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ABSTRACT

Goldschmidetite is a new perovskite-group mineral (IMA No. 2018-034) with ideal formula
(K,REE,Sr)(Nb,Cr)Os. A single grain of goldschmidtite with maximum dimension of ~100 pm
was found as an inclusion in a diamond from the Koffiefontein pipe in South Africa. In addition
to the dark green and opaque goldschmidetite, the diamond contained a Cr-rich augite (websteritic
paragenesis) and an intergrowth of chromite, Mg-silicate, and unidentified K-Sr-REE-Nb-oxide.
Geothermobarometry of the augite indicates the depth of formation was ~170 km. The chemical
composition of goldschmidtite determined by electron microprobe analysis (n =11, WDS, wt%)
is: Nb2Os 44.82, TiO2 0.44, ThO2 0.10, Al20O3 0.35, Cr203 7.07, LaxO3 11.85, Ce203 6.18, Fe203
1.96 MgO 0.70, CaO 0.04, SrO 6.67, BaO 6.82, K>O 11.53, total 98.53. The empirical formula
(expressed to two decimal places) is
(Ko.s0La0.15Sr0.13Ba0.09Ce0.08)=0.95(Nbo.70Cro.19F€0.0s Alo.01Mg0.04Ti0.01)x1.0003. Goldschmidtite is
cubic, space group Pm-3m, with unit-cell parameters: a = 3.9876(1) A, V' =63.404(6) A3,Z =1,
resulting in a calculated density of 5.32(3) g/cm?®. Goldschmidtite is the K-analogue of
isolueshite, (Na,La)NbOs. Raman spectra of goldschmidtite exhibit many second-order broad
bands at 100 to 700 cm™! as well as a pronounced peak at 815 cm™!, which is possibly a result of
local ordering of Nb and Cr at the B site. The name goldschmidtite is in honor of the eminent
geochemist Victor Moritz Goldschmidt (1888 — 1947), who formalized perovskite crystal

chemistry and identified KNbO3 as a perovskite-structured compound.

Keywords: perovskite, niobium, mantle, diamond inclusion, new mineral, Koffiefontein,

Kaapvaal
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INTRODUCTION

Diamonds are carriers of minerals from the lithospheric mantle underpinning cratons (Harris
and Gurney 1979; Meyer 1987; Helmstaedt et al. 2010), the mantle transition zone (Pearson et al.
2014; Kiseeva et al. 2015; Tschauner et al. 2018), and the lower mantle (Harte et al. 1999;
Tschauner et al. 2014; Palot et al. 2016; Nestola et al. 2018). As a chemically inert and rigid
host, diamond can preserve included minerals for billions of years, and thus provide a snapshot
of ancient chemical conditions in cratonic keels or deep-mantle regions.

The Kaapvaal craton in South Africa is host to many diamondiferous kimberlites that have
been intensively mined and studied since the 1970s (e.g., the International Kimberlite
Conferences held since 1973). Large-scale mining, large inclusion-bearing diamonds, and the
efforts of geochemists globally, have made the it the most-studied craton from the perspective of
diamond formation.

We report the first natural occurrence of (K,REE,Sr)(Nb,Cr)O3, now named goldschmidtite
(IMA No. 2018-034), included in a websteritic diamond from the Koffiefontein kimberlite,
Kaapvaal craton, South Africa. The holotype specimen is deposited in the Royal Ontario
Museum, accession number M58208. It is the fifth perovskite-structured mineral to occur in
Earth’s mantle, along with perovskite sensu stricto (CaTiO3), bridgmanite (Harte et al. 1999;
Tschauner et al. 2014), CaSiOs-perovskite (Nestola et al. 2018), and K-REE-Cr-rich tausonite,
which previously recorded the highest Nb- and K-content in a perovskite mineral-inclusion from
diamond (Kopylova et al., 1997).

Goldschmidetite is the natural analogue of the well-known ferroelectric material KNbOs3,
which has the perovskite structure type with orthorhombic symmetry at room temperature

(coexisting with a metastable monoclinic phase: Lummen et al. 2017), and whose symmetry
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increases to cubic above ~400 °C (Skjaerve et al. 2018). Solid solution of LaFeO; in KNbOs, at
molar amounts of 20% or more, also has the effect of increasing the symmetry to cubic at room
temperature (Kakimoto et al. 2003).

