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SUMMARY

We show how the linearized equations that govern the motion of a body that undergoes
deformation can be generalized to capture geometrical non-linearities in a spectral-element
formulation. Generalizing the equations adds little complexity, the main addition being that we
have to track the deformation gradient. Geometrical changes due to deformation are captured
using the logarithmic strain. We test the geometrically non-linear formulation by considering
numerical experiments in seismic wave propagation and cantilever beam bending and compare
the results with the linearized formulation. In cases where finite deformation occurs, the effect
of solving the geometrically non-linear equations can be significant while in cases where
deformation is smaller the result is similar to solving the linearized equations. We find that the
time it takes to run the geometrically non-linear simulations is on the same order of magnitude
as running the linearized simulations. The limited amount of added cost and complexity
suggests that we might as well solve the geometrically non-linear equations since it does not

assume anything about the size of deformations.
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1 INTRODUCTION

In seismological simulations the governing equations are com-
monly linearized, which simplifies the formulation and makes it
easier to optimize the computation cost. Since the deformations
are often small, the strictly linearized formulation is a good ap-
proximation to real world observations (Dahlen & Tromp 1998,
p- 56). In certain cases, however, deformations can be large and a
more general approach is needed. Finite deformation occurs when
a solid is deformed such that the undeformed and the deformed
shapes are significantly different. Under these conditions the gov-
erning equations cannot be linearized and we have to consider non-
linear effects (Zienkiewicz et al. 2014). Non-linear behaviour in
solids can involve both material non-linearities and geometrical
non-linearities (Novozhilov 1999; Zienkiewicz et al. 2014). By ma-
terial non-linearities we mean non-linear effects in the constitutive
relationship that ties stresses to strains in a body. Geometrical non-
linearities are non-linear effects associated with how the geometry
of a body changes as it deforms, and this involves working with a
non-linear strain measure. In the classical, linearized formulation,
the material is described by Hooke’s law, while the geometrical
descriptions hinges on the assumption that deformations are in-
finitesimal, such that the infinitesimal strain measure can be used.
However, it is known that deformations can be large in the near-
field (Aki 1968; Heaton 1990). Furthermore, laboratory tests in
the 1970s (Hardin & Drnevich 1972), and downhole investigations,

such as the Lotung Large-Scale Seismic Test (LSST; Elgamal et al.
1995; Zeghal et al. 1995; Chang et al. 1996), found evidence of
non-linear material behaviour in soft sediments and soils. This has
been the focus of many works that have looked at soil amplification
in weak and strong motion (Aki 1993; Beresnev & Wen 1996; Field
et al. 1997; Ichimura et al. 2015). In such cases, non-linear effects
are observed as sediments begin to yield beyond a certain level
of strain. This type of behaviour violates the classical assumptions
and suggests that a more sophisticated description of the material
and geometry is needed in order to accurately incorporate these
non-linear effects (Field ez al. 1998; Pavlenko 2001).

Our aim in this paper is not to provide a complete generaliza-
tion of the governing equations, but to show how the classical for-
mulation, in the weak form, can be extended to a geometrically
non-linear formulation with only minor modifications. This means
that our model can deal with deformations of any size, but it uses
Hooke’s law as the constitutive relation, which means that there is
a linear relationship between the applied stresses and a logarithmic
strain measure. With the geometrical effects accounted for, we are
well positioned to further extend the model and explore alternative
constitutive relationships that capture non-linear material behaviour.

In the weak form, the equation of motion can be generalized
to a geometrically non-linear form that is analogous to the weak
form of the linearized equation of motion. This is accomplished by
formulating the governing equations in a Lagrangian framework,
also known as the ‘total Lagrangian’ (Wood & Zienkiewicz 1977;
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Miller et al. 2007), and by introducing a logarithmic strain mea-
sure (Hencky 1928; Tarantola 2005) into the formulation. The only
added complexity is that we need to track the deformation gradient.
Therefore, given a finite- or spectral-element (Komatitsch & Vilotte
1998) implementation of the linearized equations, only minor mod-
ifications to the code are necessary in order to achieve an implemen-
tation that captures geometrical non-linearities. We implement the
geometrically non-linear formulation by using SPECFEM3D Carte-
sian (Komatitsch & Tromp 2002a,b; Peter et al. 2011; Komatitsch
etal. 2012) 2.0.2 published under the GPL 2 license. Numerical ex-
amples in seismic wave propagation and cantilever beam bending
are considered. The former being a case where the deformations are
commonly small, and the latter a case where finite deformations are
expected to occur.

