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Quantum chemistry is a discipline which relies heavily on
very expensive numerical computations. The scaling of
correlated wave function methods lies, in their standard
implementation, between O(N®°) and O(eV), where N
is proportional to the system size. Therefore, performing
accurate calculations on chemically meaningful systems re-
quires i) approximations that can lower the computational
scaling, and ii) efficient implementations that take advan-
tage of modern massively parallel architectures. QUANTUM
PACKAGE is an open-source programming environment for
quantum chemistry specially designed for wave function
methods. Its main goal is the development of determinant-
driven selected configuration interaction (sCI) methods and
multi-reference second-order perturbation theory (PT2). The determinant-driven framework allows the programmer
to include any arbitrary set of determinants in the reference space, hence providing greater methodological freedom.
The sCI method implemented in QUANTUM PACKAGE is based on the CIPSI (Configuration Interaction using a Pertur-
bative Selection made Iteratively) algorithm which complements the variational sCI energy with a PT2 correction.
Additional external plugins have been recently added to perform calculations with multireference coupled cluster
theory and range-separated density-functional theory. All the programs are developed with the IRPF90 code generator,
which simplifies collaborative work and the development of new features. QUANTUM PACKAGE strives to allow easy
implementation and experimentation of new methods, while making parallel computation as simple and efficient as
possible on modern supercomputer architectures. Currently, the code enables, routinely, to realize runs on roughly
2000 CPU cores, with tens of millions of determinants in the reference space. Moreover, we have been able to push
up to 12 288 cores in order to test its parallel efficiency. In the present manuscript, we also introduce some key new
developments: i) a renormalized second-order perturbative correction for efficient extrapolation to the full CI limit,
and ii) a stochastic version of the CIPSI selection performed simultaneously to the PT2 calculation at no extra cost.
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generation to the next was mostly driven by an increase of
processors’ frequency. Indeed, the amount of random access

In 1965, Gordon Moore predicted that the number of tran-
sistors in an integrated circuit would double about every two
years (the so-called Moore’s law).! Rapidly, this “law” was
interpreted as an expected two-fold increase in performance
every 18 months. This became an industrial goal. The devel-
opment of today’s most popular electronic structure codes
was initiated in the 1990’s (or even before). At that time, the
increase of computational power from one supercomputer
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memory was small, the time to access data from disk was slow,
and the energy consumption of the most powerful computer
was 236 kW, hence far from being an economical concern.? At
the very beginning of the 21st century, having increased con-
tinuously, both the number of processors and their frequency
raised the supercomputer power consumption by two orders
of magnitude, inflating accordingly the electricity bill. The
only way to slow down this frenetic growth of power con-
sumption while keeping alive Moore’s dream was to freeze the
processor’s frequency (between 1 and 4 GHz), and increase
the number of CPU cores. The consequence of such a choice
was that “free lunch” was over: the programmers now had to
parallelize their programs to make them run faster.> At the
same time, computer scientists realized that the increase of


mailto:loos@irsamc.ups-tlse.fr
mailto:emmanuel.giner@lct.jussieu.fr
mailto:scemama@irsamc.ups-tlse.fr

performance in memory access was slower than the increase
in computational power,* and that the floating-point oper-
ation (or flop) count would soon stop being the bottleneck.
From now on, data movement would be the main concern.
This paradigm shift was named the memory wall. Moore’s law
is definitely near the end of its life.?

The traditional sequential algorithms of quantum chem-
istry are currently being redesigned and replaced by parallel
equivalents by multiple groups around the world.®"'® This
has obviously a significant influence on methodological de-
velopments. The most iconic example of this move towards
parallel-friendly methods is the recently developed full config-
uration interaction quantum Monte Carlo (FCIQMC) method
by Alavi and coworkers.® FCIQMC can be interpreted as a
Monte Carlo equivalent of older selected configuration inter-
action (sCI) algorithms®!%1°=>* such as CIPSI (Configuration
Interaction using a Perturbative Selection made Iteratively),!
that are iterative and thus a priori not well adapted to mas-
sively parallel architecture. As we shall see here, things turn
out differently, and the focus of the present article is to show
that sCI methods can be made efficient on modern massively
parallel supercomputers.

QuANTUM PACKAGE™ is an open-source suite of wave func-
tion quantum chemistry methods mainly developed at the Lab-
oratoire de Chimie et Physique Quantiques (LCPQ) in Toulouse
(France), and the Laboratoire de Chimie Théorique (LCT) in
Paris. Its source code is freely available on GitHub at the
following address: https://github.com/QuantumPackage/qp2.
QUANTUM PACKAGE strives to allow easy implementation
and experimentation of new methods, while making paral-
lel computation as simple and efficient as possible. Accord-
ingly, the initial choice of QUANTUM PACKAGE was to go to-
wards determinant-driven algorithms. Assuming a wave func-
tion expressed as a linear combination of determinants, a
determinant-driven algorithm essentially implies that the out-
ermost loop runs over determinants. On the other hand, more
traditional integral-driven algorithms have their outermost
loop running on the two-electron integrals appearing in the
expression of the matrix elements in the determinant basis
(see Sec. I B). Determinant-driven algorithms allow more flex-
ibility than their integral-driven counterparts,®® but they have
been known for years to be less efficient than their integral-
driven variant for solving electronic structure problems. In
high-precision calculations, the number of determinants is
larger than the number of integrals, justifying the integral-
driven choice. However, today’s programming standards im-
pose parallelism, and if determinant-driven calculations prove
to be better adapted to parallelism, such methods could regain
popularity. More conventional approaches have also been
very successfully parallelized: CCSD(T),’”*® DMRG,>* GW,*°
OMC,%1793 and many others.

QuANTUM PACKAGE was used in numerous applications,
in particular to obtain reference ground-state energies>*-38-64
as well as excitation energies****% for atomic and molec-
ular systems. For example, in Ref. 44, QUuANTUM PACKAGE
has been used to compute more than hundred very accurate
transition energies for states of various characters (valence,
Rydberg, n — 7%, m — 7t¥, singlet, triplet, ...) in 18 small

molecules. The high quality and compactness of the CIPSI
wave function was also used for quantum Monte Carlo cal-
culations to characterize the ground state of the water and
the FeS molecules,®*2 and obtained highly accurate excita-
tion energies.43’66’67 Of course, the technical considerations
were not the main concern of the different articles that were
produced. Because the present work focused on the actual
implementation of the methods at least as much as on the
theory behind them, this article is a perfect opportunity to
discuss in depth their implementation.

This manuscript is organized as follows. In Sec. II, we briefly
describe the main computational methods implemented in
QUANTUM PACKAGE as well as newly developed methods and
extrapolation techniques. Section III deals with their imple-
mentation. In particular, Sec. IIl A discusses the computation
of the Hamiltonian matrix elements using determinant-driven
algorithms, while Sec. III C focuses on the acceleration of the
Davidson diagonalization, a pivotal point of sCI methods. In
Sec. IID, we focus on the determinant selection step used
to build compact wave functions. In a nutshell, the princi-
ple is to incrementally build a reference wave function by
scavenging its external space for determinants that interact
with it. To make this step more affordable, we designed a new
stochastic scheme which selects on the fly the more impor-
tant determinants while the second-order perturbative (PT2)
energy is computed using a hybrid stochastic-deterministic
scheme.!? Therefore, the selection part of this new stochastic
CIPSI selection is virtually free as long as one is interested
in the second-order perturbative correction, which is crucial
in many cases in order to obtain near full configuration in-
teraction (FCI) results. Section IV briefly explains how we
produce spin-adapted wave functions, and Sec. V describes
parallelism within QuANTUM PACKAGE. The efficiency of the
present algorithms is demonstrated in Sec. VI C where illustra-
tive calculations and parallel speedups are reported. Finally,
Sec. VII discusses the development philosophy of QuaNTUM
PackAGE as well as other relevant technical details. Unless
otherwise stated, atomic units are used throughout.

1. METHODS
A. Generalities

The correlation energy is defined as®®

Ec = Eexact - EHF/ (1)

where Eexat and Epr are, respectively, the exact (non-
relativistic) energy and the Hartree-Fock (HF) energy in a
complete (one-electron) basis set.

To include electron correlation effects, the wave function as-
sociated with the kth electronic state, ‘I’k>, may be expanded
in the set of all possible N-electron Slater determinants, |I >,
built by placing N+ spin-up electrons in N, orbitals and N
spin-down electrons in Ny, orbitals (where N = Ny + N).
These so-called molecular orbitals (MOs) are defined as linear
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combinations of atomic orbitals (AOs)

Norp

Pp(r) = 2 Cupxu(r). (2)
M

Note that the MOs are assumed to be real valued in the con-
text of this work. The eigenvectors of the Hamiltonian H
are consequently expressed as linear combinations of Slater
determinants, i.e.,

Net
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where Nge; is the number of determinants. For sake of con-
ciseness, we will restrict the discussion to the ground state
(i.e. k = 0) and drop the subscript k accordingly. Solving the
eigenvalue problem in this basis is referred to as FCI and yields,
for a given basis set, the exact solution of the Schrodinger
equation. Unfortunately, FCI is usually computationally in-
tractable because of its exponential scaling with the size of
the system.