End-member KNbO3 was first synthesized by Joly (1877), as discussed by Holmquist (1896).
Thomas F.W. Barth, a member of Victor Moritz Goldschmidt’s research group, was the first to
determine the crystal structure of perovskite, CaTiO3 (Barth 1925). In the following year,
Goldschmidt and his group reported that KNbO3; was effectively isostructural, and
simultaneously introduced the famous tolerance factor for prediction of the perovskite structure
type (Goldschmidt 1926).

Goldschmidetite is named in honor of the eminent scientist Victor Moritz Goldschmidt (born
Zirich, 27 January 1888; died Oslo, 20 March 1947). Goldschmidt made very wide-reaching
contributions in geology, chemistry, mineralogy, crystallography, and petrology (Tilley 1948;
Bastiansen 1962; Suess 1988; Mason 1992; Kauffman 1997). He is widely recognized as the
“founder of modern geochemistry” (Bastiansen 1962; Kauffman 1997), and as stated by Laves
(1962): “The influences of V. M. Goldschmidt's work on the development of mineralogy and
crystallography cannot be overestimated.”

The name goldschmidtite was briefly used (Hobbs 1899) for a supposed gold-silver telluride,
AurAgTes, that was shown later to be sylvanite (Palache 1900). Similarly, goldschmidtine was
used (Peacock 1939) for a supposed antimonide of silver, Ag>Sb, that was shown subsequently to
be stephanite (Peacock 1940). Both of these names had been intended to honor the celebrated

crystallographer Victor Mordechai Goldschmidt (born 10 February 10, 1853; died 8 May 1933).
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Following the recently revised nomenclature for minerals of the perovskite supergroup
(Mitchell et al. 2017), goldschmidtite is a member of the perovskite subgroup and is the

potassium-analogue of isolueshite, (Na,La)NbO3 (Chakhmouradian et al. 1997).

OCCURRENCE

The 90.4 Ma Koffiefontein kimberlite pipe is located about 80 km SSE of Kimberley, South
Africa and was emplaced in the Archean basement of the Kaapvaal craton and overlying
Phanerozoic sediments of the Karoo basin (Davis 1978; Clement 1982; Naidoo et al. 2004; Field
et al. 2008). This diamondiferous kimberlite was discovered in 1870 (Field et al. 2008) and has
been mined for diamonds intermittently.

The diamonds from Koffiefontein are dominantly peridotitic (determined from silicate
inclusions: Harris and Gurney, 1979; Rickard et al. 1989). Goldschmidtite was found in a
websteritic assemblage in association, but not in direct contact, with Cr-rich augite, and an
intergrowth of chromite, Mg-silicate, and an unidentified K-Sr-REE-Nb-oxide. In this region of
the diamond surface there was both green and brown radiation damage (Figure 1). The Cr-
content (1.19 wt% Cr203) and Mg# (86) of the included augite suggests that the host diamond
formed in websterite (Gurney et al. 1984). From single-clinopyroxene geothermobarometry
(Nimis and Taylor 2000), an equilibration pressure of 53 kbar (about 170 km depth) and

temperature of formation of 1190 °C can be calculated.
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EXPERIMENTAL DETAILS

The goldschmidtite inclusion was released from its host diamond by mechanical fracturing of
the diamond with a steel diamond cracker. The released mineral was mounted in epoxy, roughly
ground with corundum paper, and polished with 1 um diamond suspension on a nylon cloth.