In this work our focus is strictly on geometrical non-linearities
and we do not consider any non-linear effects tied to the material
description. For geometrically non-linear problems the strain in a
body cannot be represented by a linear measure, so we must con-
sider a more general measure, such as the logarithmic strain. We use
a spectral-element method to solve our problem, which is a flavour
of the finite-element method where discretization on the element
is accomplished with high-degree Lagrange interpolants and inte-
gration on an element is achieved with Gauss—Lobatto—Legendre
(GLL) quadrature. Using this type of discretization and integration
together leads to a diagonal mass matrix, which greatly simpli-
fies the algorithm (Komatitsch & Tromp 1999). Two approaches
are commonly considered when solving geometrically non-linear
problems with a finite-element approximation. The discrete equa-
tions can be formulated with respect to the reference configuration
in what is called the ‘total Lagrangian’ approach, or they can be
written with respect to the current configuration, which is called
the ‘updated Lagrangian’ approach. In this work we take the total
Lagrangian approach, which has the advantage that the initial con-
figuration remains constant, thereby simplifying the formulation
and computation (Wood & Zienkiewicz 1977).

The purpose of this paper is to show how elegantly the linearized
governing equations in the weak form can be generalized to capture
geometrical non-linearities. The small amount of added complexity
and cost suggests that we might as well solve the geometrically
non-linear equations. The numerical examples are meant to explore
the effects of using the more general formulation.

Throughout this paper we use as much as possible the notation
that lowercase letters and indicies refer to quantities in the current
configuration (e.g. x'), and upper case letters and indicies to quanti-
ties in the reference configuration (e.g. X?). Partial derivatives with
respect to x' and X’ are denoted by 9, and 9;, respectively. We use
the terms ‘Eulerian’ and ‘Lagrangian’ in the classical sense, where
‘Eulerian’ refers to specific locations in space in the current con-
figuration and ‘Lagrangian’ refers to specific material points in the
continuum in the reference configuration. We use ©° and 9Q° to
refer to the domain and boundary of a continuum in the reference
configuration, and 2 and 92 for the same quantities in the current
configuration. Finally, we refer to the governing equations in their
geometrically non-linear form as the ‘general equations’, and in
their classical, linearized form as the ‘classical equations’.

2 FORMULATION

We seek a description of the motion of a body that undergoes finite
deformation. Let £ € R3 be Cartesian and consider a body BZE
whose physical quantities are differentiable almost everywhere. The
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Figure 1. A body B C E € R? subject to finite deformation as it moves
through space. The figure shows the initial configuration of the body, By,
on the left, and the current configuration, B;, on the right. Points in the
initial configuration, X, are called material points, and points in the current
configuration, x, are called spatial points. ¢ is a mapping function that maps
material points in the initial configuration to the corresponding spatial points
in the current configuration. The domain, boundary and boundary normal
in the current configuration are denoted by €2, 92 and R, respectively. A
subscript zero is used for the same quantities in the initial configuration.

region occupied by B at time ¢ is called the configuration of B at
time 7, denoted B,, and we refer to the configuration of B at some
initial time #, as the reference configuration, B,. We call points x €
B, spatial points, with Cartesian coordinates (x!, x?, x*). Points X €
By are called material points and have Cartesian coordinates (X', X2,
X3) in the reference configuration. Fig. 1 shows the relevant setup
where a body B has a domain €2, with boundary 92, and boundary
normal A’ in the reference configuration, By. At some later time, 7,
the body has been deformed and it now has a domain Q with
boundary 92 and boundary normal f in the current configuration,
B,. The motion of B is determined by a mapping ¢: By — B, of the
form

X = ¢ (X, ), (1

which returns the spatial coordinates, {x'}, of a material point, {X"},
at a given time, ¢. This concept is similar to the notion of displace-
ment, that is we could write

¥ =8 X 5N (X, ), (2)

where 8 denotes the Kronecker delta and s’ the displacement field,
such that if s'(X, 0) = 0, then the two coordinate systems coincide
attimer=0.

