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SUMMARY

Accurate and efficient simulations of coseismic and post-earthquake deformation are important
for proper inferences of earthquake source parameters and subsurface structure. These sim-
ulations are often performed using a truncated half-space model with approximate boundary
conditions. The use of such boundary conditions introduces inaccuracies unless a sufficiently
large model is used, which greatly increases the computational cost. To solve this problem, we
develop a new approach by combining the spectral-element method with the mapped infinite-
element method. In this approach, we still use a truncated model domain, but add a single
outer layer of infinite elements. While the spectral elements capture the domain, the infinite
elements capture the far-field boundary conditions. The additional computational cost due to
the extra layer of infinite elements is insignificant. Numerical integration is performed via
Gauss—Legendre—Lobatto and Gauss—Radau quadratures in the spectral and infinite elements,
respectively. We implement an equivalent moment-density tensor approach and a split-node
approach for the earthquake source, and discuss the advantages of each method. For post-
earthquake deformation, we implement a general Maxwell rheology using a second-order
accurate and unconditionally stable recurrence algorithm. We benchmark our results with
the Okada analytical solutions for coseismic deformation, and with the Savage & Prescott
analytical solution and the PyLith finite-element code for post-earthquake deformation.

Key words: Moment-density tensor; Split-node; Coseismic deformation; Post-earthquake
relaxation; Spectral-infinite-element method.

1 INTRODUCTION

Accurate and efficient simulations of coseismic and post-earthquake deformation are critical for analyses of earthquake slip and subsurface
structure (e.g. Kenner & Segall 2000a,b). There are several existing analytical and numerical methods to calculate seismic deformation.
Analytical methods are generally limited to simple homogeneous or layered models and are unable to accommodate realistic 3-D material
heterogeneity, complex model geometry and topography. Most existing tools based on numerical methods use lower order polynomials
to approximate the displacement field. Far-field boundary conditions are generally implemented by considering very large models and
imposing Dirichlet boundary conditions. The accuracy and efficiency of these methods can be improved by using geometrically adaptive mesh
refinement, specifically A-refinement (e.g. Zienkiewicz et al. 2005). If the model of interest is already very large, adaptive mesh refinement
alone is not efficient.

Okada (1985, 1992) provides the most general analytical solutions for coseismic deformation due to point sources and finite faults in a
homogeneous linearly elastic half-space. This method is fast and accurate, and can accommodate complex faults by use of the superposition
principle. For a layered half-space, calculations of coseismic and post-earthquake deformation can be performed with analytical and semi-
analytical methods (Pollitz 1996, 1992; Barbot & Fialko 2010). Savage & Prescott (1978) built on the work of Nur & Mavko (1974)
to develop an analytical method for modelling an earthquake cycle for a semi-infinite fault, including coseismic deformation and post-
earthquake relaxation, in a layered half-space consisting of an elastic lithosphere over a Maxwell viscoelastic asthenosphere. The fault is
modelled as a screw dislocation. Later, Savage (1998) developed an analytical expression for an edge dislocation in a layered half-space.
The normal-mode approach (Piersanti ef al. 1995) and spectral finite-element method (FEM, Tanaka et al. 2009) have been used to compute
post-earthquake relaxation for spherically symmetric earth models. The FEM is probably the most widely used numerical method to model
seismic deformation. Williams & Richardson (1991) used the FEM to produce a layered viscoelastic model of the San Andreas fault. Reilinger
et al. (2000) developed an FEM model with viscous and elastic zones. More recent studies based on the FEM accommodate more complex
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material models and realistic Earth structure (Masterlark 2003; Hu et al. 2004; Zhao et al. 2004; Freed et al. 2006; Parker et al. 2008;
Kyriakopoulos et al. 2013; Agata et al. 2018; Wang & Fialko 2018). The most commonly used FEM package is PyLith (Aagaard et al. 2013a),
which can simulate 3-D coseismic and post-earthquake deformation in a variety of settings. A detailed analysis of PyLith and comparisons
with our method may be found in Section 4.2.3.

Earthquake sources are characterized by slip vectors that represent displacement discontinuities on a fault. Due to the inherent geometrical
discontinuity, numerical implementation of the earthquake source is not trivial. Numerical methods to implement the earthquake source can
broadly be classified as the moment-density tensor approach and the split-node approach. In the moment-density tensor approach, an equivalent
moment-density tensor is computed from prescribed slip on an earthquake fault. This moment-density tensor is implemented as a force—or
load—in the model domain. Since this approach does not explicitly describe slip on the mesh, the mesh does not have to honor the fault
surface (Frankel & Vidale 1992; Komatitsch & Tromp 1999; Komatitsch & Vilotte 1998).

In the split-node approach, the mesh is created so that it honors the fault surface, and appropriate slip is explicitly prescribed on both
sides of the fault. Because the slip discontinuity has to be enforced, the nodes on the fault surface must split apart. The force contributed
by the slip is computed via the stiffness matrix, which can be done locally. Another way to prescribe slip is to consider the slip condition as
a constraint on the governing equation based on a penalty approach, Lagrange multiplier, or perturbed Lagrangian method (Zienkiewicz &
Taylor 2005). Such methods introduce additional unknown variables at the fault nodes, which generally requires a special technique for the
matrix solution. Aagaard et al. (2001) implemented the fault by defining six translational degrees of freedom for a node located on the fault
surface, such that each side of a fault node has three degrees of freedom, moving relative to each other. The open-source package PyLith uses
the Lagrange multiplier method (Aagaard er al.2013a).

For numerical simulations of seismic deformation, the half-space is generally truncated and Dirichlet boundary conditions are imposed.
These boundary conditions are designed to approximate real-world conditions, but are not fully accurate and can introduce artifacts at the
edges of the model domain. The most common approach to this problem uses very large model volumes in an attempt to suppress boundary
artifacts. In this approach, local or adaptive mesh refinement is introduced so that a coarser mesh is used near the outer boundary. This strategy
requires large computational resources and generally results in only limited improvement (Tsynkov 1998). Alternatively, Robin boundary
conditions can be used to mimic far-field boundary conditions (Pollitz 2014).

A better solution to this problem is to make use of infinite-element boundary conditions. In solid and fluid mechanics, the displacement
descent approach (Bettess 1977; Medina & Taylor 1983; El-Esnawy et al. 1995) and the coordinates ascent approach (Beer & Meek 1981;
Zienkiewicz et al. 1983; Kumar 1985; Angelov 1991) are both widely used to solve vanishing infinite boundary conditions. In the displacement
descent approach, an element in the physical domain is mapped to an element in a natural domain of interval [0, co]. This is achieved by
multiplying the standard interpolation functions by suitable decay functions. Since the integration interval is [0, oo], classical Gauss—Legendre
quadrature cannot be employed. Either Gauss—Legendre quadrature has to be modified to accommodate the [0, oo] interval, or Gauss—Laguerre
quadrature can be used (Mavriplis 1989). The Jacobian of the mapping and the numerical quadrature must be modified from the classical
FEM.