B. Matrix elements of the Hamiltonian

In the N-electron basis of Slater determinants, one expects
the matrix elements of F to be integrals over 3N dimensions.
However, given the two-electron nature of the Hamiltonian,
and because the MOs are orthonormal, Slater determinants
that differ by more than two spinorbitals yield a zero matrix
element. The remaining elements can be expressed as sums
of integrals over one- or two-electron coordinates, which can
be computed at a reasonable cost. These simplifications are
known as Slater-Condon’s rules, and reads
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where 1 is the one-electron part of the Hamiltonian (including
kinetic energy and electron-nucleus attraction operators),

(plilg) = [ ¢p(£)h(x)gy (x)dr ©)

are one-electron integrals, i € |I) means that ¢; belongs to
the Slater determinant |I), I;) and |I;f7> are determinants
obtained from |I) by substituting orbitals ¢, by ¢, and ¢,
and ¢, by ¢, and ¢s, respectively,

(palrs) = [[ gp(e)gy(r)rig 9 (r)s(r2)drides )

.. -1
are two-electron electron repulsion integrals (ERILs), 7, =

1 —1p| ' is the Coulomb operator, and (pql|rs) =

(pq|rs) — (ps|rq) are the usual antisymmetrized two-electron
integrals.

Within the HF method, Roothaan’s equations allow to solve
the problem in the AO basis.®® In this context, one needs to
compute the O(N2,) two-electron integrals (yv|Ac) over
the AO basis. Thanks to a large effort in algorithmic devel-
opment and implementation,’®~7” these integrals can now be
computed very fast on modern computers. However, with
post-HF methods, the computation of the two-electron in-
tegrals is a potential bottleneck. Indeed, when computing
matrix elements of the Hamiltonian in the basis of Slater de-
terminants, ERIs over MOs are required. Using Eq. (2), the cost
of computing a single integral (pq|rs) scales as O(N%,). A
naive computation of all integrals in the MO basis would cost

O(N8,). Fortunately, computing all of them can be scale;i

down to O(N2, ) by transforming the indices one by one.
This step is known as the four-index integral transformation.
In addition to being very costly, this step is hard to parallelize
in a distributed way, because it requires multiple collective
communications.””"8? However, techniques such as density
fitting (also called the resolution of the identity),%%° low-
rank approximations,2®8? or the combination of both? are
now routinely employed to overcome the computational and
storage bottlenecks.

C. Selected Cl methods

The sCI methods rely on the same principle as the usual
configuration interaction (CI) approaches, except that deter-
minants are not chosen a priori based on occupation or excita-
tion criteria, but selected among the entire set of determinants
based on their estimated contribution to the FCI wave func-
tion. Indeed, it has been noticed long ago that, even inside
a predefined subspace of determinants, only a small number
of them significantly contributes.’**! Therefore, an on-the-fly
selection of determinants is a rather natural idea that has
been proposed in the late 1960’s by Bender and Davidson!? as
well as Whitten and Hackmeyer.?’ sCI methods are still very
much under active development. The main advantage of sCI
methods is that no a priori assumption is made on the type
of electronic correlation. Therefore, at the price of a brute
force calculation, a sCI calculation is less biased by the user’s
appreciation of the problem’s complexity.

The approach that we have implemented in QUANTUM PACK-
AGE is based on the CIPSI algorithm developed by Huron, Ran-
curel and Malrieu in 1973,2! that iteratively selects external
determinants |«) — determinants which are not present in
the (reference or variational) zeroth-order wave function

¥y =Y e |1) (7)
1

at a given iteration — using a perturbative criterion
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is the zeroth-order (variational) energy, and e, the (second-
order) estimated gain in correlation energy that would be
brought by the inclusion of |«). The second-order perturbative
correction
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is an estimate of the total missing correlation energy, i.e.,
E@ ~ Epc; — EO©), for large enough expansions.

Let us emphasize that sCI methods can be applied to any
determinant space. Although presented here for the FCI space,
it can be trivially generalized to a complete active space (CAS),
but also to standard CI spaces such as CIS, CISD or MR-CISD.
The only required modification is to set to zero the contribu-
tions associated with the determinants which do not belong
to the target space.

There is, however, a computational downside to sCI meth-
ods. In conventional CI methods, the rule by which deter-
minants are selected is known a priori, and therefore, one
can map a particular determinant to some row or column
indices.”” As a consequence, it can be systematically deter-
mined to which matrix element of H a two-electron integral
contributes. This allows for the implementation of so-called
integral-driven methods that work essentially by iterating over
integrals. On the contrary, in (most) sCI methods, the deter-
minants are selected a posteriori, and an explicit list has to be
maintained as there is no immediate way to know whether
or not a determinant has been selected. Consequently, we
must rely on the so-called determinant-driven approach in
which iterations are performed over determinants rather than
integrals. This can be a lot more expensive, since the num-
ber of determinants Ny is typically much larger than the
number of integrals. The number of determinants scales as
O(Nopp!) while the number of integrals scales (formally) as
O(Ngrb) What makes sCI calculations possible in practice
is that sCI methods generate relatively compact wave func-
tions, i.e. wave functions where Ny is much smaller (by
orders of magnitude) than the size of the FCI space. Further-
more, determinant-driven methods require an effective way to
compare determinants in order to extract the corresponding
excitation operators, and a way to rapidly fetch the associated
integrals involved, as described in Sec. IIT A.

Because of this high computational cost, approximations
have been proposed.? Recently, the semi-stochastic heat-
bath configuration interaction (SHCI) algorithm has taken
further the idea of a more approximate but extremely cheap
selection.”3%3 Compared to CIPS], the selection criterion is
simplified to

(10)

o

SHCI—mIax(|c1 (I|Ha)]). (11)

This algorithmically allows for an extremely fast selection of
doubly-excited determinants by an integral-driven approach.

Nonetheless, the bottlenecks of the SHCI are the diagonaliza-
tion step and the computation of E@), which remain determi-
nant driven.

As mentioned above, FCIQMC is an alternative approach
of stochastic nature recently developed in Alavi’s group,®®
where signed walkers spawn from one determinant to con-
nected ones, with a probability that is a function of the associ-
ated matrix element. The average proportion of walkers on a
determinant converges to its coefficient in the FCI wave func-
tion. A more “brute force” approach is the purely stochastic
selection of Monte Carlo CI (MCCI),”>** where determinants
are randomly added to the zeroth-order wave function. After
diagonalization, the determinants of smaller coefficient are
removed, and new random determinants are added.

A number of other variants have been developed but are not
detailed here.%10:19-21:24-28,30.31,33-54.95 AJthough these various
approaches appear under diverse acronyms, most of them rely
on the very same idea of selecting determinants iteratively
according to their contribution to the wave function or energy.

D. Extrapolation techniques
1. Usual extrapolation procedure

In order to extrapolate the sCI results to the FCI limit, we
have adopted the method recently proposed by Holmes, Um-
rigar and Sharma®’ in the context of the SHCI method.”3%4
It consists of extrapolating the sCI energy, E (©), as a func-
tion of the second-order Epstein-Nesbet energy, E(z), which
is an estimate of the truncation error in the sCI algorithm,
ie E@ ~ Epcy — E© 21 When E(?) = 0, the FCI limit
has effectively been reached. This extrapolation procedure
has been shown to be robust, even for challenging chemical
situations.”*0~%>54 Below, we propose an improved extrapola-
tion scheme which renormalizes the second-order perturbative
correction.

2. Renormalized PT2

At a given sCl iteration, the sCI+PT2 energy is given by
E=£c©® 4+ @, (12)

where E(©) and E? are given by Egs. (9) and (10), respectively.
Let us introduce the following energy-dependent second-
order self-energy

|H|‘f<0>> .
S PET "

o

Obviously, we have »(2) [E (0)] = E). Now, let us consider
the more general problem, which is somewhat related to
Brillouin-Wigner perturbation theory, where we have

E=EO 4+ x@7F, (14)



and assume that %.(2) [E] behaves linearly for E =~ E 0) e,

oz [E]

s@E] =~ 2P [EO] 4+ (E-EO) SE

(15)

E=E(0)

This linear behavior is corroborated by the findings of Nitzsche
and Davidson.”® Substituting Eq. (15) into (14) yields

2
E=E0 1532 [E(O)] +(E— E(O)) L)[E]
oE E=E(0) (16)
—EO 4 zE®@
where the renormalization factor is
(2) -
Z = l1 — aZT[E] ] , (17)
E=E©)
and
0z [E] (x| ALY (©)?
P S | = — _ <0. (18)
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Therefore, the renormalization factor fulfills the condition
0 < Z < 1, and its actual computation does not involve
any additional cost when computed alongside E@ as they
involve the same quantities. This renormalization procedure
of the second-order correction, that we have named rPT2,
bears obvious similarities with the computation of quasiparti-
cle energies within the GoW( method.”’ 1% Practically, the
effect of rPT2 is to damp the value of E ) for small wave
functions. Indeed, when Ny is small, the sum E 0 4+ E@)
usually overestimates (in magnitude) the FCI energy, yield-
ing a pronounced non-linear behavior of the sCI+PT2 energy.
Consequently, by computing instead the (renormalized) en-
ergy E©) + 7 E@), one observes a much more linear behavior
of the energy, hence an easier extrapolation to the FCI limit.
Its practical usefulness is illustrated in Sec. VIB.

1. IMPLEMENTATION

In this section, we give an overview of the implementation
of the various methods present in QUANTUM PACKAGE. The
implementation of the crucial algorithms is explained in de-
tail in the PhD thesis of Dr Y. Garniron!®! as well as in the
Appendix of the present manuscript.

A. Determinant-driven computation of the matrix
elements

For performance sake, it is vital that some basic opera-
tions are done efficiently and, notably, the computation of
the Hamiltonian matrix elements. This raises some questions
about the data structures chosen to represent the two-electron
integrals and determinants, as well as their consequences from
an algorithmic point of view. This section is going to address
these questions by going through the basic concepts of our
determinant-driven approach.