A Cameca SX100 electron microprobe at the University of Alberta was used to examine a
polished and carbon-coated (25 nm thickness) epoxy mount of goldschmidtite. In addition to
secondary-electron and back-scattered electron images, quantitative spot analyses were acquired
using wavelength-dispersive spectrometry and Probe for EPMA software (Donovan et al. 2015).
Nineteen elements were measured (Na, Mg, Al, Si, K, Ca, Ti, Cr, Fe, Sr, Zr, Nb, Ba, La, Ce, Nd,
Pr, Sm, and Th) with the following conditions: 20 kV accelerating voltage, 30 nA probe current,
and <1 um beam diameter (5 um was used for the standards). Total count times of 40 seconds
were used for both peaks and backgrounds. The X-ray lines, diffraction crystals, and standards
were: Na Ka, TAP (thallium hydrogen phthalate), albite; Mg Ka, TAP, pyrope; Al Ka, TAP,
Gore Mountain garnet; Si Ka, TAP, diopside; K Ka, PET (pentaerythritol), sanidine; Ca Ka,
PET, diopside; Ti Ka, PET, SrTiO3; Cr Ka, LIF, Cr203; Fe Ka, LIF (lithium fluoride), fayalite;
Sr La, PET, SrTiOs; Zr Lo, PET, zircon; Nb La, PET, niobium metal; Ba Ly, PET, sanbornite; La
La, LIF, LaPOg4; Ce Lo, LIF, CePO4; Nd L, LIF, NdPOy; Pr L, LIF, PrPO4; Sm L, LIF,
SmPO4; Th Ma, PET, ThO,. The X-ray intensity data were reduced following Armstrong (1995)
with the mass-absorption coefficients of Chantler et al. (2005). For elements found above the
detection limits interference corrections (Donovan et al. 2011) were applied to: Al for
interference by Th; Ti for interference by Ba; Cr for interference by La; Fe for interference by

Th; Sr for interference by Cr; Ce for interference by Ba; and Th for interference by Cr. The
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following elements were not found above the limits of detection (as element in weight percent in
parentheses): Na (0.01), Si (0.01), Zr (0.04), Pr (0.08), Nd (0.05), and Sm (0.05).

The crystal of goldschmidtite was extracted from the epoxy block and mounted on to a glass
fiber with isocyanoacrylate adhesive. High-precision unit-cell parameters were determined by
single-crystal X-ray diffraction by the eight-position centering method (King and Finger 1979)
on the Huber four-circle diffractometer at Northwestern University equipped with an SMC9300
controller and sealed-tube Mo Ka radiation source. A 360° phi-rotation image was collected on a
MAR345 image plate detector. Full-profile peak fitting was performed with the software
package SINGLE (Angel and Finger 2011). In total, 46 reflections were centered using omega
scans (rocking curves) in their eight-equivalent positions with a point detector 40 cm from the
crystal at 20 angles between £30°. Intensity data used to produce a crystallographic information
file (.cif) were collected from -15 to +60 degrees 2 8 also using the point detector on the four-
circle diffraction system at Northwestern University.

Confocal Raman spectroscopy was carried out at Northwestern University using a custom-
built system with an Olympus BX microscope with a Mitutoyo 100X objective. A Melles-Griot
(Model 85-BLS-601) solid-state, diode-pumped laser with 200 mW output and wavelength of
458.5 nm was used as the excitation source. The output power was reduced with neutral density
filters to achieve an ~8 mW focused beam of ~1-2 pm diameter at the sample surface.
Unpolarized Raman spectra were collected in back-scatter geometry through a confocal aperture
into a 0.5 m focal-length Andor Shamrock 3031 spectrograph with 1200 lines-per-mm diffraction
grating. Spectra were collected on an Andor Newton DU970 CCD camera cooled to -90 °C with
a thermoelectric cooler. Spectra were obtained for 10 seconds, averaged over 12 accumulations

for a total of two minutes per spectrum.
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RESULTS AND DISCUSSION

Physical and properties

Only a single grain of goldschmidtite, about 100 pm in maximum dimension, was recovered.
The mineral is dark green with an adamantine luster, non-fluorescent under longwave UV
illumination, and is not cathodoluminescent. The small size of the solitary mineral grain
precluded determination of its streak and hardness, and the tenacity, fracture, and cleavage were
not observed. From the average chemical composition determined by EPMA and the unit cell
parameters, the calculated density is 5.32(3) g/cm?®. The refractive index was calculated to be:
Neale 2.16(2), with the use of the Gladstone-Dale constants of Mandarino (1976), the calculated
density, and the average chemical composition. Stacked optical images of goldschmidtite

acquired with a Tagarno Prestige FHD digital microscope are shown in Figure 2.