The coordinate ascent approach is also referred to as the "'mapped infinite-element’ method. In this approach, an element that extends to
infinity in the physical domain is mapped to a standard natural element with interval [—1, 1]. This is achieved by defining shape functions
using a reference point which serves as the pole of the decaying functions of choice. The corresponding shape functions possess singularities
at infinity. Unlike in the displacement descent approach, only the Jacobian of the mapping must be modified, and quadrature identical to the
classical FEM method can be used. Kenner & Segall (1999) previously used infinite elements to mimic the far-field boundary conditions to
simulate seismic deformation.

To simulate coseismic and post-earthquake deformation, we combine the infinite-element approach based on coordinate ascent with the
spectral-element method (SEM). The SEM is a higher-order FEM which uses nodal quadrature, specifically, Gauss—Legendre—Lobatto (GLL)
quadrature. Due to the coincidence of the interpolation and quadrature points, pre- and post-processing are efficient and accurate. The method
is widely used for dynamic problems, for example seismic and acoustic wave propagation (Faccioli et al. 1997; Peter et al. 2011; Seriani &
Oliveira 2008; Tromp et al. 2008) and fluid dynamics (Patera 1984; Canuto et al. 1988; Deville et al. 2002), and more recently for quasistatic
problems (Gharti ef al. 2012a,b). For post-earthquake deformation problems, 1-D and 2.5-D spectral-element methods are used, respectively,
for spherically symmetric earth models (Crawford ez al. 2017) and axisymmetric models (Pollitz 2014).

We refer to the combination of the spectral-element method with the infinite-element method as the spectral-infinite-element method
(SIEM). The SIEM has been used to calculate background gravity (Gharti & Tromp 2017) and gravity anomalies (Gharti et al. 2018) for
complex 3-D models. This paper details the development and implementation of the SIEM for seismic deformation. We model coseismic and
post-earthquake deformation for a variety of faults to illustrate and validate our method.

2 FORMULATION

2.1 Governing equation

We solve the quasi-static equation that governs coseismic and post-earthquake deformation in a setting illustrated in Fig. 1. The domain
of interest, €2, is embedded in a quasi-half-space. The embedded domain has a boundary consisting of a free surface I'y and an artificial
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Figure 1. Schematic diagram of a fault buried in a quasi-half-space.
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Figure 2. Schematic diagram of the generalized Maxwell rheology.

boundary I". The half-space has a boundary consisting of Iy and a remainder I, . The unit outward normal to the domain boundary is
denoted by n. The domain €2 contains a fault surface ¥ with unit normal v .
The governing equation in the domain of interest, 2, is given by

V-T+1=0, (@)
subject to the boundary condition
A-T=0 (@)

on the free surface I'y . Here T denotes the stress tensor, and f denotes an external body force. Coseismic deformation is controlled by the
elastic constitutive relation T = ¢ : &, where ¢ denotes the fourth-order elastic tensor and & the strain tensor. Post-earthquake deformation is
controlled by a generalized Maxwell rheology, which is described in the next section.

2.2 Viscoelastic rheology

We use a generalized Maxwell rheology to simulate the viscoelastic response. A generalized Maxwell model, shown in Fig. 2, consists of a
single elastic element (a spring) in parallel with a number of Maxwell elements (a spring and a dashpot in series). For simplicity, we assume
an isotropic model with a viscoelastic response restricted to the deviatoric stress only.

The constitutive equation for a generalized Maxwell solid is given by (Zienkiewicz & Taylor 2005)

M
T(t)=c™:e(t)+ Y " : q" (1), (3)
m=1

where e denotes the strain tensor, 7™ the viscosity of the mth dashpot, and M the total number of Maxwell elements. The elastic modulus of
the elastic element is denoted by ¢*°, and ¢” denotes the elastic modulus of the mth Maxwell element, so that the total modulus ¢ is determined

by
e=e 4 Y e @

The Maxwell rheology is a special case, for which ¢* = 0 and m = 1.
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For linear viscoelasticity, the partial strain " (¢) is the solution to the first-order differential equation
Q" +q"/t" =¢, ®)

where t”" = n™/E™ is the relaxation time and £” Young’s modulus of the mth Maxwell element.
For an isotropic model, we can split the stress into two components:

1
T=17-pl , p=—§tr(T), (6)
where T denotes the stress deviator, I the identity tensor, and p the mean stress. Similarly, the strain can be decomposed as
1
e=d+ gtr(s)l, 7)
where d is the strain deviator and tr(e) the relative volume change. The mean pressure can be expressed as:

p= —iktie), ®)

where « denotes the elastic bulk modulus. Now we can express the deviatoric stress in terms of the partial strains as

m=1

M
() =2pu [r‘”e(r) +Y rmq" (t)} , ©)

where p is the shear modulus. Here we have defined moduli ratios for the elastic element, »*° = 1>/, and for the Maxwell elements, 7" =
"/, such that > + an‘le 7™ = 1, in accordance with eq. (4).

For the time-stepping procedure, we may use a recurrence relationship for partial strains (Simo & Hughes 1998; Zienkiewicz & Taylor
2005). For the variables in the following equations, a subscript represents the time step and a superscript represents a Maxwell element. The
partial strain at time #, , | = ¢, + Af may be computed as

41 = exp(=At/T") g + Aq)y, (10)
where At is the time step, and where we initialize q' = do. For discrete time steps, we may approximate the partial strain rate in each time
step as
A‘LTH = A‘I::_l(dwl -d,) , (11)
where

m 1 m
Ag, = — [1 —exp(=At/t™)]. (12)

At

This approximation is singular for A = 0 and is therefore unstable for very small time steps, but it has a limit value of 1 at A# = 0. Thus, we
can use a series expansion for smaller values of Az, namely

oo

. LAt
Agy = 1- Z(—l) ol <T7>

a=2

1 /At 1 /AN 1 (AR
—1——-(= (=) (= 13
2 (Tm)+3! <r"’) 4! (T”‘) + (13)

This series quickly converges, and in practice we need only a few, say less than five, terms to achieve convergence. In our examples, we set a
stopping tolerance of 107!2,
Using the recursion formula, the constitutive eq. (9) becomes

m=1

M
Tu1 () =21 |:”°Odn+1(t) + Zr”’q;"+](t)i| . (14)

Finally, the tangent shear modulus is given by

M
a":n+1 1
=2 o "Ag" E--I®I), 15
T M(r +Yor q,,ﬂ)( J101) (1)

m=1

where E denotes the fourth-order identity tensor with elements £, = %(8,-;68‘,@ + 6:¢6;x). For small time steps At — 0, the tangent shear
modulus is equal to the full shear modulus, whereas for very large time steps At — 00, it is equal to the equilibrium shear modulus u* =
7> . This viscoelastic time stepping procedure is second-order accurate and unconditionally stable.
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Figure 3. The domain of interest, €2, is discretized using spectral elements (light grey elements). A single layer of infinite elements is added outside the domain
(dark grey elements). Black thick line represents the fault. Left-hand panel: mesh honors the fault. Right-hand panel: mesh does not honor the fault.