1. Storage of the two-electron integrals

In QUANTUM PACKAGE, the two-electron integrals are kept
in memory because they require a fast random access. Consid-
ering the large number of two-electron integrals, a hash table
is the natural choice allowing the storage of only non-zero
values with a data retrieval in near constant time.!°> However,
standard hashing algorithms tend to shuffle data to limit the
probability of collisions. Here, we favor data locality using
the hash function given in Algorithm 1. This hash function
i) returns the same value for all keys related by permutation
symmetry, ii) keeps some locality in the storage of data, and iii)
can be evaluated in 10 CPU cycles (estimated with MAQAQ%%)
if the integer divisions by two are replaced by right bit shift
instructions.

Function HASH (4, j,k,1): /* Hash function for
two-electron integrals */
Data: i,j,k, | are the orbital indices
Result: The corresponding hash
p < min(i, k) ;
r < max(i, k) ;
t—p+r(r—1)/2;
g < min(j, 1) ;
s < max(j, 1) ;
u+q+s(s—1)/2;
v+ min(t,u) ;
w < max(t,u) ;
return v+ w(w —1)/2;
Algorithm 1: Hash function that maps any orbital

quartet (7, j, k, 1) related by permutation symmetry to a
unique integer.

The hash table is such that each bucket can potentially
store 21° consecutive key-value pairs. The 15 least significant
bits of the hash value are removed to give the bucket index
lipucket = |hash(i, j,k,1)/2'%]], and only those 15 bits need
to be stored in the bucket for the key storage [hash(i, j, k, 1)
mod 2'°]. Hence, the key storage only requires two bytes
per key, and they are sorted in increasing order, enabling a
binary search within the bucket. The key search is always
fast since the binary search is bounded by 15 misses and the
maximum size of the key array is 64 kiB, the typical size of the
L1 cache. The efficiency of the integral storage is illustrated
in Appendix A 1.

B. Internal representation of determinants

Determinants can be conveniently written as a string

of creation operators applied to the vacuum state ) eg.,
a?a;a,ﬂ) = |I). Because of the fermionic nature of electrons,

a permutation of two contiguous creation operators results

in a sign change a}a:f = —a;ra;f, which makes their ordering
relevant, e.g., a}a;a,ﬂ) = — |I). A determinant can be bro-

ken down into two pieces of information: i) a set of creation
operators corresponding to the set of occupied spinorbitals in



the determinant, and ii) an ordering of the creation operators
responsible for the sign of the determinant, known as phase
factor. Once an ordering operator O is chosen and applied to
all determinants, the phase factor may simply be included in
the CI coeflicient.

The determinants are built using the following order: i)
spin-up (1) spinorbitals are placed before spin-down (J)
spinorbitals, as in the Waller-Hartree double determinant
representation'® O |I) = [|) = [,1|]), and ii) within each
operator fT and [ 1 the creation operators are sorted by increas-
ing indices. For instance, let us consider the determinant |J) =

atafalal|) built from the set of spinorbitals {iy, jr, ky,i;}

v&iith i < j < k. If we happen to encounter such a deter-
minant, our choice of representation imposes to consider its
re-ordered expression O |]) = fa;ra;a,ta:fw = —|J), and
the phase factor must be handled.

The indices of the creation operators (or equivalently the
spinorbital occupations), are stored using the so-called bit-
string encoding. A bitstring is an array of bits; typically, the
64-bit binary representation of an integer is a bitstring of size
64. Quite simply, the idea is to map each spinorbital to a
single bit with value set to its occupation number. In other
words, 0 and 1 are associated with the unoccupied and occupied
states, respectively. Additional information about the internal
representation of determinants can be found in Appendix A 2.

C. Davidson diagonalization

Finding the lowest root(s) of the Hamiltonian is a necessary
step in CI methods. Standard diagonalization algorithms scale
as O(N3,) and O(N3.,) in terms of computation and storage,
respectively. Hence, their cost is prohibitive as Nge; is usually,
at least, of the order of few millions. Fortunately, not all the
spectrum of H is required: only the first few lowest eigenstates
are of interest. The Davidson diagonalization'®>~1% is an itera-
tive algorithm which aims at extracting the first Ngtates lowest
eigenstates of a large matrix. This algorithm reduces the cost
of both the computation and storage to O(NstatesNget) and
O (Nstates Nget ), respectively. It is presented as Algorithm 2
and further details about the present Davidson algorithm im-
plementation are gathered in Appendix A 3.

D. CIPSlI selection and PT2 energy
1. The basic algorithm

The largest amount of work for this second version of QUAN-
TUM PACKAGE has been devoted to the improvement of the
CIPSI algorithm implementation.!!® As briefly described in
Sec. 11, this is an iterative selection algorithm, where determi-
nants are added to the reference wave function according to
a perturbative criterion.

The nth CIPSI iteration can be described as follows:

1. The zeroth-order (reference or variational) wave func-

Function DAVIDSON DIAG ( Ntges, U)
Data: Nitates: Number of requested states
Data: Nge;: Number of determinants
Data: U: Guess vectors, Nget X Natates
Result: Ngiates lowest eigenvalues eigenvectors of H
converged < FALSE ;
while ~converged do
Gram-Schmidt orthonormalization of U ;
W+ HU;
h+ U'W;
Diagonalize h : eigenvalues E and eigenvectors y ;
U « Uy;
W Wy;
for k <+ 1, Ngqgzes do

fori < 1, Ny, do

U U

end

end

converged «+ ||R|| < €;
U+« [U,R];

end
return U;

Algorithm 2: Davidson diagonalization procedure. Note
that [., .] stands for column-wise matrix concatenation.

tion

YOy = Y o) (19)

I€Z,

is defined over a set of determinants Z,, — character-
ized as internal determinants — from which the lowest
eigenvector of H are obtained.

2. For all external determinants |a) ¢ Z,, but connected
to Z,, i.e., <T(O) |I:I|oc> # 0, we compute the individual
perturbative contribution e&z) given by Eq. (8). This set
of external determinants is labeled A,,.

3. Summing the contributions of all the external deter-
minants &« € A, gives the second-order perturbative
correction provided by Eq. (10) and the FCI energy can
be estimated as Ercp ~ E©) + EQ@).

4. We extract |a*) € A7, the subset of determinants |«) €

A, with the largest contributions e,ﬁf), and add them
to the variational space Z,, 11 = Z,, U A7. In practice,
in the case of the single-state calculation, we aim at
doubling the size of the reference wave function at each
iteration.

5. Iterate until the desired convergence has been reached.

All the details of our current implementation are reported

in Appendix A 4. In the remaining of this section, we only
discuss the algorithm of our new stochastic CIPSI selection.



2. New stochastic selection

In the past, CIPSI calculations were only possible in practice
thanks to approximations. The first approximation restricts
the set A, by defining a set of generators. Indeed, it is very
unlikely that |a) will be selected if it is not connected to any
\I > with a large coefficient, so only the determinants with
the largest coeflicients are generators. A second approxima-
tion defines a set of selectors in order to reduce the cost of
e, ’ by removing the determinants with the smallest coeffi-
cients in the expression of ¥(©) in E@). This approximate
scheme was introduced in the 80’s and is known as three-
class CIPSI** The downside of these approximations is that
the calculation is biased and, consequently, does not strictly
converge to the FCI limit. Moreover, similar to the initiator
approximation in FCIQMC,? this scheme suffers from a size-
consistency issue.!!! The stochastic selection that we describe
in this section (asymptotically) cures this problem, as there
is no threshold on the wave function: if the calculation is run
long enough, the unbiased FCI solution is obtained.

Recently, some of us developed a hybrid deterministic/s-
tochastic algorithm for the computation of E(2).1'2 The main
idea is to rewrite the expression of

E® =Y ¢, (¥O|Aa) (20)

into elementary contributions labeled by the determinants of
the internal space:

EO Y ¥ o (b0 =Y, e
I

I acA;p
where

(Y|Hla)

EO — (aAla) 22

Cqp =

is the corresponding coeflicient estimated via first-order per-
turbation theory, and A is the subset of determinants |«)
connected to |I) by H such that |«) ¢ Ug-1Ag. The sum is
decomposed into a stochastic and a deterministic contribution

ED =Y e+ Y e (23)

JeD KeS

where D and S are the sets of determinants included in the
deterministic and stochastic components, respectively.

The |I)’s are sorted by decreasing C%, and two processes are
used simultaneously to compute the contributions e;. The first
process is stochastic and |I) is drawn according to 2. When
a given €1 has been computed once, its contribution is stored
such that if |I) is drawn again later the contribution does
not need to be recomputed. The only update is to increment
the number of times it has been drawn for the Monte Carlo
statistics. In parallel, a deterministic process is run, forcing to
compute the contribution &} with the smallest index which has
yet to be computed. The deterministic component is chosen as

the first contiguous set of €. Hence, the computation of E (2)

is unbiased, and the exact deterministic value can be obtained
in a finite time if the calculation is run long enough. The
stochastic part is only a convergence accelerator providing a
reliable error bar. The computation of E (2) is run with a default
stopping criterion set to \5E(2) /E®) | =0.002, where SE®)
is the statistical error associated with E(2). We would like to
stress that, thanks to the present semistochastic algorithm, the
complete wave function is considered, and that no threshold
is required. Consequently, size-consistency will be preserved
if a size-consistent perturbation theory is applied.

