ko, we obtain
/ / / Joo (wi +wpy + wpy ) dkdk dksy
R3d

C
= WollgNMo 1] hllzy +llg = b 3.9
o Tano iy 19— Ml + g = Play,, ). (39)
where C' is a constant depending on (”g”L}vH + ”h”L}w)



Math. Models Methods Appl. Sci. Downloaded from www.worldscientific.com

by UNIVERSITY OF NEW ENGLAND on 01/03/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

24 1. M. Gamba, L. M. Smith & M.-B. Tran
Combining (3.8) and (3.9) yields

C C
1< (st + g (o e + o=l )

(3.10)

< (s * sag) 19—
- 1 .
— A\ MollglMo[[A]] ~ Mollgl] v
Putting the two estimates (3.7) and (3.10) together with (3.3) and (3.4), the con-

clusion of the lemma then follows. O

Proof of Proposition 3.1. The proposition now follows straightforwardly from
the previous lemma. Indeed, we recall the interpolation inequality (see Lemma 2.2):
g=-n n—-p
lgllzy < lgllZy" gl £y”

for ¢ > n > p. Together with the boundedness of g, h in Li N L}V+2, we obtain

lg =Pl

N+1

1 1 1
<llg—hlfy g~ hlE, < Cullg—hl}, -
Lemma 3.1 yields

1Qlg] — QI L, < Crmmr nllg — h||2}v7

which holds for all N > 0. The proposition follows. O

4. Proof of Theorem 1.1
We shall apply Theorem 1.2 for (1.3), which reads
0.f = Qlf), QU= QU —2vlk*f.

Fix an N > 1. We choose the Banach spaces E = L} (RY), F = L} ,(R%),
endowed with the norms

11l = 1flley  If =1l

+3°

We also define

| fl == Myalf],
then
)‘|f|*:|>‘f|*7 vfeFa)‘ER-l—a
and

[fle = If 1y,

Moreover, condition (1.26) is automatically satisfied due to the Lebesgue dominated
convergence theorem and Theorem 1.2.7.5

VfeSr.

+3’
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Clearly, St is a bounded and closed set with respect to the norm || - ||.. By
Proposition 2.2, for fy € Sy C Sr, solutions to (1.3) will remain in Sy. Thus, it
suffices to verify the three conditions (), (B), (€) of Theorem 1.2, then Theorem
1.1 is a consequence of Theorem 1.2. Notice that continuity condition (2) follows
directly from Proposition 3.1, we therefore only need to verify (%8) and (€).

4.1. Condition (B): Subtangent condition

Let f be an arbitrary element of the set Sy. It suffices to prove the following claim:
for all € > 0, there exists h, depending on f and € such that

B(f +hQ[f],he)NSr #0, 0<h < h,. (4.1)
For R > 0, let xg(k) be the characteristic function of the ball B(0, R), and set
wr =+ hQUfr],  fr(k) = xr(k)f(F), (42)

recalling @[g] = Q[g] — 2v|k|?g9. We shall prove that for all R > 0, there exists
an hgr so that wg belongs to Sr, for all 0 < h < hg. It is clear that wgr €
LY(R?) N Ly 3(RY).

We now check the conditions S1, S2 and S3 in (1.24).
Condition (S1): Positivity of the set Sr. Note that one can write Q[f] =

anin [.f] - Qloss [f]a with anin [f] Z 0 and Qloss [f] = fQ— [f] Since fR is compactly
supported, it is clear that xgQ_[fr] is bounded by a universal positive constant
4R, computed in Proposition 2.1. Hence,

wr = f+ hQ[fr] — 2v|k|* fr)
> f — hfr(4R + 2vR?),

which is nonnegative, for sufficiently small h; precisely, h < hTR =
Suppose that R > Ry are chosen large enough such that

1
2(4R+2vR?) "

Ixruoll« > lIxrouoll« > R
Let us check (1.27) for Ry < R. By Proposition 2.1

wr — f
XRo h

= XroQIfr] = —(4Ro + vRE) fr,- (4.3)
Moreover

lwr — fle = hQfr] — 20|k frls < Coll frllx
where the last inequality follows from Proposition 2.2. That leads to
(A1, )\2)6(2uR5+4R0)T

C
WR — *S
wr = I ol xmls

£l (4.4)

(}\1))\2)8(2VR(2)+4R0)T
[1fo(E)xRoll L1

with <o computed in Proposition 2.2.
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Condition (S2): Upper bound of the set Sr. Since
11l < (2Rs + 1),
and
lim [|f = wgll« =0,
we can choose h, small enough such that for 0 < h < h,
lwrlls < (2R, +1)e .
Condition (S3): Lower bound of the set St. Since
Il > Rre= T /2,
and
Lim |f —wrl|l« =0,
we can choose h, small enough such that
|wrll« > R*e~C"T)2.

This proves the claim (4.1), and hence condition (%) is verified.

4.2. Condition (€): One side Lipschitz condition

By the Lebesgue’s dominated convergence theorem, we have that

lp,¢] = lim K¢+ helle — |10l e)

= lim A" [ (| + heo| = [¢])(wr +wp) )dk
h—0— Rd

< / p(k)sign(6(k)) (wi + w ) dk.
Rd,

Hence, recalling Q[f] = Q[f] — 2v|k|2f, we estimate

[QLf1 = Qlgl. f —g] < /Rd [QLFI(F) — Qlg)(k)Isign((f — 9)(k))wi dk
< QL1 - Qlallle — 2vIlk[*(f — 9)l -

Using Lemma 3.1 and recalling || - [[g = || - |11 , we have

1QLf1 = Qlyllle < Cnllf —gllry,-
Since C|k|N — 2v|k|N+2 is always bounded by C’|k|Y for C’ > 0, we obtain

[QLf1 - Qlg). f — 9] < CnIlf = glle-
The condition (€) follows. The proof of Theorem 1.1 is complete.
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5. Proof of Theorem 1.2
The proof is divided into four parts.