2.3 Earthquake source

An earthquake source is defined in terms of slip vector Ason a fault plane X . The slip vector captures a discontinuity in the displacement
field s when going from the + side of the fault X to the — side (see Fig. 1) (Dahlen & Tromp 1998; Aki & Richards 2002):

As=st —s =[s]". (16)

The notation [ - T captures a jump in the enclosed quantity when going from the + to the — side of the fault. For a sliding fault, the normal
component of displacement must be continuous across the fault, i.e., - As = 0. One can also introduce a discontinuous traction on the fault,
At = [v - T]* . However, for a spontaneous rupture, there is no externally applied forces, and consequently, the traction must be continuous:
At = 0 (Aki & Richards 2002).

An earthquake source is usually implemented using one of two general methods: the split-node approach and the moment-density tensor
approach, as we discuss in the following two sections.

2.3.1 Split-node approach

For the split-node approach, we need to mesh the model domain €2 so that the element boundaries honor the fault surface, as shown in
Fig. 3(a). We use a strategy first suggested by Melosh & Raefsky (1981), in which slip is equally divided on the + and — sides of the fault. In
this strategy, the node on the + side has displacement § + As/2 and the node on the — side has displacement § — As/2, where § is an unknown
mean displacement that must be solved for. Only As is known and contributes to the force. The force induced by the prescribed slip may be
computed using the stiffness matrix, as discussed in Section 2.5. The prescribed slip only induces an external force and does not constrain the
fault nodes. Therefore, the split-node approach does not alter the number of the degrees of freedom in the system. In the split-node approach,
the body force f in the governing eq. (1) is zero because the load is introduced by prescribing a discontinuous displacement field on the fault
surface.

We have implemented slip tapering in our package using two approaches. When using the split-node approach, users can turn on the
built-in tapering option, which sets zero slip on the fault boundary and accommodates the linear slip variation along the tapering direction
within all elements on the fault edge. Both the split-node and moment-density tensor approaches allow the user to specify a general taper by
defining variable slip on the fault.

2.3.2 Moment-density tensor approach

Given the slip vector As and the unit fault normal v the moment density tensor m is determined by (Dahlen & Tromp 1998; Aki & Richards
2002):

m=c:bAs, (17)

where ¢ denotes the fourth-order elastic tensor. Because of the symmetries of the elastic tensor, the moment-density tensor is symmetric:
m = m', where T denotes the transpose. We note that eq. (17) is a general expression representing both shear and tensile faults.

Since slip is confined to the fault surface X, an equivalent external body force may be used in the governing eq. (1) to represent the
source using a Dirac delta function (Dahlen & Tromp 1998):

f(x) = —m(xy) - VS(X — Xz). (18)

Here x5 denotes locations on the fault surface where slip is defined. Since the slip does not have to be explicitly defined on the fault nodes,
the mesh does not have to honor the fault surface, as shown in Fig. 3(b).
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2.4 Weak form

The weak form of the governing eq. (1) may be obtained by taking the dot product with an arbitrary test vector w and integrating over the
domain of interest €2 :

fgw-(V~T)dV+/w~de=0. (19)

Q

Upon substituting the source representation (18) for the moment-density tensor approach and using Gauss’ theorem, we obtain

fVw:TdV:/w~T~ndS+m(xz):Vw(xz), (20)
Q r

where we have used the traction-free boundary condition (2). Note that the moment-density tensor source only contributes to the integral for
points located on the fault plane.

2.5 Discretization

To solve the problem using a spectral-element method (SEM), the domain €2 is meshed using spectral elements. A single layer of infinite
elements is added outside the domain to reproduce an infinite domain, as shown in Fig. 3. As we discuss in more detail in Section 2.7,
spectral and infinite elements share the same interpolation functions, namely Lagrange polynomials, but use different quadratures. Thus, the
displacement field s is discretized in natural coordinates & as

SE) =Y sa Nau(&), @1
a=1

where s, denotes the displacement at quadrature point &, and V, is an interpolation function. The total number of quadrature points in an
element is denoted by 7, and is given by the product of the number of quadrature points in each dimension, 7/, j = 1, 2, 3; that is, n = ]_[i.=1 n'.
The interpolation functions N, in natural coordinates are determined by the tensor product of one-dimensional Lagrange polynomials, that
is

o T E =g

N'l/(sj = rE———— 22

=11e=e) .
p#al

such that
3

N.§) =[] N @) (23)
j=1

Here « denotes the index of quadrature point &, = {1, §,2, §,3).

A component of the test function w is taken to be an interpolation function N,, making the approach a Galerkin method. Upon substituting
such a test function and the displacement field given by eq. (21) in eq. (20), we obtain a set of elemental linear equations that may be written
conveniently in matrix—vector form:

K.S. = F.. 24)

The quantities K, and F, are known, respectively, as the stiffness matrix and force vector of an element. The elemental displacement vector,
S. , has the form

, " T
Sez[s‘lY s st s s5 sy sy sy e st sy sﬁ] , (25)
with 3n entries for the three components of displacement at each of the n quadrature points. The transpose of a vector or matrix is denoted

by 7. Symbolically, we may write the elemental stiffness matrix, K, , as

K.= [ BTCB.d7, (26)
Qe
where 2, denotes element e and C denotes the 3D elasticity tensor stored as a 6 x 6 matrix, and B, is the strain-displacement matrix given

by
B.=SN!. (27)
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Here we have defined the matrix operator

- 5 —

™ 0 0
x
d
0 ™ 0
y
9
0 0 %
S=1| 4 5 OZ , (28)
9y ox
9 d
]
z
2 i
N 0 J—
L 0z dx
and the interpolation function matrix
T
N0 0 N, O 0 N 0 0 N, 0 0
No=| 0 N 0 0 N 0 0 N O 0O N, O (29)
0 0O N O 0O N 0 0 N 0 0 N,
For the split-node approach, the force vector takes the form
1
F.= — 3 (KF —K;) AS, + / N, tdsS, 30)
r

where AS, is the elemental slip vector, which has nonzero values only on fault surface nodes. Similarly, the matrices K" and K are evaluated
on the 4+ and — sides of the fault surface, respectively. The traction vector tis defined by

.
tz[zx P ﬁ] : 31)
Alternatively, for the moment-density tensor approach, the force vector takes the form
F.=G'M+ /r N, tds, (32)
where
aN, 9N, 9N, 7"
6= |: ox dy 0z :| ’ 33)
T
M = I:mn my Mz My My Moy M3 M3 m33] . (34)
After assembling the elemental matrices and vectors, we obtain a set of global linear equations
KS=F |, (35)

where K and F are known, respectively, as the global stiffness matrix and the global force vector. Similarly, S is the global displacement
vector.

2.6 Artificial boundary

The simulation domain €2 is terminated by an artificial boundary I", as Fig. 1 shows. This boundary gives rise to an unknown contribution to
the force vectors (32) and (30), namely [. N, tdS. One option is to simply assume that this boundary is sufficiently far from the fault surface
¥ that this contribution can be safely ignored, because the traction vanishes asymptotically. Another option is to force the displacement vector
to be zero on the artificial boundary, under the assumption that the displacement field decays sufficiently fast. In common practice, the normal
component of displacement on the boundary is set to zero.