While performing production runs, we have noticed that
the computation of E(2) was faster than the CIPSI selection.
Hence, we have slightly modified the routines computing E@
such that the selection of determinants is performed alongside
the computation of E (2), This new on-the-fly CIPSI selection
performed during the stochastic PT2 calculation completely
removes the conventional (deterministic) selection step, and
the determinants are selected with no additional cost. We
have observed that, numerically, the curves of the variational
energy as a function of Ny obtained with either the deter-
ministic or the stochastic selections are indistinguishable, so
that the stochastic algorithm does not harm the selection’s
quality.

For the selection of multiple states, one PT2 calculation is
run for each state and, as proposed by Angeli et al.,''® the
selection criterion is modified as

Nstates
2P =y kw0 24
L e e 1Hl), (24)

with
(¥ A|a)

= ~ ~ . (25)
O A - (Al

This choice gives a balanced selection between states of dif-
ferent multi-configurational nature.

IV. SPIN-ADAPTED WAVE FUNCTIONS

Determinant-based sCI algorithms generate wave functions
expressed in a truncated space of determinants. Obviously,
the selection presented in the previous section does not en-
force that H commutes with $2 in the truncated space. Hence,
the eigenstates of H are usually not eigenvectors of $2, al-
though the situation improves when the size of the internal
space tends to be complete. A natural way to circumvent this
problem is to work in the basis of configuration state functions
(CSFs), but this representation makes the direct computation
of the Hamiltonian less straightforward during the Davidson
diagonalization.

Instead, we follow the same path as the MELD and SCIEL
codes, 14711 and identify all the spatial occupation patterns
associated with the determinants.!'” We then generate all
associated spin-flipped configurations, and add to the internal
space all the missing determinants. This procedure ensures



that H commutes with 52 in the truncated space, and spin-
adapted states are obtained by the diagonalization of H. In
addition, we apply a penalty method in the diagonalization
by modifying the Hamiltonian as'!®

5 2
H=H-+ ')’(Sz - I<52>target) 7 (26)

where I is the identity matrix and <y is a fixed parameter set to
0.1 by default. This improves the convergence to the desired
spin state, but also separates degenerate states with different
spins, a situation that can potentially occurs with Rydberg
states. In the Davidson algorithm, this requires the additional
computation of S2 U, for which the cost is expected to be
the same as the cost of HU (see Algorithm 2). The cost of
computing H U and S? U is mostly due to the search of the
connected pairs of determinants, namely the determinants (I |
and |J) for which (I|H|J) and (I|5?|]) are not zero due to
Slater-Condon’s rules. We have modified the function com-
puting H U so that it also computes S? U at the same time.
Hence, the search of connected pairs is done once for both
operations and S? U is obtained with no extra computational
cost.

Working with spin-adapted wave functions increases the
size of the internal space by a factor usually between 2 and
3, but it is particularly important if one is willing to obtain
excited states.*274454 Therefore, the default in QuaNTUM Pack-
AGE is to use spin-adapted wave functions.

V. PARALLELISM

In QUANTUM PACKAGE, multiple parallelism layers are im-
plemented: a fine-grained layer to benefit from shared mem-
ory, an intermediate layer to benefit from fast communication
within a group of nodes, and a coarse-grained layer to inter-
connect multiple groups of nodes. Fine-grained parallelism
is performed with OpenMP!!? in almost every single rou-
tine. Then, to go beyond a single compute node, QUANTUM
PAackAGE does not use the usual single program/multiple data
(SPMD) paradigm. A task-based parallelism framework is
implemented with the ZeroMQ library.!?’ The single-node
instance runs a compute process as well as a task server pro-
cess, while helper programs can be spawned asynchronously
on different (heterogeneous) machines to run a distributed
calculation. The helper programs can connect via ZeroMQ
to the task server at any time, and contribute to a running
calculation. As the ZeroMQ library does not take full advan-
tage of the low latency hardware present in HPC facilities,
the helper programs are parallelized also with the message
passing interface!?! (MPI) for fast communication among mul-
tiple client nodes, typically for fast broadcasting of large data
structures.

Hence, we have 3 layers of parallelism in QUANTUM PACK-
AGE: OpenMP, MPI and ZeroMQ. This allows for an elastic
management of resources: a running calculation taking too
much time can be dynamically accelerated by plugging in
more computing resources, by submitting more jobs in the
queue or possibly in the cloud, i.e. outside of the HPC facility.

This scheme has the advantage that it is not necessary to wait
for all the nodes to be free to start a calculation, and hence
minimizes the waiting time in the batch queue. It also gives
the possibility to use altogether different helper programs.
For instance, one could use a specific GPU-accelerated helper
program on a GPU node while CPU-only helpers run on the
CPU-only partition of the cluster. It is also possible to write
a helper program that helps only one PT2/selection step and
then exit, allowing to gather resources after the PT2/selection
has started, and freeing them for the following diagonalization
step.

The current limitation of QUANTUM PACKAGE is the memory
of the single-node instance. We have not yet considered the
possibility to add more compute nodes to increase the avail-
able memory, but this can be done by transforming the main
program into an MPI program using scattered data structures.

We now describe how the Davidson and PT2/selection steps
are parallelized.

1. Davidson diagonalization

In the direct Davidson diagonalization method, the compu-
tational bottleneck is the matrix product W = H U, and only
this step needs to be distributed. The calculation is divided into
independent tasks where each task builds a unique piece of W
containing 40 000 consecutive determinants. Communicating
the result of all the tasks scales as O(Nget ), independently of
the number of parallel processes. On the other hand, U needs
to be broadcast efficiently at the beginning of the calculation
to each slave process.

The computation of a task is parallelized with OpenMP,
looping in a way that guarantees a safe write access to W,
avoiding the need of a lock. When idle, a slave process re-
quests a task to the ZeroMQ task server, computes the cor-
responding result and sends it to the collector thread of the
master instance via ZeroMQ. As the OpenMP tasks are not
guaranteed to be balanced, we have used a dynamic schedul-
ing, with a chunk size of 64 elements. The reason for this
chunk size is to force that multiple threads access to W at mem-
ory addresses far apart, avoiding the so-called false sharing
performance degradation that occurs when multiple threads
write simultaneously in the same cache line.'? When the task
is fully computed, the computed piece of W is sent back to
the master process and a new task is requested, until the task
queue is empty.

The U and W arrays are shared among threads, as well as
all the large constant data needed for the calculation such as
the ERIs. Sharing U also provides the benefit to reduce the
amount of communication since U needs to be fetched only
once for each node, independently of the number of cores. To
make the broadcast of U efficient, the slave helper program is
parallelized with MPI in a SPMD fashion, and each node runs a
single MPI process. The U matrix is fetched from the ZeroMQ
server by the process with rank zero, and then it is broadcast
to the other slave processes within the same MPI job via MPI
primitives. Then, each MPI process behaves independently
and communicates via ZeroMQ with the task server, and with



MPI job 1 MPI job 2
Slave node 1 Slave node 5
1 - oo |
LTI LTI

Slave node'3, Stave node 4 Slave node 2 Slave node 6 Slave nede 7
v

\Mmmnkz)d“ﬁ Mlenkz\»A{ Mlenkl‘
CCE | T BT
Master i

[ T ] ] [coliector |4

{ MPIrank 1|4 H MPIrank 2 |

& v

ZeroMQ Task server

FIG. 1. Communications in the Davidson diagonalization for a cal-
culation with a master node and two helper MPI jobs, each using 4
cores for the computation. Red arrows represent the broadcast of U
starting from the compute process of the master node, gray arrows
the exchange of ZeroMQ messages with the task server and blue
arrows the collection of the results.

the master node which collects the results. A schematic view
of the communication is presented in Fig 1.

2. CIPSI selection and PT2 energy

In the computation of E (2) and the CIPSI selection, each
task corresponds to the computation of one £ or e in Eq. (23),
together with the selection of the associated external determi-
nants. To establish the list of tasks, the Monte Carlo sampling
is pre-computed on the master node. We associate to each
task the number of drawn Monte Carlo samples such that
running averages can be computed when the results of the
tasks have been received by the collector thread. When the
convergence criterion is reached, the task queue is emptied
and the collector waits for all the running tasks to terminate.

As opposed to the Davidson implementation where each
task is parallelized with OpenMP, here each OpenMP thread
handles independently a task computed on a single core.
Hence, there are multiple ZeroMQ clients per node, typically
one per core, requesting tasks to the task server and sending
the results back to the collector thread (see Fig. 2). Here, all
the OpenMP threads are completely independent during the
whole selection, and this explains the pleasing scaling prop-
erties of our implementation, as shown in Sec. VIC. As in
the Davidson distributed scheme, when the helper programs
are run with MPI all the common data are communicated
once from the ZeroMQ server to the rank-zero MPI process.
Then, the data is broadcast to all the other processes with MPI
primitives (there is one MPI process per node).
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FIG. 2. Communications in the stochastic selection for a calculation
with a master node and one helper MPI job, each using 4 cores for
the computation. Red arrows represent the broadcast of the common
data starting from the compute process of the master node, gray
arrows the exchange of ZeroMQ messages with the task server and
blue arrows the collection of the results.

VI. RESULTS
A. Capabilities of QUANTUM PACKAGE

Before illustrating the new features of QUANTUM PACKAGE
in the next subsection. We propose to give an overview of
what can be achieved (in terms of system and basis set sizes)
with the current implementation of QuANTUM PAackAGE. To
do so we propose to review some of our very recent studies.