Chemical composition

The average composition of goldschmidtite, for elements above detection, is given in Table
1; the iron content is reported as total Fe,O3; by analogy with latrappite, (Ca,Na)(Nb,Ti,Fe)O3
(Mitchell et al. 1998). The empirical formula, calculated on the basis of three anions, is:
(Ko.504La0.150S10.133Ba0.092Ce0.078Ca0.002Tho.001)=0.960
(Nbo.695Cro.192F€0.051Al0.014Mg0.036 T10.011)20.99903, which can be simplified to:
(K,REE,Sr)(Nb,Cr)Os. The various elements were assigned to the two cation sites (Wyckoff
positions 15 and 1a, respectively) in the aristotypic perovskite formula based on size
considerations and following the IMA nomenclature (Mitchell et al. 2017). A back-scattered-

electron image of goldschmidtite is shown in Figure 3.
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Crystal structure

The method of eight-position centering on a Huber four-circle diffractometer was used to
center 46 reflections from = 30° 26, resulting in 368 total rocking curves. The diffraction spots
can be described as very sharp, with a full-width at half-maximum averaging 0.07° in the final
omega scan. Unconstrained least-squares fitting to all 46 reflections gives unit-cell parameters: a
=3.98757(20) A, b =3.98751(22) A, c = 3.98756(20) A, o= 89.999(4)°, B=89.997(4)°, and y=
89.999(4)°, indicating that goldschmidtite is cubic. Cubic-constrained least squares refinement
gives a = 3.98755(12) A and V' = 63.404(6) A>.

Single-crystal intensity data were collected in the range of -15 to +60 degrees 26, resulting in
753 total reflections in a sphere of reciprocal space from +5 s, £5 k and £5 /, of which 33 are
unique with a merging R-factor (Rin¢) of 0.0636. From the intensity data, the space group was
determined to be Pm-3m (No. 221 in the International Tables for Crystallography), being the
only space group with zero observed symmetry violations. Although all atoms are on special
positions in Pm-3m (Figure 4), a refinement was carried out to produce anisotropic displacement
parameters and a list of reflections and structure factors provided in the crystallographic
information file (CIF), yielding a final R-factor of 0.0181. In addition, the powder diffraction
pattern was calculated using PowderCell version 2.4 for Windows (Kraus and Nolze 1996) for
Cu Kau, 1.540598 A, and is presented in Table 2. The atom assignments for the powder
diffraction calculation were: Wyckoff 15 — (Ko.s04La0.15Sr0.133Ba0.002Ce0.078)x0.957; Wyckoft la
(Nbo.695Cro.201Fe0.051Mgo.038Al0.014Ti0.011)50.999; Wyckoff 3d — O. Figure 5 shows an unfiltered X-
ray diffraction image taken with a MAR345 image plate, demonstrating sharp diffraction spots

and the absence of twinning. Goldschmidtite is most similar to isolueshite, (Na,La,Ca)(Nb,Ti1)O3

10
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(Krivovichev et al. 2000), which has the identical space group and similar cell dimensions (in the
range 3.90-3.91 A).

Although synthetic KNbOs is orthorhombic at room temperature, goldschmidtite is cubic.
This may be a result of the cation occupancies: the A-site is only 50% filled by K and the B-site
is 70% filled by Nb atoms. The balance is filled by smaller-sized cations (e.g., La on the A-site,
Cr on the B-site), which results in goldschmidtite adopting a cubic structure as shown for the

analogous synthetic system by Kakimoto et al. (2003).

Raman spectrum

Goldschmidtite possesses cubic symmetry, space group Pm-3m, with A site (K, REE, Sr), B
site (Nb, Cr), and O all lying on inversion centers with site symmetry Oy, Oy, and Dap,
respectively. Consequently, by selection rules, there are no Raman-active modes. As shown in
Figure 6A, the as-measured (uncorrected) Raman spectrum of goldschmidtite exhibits many
weak, broad bands from 100-700 cm™ and a large peak at ~815 cm™!, similar to a spectrum of
natural perovskite in the RRUFF database (sample R050456) from Magnet Cove, Arkansas,
USA, with composition (Cao.s2Feo.09Nao.07Ceo.01La0.01)(Ti0.95Nbo.05)O3. In CaTiO3 solid solutions
with Sr(Mg,Nb)Os3 and NdAIlO3, a strong, broad Raman band at ~820 cm™! has been attributed to
partial and local ordering of multiple cations on the B site (Zheng et al. 2003; Zheng et al. 2004),
suggesting that the 815 cm™! band in goldschmidtite and some CaTiO; perovskites results from
non-random B-site ordering, characteristic of complex perovskites. The broad nature of the
815 cm™ band in goldschmidtite suggests that ordering is short range and weak, which would

therefore not be detectable in the single-crystal X-ray diffraction data.