A better approach is to add a so-called infinite-element layer to the domain 2 along its artificial boundary I", as Fig. 3 illustrates. The
outer surface of this infinite-element layer captures the imaginary boundary at infinity, that is I', in Fig. 1. In this approach, we split the
global force vector, F, in terms of an unknown part, F; = frx N, tdS and a known part, IEZ . Similarly, the global displacement vector S
is split in terms of a known component, S, corresponding to displacement values on I',, which are zero, and an unknown component, S,,
which corresponds to the rest of the domain. Therefore, we may partition the global equation as follows:

Ki Ko |lSi| | Fi
|:K21 KZZMSZ}—[#J' (36)
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Mapped finite element Mapped infinite element

Figure 4. Mapping of a 1-D element to natural coordinates. The element consists of three geometrical nodes. Left-hand panel: spectral/finite element.
Right-hand panel: infinite element.

This results in two sets of linear equations:

K]2 Sz = F] (37)
and
KnS,=F, |, (38)

where we have used the fact that §; = 0. First, the unknown part S, is obtained by solving eq. (38). Once S; is determined, F; can be directly
obtained from eq. (37), if necessary. In practice, we form the global matrix corresponding to only the unknown degrees of freedom, that is
K2, s0 a matrix partition is never required.

2.7 Mapping

For numerical integration, a point x = {x'} in a physical element is mapped to a point & = {£/} in the natural element. This mapping is
different for the spectral-element and infinite-element domains, as we describe.

2.7.1 Spectral elements

A spectral element is mapped to the natural element using the transformation

g
X(E) =) xo Mu(®). (39)
a=1
Here M, denotes a shape function and 7, is the number of geometrical nodes, x,, of an element. The shape function M, is defined similarly
to the interpolation function (eq. 21). However, the number of interpolation points n and the number of geometrical points n, may differ.
In general, ny, < n for the spectral-element method, leading to a sub-parametric formulation. The Jacobian matrix of the transformation is
determined using the relation J” (&) = 9x'(§)/9&/. For integration, we use GLL quadrature, in which the interpolation and quadrature points
are identical.

2.7.2 Infinite elements

Inside the domain €2, geometrical nodes are used to map an element from the physical domain to the natural domain (Fig. 4a). Outside the
domain €2, we introduce a single layer of elements in which the displacement field is discretized using infinite elements (Fig. 3). For simplicity
and clarity, we illustrate a 1-D mapping. A point known as the pole, xy, and an intermediate geometrical node, x,, are used to map the element
from the physical domain to the natural domain (Fig. 4b) using the transformation (Curnier 1983; Zienkiewicz et al. 1983)

x = My(&)xo + My(§) x2, (40)

where the shape functions M (&) and M, (&) are defined as

Mo€) = %
£ (41)
My§)=1+ T—&

The shape functions My (&) and M, (&) satisfy the relation

My(§) + Ma(§) = 1. (42)
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Figure 5. Shape functions for a 1-D element with three geometrical nodes. Left-hand panel: spectral/finite element. Right-hand panel: infinite element.

These shape functions map an element in the physical domain, which is extended to infinity, to an element in the natural domain in the
following manner (Fig. 4b):

§=—1 X =Xy,
§=0 X =x, (43)
E:—}—l X = X3 = OQ.

For infinite elements, shape functions therefore become singular at £ = 1. Shape functions for regular spectral and infinite elements are plotted
in Fig. 5.
To understand the consequence of infinite-element shape functions, we can express the displacement field, s, as a piecewise polynomial

sE)=a+aé+as +a3E 4. (44)
From eqs (40) and (41) we determine the inverse map

%_zl_y(xl—m)’ (45)
r
where y = (x; — x0)/(x; — X¢) is a constant, given xo, x;, and x,, and » = x — xy. The value of y governs the location of the pole, x,, and
hence the size of the infinite element.
Substituting £ in eq. (44), we obtain

sy =by+ 2 2 B (46)
rooor r

where by, by, b,, are constant vectors for given x, x|, and x,. Hence, the value of s(') decays to by when 7 tends to co. For our problem, since
the displacement decays to zero at 0o, the value of by is zero. One or more poles may be necessary depending on the physics and the model. All
poles have to be located opposite to the decay direction and outside the infinite element. For the coseismic and post-earthquake deformation
problems, we generally set the source location as the pole. The accuracy of the infinite-element approximation may be increased by increasing
the order of the interpolation functions, but the shape functions remain the same. Alternative shape functions for infinite elements have been
suggested (Marques & Owen 1984; Kumar 1985). Shape functions can be generalized to particular decay functions, such as exponential or
logarithmic decay (Abdel-Fattah ez al. 2000). A typical mapping of a 3-D infinite element in a general physical domain to an element in the
natural domain is shown in Fig. 6.

2.8 Numerical integration

In a spectral element, we use GLL quadrature:

n—1

1
/ SE)dE = wy S+ Y [+ vy S, @7
- a=2

where fis a general function, w, are the GLL weights of integration, and &,, are the quadrature points. GLL quadrature is exact for polynomials
of order 2n — 3 or less.

Infinite elements, however, cannot use GLL quadrature due to the singularity at infinity. To circumvent this problem, we choose to use
Gauss—Radau quadrature, which is given by

1 n
f JEdE =w S+ > wa f(E)- (48)
- a=2

Gauss—Radau quadrature is exact for polynomials of order 27 — 2 or less, and includes only the near end points of the interval. Since
the quadrature does not include the end points of the interval, infinite-element shape functions can be computed at all quadrature points.
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Figure 6. Left-hand panel: a general 3-D infinite element. Points xo, xo2, X03 and xo4 are the poles. Right-hand panel: 3-D infinite element mapped to its
natural coordinates.

O Interpolation
® Quadrature

Figure 7. Coupling between a spectral element and an infinite element in 2-D. Both elements use identical interpolation nodes. Spectral elements use Gauss—
Lobatto—Legendre (GLL) quadrature points, while infinite elements use Gauss—Radau (GR) quadrature points in the infinite direction and GLL quadrature in
the two remaining directions. GLL and GR quadrature points coincide on a spectral-infinite element boundary.

By combining Gauss—Radau quadrature in infinite elements with GLL quadrature in spectral elements, quadrature points on an spectral-
infinite element interface coincide (Fig. 7). This coincidence naturally couples spectral and infinite elements. Alternatively, one can use
Gauss—Lengendre quadrature.

2.9 Computing model differences

In Section 4, we benchmark our code against analytical solutions from Okada (1992) and FEM solutions from PyLith (Aagaard et al. 2013a).
The error between our solution and the reference solution is calculated by integrating over the differences at the GLL points, using the
formulation described in Section 2.8. This integrated difference is normalized by the integrated reference displacement, so that our error
estimate becomes

[18—s||>dV

Err0r2 == ‘[Q,\iz
Jo lI8112dV

Here § and s are reference and numerical solutions, respectively. Source elements are not included in the integration. Differences for each
component of displacement are calculated by integrating over that component of the displacement instead of the full displacement vector.