In Ref. 44, we studied 18 small molecules (water, hydro-
gen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon
monoxide, acetylene, ethylene, formaldehyde, methanimine,
thioformaldehyde, acetaldehyde, cyclopropene, diazomethane,
formamide, ketene, nitrosomethane, and the smallest strepto-
cyanine) with sizes ranging from 1 to 3 non-hydrogen atoms.
For such systems, using sCI expansions of several million
determinants, we were able to compute more than hundred
highly accurate vertical excitation energies with typically aug-
mented triple-{ basis sets. It allowed us to benchmark a series
of 12 state-of-the-art excited-state wave function methods
accounting for double and triple excitations.

Even more recently,>® we provided accurate reference exci-
tation energies for transitions involving a substantial amount
of double excitation using a series of increasingly large diffuse-
containing atomic basis sets. Our set gathered 20 vertical tran-
sitions from 14 small- and medium-size molecules (acrolein,
benzene, beryllium atom, butadiene, carbon dimer and trimer,
ethylene, formaldehyde, glyoxal, hexatriene, nitrosomethane,
nitroxyl, pyrazine, and tetrazine). For the smallest molecules,
we were able to obtain well converged excitation energies
with augmented quadruple-( basis set while only augmented
double-{ bases were manageable for the largest systems (such
as acrolein, butadiene, hexatriene and benzene). Note that the



largest sCI expansion considered in this study had more than
200 million determinants.

In Ref. 65, Giner et al. studied even larger systems con-
taining transition metals: [CuCly]?~, [Cu(NH3),]** and
[Cu(H,0)4]?*. They were able, using large sCI expansions,
to understand the physical phenomena that determine the
relative energies of three of the lowest electronic states of
each of these square-planar copper complexes.

B. Extrapolation

To illustrate the extrapolation procedure described in
Sec. IID, we consider a cyanine dye'?* H,N-CH=NH," (la-
beled as CN3 in the remaining) in both its ground state and
first excited state.*>!24125 The geometry is the equilibrium
geometry of the ground state optimized at the PBE0/cc-pvVQZ
level.!?> The ground state is a closed shell, well described by a
single reference, while the excited state is singly excited and
requires, at least, two determinants to be properly modeled.
The calculations were performed in the aug-cc-pVDZ basis set
with state-averaged natural orbitals obtained from an initial
CIPSI calculation. All the electrons were correlated, so the FCI
space which is explored corresponds to a CAS(24,114) space.
The reference excitation energy, obtained at the CC3/ANO-
L-VQZP level is 7.18 eV'?* (see also Ref. 45). Note that this
particular transition is fairly insensitive to the basis set as long
as at least one set of diffuse functions is included. For example,
we have obtained 7.14 and 7.13 eV at the CC3/aug-cc-pVDZ
and CC3/aug-cc-pVTZ levels, respectively.**

In Fig. 3, we plot the energy convergence of the ground
state (GS) and the excited state (ES) as a function of the num-
ber of determinants Ny, with and without the second-order
perturbative contribution. From the data gathered in Table
L, one can see that, although E (2) s still large (roughly 0.02
a.u.), the sCI+PT2 and sCI+rPT2 excitation energies converge
to a value of 7.20 eV compatible with the reference energy ob-
tained in a larger basis set. We have also plotted the sCI+rPT2
energy given by E(©) + ZE() (see Sec. II D 2) and we clearly
see that this quantity converges much faster than the usual
sCI+PT2 energy. Even for very small reference wave function,
the energy gap between GS and ES is qualitatively correct.
The graph of Fig. 4, which shows the zeroth-order energy E (0)
as a function of the second-order energy E (2) (dotted lines) or
its renormalization variant Z E(?) (solid lines), also indicates
that it is practically much easier to extrapolate to the FCI limit
using the rPT2 correction.

As a second test case for rPT2, we consider the widely-
studied example of the chromium dimer (Cr;) in its 12;

ground state.’103%1267136 This system is notoriously challeng-
ing as it combines dynamic and static correlation effects hence
requiring multi-configurational methods and large basis sets
in order to have a balanced treatment of these two effects. Con-
sequently, we compute its ground-state energy in the cc-pVQZ
basis set with an internuclear distance Rey_cy = 1.68 A close
to its experimental equilibrium geometry. Our full-valence
calculation corresponds to an active space CAS(28,198) and
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the computational protocol is similar to the previous exam-
ple. The second-order corrected value E(©) + E(2) as well as
its renormalized version E(®) + ZE®@) as a function of the
number of determinants in the reference wave function are
reported in Table II and depicted in Fig. 5. Here also, we
observe that rPT2 is clearly a superior extrapolation frame-
work compared to the standard PT2 version as it yields a
much straighter extrapolation curve, even in the case of a
strongly correlated system such as Cr;. The renormalization
factor Z [see Eq. (17)] mitigates strongly the overestimation
of the FCI energy for small wave functions by damping the
second-order energy E (2). Linear extrapolations of the PT2
and rPT2 energies based on the two largest wave functions
yields extrapolated FCI energies of -2087.734 and -2087.738,
respectively (see also Table II). The difference between these
two extrapolated FCI energies provides a qualitative idea of
the extrapolation accuracy.

C. Speedup

In this Section, we discuss the parallel efficiency of the al-
gorithms implemented in QUANTUM PACKAGE. The system
we chose for these numerical experiments is the benzene
molecule C¢Hg for which we have performed sCI calculations
with the 6-31G* basis set. The frozen-core approximation has
been applied and the FCI space that we explore is a CAS(30,90).
The measurements were made on GENCI’s Irene supercom-
puter. Each Irene’s node is a dual-socket Intel(R) Xeon(R)
Platinum 8168 CPU@2.70GHz with 192GiB of RAM, with a to-
tal of 48 physical CPU cores. Parallel speedup curves are made
up to 12 288 cores (i.e. 256 nodes) for i) a single iteration of the
Davidson diagonalization, and ii) the hybrid semistochastic
computation of E® (which includes the CIPSI selection). The
speedup reference corresponds to the single node calculation
(48 cores).

First, we measure the time required to perform a single
Davidson iteration as a function of the number of CPU cores
for the two largest wave functions (Nget = 25 x 10° and
100 x 10°). The timings are reported in Table III while the
parallel speedup curve is represented in Fig. 6. The parallel
efficiency increases together with Nget, as shown in Fig. 6. For
the largest wave function, a parallel efficiency of 66% is ob-
tained on 192 nodes (i.e. 9216 cores). We note that the speedup
reaches a plateau at 3 072 cores (64 nodes) for Ny = 25 % 10°.
For this wave function, there are 625 tasks computing each
40 000 rows of W. When the number of nodes reaches 64,
the number of tasks is too small for the load to be balanced
between the nodes, and the computational time is limited by
the time taken to compute the longest task. The same situa-
tion arises for Ny = 100 x 10° with 9 408 cores (192 nodes),
with 2 500 tasks to compute.

Second, we analyze the parallel efficiency of the calculation
of E? for the sCI wave function with Nyet = 25 x 10°. The
stopping criterion during the calculation of E@ s given by
a relative statistical error below 2 x 102 of the current E(2)
value. The speedups are plotted in Fig. 6 (see also Table III).
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For 192 nodes, one obtains a parallel efficiency of 89%. The
present parallel efficiency is not as good as the one presented
in the original paper.!'? The reason behind this is a faster
computation of e,gz), which reduces the parallel efficiency by
increasing the ratio communication/computation.

VIl. DEVELOPING IN QUANTUM PACKAGE

A. The QuANTUM PACKAGE philosophy

QUANTUM PACKAGE is a standalone easy-to-use library for
developers. The main goals of QUANTUM PACKAGE are to 1)
facilitate the development of new quantum chemistry meth-
ods, ii) minimize the dependency on external programs/li-
braries, and iii) encourage the collaborative and educative
work through human readable programs. Therefore, from
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TABLE 1. Zeroth-order energy E (0), second-order perturbative correction E (2) and its renormalized version ZE(2) (in hartree) of CN3 for
increasingly large wave functions. The excitation energy AE (in eV) is the energy difference between the ground state (GS) and the excited
state (ES). The statistical error, corresponding to one standard deviation, is reported in parenthesis.