11
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In Figure 6A, the Raman spectrum of goldschmidtite is also compared with natural tausonite
from the type locality and synthetic, cubic SrTiO3; from the RRUFF database (sample X090004).
Since SrTiO; also has the Pm-3m space group, no first-order Raman is expected and the
observed bands are second-order features (Schaufele and Weber 1967; Nilsen and Skinner 1968).
Second-order Stokes Raman scattering involves the addition or difference combination of
phonons from different longitudinal-optical (LO), transverse-optical (TO), or transverse-acoustic
(TA) modes (Nilsen and Skinner 1968). In Table 3, the second-order Raman band positions and
assignments in SrTiO; from Nilsen and Skinner (1968) are listed along with the observed bands
in goldschmidite from a deconvolution of the baseline-corrected spectrum, shown in Figure 6B.
Thus, most of the features in the measured Raman spectrum of goldschmidtite are either

attributed to weak, local cation ordering or second-order Raman scattering.
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IMPLICATIONS

Potassium and niobium are not common elements in the typical suite of mantle-derived
minerals included in diamonds but indicate mantle metasomatism (Erlank and Rickard 1977;
Dawson 1982). Several Nb-rich minerals were found in the heavy mineral concentrate from
Jagersfontein and from a metasomatic vein in a peridotite from Bultfontein (both kimberlite
pipes are in close proximity and age to the Koffiefontein pipe): Nb-rich perovskite (21-28 wt%
Nb20Os), Nb-rich rutile (~13 wt% Nb20Os), Nb-rich titanite (11.9 wt% Nb2Os); and were believed
form by the interaction of metasomatic fluids with peridotite at 20 to 30 kbar and 900 to 1000 °C
(Haggerty et al. 1983). The existence of goldschmidtite indicates that perovskite-structure oxides
have the potential to be significant hosts for K and Nb in the mantle, along with other lithophile
elements such as La and Ce, and high-field-strength elements such as Ti and Ta. However, the
precipitation of a mineral with such high concentrations of LILE (K, Ba) and strongly
incompatible HFSE (Sr, LREE, Nb) requires an extremely fractionated metasomatic fluid that is
much more enriched in incompatible elements than has been observed for “normal” mantle
metasomatism (Hoffman 1988, Allegre et al. 1995). To stabilize such a phase would require that
these incompatible elements become major components in the fractionating fluid. Thus, this
would likely result from the last drops of an initially much larger volume of metasomatic melt or
fluid.

The presence of edgarite, FeNbsSe, in an unusually reduced fenite (Barkov et al. 2000) has
been interpreted recently to indicate that niobium may occur in the trivalent or tetravalent states
in the mantle (Bindi and Martin 2018). However, the occurrence of goldschmidtite in diamond
suggests that niobium is more likely in the pentavalent state in the mantle, at least in diamond-

forming environments.
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LIST OF FIGURE CAPTIONS

FIGURE 1. Broken and rounded dodecahedral diamond from Koffiefontein that hosted
goldschmidtite (before breakage). Goldschmidetite is seen in green and radiation damage of
the diamond can be seen by the brown regions.

FIGURE 2. Two orientations of the crystal of goldschmidtite adhered to a glass fiber. Crystal
shape has been affected by polishing. Background noise due to the digital-image stacking has
been removed.

FIGURE 3. Back-scattered-electron image of goldschmidtite. The lamellar structure is probably a
result of polishing.

FIGURE 4. Clinographic view of the structure of goldschmidtite: Nb atoms are orange and in 6-
fold coordination, K is pale blue and in 12-fold coordination, O atoms are red, and the unit
cell is shown in black.

FIGURE 5. Unfiltered X-ray diffraction image (Mo Ka radiation) taken with a MAR345 image
plate showing sharp, single diffraction spots and the absence of twinning.