(49)

3 PARALLELIZATION

For parallelization, we use non-overlapping domain decomposition, in which each partition contains a unique set of elements and nodes are
only shared on interfaces. Since infinite elements and spectral elements have similar pre- and post-processing procedures, infinite elements
do not pose any difficulty for parallelization. We use Message Passing Interface (MPI) as a parallel library (Gropp et al. 1994) and the
SCOTCH mesh partitioning package for mesh decomposition (Pellegrini & Roman 1996). We implemented parallel iterative Krylov solvers
using PETSc, a portable and extensible toolkit for scientific computation (Balay et al. 2015).
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Figure 9. Left-hand panel: spectral-element mesh of a vertical fault model. The model is cut to reveal the fault. Right-hand panel: infinite elements (outer
grey) radiating from the outer surfaces of the model. The fault surface is shown in dark gray. The SEM uses the mesh in the left and the SIEM uses the mesh
in the right.

4 EXAMPLES

We rely on MeshAssist (Gharti ef al. 2017) and Trelis/CUBIT (CUBIT 2017) for model preparation and meshing for all examples included
in this article. All simulations use 3 GLL points in each direction, resulting in a total of 27 points per element. For reasons of accuracy and
consistency, we solve all examples in a nondimensionalized framework. We use a conjugate gradient solver with block Jacobi preconditioning,
and we set a relative tolerance of 10~ as a stopping criterion for the solver.

4.1 Elastic benchmarks

In the following examples, we compute coseismic deformation and compare with the Okada solutions. We adapted the Okada analytical
solution routine "DC3D’ (Okada 1992) to calculate the reference solutions. We note that the Okada analytical expressions depend only on a
single elasticity parameter, namely Poisson’s ratio.

4.1.1 Vertical strike-slip fault

We consider a homogeneous model of size 100 km x 80 km x 52 km with a vertical fault of size 20 km x 10 km, as shown in Fig. 8. The
center of the fault is located at 7 km depth. We use homogeneous material properties with a Young’s modulus of 5.68x 10'© N m2 and a
Poisson’s ratio of 0.25.

The model is meshed using hexahedral elements with an average size of 2 km, resulting in a total number of 52 000 spectral elements,
433 593 points, and 1 300 779 degrees of freedom. The mesh honors the fault surface, as Fig. 9(a) shows. This is essential for the split-node

0202 YoJel\ 20 uo Josn Areiqr AjsiaAlun uojeoulid Aq 66166 1S/¥9E L/2/9 1 ZAoesqe-ajone/B/woo dno-oiwspeoe)/:sdny woij papeojumoq



Coseismic and post-earthquake deformation 1375

Okada SEM: Moment-tensor SEM: Split-node
40
0.81 _
0.61 E
20 0.41 x
€ 0.20 ‘g
2 04 0.00 £
©
—-20 4 -0.41 o
-0.61 2
-0.81
—-40
40
0.49 _
0.37 £
20 0.24 >
£ 0.12 'g
2 04 0.00 g
> -0.12 §
-0.24 5
—20 o
037 &
-0.49
-40
40
031 _
20 4 0.23 £
0.15 N
t,] @ee e .
< 0.00 ¢
= ®e ee ®oe 008 5
—20 J 015 2
wn
058
-40 T T T T T T T T T T T T ’
-50 -30 -10 10 30 50-50 -30 -10 10 30 50-50 -30 -10 10 30 50
X (km) X (km) X (km)
(a)

Differences between SEM and Okada results

Component CMT solution Split-node solution
X component 125 123
(b) Y component 476 478
7 component 215 215
Total .266 .265

Figure 10. (a) Displacement field computed with the spectral-element method (SEM) on the free surface for the vertical strike-slip fault. Rows top to bottom:
x-, y- and z-components. Columns left to right: Okada analytical solution, SEM with moment-density tensor approach, and SEM with split-node approach. (b)
Differences between the SEM and Okada results calculated with eq. (49).

approach but not for the moment-density tensor approach. However, a mesh designed for the split-node approach can also be used for the
moment-density tensor approach.

First, a vertical strike-slip source is defined by slip of 5 m along strike. A traction-free boundary condition is imposed on the top surface
and Dirichlet boundary conditions are imposed on all lateral and bottom surfaces, so that the normal component of the displacement vanishes,
that is i - s = 0. We perform simulations with both the moment-density tensor and the split-node approaches.

In Fig. 10, we plot the displacement field on the free surface and compare it with the Okada solution. The numerical results are in good
agreement with the Okada solution, but we observe clear discrepancies on all components. The main lobes around the source are nicely
reproduced. Discrepancies due to the truncated boundary are visible near the boundaries, which is expected because the boundaries are not far
from the fault. The results for the moment-density tensor and split-node approaches look very similar. For closer inspection, we plot a profile
for each displacement component along the y-axis at x = —10 km, shown in Fig. 12 in the left-hand column. We observe that the numerical
results are generally in good agreement with the Okada solution for the x- and z-components of the displacement. For the y-component, the
discrepancies are significant. Close to the fault, the split-node approach gives better results than the moment density-tensor approach. This is
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Figure 11. (a) Displacement field computed with the spectral-infinite-element method (SIEM) on the free surface for the vertical strike-slip fault. Rows top
to bottom: x-, y-, and z-components. Columns left to right: Okada analytical solution, SIEM with moment-density tensor approach, and SIEM with split-node
approach. (b) Differences between the SIEM and Okada results calculated with eq. (49).

expected because the slip is exactly satisfied on the fault surface in the split-node approach. Near the boundary, both numerical results are
similar and are significantly different from the Okada solution.

The significant differences, in particular for the y-component, indicate that the model domain we used is not sufficiently large to minimize
boundary effects. For the next experiment, we use the same small model domain but add a single layer of infinite elements, as shown in
Fig. 9(b). Specifically, a total of 6680 infinite elements are created for this model, which is &13 per cent of the original number of elements. The
percentage of infinite elements generally decreases for large models. The infinite-element layer facilitates the implementation of a Dirichlet
boundary condition at infinity, that is s = 0 at co. Note that the mesh in the infinite element layer satisfies the non-converging condition at
infinity, since opposite faces diverge. We take the center of the source as the pole position for the infinite element mapping. We use the SIEM
to simulate coseismic deformation with both the moment-density tensor and split-node approaches. The resulting displacement fields are
plotted in Fig. 11. In this case, both numerical results are in excellent agreement with the Okada solution. All displacement components near
the boundary are nicely reproduced by both the moment-density tensor and split-node approaches. Just by adding a single layer of elements,
we are able to improve the results significantly.
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Figure 12. Profiles of the the displacement field plotted along y-axis at x = —10 km on the top surface for the vertical strike-slip fault. Top to bottom rows are
x-, y-, and z-components, respectively. Left-hand column: SEM. Right-hand column: SIEM.
For a clearer picture, we plot profiles for each displacement component along the y-axis at x = — 10 km, as shown in the right column

of Fig. 12. We observe excellent agreement between the Okada and the numerical solutions. Near the fault, the split-node approach gives
better results than the moment-density tensor approach due to the exact slip defined on the fault nodes. For the y-component the results are
markedly improved. It is interesting to note that the infinite elements improve the result not only near the boundary, but also near the fault.

Finally, we perform a convergence test for this example. We perform simulations with both moment-density tensor and split-node
approaches for three different element sizes: 4, 2 and 1 km.