E(0) EO 4+ E?) EO© 4 zE(?)
Net GS (a.u.) ES (a.u.) GS (a.u) ES (a.u.) AE (eV) GS (a.u.) ES (a.u.) AE (eV)
28 —149.499574 —149.246 268 7150.155(1) —149.863(1) 7495(5) —150.020(1) 7149.743(1) 7.54(5)
58 —149.519908 —149.261390 —150.134(1) —149.853(1) 7.67(5) —150.018(1) —149.744(1) 7.48(5)
131 —149.537 424 —149.277 496 —150.118(1) —149.8427(9) 7.52(4) —150.017(1) —149.7449(9) 7.39(4)
268 —149.559 465 —149.298 484 —150.1035(9) —149.8308(9) 7.42(4) —150.0158(9) —149.7457(9) 7.35(4)
541 —149.593 434 —149.323 302 —150.0845(8) —149.8186(8) 7.24(4) —150.0152(8) —149.746 3(8) 7.32(4)
1101 —149.627 202 —149.354 807 —150.068 3(8) —149.8045(8) 7.18(3) —150.0137(8) —149.746 0(8) 7.28(3)
2207 —149.663 850 —149.399 522 —150.0549(7) —149.7879(7) 7.26(3) —150.0132(7) —149.746 2(7) 7.27(3)
4417 —149.714222 —149.448133 —150.0409(6) —149.776 2(6) 7.20(3) —150.0130(6) —149.747 8(6) 7.22(3)
8838 —149.765 886 —149.496 401 —150.0296(5) —149.7655(5) 7.19(2) —150.0124(5) —149.747 3(5) 7.21(2)
17 680 —149.817 301 —149.545 048 —150.0239(4) —149.7615(4) 7.14(2) —150.0141(4) —149.7505(4) 7.17(2)
35380 —149.859737 —149.587 668 —150.0216(3) —149.7582(3) 7.17(1) —150.0161(3) —149.7518(3) 7.19(1)
70764 —149.893273 —149.623 235 —150.0207(2) —149.756 6(3) 7.18(1) —150.0174(2) —149.7530(3) 7.19(1)
141545 —149.919463 —149.650109 —150.0214(2) —149.7572(2) 7.189(8) —150.0194(2) —149.7550(2) 7.196(8)
283108 —149.937 839 —149.669 735 —150.0224(2) —149.7576(2) 7.206(7) —150.0211(2) —149.756 2(2) 7.209(7)
566226 —149.950918 —149.683 278 —150.0233(1) —149.7580(1) 7.217(6) —150.0223(1) —149.7570(1) 7.219(6)
1132520 —149.960276 —149.693 053 —150.0238(1) —149.758 8(1) 7.212(5) —150.0231(1) —149.7580(1) 7.214(5)
2264948 —149.968 203 —149.700907 —150.0240(1) —149.7590(1) 7.211(4) —150.0235(1) —149.758 4(1) 7.212(4)
4529574 —149.975230 —149.708 061 —150.0245(1) —149.7594(1) 7.215(4) —150.0241(1) —149.7589(1) 7.216(4)
9057914 —149.981770 —149.714 526 —150.02463(9) —149.759 81(8) 7.206(3) —150.02434(9) —149.75948(8) 7.207(3)
18110742 —149.987928 —149.720 648 —150.02495(7) —149.76025(8) 7.203(3) —150.02474(7) —149.76000(8) 7.204(3)
36146730 —149.993 593 —149.726 253 —150.02527(6) —149.76065(7) 7.198(3) —150.02502(6) —149.76047(7) 7.198(3)
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FIG. 5. Left: Energy convergence of the ground state of Cry with respect to the number of determinants Ny in the reference space. The
zeroth-order energy E© (dashed) , its second-order corrected value E© 4+ E®@ (dotted) as well as its renormalized version E© 4+ ZE®
(solid) are represented. Right: Zeroth-order energy E©) as a function of the second-order energy E@) (dotted lines) or its renormalization
variant Z E(?) (solid lines). A linear fit (dashed lines) of the last 2 points is also reported for comparison. See Table II for raw data.

the developer point of view, QUANTUM PACKAGE can be seen
as a standalone library containing all important quantities
needed to perform quantum chemistry calculations, both in-
volving wave function theory, through the determinant driven
algorithms, and DFT methods, thanks to the presence of a
quadrature grid for numerical integrations and basic function-
als. These appealing features are made more concrete thanks
to the organization of QUANTUM PACKAGE in terms of core
modules and plugins (see Sec. VIIC) together with its pro-
gramming language (see Sec. VII B), which naturally creates a

very modular environment for the programmer.

Although QUANTUM PACKAGE is able to perform all the re-
quired steps from the calculation of the one- and two-electron
integrals to the computation of the sCI energy, interfacing
QUANTUM PACKAGE, at any stage, with other programs is rela-
tively simple. For example, canonical or CASSCF molecular or-
bitals can be imported from GAMESS,'*” while atomic and/or
molecular integrals can be read from text files like FcIDUMP.
Thanks to this flexibility, some of us are currently developing
plugins for performing sCI calculations for periodic systems.



TABLE II. Zeroth-order energy E 0), second- order perturbative cor-
rection E(?) and its renormalized version ZE(? (1n hartree) as a
function of the number of determinants Ny for the ground-state
of the chromium dimer Cr; computed in the cc-pVQZ basis set. The
statistical error, corresponding to one standard deviation, is reported
in parenthesis.

Naet E©) ©) + E@) E©) + ZE®)
1631 —2086.742321 72087 853(3) —2087.679(2)
3312 —2086.828 496 —2087.821(2) —2087.688(1)
6630 —2086.920 161 —2087.792(1) —2087.694(1)

13261 —2087.008 701 —2087.764(1) —2087.694(1)
26562 —2087.091 669 —2087.743(1) —2087.692(1)
53129 —2087.165533 —2087.725(1) —2087.689(1)

106 262 —2087.234 564 —2087.7102(9) —2087.6850(8)

212571 —2087.293 488 —2087.7030(8) —2087.6850(7)

425185 —2087.343762 —2087.6973(7) —2087.6844(7)
850375 —2087.386 276 —2087.697 8(6) —2087.6881(6)
1700759 —2087.422707 —2087.6989(6) —2087.6916(5)
3401504 —2087.454 427 —2087.7007(5) —2087.6951(5)
6802953 —2087.482238 —2087.7032(4) —2087.6988(4)
13 605 580 —2087.506 838 —2087.7056(4) —2087.7022(4)
27210163 —2087.528 987 —2087.7092(4) —2087.7064(4)
54415174 —2087.549 261 —2087.7116(3) —2087.7095(3)

Extrap. —2087.734 —2087.738

TABLE III. Wall-clock time (in seconds) to perform a single David-
son iteration and a second-order correction E(2) calculation (which
also includes the CIPSI selection) with an increasing number of 48-
core compute nodes N o4es- The statistical error obtained on E@),
defining the stopping criterion, is 0.17 x 1073 a.u.

Niodes Wall-clock time (in seconds)
Davidson for Davidson for PT2/selection
Nget = 25 x 10° Nger = 100 x 10° Nget = 25 x 100

1 3340 65915 406 840
32 142 2168 12711
48 109 1497 8515
64 93 1181 6421
96 93 834 4323
128 93 674 3287
192 96 522 2435
256 96 519 1996

B. The IRPF90 code generator

It is not a secret that large scientific codes written in For-
tran (or in similar languages) are difficult to maintain. The
program’s complexity originates from the inter-dependencies
between the various entities of the code. As the variables
are more and more coupled, the programs become more and
more difficult to maintain and to debug. To keep a program
under control, the programmer has to be aware of all the con-
sequences of any source code modification within all possible
execution paths. When the code is large and written by mul-
tiple developers, this becomes almost impossible. However,
a computer can easily handle such a complexity by taking
care of all the dependencies between the variables, in a way
similar to how GNU Make handles the dependencies between
source files.

IRPF90 is a Fortran code generator.!® Schematically, the
programmer only writes computation kernels, and IRPF90 gen-
erates the glue code linking all these kernels together to pro-
duce the expected result, handling all relationships between
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FIG. 6. Speedup obtained for a single Davidson iteration (blue and
yellow curves) and the combination of CIPSI selection and PT2 cal-
culation (red curve) as a function of the number of CPU cores. For
the Davidson diagonalization, two sizes of reference wave func-
tions are reported (Ngey = 25 x 106 and 100 x 10°), while for the
PT2/selection calculation only results corresponding to the smallest
wave function (Nget = 25 x 10°) are reported. See Table III for raw
data.

Etot
7N\
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/ \
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FIG. 7. Production tree of the energy computed by IRPF90.

variables. To illustrate in a few words how IRPF90 works, let
us consider the simple example which consists of calculating
the total energy of a molecular system as the sum of the nu-
clear repulsion and the electronic energy Eot = Enuc + Eele-
The electronic energy is the sum of the kinetic and potential
energies, i.e., Ecle = Eyin + Epot.

The production tree associated with the computation of the
total energy is shown in Fig. 7. Within the IRPF90 frame-
work, the programmer writes a provider for each entity, i.e.,
a node of the production tree. The provider is a subroutine
whose only goal is to compute the value associated with the
entity, assuming the values of the entities on which it de-
pends are computed and valid. Hence, when an entity is used
somewhere in the program (in a subroutine, a function or a
provider), a call to its provider is inserted in the code before
it is used such that the corresponding value is guaranteed to
be valid.

QUANTUM PACKAGE is a library of providers designed to
make the development of new wave function theory and DFT
methods simple. Only a few programs using these providers



are part of the core modules of QUANTUM PACKAGE, such as the
sCI module using the CIPSI algorithm or the module contain-
ing the semi-stochastic implementation of the second-order
perturbative correction. The main goal of QUANTUM PACKAGE
is to be used as a library of providers, and programmers are
encouraged to develop their own modules using QUANTUM
PACKAGE.

C. The plugin system

External programmers should not add their contributions
by modifying directly QUANTUM PACKAGE’s core, but by creat-
ing their own modules in independent repositories hosted and
distributed by themselves. This model gives more freedom
to the developers to distribute modules as we do not enforce
them to follow any rule. The developers are entirely respon-
sible for their own plugins. This model has the advantage
to redirect immediately the users to the right developer for
questions, installation problems, bug reports, etc.

QUANTUM PACKAGE integrates commands to download ex-
ternal repositories and integrate all the plugins of these repos-
itories into the current installation of QUANTUM PACKAGE.
External plugins appear exactly as if they were part of Quan-
TUM PACKAGE, and if a plugin is useful for many users, it can
be easily integrated in QUANTUM PACKAGE’s core after all the
coding and documentation standards are respected.

Multiple external plugins were developed by the authors.
For instance, one can find a multi-reference coupled cluster
program,'213? interfaces with the quantum Monte Carlo pro-
grams QMC=Chem,*! QMCPack®® and CHAMP,'*? an imple-
mentation of the shifted-Bk method,* a program combining
CIPSI with RSDFT,'4! a four-component relativistic RSDFT
code,'*? and many others.