In tracking the motion of a body B that undergoes finite deforma-
tion, we can choose to employ either the Eulerian or the Lagrangian
description of motion. In the Eulerian description, the motion is
described by monitoring fixed spatial points, x € B,, while in the
Lagrangian description, the motion is described by tracking ma-
terial points, X € By. Both descriptions capture the motion of B
completely. Every scalar, vector, or tensor quantity in B has both an
Eulerian description and a Lagrangian description. Given a quan-
tity (a scalar, vector or tensor) with Eulerian description ¢(x, f) and
Lagrangian description Q(X, f), the two descriptions are related via
(Dahlen & Tromp 1998, eq. 2.1)

q(p(X, 1), 1) = O(X, ). 3)

That is, the Eulerian quantity ¢ that is tracking the spatial loca-
tion of some material point X is equal to the Lagrangian quan-
tity Q. If the deformation of B is sufficiently small, the governing
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equations can be linearized, and the distinction between the Eu-
lerian and Lagrangian descriptions becomes immaterial. If, how-
ever, the deformation of B is finite, the governing equations must
be solved in their general form and then it is necessary to dis-
tinguish between the Eulerian and the Lagrangian descriptions of
motion.

2.1 Equations of motion

The motion of a body B that undergoes deformation is captured
by the equations of motion. Let p denote mass density, v material
velocity, t the Cauchy stress tensor, and f a body force. Then con-
servation of mass, linear momentum and angular momentum can
be expressed as, respectively,

Dip+pV-v=0, 4
pDiv=V _ t+f, ®)
th=t, (6)

where a superscript T denotes the transpose, and D; denotes the La-
grangian (material) time derivative, which is related to the Eulerian
(spatial) time derivative, d;, via

Di=di+v-V. 7

In the following sections we formulate the equations of motion in
the Eulerian and Lagrangian descriptions.

2.2 Eulerian description

In the Eulerian description, the motion is described in terms of
spatial points x € B; with Cartesian coordinates (x', x2, x*). In this
description the conservation laws (4)—(6) become

o+ 3(pv)=0, @®)
p @V +v v =9,t" +pg, 9)
th =17, (10)

where the Einstein summation convention is implied, and g’ is the
specific body force per unit mass. Note that the Cartesian Eu-
lerian components of vectors and tensors depend on the Carte-
sian Eulerian coordinates and time, for example v(x, #) and
#(x, 1).

The deformation that B undergoes is governed by the momentum
eq. (9). We can rewrite this equation in terms of its weak form as
follows:

/pwi(a,vi+vj 3jvi)d3x =/ ﬁjtji w; d2x—/tji ij,-d3x
Q FlsS Q
+/ pg w; &x, (11)
Q

where w; denotes the elements of a test vector (strictly speaking a
one-form), and €2 the model domain with boundary 92 . On a stress
free boundary the traction 71; #/' vanishes, in which case the surface
integral is zero.

For small deformations, we may linearize the weak form (11) and
rewrite it in terms of displacement as

/s;,owl- 3,2si d*x :/mﬁjtﬂ w; dzx—/gtji 8jw,-d3x
+/ pg w; &x. (12)
Q

This is the weak form that the SPECFEM3D Cartesian solver (Ko-
matitsch & Tromp 2002a,b; Peter et al. 2011; Komatitsch et al.
2012) implements for a Hookean rheology. In this linearized ver-
sion of the equation of conservation of linear momentum, Eulerian
and Lagrangian coordinates are equivalent.

2.3 Lagrangian description

In the Lagrangian description, the motion is described in terms
of material points X € B, with Cartesian coordinates (X', X2,
X3). In order to express the conservation laws (4)—(6) in the La-
grangian description, we need to make a change from Eulerian to
Lagrangian coordinates. Using eq. (3), we define the Lagrangian
variables

R(X, 1) = p(P(X, 1), 1), (13)
VX, 1) = v (p(X, 1), 1), (14)
G(X,)=g'(¢p(X, 1), 1). (15)

The Lagrangian velocity may also be expressed in terms of the
displacement field by using eqs (1) and (2)
VX, 1) = 0,0' (X, 1) = 85" (X, 1), (16)
which allows us to write
p @V +v/3;v) =RV’
= R3¢ (17)
=R %"
Note that the mapping function ¢ is a function of two variables,
namely, the material point X and time #. Taking the partial derivative
with respect to time gives us the particle velocity, as shown in (16).
The other partial derivative, with respect to the material point, gives

us the deformation gradient, which is needed when going from
Eulerian to Lagrangian coordinates:

Fi(X, 1) =8,9'(X, 1) = 8 + 3,5 (X, 1), (18)

The deformation gradient describes the local deformation at a ma-
terial point X. It is often called a two-point tensor because one
index is tied to the reference configuration, while the other index
is tied to the current configuration. Taking the determinant of the
deformation gradient, we obtain the Jacobian

J =det(F';). (19)
A volume element changes according to
&y =J(X, )X, (20)

Similarly, a surface element changes according to (Dahlen & Tromp
1998, eq. 2.37)

adix = Ja% (FYH, d*X. (21)
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With a change to Lagrangian coordinates, the conservation laws
become (Dahlen & Tromp 1998, eqs 2.86, 2.93, 2.94, 2.96)

R(X, 1) J(X, 1) = Ro(X). (22)

Ry s’ = aJ(SJJ_' F'p) +.R0 G' 3
=9,P" + Ry G,
s =8, (24)

Here S¥ are the components of the second Piola—Kirchhoff stress,
which are related to the components of the Cauchy stress via (Dahlen
& Tromp 1998, eq. 2.46)

t=J FSYF (25)

and P’ are the components of the first Piola-Kirchhoff stress, which
are related to the components of the second Piola—Kirchhoff and
Cauchy stresses via (Dahlen & Tromp 1998, eq. 2.45)

Pl =SV F ;= J(F", " (26)

The Lagrangian description of the weak form of the momentum
equation can be obtained by using eqs (17), (18), (22) and (25) in
eq. (11), which yields

A% ST F WX
Q0

—/ STFE L o, W X
QO

/ Ry W; 3s' X =
QO

+ / Ry G' W; & X, (27)
QO

where Q° denotes the reference volume with surface dQ° . Alterna-

tively, in terms of the first Piola—Kirchhoff stress we have

/ Ry W; dls' X = A% P W X — / Pl o, W X
Qo Qo

Q0

+ / Ry G' W; & X. (28)
QO

Written in terms of the first Piola—Kirchhoff stress, we can see
that eq. (28) is term-by-term analogous to the weak form for the
classical liniarized theory in (12). The key differences are that this
exact form of conservation of linear momentum is expressed using
the first Piola—Kirchhoff stress instead of the Cauchy stress, and that
the integrals are evaluated in the reference configuration. However,
going from the first Piola—Kirchhoff stress to the Cauchy stress and
from any configuration of B to the reference configuration only
requires the deformation gradient (18), as shown by egs (19), (20),
(21),(22) and (26). As in the Eulerian case, on a stress free boundary
the surface integral vanishes.

From a computational perspective, spectral-element software cur-
rently using eq. (12), for example SPECFEM3D, can just as easily
be used to solve the exact Lagrangian weak form of conservation of
linear momentum (28). To accomplish this, the mesher should be re-
garded as providing a mesh of the reference domain €2, . The solver
needs to use the first Piola—Kirchhoff stress rather than the Cauchy
stress, but the deformation gradient, F'; and its Jacobian, J, re-
quired for the related transformation are already available, because
the displacement gradient, 9;s°, is needed to calculate the infinitesi-
mal strain. Thus, implementation of a spectral-element solver in the
exact Lagrangian framework is just as simple as its implementation
in the linearized framework.
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2.4 Logarithmic strain

When deformations are small we can use the infinitesimal strain
measure to represent strain in a body. For large deformations, how-
ever, we must use a more sophisticated strain measure that captures
non-linear geometrical changes. There are several non-linear strain
measures to choose from, for example the Lagrangian strain or the
Eulerian strain, but for this work we will use the logarithmic, or
Hencky, strain (Hencky 1928; Tarantola 2005), which is a more
general strain measure than the aformentioned Lagrangian and Eu-
lerian strain measures. The Eulerian elements of the logarithmic
strain tensor are defined as

¢'; = 3 (logh) ;, (29)
where '; denotes the elements of the left Cauchy—Green tensor
b =F L (FY;. 30)
Eq. (29) can be expressed as a power series, namely,
e, =1(loghy; ~ 1 -4

—3 (=80 =8+ 31
where § is the Kronecker delta. Truncating the power series after

the first order term leads to

E'; =1(b-9),, (32)

which is commonly referred to as the Lagrangian strain (Dahlen
& Tromp 1998, eq. 3.113). In the linear approximation, where the
distinction between Eulerian and Lagrangian coordinates becomes
irrelevant, the logarithmic and Lagrangian strain reduce to the fa-
miliar infinitesimal strain measure

ey = 3 (08 + is)). (33)

Given the deformation gradient (18), the Eulerian logarithmic strain
can be computed from the left Cauchy—Green tensor based on the
power series expansion (31). The power series may be terminated
once the additional terms fall below a set threshold.