Figs 13 and 14 show snapshots of the displacement fields computed for the different element sizes on the free surface for moment-density
tensor and slip-node approaches, respectively. We have interpolated all results on a structured grid of identical resolution for these snapshots.
We observe excellent convergence for both approaches. For the moment-density tensor approach, we observe a slight discrepancy around the
fault centre for the coarsest mesh with respect to the other two mesh sizes. For the split-node approach snapshots, discrepancies between the
coarse and fine mesh results are unnoticeable.

4.1.2 Vertical tensile fault

For this example, we consider a tensile source with a fault opening of 5 m. We use the same model domain, properties, and mesh as in the
previous example.

First we impose a traction-free boundary condition on the top surface and Dirichlet boundary conditions for the normal component of
displacement on all lateral and bottom surfaces. We run simulations with both the moment-density tensor and the split-node approaches.
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Figure 13. Displacement field computed with the SIEM on the free surface for the vertical strike-slip fault for different mesh refinements with the moment-
density tensor approach. Rows top to bottom: x-, y-, and z-components. Columns left to right: element sizes 4, 2 and 1 km.
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Figure 14. Displacement field computed with the SIEM on the free surface for the vertical strike-slip fault for different mesh refinements with the split-node
approach. Rows top to bottom: x-, y-, and z-components. Columns left to right: element sizes 4, 2 and 1 km.
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Component CMT solution Split-node solution
X component .284 282
(b) Y component .283 283
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Figure 15. (a) Displacement field computed with the SEM on the free surface for the vertical tensile fault. Rows top to bottom: x-, y- and z-components.
Columns left to right: Okada semi-analytical solution, SEM with moment-density tensor approach, and SEM with split-node approach. (b) Differences between
the SEM and Okada results calculated with eq. (49).

Resulting snapshots for the displacement field on the top surface are shown in the Fig. 15. The numerical results for both the moment-density
tensor and the split-node approaches are in good agreement with the Okada solution, although we observe discrepancies farther away from
the source. Right at the fault, the node split approach is more accurate because it explicitly specifies the slip on the fault nodes. We observe
some discrepancies for the moment-density tensor approach, which is not discontinuous on the fault surface. To take a closer look, we plot
profiles along the y-axis at x = 0 km in Fig. 17 in the left-hand column.

For all components, the numerical results are generally in agreement with the Okada solution, and the split-node result is significantly
better than the moment-density tensor result. Further away from the fault, all components exhibit significant discrepancies. Since the
moment-density tensor approach does not exactly satisfy the slip condition on the fault, we observe some numerical discrepancies near the
fault.

Next, for the same model, we add a single layer of infinite elements to impose Dirichlet boundary conditions at infinity. We perform
simulations for both the moment-density tensor and the split-node approaches. Fig. 16 shows snapshots of the surface displacement field. Both
numerical results are in excellent agreement with the Okada solution for all components, and the deformation pattern is correctly reproduced
by both approaches. We still observe some numerical discrepancies for the moment-density tensor approach close to the fault. The right-hand
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Differences between SIEM and Okada results

Component CMT SIEM Split-node SIEM
X component .063 .017
(b) Y component .017 .015
7 component .068 .050
Total .032 .023

Figure 16. (a) Displacement field computed with the SIEM on the free surface for the vertical tensile fault. Rows top to bottom: x-, y- and z-components.
Columns left to right: Okada analytical solution, SIEM with moment-density tensor approach, and SIEM with split-node approach. (b) Differences between
the SIEM and Okada results calculated with eq. (49).

column of Fig. 17 shows surface profiles along the y-axis. Addition of the infinite-element layer significantly improves the results for both
approaches. We observe that the split-node approach is in excellent agreement with the Okada solution, including near the fault, but the
moment-density tensor approach has not improved. This suggests that the moment-density tensor approach may not be suitable for near-field
simulations.

4.1.3 Inclined fault

In this example, we consider the same model domain as in the previous examples. The fault has the same size and location, but dips at a 45°
angle, as shown in Fig. 18. To honour the fault surface, we cut the entire model through the fault plane. First, to asses the effects of mesh
quality, we intentionally create a mesh that has poor-quality elements around the fault region, as shown in Fig. 19. For example, the distortion
metric of the elements on the fault surface is low as 0.46. We use an average element size of 2 km. The mesh consists of 52 900 elements,
441 269 points, and 1 323 807 degrees of freedom.

We perform simulations with both the moment-density tensor and split-node approaches. Resulting snapshots of the displacement fields
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Figure 17. Profiles of the the displacement field plotted along y-axis at x = —10 km on the top surface for the vertical tensile fault. Top to bottom rows are x-,

y- and z-components, respectively. Left-hand column: SEM. Right-hand column: SIEM.

52 km

Figure 18. Model geometry of the inclined fault. The model is cut through the fault plane so that the fault is visible. The fault surface is shown in dark grey.
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-40 50

Figure 19. Left-hand panel: spectral-element mesh of an inclined fault model. Smallest value of distortion metric of the elements on the fault surface is 0.46
indicating a poor-quality mesh. Right-hand panel: the model is cut through the fault plane to reveal the fault. The fault surface is shown in dark grey.

Okada SEM: Moment-tensor SEM: Split-node
40
1.00 _
0.75 E
20 0.50 x
3 0.25 ¢
2 04 0.00 £
> -0.25 3
©
~20 - -0.50 =
0.75 2
-1.00
—-40
40
0.50 __
0.38 £
20 ~ =
° P 025 >
3 012 ¢
X 0 0.00 £
> -0.12 §
2 g
-0.38 2
-0.50
-40
40
0.76 _
20 0.57 £
_ 0.38 N
€ 019 €
2 .. L) UL i
-0.19 3
_20 J -0.38 2
w
o5 8
—-40 T T T T T T T T T T T T ‘

-50 -30 -10 10 30 50-50 -30 -10 10 30 50-50 -30 -10 10 30 50
X (km) X (km) X (km)

Figure 20. Displacement field computed with the SEM on the free surface for the inclined fault. Rows top to bottom: x-, y- and z-components. Columns left
to right: Okada analytical solution, SEM with moment-density tensor approach, and SEM with split-node approach.

computed on the free surface are shown in Fig. 20. Both numerical results are in good agreement with the analytical solution. Both methods
are capable of reproducing the major features of the deformation pattern, although we observe some discrepancies, in particular for the x-
and y-components. Another interesting observation is that, for this example, the split-node result is actually worse than the moment-density
tensor result. For closer inspection, we plot profiles for each component on the free surface along the x-axis, as shown in the left column of
Fig. 22. We observe significant discrepancies, particularly for the y-component. We clearly observe that the moment-density tensor result is
better than the split-node result, even near the fault.