In particular, QUANTUM PACKAGE also contains the basic
tools to use and develop range-separated density-functional
theory (RSDFT, see, e.g., Refs. 143 and 144) which allows
to perform multi-configurational density-functional theory
(DFT) calculations within a rigorous mathematical frame-
work. In the core modules of QUANTUM PACKAGE, single-
determinant approximations of RSDFT are available, which
fall into the so-called range-separated hybrid!*>!4¢ (RSH)
approximation. These approaches correct for the wrong
long-range behavior of the usual hybrid approximations
thanks to the inclusion of the long-range part of the HF
exchange. QUANTUM PACKAGE contains all necessary in-
tegrals to perform RSDFT calculations, including the long-
range interaction integrals and Hartree-exchange-correlation
energies and potentials derived from the short-range ver-
sion of the local-density approximation (LDA)'*” and a short-
range generalized-gradient approximation (GGA) based on the
Perdew-Burke-Ernzerhof (PBE) functional.'*® All numerical
integrals are performed using the standard Becke quadrature
grid!*? associated with the improved radial grids of Mura et
al.1>% With these tools, more evolved schemes based on RSDFT
have been developed, such as an energy correlation functional
with multideterminantal reference depending on the on-top
pair density'®! or a basis set correction.'*! The corresponding
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source code can be found as external plugins (see, for example,
https://gitlab.com/eginer/qp_plugins_eginer).

VIIl.  CONCLUSION

Significant improvements were brought to the second ver-
sion of QUANTUM PACKAGE. Some were single-core optimiza-
tions, and others focused on the algorithm adaptation to large-
scale parallelism (load balancing in particular). Currently, the
code has a parallel efficiency that enables routinely to realize
runs on roughly 2000 CPU cores, with tens of millions of
determinants in the reference space. Moreover, we have been
able to push up to 12 288 cores (256 nodes) on GENCI’s super-
computer Irene. Such a gain in efficiency has and will lead to
many more challenging chemical applications,34-38:43.44.54.66.67

The Davidson diagonalization, which is at the center of sCI
and FCI methods, suffers from the impossibility to fully store
the Hamiltonian in the memory of a single node. The solution
we adopted was to resort to direct methods, i.e., recomputing
on the fly the matrix elements at each iteration. While an
extremely fast method was already available to detect zero
matrix elements,'®? the former implementation still had to
search over the O (N3 ) matrix elements for interacting de-
terminant pairs. Now, determinants are split in disjoint sets
entirely disconnected from each other. Thus, only a small
fraction of the matrix elements need to be explored, and an
algorithm with O(Ng’e/tz) scaling was proposed. While the
parallelization of this method was somewhat challenging due
to the extremely unbalanced nature of the elementary tasks, a
distributed implementation was realized with satisfying par-
allel speedups (typically 35 for 50 nodes) with respect to the
48-core single-node reference.

Significant improvements were also realized in the compu-
tation of the second-order perturbative correction, E @ A
natural idea was to take into account the tremendous number
of tiny contributions via a stochastic Monte Carlo approach.
E® being itself an approximate quantity used for estimating
the FCI energy, its exact value is indeed not required, as long
as the value is unbiased and the statistical error is kept under
control. Our scheme allows to compute E (2) with a small er-
ror bar for a few percent of the cost of the fully deterministic
computation.

Similarly, the CIPSI selection is now performed stochasti-
cally alongside the PT2 calculation. Therefore, the selection
part of the new stochastic CIPSI selection is virtually free
as long as one is interested in the second-order perturbative
correction.

Finally, efforts have been made to make this software as
developer friendly as possible thanks to a very modular ar-
chitecture that allows any developer to create his/her own
module and to directly benefit from all pre-existing work.


https://gitlab.com/eginer/qp_plugins_eginer

TABLE IV. Time to access integrals (in nanoseconds/integral) with
different access patterns. The time to generate random numbers
(measured as 67 ns/integral) was not counted in the random access
results.

Access Array Hash table
i,7,k1 9.72 125.79
i,j, 1,k 9.72 120.64
ik,j,1 10.29 144.65
Lk, ji 88.62 125.79
Lk,i,j 88.62 120.64
Random 170.00 370.00
LICENSE

QuANTUM PACKAGE is licensed under GNU Affero General
Public License (AGPLv3).
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Appendix A: Implementation details
1. Efficiency of integral storage

The efficiency of the storage as a hash table was measured
on a dual socket Intel Xeon E5-2680 v2@2.80GHz processor,
taking the water molecule with the cc-pVQZ basis set (115
MOs). The time to access all the integrals was measured by
looping over the entire set of ERIs using different loop order-
ings. The results are given in Table IV, the reference being
the storage as a plain four-dimensional array.

In the array storage, the value of 170 ns/integral in the
random access case is typical of the latency to fetch a value
in the RAM modules, telling that the requested integral is
almost never present in any level of cache. When the data is
accessed with a stride of one (i, j, I, k storage), the hierarchical
architecture of the cache levels accelerates the access by a
factor of 18, down to 9.71 ns/integral, corresponding mostly
to the overhead of the function call, the retrieval of the data
being negligible.
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With the hash table, the random access is only 2.18 times
slower than the random access in the array. Indeed, two
random accesses are required: one for the first element of
the key bucket to do the search, and one for the value of
the integral. The remaining time corresponds to the binary
search. The results show that data locality is exploited: when
the access is done with a regular access pattern, the data is
fetched roughly 3 times faster than using a random access,
giving a latency below the latency of a random access in the
array.

A CIPSI calculation was run once with the array storage,
and once with the hash table storage. With the hash storage,
the total wall clock time was increased only by a factor of
two. To accelerate the access to the most frequently used
integrals and reduce this overhead, we have implemented
a software cache. All the integrals involving the 128 MOs
closest to the Fermi level are copied in a dense array of 128
elements (2 GiB), and benefit from the fastest possible access.

2. Internal representation of determinants

Determinants can be conveniently written as a string
of creation operators applied to the vacuum state |), e.g.,
a:ra;-ram) = |I). Because of the fermionic nature of electrons,
a permutation of two contiguous creation operators results

in a sign change a;ra:r = —a'a’, which makes their ordering

1 ] 2
relevant, e.g., a}a;a,ﬂ) = — |I). A determinant can be bro-

ken down into two pieces of information: i) a set of creation
operators corresponding to the set of occupied spinorbitals in
the determinant, and ii) an ordering of the creation operators
responsible for the sign of the determinant, known as phase
factor. Once an ordering operator O is chosen and applied to
all determinants, the phase factor may simply be included in
the CI coeflicient.

The determinants are built using the following order: i)
spin-up (1) spinorbitals are placed before spin-down (J)
spinorbitals, as in the Waller-Hartree double determinant
representation!* O |I) = f|> = fT f¢|>, and ii) within each
operator IAT and [ 1 the creation operators are sorted by increas-
ing indices. For instance, let us consider the determinant |J) =

atafala}|) built from the set of spinorbitals {iy, jr, ky, i}

V\iith i < j < k. If we happen to encounter such a deter-
minant, our choice of representation imposes to consider its
re-ordered expression O |]) = —a?a}a;aﬂ} = —|J), and
the phase factor must be handled.

The indices of the creation operators (or equivalently the
spinorbital occupations), are stored using the so-called bit-
string encoding. A bitstring is an array of bits; typically, the
64-bit binary representation of an integer is a bitstring of size
64. Quite simply, the idea is to map each spinorbital to a single
bit with value set to its occupation number. In other words, 0
and 1 are associated with the unoccupied and occupied states,
respectively.

For simplicity and performance considerations, the occu-
pations of the spin-up and spin-down spinorbitals are stored
in different bitstrings, rather than interleaved or otherwise



merged in the same one. This allows to straightforwardly
map orbital index p to bit index p — 1 (orbitals are usually
indexed from 1, while bits are indexed from 0). This makes
the representation of a determinant a tuple of two bitstrings,
associated with respectively spin-up and spin-down orbitals.
A similar parity representation of the fermionic operators is
commonly used in quantum computing.'>3

The storage required for a single determinant is, in prin-
ciple, one bit per spinorbital, or 2 X N, bits. However,
because CPUs are designed to handle efficiently 64-bit in-
tegers, each spin part is stored as an array of 64-bit integers,
the unused space being padded with zeros. The actual stor-
age needed for a determinant is 2 X 64 X Ny bits, where
Nint = | (Nop — 1)/64] + 1 is the number of 64-bit integers
needed to store one spin part.

Taking advantage of low-level hardware instructions,'*? we
are able, given two arbitrary determinants |I) and |J), to find
with a minimal cost the excitation operator T such that |J) =
T |I). This is a necessary step to obtain the (i, ], k,I) indices
of the two-electron integral(s) involved in the Hamiltonian
matrix element between |I) and |J). Then, fetching the values
of the integrals can be done quickly using the hash table
presented in Sec. IIT A.