Part 1: According to our assumption, St is bounded by a constant C's in the norm
I - |l, due to the Holder continuity property of Qfu],

1Q[u]]| < Co, VYu e Sr.

By our assumption, for an element u in Sy C Sy, there exists £, > 0 such that for
0 <& <&

B(u+ £Q[ul,6) N Sr\{u + £Q[ul} # O,

for 0 small enough.

For a fixed u and € > 0, there exists £ > 0 such that ||u —v| < (Cg + 1) then
[Q(u) — Q(v)|| < §. Let z be in B(u+ £Q[u], %) N S\{u + £Q[u]} satisfying

C. zZ—u cr
< 7Hu||*a XRo ¢ > _XR()?UH

. §

Z—U

£

and define
tOt) =u+ t(zgu)

Now, we also have the following lower bound on ©:

X O(t) = Y, (u Lt : u))

2 XRo (1 - tC*) u (5-1)

2
> XRoe_tC* 0(0),

t e 0,¢].

for fand 0 <t < &< 8

cr *
Hence
R*efc*t
We also have that
t(z — u)
0@« =10(t)]« = |u+ —
t(z — tC,
< July + ‘(ng < ul« + |u|*7

~ oo (1+ ).

We then obtain
10(t)]. < (I6(0)]l, +1)e" — 1 < (2R, +1)e". (5.3)
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Therefore, © maps [0,&] into Sy. It is straightforward that

§

ot - ull < |52 < eloti+ § < (co + v
which implies
|Qle®] - Qlulll < 5. vt e0.g.
Combining the above inequality and the fact that
16() ~ Qlulll = ||~ - Qul| < 5,
we obtain
16() - Qe <e Vie o8 (5.4)

Part 2: Let © be a solution to (5.4) on [0,&] constructed in Part 1. Using the
procedure of Part 1, we assume that © can be extended to the interval [7,7 4+ 7'].
The same arguments that lead to (5.3) imply

IO(r + )l < ((IO()|l + 1)e“* = 1), teo,7].
Combining the above inequality with (5.3) yields
10(r + )l < ((1IO(0) ]|« + 1)e“™ — 1+ 1)e " —1
< (©(0)]« 4 1)+ —1 (5.5)
< (2R, + 1)e-(m+1),

where the last inequality follows from the fact that R, > 1.
Similar, we also have

XRrO(T +1) > xr,e” TV O(0), (5.6)

which implies
R*e— C*(T+t)

Ixr, O + )]l > ——

(5.7)

Part 3: From Part 1, there exists a solution © to Eq. (5.4) on an interval [0,¢].
Now, we have the following procedure:

e Step 1: Suppose that we can construct the solution © of (5.4) on [0,7] (7 < T),
where ©(0) € SN B, (0, R.)\B. (O, R*). Since due to Part 2 ©(7) € S;, by the
same process as in Part 1 and by (5.3), (5.1), (5.2), (5.5)—(5.7) the solution ©
could be extended to [r, 7 + h,| where 7+ h, < T.
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e Step 2: Suppose that we can construct the solution © of (5.4) on a series of
intervals [0, 7], [11,72],- -+, [T, Tnt1]s - - - - Since the increasing sequence {7,} is
bounded by T, it has a limit, noted by 7. Moreover

10(8)]1« <(O(0)][« + 1)e" — 1 < (2R, + 1)e*, Vi e [0,7),
. (5.8)
XRr,©(t) ZXROe_tC ©(0), Vte[0,7),

and

Ree-C"t
IXR O > —F— Vte[0,7). (5.9)
Recall that ||Q(0)| is bounded by Cg on [r,, Tny1] for all n € N, then ||©] is
bounded by € + Cg on [0,7). As a consequence, O(7) can be defined to be the
limit of ©(7,) with respect to the norm || - ||. That, together with (1.26) and the
fact that S; is closed with respect to || - ||, implies that © is a solution of (5.4)

on [0,7]. In addition (5.8) and (5.9) also hold true on [0, 7].

As a consequence, if the solution © can be defined on [0,7}), Ty < T, it could be
extended to [0, Tp]. Now, we suppose that [0, Tp] is the maximal closed interval that
© could be defined, by Steps 1 and 2. © could be extended to a larger interval
[To, To+T}], which means that T = T and © is defined on the whole interval [0, .

Part 4: Finally, let us consider a sequence of solution {u¢} to (5.4) on [0,T]. We
will prove that this is a Cauchy sequence. Let {u¢} and {v¢} be two sequences of
solutions to (5.4) on [0,7]. We note that u® and v¢ are affine functions on [0, 7.

Moreover by the one-side Lipschitz condition

d € € _ € € . € . €
Zllw @) = o O = [u (@) — o (1), a%(¢) — #°(1)]

< [uf(t) = v*(t), Qlu(t)] — Qv (1)]] + 2¢
< Cllut(t) = o (@) + 2e,
for a.e. t € [0, 77, which leads to

LT
Ju(8) = v ()] < 26—

By letting € tend to 0, u¢ — u uniformly on [0, T]. It is straightforward that u is a
solution to (1.28).
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