We add the infinite-element layer outside the model domain and impose Dirichlet boundary conditions at infinity. The total number
of infinite elements is 6816—approximately 13 percent of the original number of elements. Again, we perform simulations with both the
moment-density tensor and the split-node approaches. Resulting snapshots of the displacement field on the top surface are shown in Fig. 21.
Profiles for each component are plotted along the x-axis at y = 0 km are shown in Fig. 22 in the right-hand column. The results are notably
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Figure 21. Displacement field computed with the SIEM on the free surface for the inclined fault. Rows top to bottom: x-, y- and z-components. Columns left
to right: Okada analytical solution, SIEM with moment-density tensor approach, and SIEM with split-node approach.

better for all components, especially near the boundary. We again observe that the moment-density tensor results are better than the split-node
results near the fault.

In an attempt to improve the simulations, we remesh the model with high-quality hexahedra around the fault, as shown in Fig. 23. The
distortion metric of the elements on the fault surface is improved from 0.46 to 1.0. We use the same element size of 2 km. The mesh consists
of 53 400 elements, 445 107 points, and 1 335 321 degrees of freedom. We plot snapshots of the displacement fields on the free surface, as
shown in Fig. 24. Profiles for each component along the x-axis at y = 0 km on the free surface are shown in the left column of Fig. 26. The
numerical results are much improved compared to the low-quality mesh. Displacement patterns for all components are accurately reproduced,
although we observe the some discrepancies for the y-component. Both the moment-density tensor and the split-node approaches give very
good results.

Next, we add the infinite-element layer and impose Dirichlet boundary conditions at infinity. Specifically, 6736 additional elements are
created. Resulting snapshots for the displacement field computed on the free surface are shown in Fig. 25, and profiles for each displacement
component along the x-axis at y = 0 are shown in Fig. 26 on the right. Both numerical results are now in excellent agreement with the Okada
solution. The y-component results are significantly improved for both approaches. Displacement patterns are accurately reproduced both near
and further from the source.

The last two examples with different quality meshes demonstrate that it is important to have a high-quality mesh around the fault for the
split-node approach. It is of course always important to have a high-quality mesh, but some times it is difficult to obtain such a high-quality
mesh due to complexity of the model geometry. If the mesh around the fault is of poor quality, the moment-density tensor approach may be
the better option.

4.2 Viscoelastic benchmarks

In the following examples, we simulate the viscoelastic response and compare the results with the analytical solution for an axial loading
and semi-infinite strike-slip fault, and a finite-element solution for an earthquake source. We set the zero initial conditions for all examples.
Although the axial loading example is not directly related to the coseismic and post-earthquake deformation, it serves as the demonstration
of the accuracy of implementation of the viscoelastic rheologies. Further, it demonstrates the applicability of our package not only to the
seismic sources but also to other loading.
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Figure 22. Profiles of the the displacement field plotted along x-axis at y = 0 km on the top ground surface for the inclined fault. Top to bottom rows are x-,
y- and z-components, respectively. Left-hand column: SEM. Right-hand column: SIEM.
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Figure 26. Profiles of the the displacement field plotted along x-axis at y = 0km on the top surface for the inclined fault using a high-quality mesh. Top to
bottom rows are x-, y-, and z-components, respectively. Left-hand column: SEM. Right-hand column: SIEM.

Figure 27. Left-hand panel: A cantilever rod under an axial stress. Right-hand panel: Mesh for the cantilever rod. Axial stress 7,,=10 MPa.

4.2.1 Cantilever rod under axial stress

In order to verify the implementation of a viscoelastic rheology, we first simulate the viscoelastic response of a rod with a square cross section
30 mm x 30 mm and a length 100 mm, as shown in Fig. 27a. The rod has Young’s modulus = 1000 MPa, Poisson’s ratio 0.4833, and
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Figure 28. Viscoelastic response for the rod. Left-hand panel: Maxwell rheology. Right-hand panel: Standard linear solid, i.e., a general Maxwell rheology
with a single Maxwell element.

0 -400

Figure 29. Left-hand panel: Model geometry for the semi-infinite vertical strike-slip fault. Right-hand panel: Spectral-element mesh for the semi-infinite
vertical strike-slip fault. The fault surface is shown in dark gray. An elastic layer (light gray) is overlying a viscoelastic layer (gray).

viscosity 9 x 10'° Pa s. This particular example may be found in Marques & Creus (2012). We mesh the model using hexahedral elements
resulting in a total of 208 spectral elements. Elements have an average cross-section 7.5 mm x 7.5 mm and are ~7.7 mm long. We perform
two simulations with a Maxwell rheology and a standard linear solid or a Zener model. The shear modulus of the Maxwell element in the
general Maxwell rheology is determined by the moduli ratio 7! = 0.901. The left end of the rod is fixed. An axial stress T, = 10 MPa is
instantly applied at the right end of the rod and held constant until 6000 s, at which point the stress is released. We set the time step to 10 s
for the simulations. We plot the time series of the axial strain observed at the right end of the rod (Fig. 28). We obtain an excellent match for
both rheologies.

4.2.2 Semi-infinite vertical strike-slip fault

In this example, we construct a semi-infinite strike-slip fault model with dimensions 800 km x 840km x 350 km, as shown in Fig. 29. The
elastic layer has a thickness 4 = 60 km and overlies a viscoelastic layer with a thickness of 290 km with a Maxwell rheology. The fault surface
extends to a depth D = 30km in the elastic layer, such that the ratio D/H = 0.5. For this model Nur & Mavko (1974) derived an analytical
solution, and Savage & Prescott (1978) generalized this solution for a number of earthquake cycles.

We use a shear modulus 1 = 4.439663 x 10'° N m? and viscosity n = 7.00046 x 10'° Pa s, such that the characteristic time is
21n/u = 100.0 yr. We set Poisson’s ratio to 0.25. We consider a single earthquake cycle with a uniform slip rate of 2 A$ = 0.04 m yr! along
strike for 7= 100 yr, for a total slip As =2 AS§7 =4 m.

We mesh the model using hexahedral elements of dimension 10 km. The mesh consists of 235 200 spectral elements and 1 931 839
nodes resulting in a total of 5 721 590 degrees of freedom. We impose a traction free boundary condition on the top surface, and vanishing
Dirichlet boundary conditions on the lateral and bottom surfaces. We set a time step of 10 yr and run the simulation for 100 yr, which takes
~9 min on 80 processors.
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Figure 30. Ratio of surface displacement to coseismic slip, [|s — AS§7||/||As]||, as a function of the ratio of the perpendicular distance from the fault to the
thickness of the elastic layer, y/H, computed for various time ratios for a semi-infinite strike-slip fault.

We plot the ratio of surface displacement to coseismic slip as a function of the ratio of perpendicular distance from the fault to the
thickness of the elastic layer for time ratios /7 = 0.2, 0.4, 0.6, 0.8 and 1.0, which correspond to times of 20, 40, 60, 80 and 100 yr,
respectively, as shown in Fig. 30. In order to match the results with the analytical solution given by Savage & Prescott (1978), surface
displacement at a given time is computed by subtracting the coseismic slip, As 7, from the total displacement, s, at that time. The numerical
results are in excellent agreement with the analytical solutions for all time ratios.