2.5 Constitutive relation

In order to complete the formulation of the governing equations it is
necessary to describe how the material behaves when it undergoes
deformation. This is governed by the constitutive relation. In this
study, we consider the material to be isotropic and linearly elastic,
meaning the stress and strain tensors are linearly related according
to Hooke’s law. In an isotropic medium, Hooke’s law is given by

ty=kef s +2u(e; — L)), (34)

where k denotes the bulk modulus and p the shear modulus of
the medium. This equation can be rewritten in terms of the first
Piola—Kirchhoff stress by using (26) '
Pli — J(F_l)lj tjt

=(F ) lkoe's 8" +2u° (/" — 118/, (35)
where

KO(X) = J(X, t)k (X, 1), (36)

'Note that raising and lowering indices is accomplished with the Cartesian
metric tensor (either in Eulerian or Lagrangian coordinates), that is g;; =
8y & =81 &Gy=68y& G = ¥ | 50 this may be done at will.
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Figure 2. Schematic diagram of the cantilever beam experiment setup. The
neutral axis is shown as a dashed line.
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1OX) = J(X, 1) (X, 1), 37

similar to conservation of mass (22). As a result, we only need the
model parameters p° , k* and 1° , that is, the model parameters in the
reference configuration. Eqs (28), (29) and (35), together with spe-
cific initial and boundary conditions, constitute the geometrically
non-linear governing equations that we solve numerically using a
spectral-element method.

We reiterate that our focus in this paper is to show how the
classical formulation of the governing equations, in the weak form,
can be extended to a geometrically non-linear formulation with only
minor modifications. Therefore, we restrict our scope to a material
description, Hooke’s law, which here provides a linear relationship
between the applied stresses and a logarithmic strain measure. With
the geometrically non-linear formulation in place, however, we are
free to consider other material descriptions that account for material
non-linear effects to further generalize the formulation.

3 NUMERICAL EXAMPLES

In order to study the effects of solving the geometrically non-linear
equations, we consider two numerical experiments. In the first ex-
periment we study finite bending of an elastic cantilever beam. We
record the deflection of the beam and compare the result with the
classical, linearized theory. The second experiment is a seismic ex-
periment where we study wave propagation in two different elastic
models with two different source configurations. We record the dis-
placement field in the entire model and compare it with the classical
theory, that is the linear approximation.

3.1 Cantilever beam experiment

For finite bending of an isotropic elastic cantilever beam, we con-
sider the setup shown in Fig. 2. The beam is oriented such that the
length of the beam is parallel to the x-axis, its height runs along
the y-axis, and the breadth of the beam is parallel to the z-axis,
with an origin in the center of the beam. The beam is L = 10.0 m
long, 7 = 0.02 m tall and b = 0.02 m wide. This gives the beam
a L/h ratio of 500, making it suitable for Euler—Bernoulli beam
theory (Zienkiewicz et al. 2013, p. 439). The beam has Young’s
modulus £ = 13.4 GPa and Poisson’s ratio v = 0.30 . The bound-
ary conditions are such that the beam is fixed at x = 0, and an
external traction is applied on the free end at x = L. Specifically,
the boundary term in the Lagrangian weak form (28) involves the
traction

fl(; P‘,i = Jﬁ(} (Fil)‘,j ;ji, on 390, (38)

where the only non-zero element of 7/7 is
- M,
711

. (39)

Here M. is the moment about the z-axis, /,, the second moment of
area, and y the perpendicular distance to the x-axis.

The mesh consists of 500 spectral elements and we use 5 GLL
points in each direction, which gives a total of 50500 degrees of
freedom. The mesh is uniform with element size 0.02 m. For the
quasi-static simulation we use a timestep of Az = 0.5 um and we
run the simulation for 100 s. For the dynamic simulation we use
the same timestep and run the simulation for 25 s. We record the
y-component of the displacement (deflection), for every time step,
along the neutral axis of the beam (y = 0).