Because the data structure used to store determinants im-
plies an ordering of the MOs, we also need to compute a phase
factor. Here, we propose an algorithm to perform efficiently
the computation of the phase factor. For a determinant |I)
that is going to be used repeatedly for phase calculations, we
introduce a phase mask represented as a bitstring:

Pili) =1A Y I[K],

(A1)
where A denotes the and bitwise operation, and I [k] is the kth
bit of bitstring I, corresponding to the (k + 1)th spinorbital of
determinant |I) (remember that the orbital indices start at 1
and the bit indices start at 0). In other words, the ith bit of the
phase mask is set to 1 if the number of electrons occupying
the i + 1 lowest spinorbitals is odd, and 0 otherwise. When

an electron of determinant |I) is excited from orbital & to p,
the associated phase factor is

{+(_1)P1[h1]63P1[P1], ifp>h,

_(_1)1’[[71—1]@1)1[}7_1], ifth > p, (AZ)

where @ denotes the exclusive or (xor) operation. So if the
phase mask is available, the computation of the phase factor
only takes a few CPU cycles. Another important aspect is to
create efficiently the phase masks. We propose Algorithm 3,
which computes it in a logarithmic time for groups of 64
MOs, taking advantage of the associativity of the exclusive or
operator. Indeed, the “for” loop executes 6 cycles to update
the mask for 26 = 64 MOs.

3. Davidson diagonalization

Within QUANTUM PACKAGE, the Davidson diagonalization
algorithm is implemented in its multi-state version. Algorith-
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Function PhasemaskOfDet (I):
Data: [ : 64-bit string representation of |I)
Result: P : phase mask associated with |I), as a 64-bit
string.
foro € {1,1} do
r<0;
fori < 0, Nj;; —1do
Poli] < L[] ® (Io[i] < 1) 5
ford < 0,5do
‘ Pg’[l] (—P(rm@(Py[l] <<(1<<d));
end
Pyli] + Prli] &7
if (|| I[]]|| A1) =1 then

| rer;
end
end

end

return P ;
(1] : number of bits set to 1 in I (popcnt),
A : bitwise and,
P : bitwise xor,
(I < k) : shift I by k bits to the left,
- : bitwise negation.

Algorithm 3: Function that returns a phase mask as a
bitstring.

mically, the expensive part of the Davidson diagonalization is
the computation of the matrix product HU. As mentioned
above (see Sec. II), two determinants |I) and |J) are connected
via H (i.e. (I|H|J) # 0) only if they differ by no more than
two spinorbitals. Therefore, the number of non-zero elements
per row in H is equal to the number of single and double
excitation operators, namely (/)(N%(Norb — N;)?). AsH is
symmetric, the number of non-zero elements per column is
identical. This makes H very sparse. However, for large basis
sets, the whole matrix may still not fit in a single node mem-
ory, as the number of non-zero entries to be stored is of the
order of NdetN%(Norb — N;)2. One possibility would be to
distribute the storage of H among multiple compute nodes,
and use a distributed library such as PBLAS! to perform
the matrix-vector operations. Another approach is to use a
so-called direct algorithm, where the matrix elements are com-
puted on the fly, and this is the approach we have chosen in
QuANTUM PACKAGE. This effectively means iterating over all
pairs of determinants |I) and |]), checking whether |I) and
|]) are connected by H and if they are, accessing the corre-
sponding integral(s) and computing the phase factor. Even
though it is possible to compute the excitation degree between
two determinants very efficiently,'>? the number of such com-
putations scales as N. get, which becomes rapidly prohibitively
high. To get an efficient determinant-driven implementation
it is mandatory to filter out all pairs of determinants that are
not connected by H, and iterate only over connected pairs.
To reach this goal, we have implemented an algorithm similar
to the Direct Selected Configuration Interaction Using Strings
(DISCIUS) algorithm.>®

The determinants of the internal space are re-ordered in
linear time as explained in Ref. 62, such that the wave function



can be expressed as

(A3)

where we take advantage of the Waller-Hartree double deter-
minant representation.!%*

Moving along a row or a column of C keeps the spin-up or
spin-down determinants fixed, respectively. For a given de-
terminant, finding the entire list of same-spin single and dou-
ble excitations can be performed in O<N:1ret) = (’)(Niet) =
O(+/Nyet ), while finding the opposite-spin double excitations
is done via a two-step procedure. First, we look for all the spin-
up single excitations. Then, starting from this list of spin-up
single excitations, we search for the spin-down single exci-
tation such that the resulting opposite-spin doubly-excited
determinant belongs to ¥, Hence, the formal scaling is
reduced to O(N3/2). It could be further reduced to O(Ng)
at the cost of storing the list of all singly- and doubly-excited
determinants for each spin-up and spin-down determinant,
but we preferred not to follow this path in order to reduce the
memory footprint as much as possible.

4. CIPSl selection and PT2 energy

(2)

There are multiple ways to compute the e, ’s. One way is to
loop over pairs of internal determinants |I) and |]), generate
the list of external determinants {|a)} connecting |I) and |J)

and increment the corresponding values e,gz) stored in a hash
table. Using a hash table to store in memory a list of |«)’s

(2)

without duplicates and their contributions e, is obviously
not a reasonable choice since the total number of |«)’s scales

as O(NdetN% (Nowb — NT)z). To keep the memory growth

in check, we must design a function that can build a stream
of unique external determinants, compute their contribution

(2)

ey’ and retain in memory only the few most significant pairs

(o), ei”).

In QUANTUM PACKAGE, we build the stream of unique exter-
nal determinants as follows. We loop over the list of internal
determinants (the generators) sorted by decreasing C%. For
each generator |I), we generate all the singly- and doubly-
excited determinants {|a)}, removing from this set the in-
ternal determinants and the determinants connected to any
other generator |J) such that ] < I. This guarantees that
the |«)’s are considered only once, without any additional
memory requirement.

For each generator |I), before generating its set of |a)’s, we
pre-compute the diagonal of the Fock matrix associated with
|T). This enables to compute the diagonal elements («|H|a)
involved in Eq. (8) for a few flops.!®> The computation of
(YO|A|a) = Y (J|H|a) is more challenging than the
diagonal term since, at first sight, it appears to involve the
Nyet internal determinants. Fortunately, most of the terms
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amongst this sum vanish due to Slater-Condon’s rules. In-
deed, we know that the terms where |]) is more than doubly
excited with respect to |} vanish, and these correspond to
the determinants |J) which are more than quadruply excited
with respect to |I).1% To compute efficiently (¥(©)|H|a),
for each generator |I), we create a filtered wave function
|‘Y§O)> by projecting [¥(?)) on a subset J; of internal de-
terminants {|J)} where (J|H|a) is possibly non-zero. This
yields <‘I’(0)|I:I|tx> = <‘Y§O)|H|tx>, where ‘Ygo) is a much
smaller determinant expansion than $(0) In addition, as we

have defined the |«)’s in such a way that they do not interact
with |J) when J < I, all these |])’s can also be excluded from

Ji. This pruning process yielding to |‘I’§O)> will be referred
to as the coarse-grained filtering. A fine-grained filtering of

|‘F§O)> is performed in a second stage to reduce even more
the number of determinants, as we shall explain later.

To make the coarse-grained filtering efficient, we first filter
out the determinants that are more than quadruply excited
in the spin-up and spin-down sectors separately. Using the
representation shown in Eq. (A3), this filtering does not need
to run through all the internal determinants and scales as

O(N(Lt) = O(V/Nget). It is important to notice that, at this
stage, the size of [J; is bounded by the number of possible
quadruple excitations in both spin sectors, and does not scale
any more as O(Nyet ). Next, we remove the determinants that
are i) quadruply excited in one spin sector and excited in the
other spin sector, ii) triply excited in one spin sector and more
than singly excited in the other spin sector, and iii) all the
determinants that are doubly excited in one spin sector and
more than doubly excited in the other spin sector.

The external determinant contributions are computed in
batches. A batch I, is defined by a doubly-ionized generator
|Ipg) = apag |I). When a batch is created, the ﬁne—(g)rained
0

10 such
g

filtering step is applied to J] to produce J 1,, and ¥
that <"F§S;|H|Dé> = (¥ Aa).

Each external determinant produced in the batch I}, is char-
acterized by two indices r and s with Oafalapa, |I) = | I55)-
The contribution associated with each determinant of a given
batch will be computed incrementally in a two-dimensional
array A(r,s) as follows. A first loop is performed over all the
determinants |J) belonging to the filtered internal space 7| [
Comparing | ) to | I,q ) allows to quickly identify if |J) will be
present in the list of external determinants, and consequently
tag the corresponding cell A(7,s) as banned. Banned cells
will not be considered for the computation of e,g(z) nor the
determinant selection, as they correspond to determinants
already belonging to the internal space. A second loop over
all the |J) € J] I, is then performed. During this loop, all
the (r, s) pairs where |I77) is connected to |]) are generated,

and the corresponding cells A(r,s) are incremented with
cr <]|I:I|I;f’1> After this second loop, A(r,s) = <"I’|I:I|I;,ﬁi>

and all the contributions 6&2) of the batch can be obtained
using A(r,s). The running value of E() is then incremented,
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FIG. 8. Histograms representing the number of determinants re-
maining after the coarse-grained (purple) and fine-grained (green)
filtering processes applied to the ground state of the CN3 molecule
with Nyt = 935522.

and the Ny most significant determinants are kept in an

array sorted by decreasing \e,&z) |
Figure 8 shows the number of determinants retained in

‘Ygo) or 1{,503 after filtering out disconnected determinants of

the ground state of the CN3 molecule with 935522 determi-
nants (see Sec. A). This example shows that, starting from

¥, the coarse-grained process which consists of removing
the determinants more than quadruply excited with respect

to the generator |I) produces wave functions ‘Pgo) with a typ-
ical size of 120 000 determinants, a reduction by a factor 8.

)

Then, starting from ‘I’go , the fine-grained filtering, specific to

)

the batch generating "I’}Sq, reduces even more the number of

determinants (by a factor 3), down to a typical size of 40 000
determinants, which represents only 4% of the total wave

function ¥(©),
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