4.2.3 PyLith example

PyLith is a FEM package that can simulate dynamic and quasi-static seismic processes. This code is available from the Computational
Infrastructure for Geodynamics (CIG) website and is widely used to simulate coseismic deformation, post-earthquake relaxation and dynamic
rupture (Hsu ez al. 2011; Douilly ez al. 2015). It uses a first-order spatial discretization, so mesh elements must be quite small, especially in the
vicinity of the fault, in order to guarantee accuracy. PyLith can simulate post-earthquake relaxation using a variety of viscoelastic rheological
models. We performed coseismic (elastic) and post-earthquake (viscoelastic) benchmarks with PyLith 2.2.0 (Aagaard et al. 2013a,b). These
benchmarks demonstrate that our method can match the accuracy of an existing FEM package for coseismic and post-earthquake simulations.

Because PyLith requires very small elements near the fault, we designed different meshes for our SEM and PyLith simulations. For the
PyLith simulations, we used a modified version of the mesh from PyLith’s own Savage & Prescott benchmark in Aagaard et al. (2013a).
The mesh has hexahedral elements that are 20 km long. A box measuring 640 km x 400 km x 140 km in the center of the mesh has refined
elements 6.7 km long. The total mesh dimensions are 2,000 km x 1,000 km x 400 km. For the SEM simulations, we used a mesh with 13.3 km
mesh spacing throughout the domain. Our SEM simulation has 3 GLL points per element side, meaning that it is second order, so this choice
of mesh spacing yields the same nodal spacing as the PyLith mesh around the fault. Both simulations have homogeneous material properties
with Young’s modulus 5.68x 10'° N m and Poisson’s ratio 0.26. For the viscoleastic simulations, the lower 280 km of the domain has a
Maxwell viscoelastic rheology with 7 = 7.1 x 10" Pas. A diagram of the model domain is shown in Fig. 31.

For this benchmark, we used a vertical strike-slip fault running along the y-axis of the domain. It is 213 km long and 53 km wide, centered
at 47 km depth. We imposed uniform slip of 2 meters. PyLith implements the earthquake source via split-nodes, so we use our split-node
implementation for this benchmark. PyLith faults have slip that tapers linearly over the edge elements of the fault so that it goes to zero at
the nodes that form the fault’s edges. Our SEM code can accommodate both tapered and non-tapered split-node faults, and we compare both
results to the PyLith output. We use the built-in tapering option to implement the taper.

The two meshes for this benchmark are shown in Fig. 32. The SEM mesh, shown in Fig. 32a, has a total of 353 400 elements and 383
691 nodes. It honours the fault surface. The PyLith mesh has 252 105 elements and 260 696 nodes. This mesh also honours the fault surface,
but the dimensions of the fault are specified by selecting the nodes that comprise the fault.

The boundary conditions for this benchmark are identical to those used for the non infinite-element Okada simulations: the top surface
has a traction-free boundary condition, and Dirichlet boundary conditions are imposed on the lateral and bottom surfaces. It is not necessary
to use infinite elements for the PyLith simulations because it is possible to impose the same boundary conditions on the PyLith and SEM
simulations. PyLith does not currently support far-field boundary conditions.

First we performed an elastic (coseismic) benchmark. Fig. 33 shows displacement profiles for all three simulations. These profiles show
y-component surface displacement on a line perpendicular to the fault. The tapered SEM displacement solution is close to the PyLith result.
The non-tapered SEM solution has a similar shape to the tapered solution, but as expected it is larger because there is more net slip on the
fault. Fig. 34 shows the surface displacement field for these three simulations.
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Ground surface

Figure 31. Model domain for the Pylith benchmark. The model consists of an upper elastic layer (light gray) and a lower viscous layer (dark gray). The model
has been cut along the fault plane so that the fault is visible at the center of the model.
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Figure 32. Left-hand panel: spectral-element mesh for the PyLith benchmark. The model has been cut along the y-axis so that the fault surface is visible as a
white rectangle. Right-hand panel: PyLith mesh for the benchmark. Note the smaller elements at the center of the mesh.
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Figure 33. PyLith benchmark surface displacement profiles along a line perpendicular to the fault for the coseismic (elastic) result.
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Figure 34. PyLith benchmark surface displacement field for the coseismic (elastic) result. Rows top to bottom: x-, y- and z-components.

Pylith solution, SEM solution for a tapered fault and SEM solution for a non-tapered fault.
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Figure 35. PyLith benchmark surface displacement profiles along a line perpendicular to the fault after 90 yr of viscoelastic relaxation.

Then we allowed the model to relax viscoelastically and plotted the profiles and surface displacement fields after 90 yr. These results are
shown in Figs 35 and 36. The tapered and non-tapered SEM solutions have a similar shape to the Pylith result and have experienced a similar
amount of relaxation after 90 yr. Fig. 37 shows the rate of relaxation for a point on the surface of the mesh. Note that the Maxwell relaxation

time is approximately 39.6 yr.
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Figure 36. PyLith benchmark surface displacement field for a Maxwell viscoelastic rheology. Results are shown after 90 yr of relaxation. Rows top to bottom:
x-, y- and z-components. Columns left to right: Pylith solution, SEM solution for a tapered fault, and SEM solution for a non-tapered fault.
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Figure 37. Rate of relaxation from 0 to 90 yr for y-component of displacement at a point on the surface of the Pylith and SEM meshes.

5 DISCUSSION

We successfully implemented a SIEM for 3-D coseismic and post-earthquake deformation problems using moment-density tensor and split-
node approaches for the source implementation. We observed excellent agreement between the SIEM results and corresponding analytical
solutions for both coseismic and post-earthquake deformation. Implementation of the moment-density tensor and split-node approaches
allows us to accommodate complex fault models. The moment-density tensor approach is easy to implement, but it may not be accurate at or
near the fault for a tensile source. This is due to the fact that the the moment-density tensor approach generates a continuous force field and is
therefore unable to capture the tensile or opening discontinuity accurately. This problem may be alleviated by using a finer mesh around the
fault. The split-node implementation is more accurate, but its performance depends on the mesh quality around the fault. The moment-density
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tensor approach may be a better option in situations where it is difficult to create a high-quality mesh that honours the fault surface. Infinite
elements significantly improve the results while adding insignificant memory and computational costs. Although we have not specifically
used adaptive mesh refinement—that is, A-refinement—in our examples, accuracy and efficiency can be significantly improved by adding
infinite elements on top of an adaptively refined mesh. Since infinite-elements can be generated by just sweeping surface elements along the
infinite direction, the SIEM can be applied to very complex models, including those with realistic topography.

For viscoelastic problems, it is generally known that lower order isoparametric elements suffer from the so-called shear locking
phenomenon, which can be alleviated by using reduced integration and/or higher-order Lagrangian elements (Simo & Hughes 1998;
Zienkiewicz & Taylor 2005). It will be of interest to explore how the SIEM behaves for such problems.

In a complementary study (Langer et al. 2018), we investigate the effects of 3-D heterogeneous material properties and realistic
topography on coseismic and post-earthquake deformation. Infinite-elements naturally couple with spectral-elements, which allows us to
solve coupled elastic-gravitational problems efficiently. Future work will focus on applications to challenging global quasi-static and dynamic
problems, such as earthquake-induced gravity perturbations, tsunamis and glacial rebound.

Our package is open-source and freely available via the Computational Infrastructure for Geodynamics (geodynamics. org).
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