FIGURE 6. (a) Uncorrected Raman spectrum of goldschmidtite (black) using a 458.5 nm
excitation laser, compared with natural tausonite (red curve) and perovskite (blue curve,
RRUFF sample R050456). Spectra are offset for clarity. Raman features in SrTiO3 are
attributed to second-order Raman scattering (Nilsen and Skinner 1968). The strong band at
815 cm™! is likely due to weak, local ordering of different cations on the B site (Zheng et al.
2003). (b) Deconvolved and baseline-corrected Raman spectrum of goldschmidtite below

1200 cm™.
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444  TABLE 1. Electron microprobe analysis of goldschmidetite.

Constituent wt%  Range (n=11) Stand. dev.

Nb20s 44.82 43.97-46.04 0.69
Ti02 044  0.42-046 0.01
ThO: 0.1 0-0.16 0.06
AlLOs 035 0.32-0.39 0.02
Cr203 7.07  6.80-7.15 0.11
LaxOs3 11.85 11.45-12.05 0.17
Cex0s 6.18 6.02-6.29 0.08
Fex0O3 1.96 1.95-1.98 0.01
MgO 0.7 0.67-0.78 0.03
CaO 0.04 0.02-0.07 0.01
SrO 6.67 6.14-6.83 0.21
BaO 6.82  6.48-7.30 0.27
K20 11.53 11.16-11.67 0.14
Total 98.53 97.81 -99.81 0.58
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447  TABLE 2. Calculated powder diffraction data for goldschmidtite.

Relative intensity, I (%) deatc. (A) hkl
0.61 3.9876 100
100.00 2.8197 110
6.89 2.3022 111
49.93 1.9938 200
0.22 1.7833 210
57.80 1.6279 211
35.82 1.4098 220
0.01 1.3292 300
0.05 1.3292 221
28.15 1.2610 310
2.11 1.2023 311
12.89 1.1511 222
0.02 1.1060 320
37.95 1.0657 321
7.30 0.9969 400
0.02 0.9671 410
0.02 0.9671 322
8.63 0.9399 330
17.25 0.9399 411
1.13 0.9148 331
29.88 0.8917 420
0.03 0.8702 421
20.86 0.8502 332
43.24 0.8140 422
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450

451

452

TABLE 3. Raman spectral assignments for second-order modes.

Goldschr_rlndtlte SrT{?: Assignments for SrTiOs?
(cm™) (cm™)
81 TO,-TA; TO2-TO;
125
160
240 251 2TA; 2TOy1; TO1+TA
320 TO2+TA; TO2+TO1; TOs-
308
TO>
369 TO4-TA; TO4-TOy; 2TO;
445
465
580
629 TO4+TA; TO4+TO;
684 2TO3
715 727 TO4+TO2
750
815
850
1038 2L0g; 2TO4
1325 LO4+LO2
1590 1618 2104

# Synthetic, pure SrTiO3; (Nilsen and Skinner 1968).
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453

454  FIGURE 1. Broken and rounded dodecahedral diamond from Koffiefontein that hosted
455  goldschmidtite (before breakage). Goldschmidetite is seen in green and radiation damage of the

456  diamond can be seen by the brown regions.
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459  FIGURE 2. Two orientations of the crystal of goldschmidtite adhered to a glass fiber. Crystal
460  shape has been affected by polishing. Background noise due to the digital-image stacking has
461  been removed.
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464  FIGURE 3. Back-scattered-electron image of goldschmidtite. The lamellar structure is probably a
465  result of polishing.
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467

468  FIGURE 4. Clinographic view of the structure of goldschmidtite: Nb atoms are orange and in 6-
469  fold coordination, K is pale blue and in 12-fold coordination, O atoms are red, and the unit cell is
470  shown in black.
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475

FIGURE 5. Unfiltered X-ray diffraction image (Mo Ko radiation) taken with a MAR345 image

plate showing sharp, single diffraction spots and the absence of twinning.
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FIGURE 6. (a) Uncorrected Raman spectrum of goldschmidtite (black) using a 458.5 nm
excitation laser, compared with natural tausonite (red curve) and perovskite (blue curve, RRUFF
sample R050456). Spectra are offset for clarity. Raman features in SrTiOs are attributed to
second-order Raman scattering (Nilsen and Skinner 1968). The strong band at 815 cm™! is likely
due to weak, local ordering of different cations on the B site (Zheng et al. 2003). (b)

Deconvolved and baseline-corrected Raman spectrum of goldschmidtite below 1200 cm™.
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