In order to ensure correctness of the implementation of the can-
tilever beam experiment, we benchmark the SPECFEM implemen-
tation of the classical theory with Euler—Bernoulli beam theory. We
consider two benchmarks. In the first benchmark we compare our
implementation with the Euler—Bernoulli solution to the static beam
equation. In the second benchmark we compare our implementation
with the Euler—Bernoulli solution to the dynamic beam equation for
two cases: (i) starting from the first mode solution and (ii) starting
from the static solution.

Using Euler—Bernoulli theory together with Hooke’s law for an
isotropic material, we can express the deflection of a cantilever
beam as (e.g. Gere & Goodno 2008)

_ Mx?
Y T2EL

where s, is the deflection and £'is Young’s modulus. Fig. 3(a) shows
this analytical solution plotted together with the classical SPECFEM
implementation.

The Euler—Bernoulli solution to the dynamic beam equation may
be expressed in terms of harmonic modes as (Bottega 2006)

(40)

s(r. 1) =) A; X;(x) cos(w, 1), (41)
j=1
where 4;, X; and w; are the mode coefficients, mode functions and
natural frequencies, respectively. These quantities are determined
by (Bottega 2006)
1 L
4; = 7/ X;(x)sy(x, 0)dx, (42)
X512 Jo
Xj(x) = cosh(B; x) — cos(B; x)
cosh(B; L)+ cos(B; L)
~ sinh(B; L) + sin(8; L)

[sinh(B; x) — sin(B; x)], (43)

w; = B,LyEL./mL*, (44)

where ;L are the roots of the characteristic equa-
tion cosh (B;L)cos(B;L) + 1 = 0 that give non-trivial solutions
to the Euler—Bernoulli dynamic beam equation. Figs 3(b) and (c)
show the analytical solution expressed by eq. (41) plotted at the end
of'the beam (x = L) for two different starting conditions. In Fig. 3(b)
the starting condition is the first mode solution, and in Fig. 3(c) the
static solution is used as the starting condition. In both cases, the
analytical solutions are plotted together with the results from the
classical SPECFEM implementation. These figures show a perfect
match between the analytical solution and our implementation of
the classical theory for cantilever beam bending.

With the benchmarks in place, we run a simulation using the
geometrically non-linear equations and compare the recorded de-
flections with the classical theory. To further benchmark the re-
sults, we implemented the classical and geometrically non-linear
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Figure 3. Cantilever beam benchmarks comparing the SPECFEM implementation of the classical theory with Euler—Bernoulli beam theory. Panel (a) shows
the static solution, and panels (b) and (c) show the dynamic solutions starting from the first mode solution and the static solution, respectively.

equations for the static case (using the Lagrangian strain measure)
in FEniCS (Alnaes et al. 2015). The static results are plotted in
Fig. 4(a), where we see that classical and non-linear results for
SPECFEM and FEniCS show almost perfect overlap. We also note
that the difference between the classical and the non-linear results
are significant, with a 6.45 per cent difference in deflection at the
end of the beam. Fig. 4(b) shows the dynamic results, recorded
at the end of the beam (x = L), where the starting condition is

the non-linear static solution. The difference is plotted in the same
figure and is on the order of a few per cent. For this experiment
the non-linear implementation takes about three times as long to
run as the classical implementation for the static simulation, and
about five times as long for the dynamic simulation. This comes
down to having to update the boundary conditions for every time
step in the static case, and having to compute the strain as a series
expansion.
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Figure 4. Cantilever beam simulations comparing the classical and geometrically non-linear theories. Panel (a) shows the static solution for SPECFEM and
FEniCS. Panel (b) shows the dynamic solution for SPECFEM, starting from the static solution, and the difference in percent.

3.2 Seismic experiment

We consider a region in Southern California, as shown in Fig. 5,
for two elastic models and two source configurations. The model
dimensions are 666 km x 503 km x 60 km, and the boundary con-
ditions are absorbing (Stacey 1988) on all sides except for the free
surface.

The meshes are unstructured and become coarser with increas-
ing depth. The first model has no topography and consists of a
1-D velocity profile, whereas the second model has topography and
involves 3-D variations in wave speeds. For this reason the two
models have different meshes, but the resolution and number of
elements are approximately the same. The first model is the 1-D
Southern California model (Kanamori & Hadley 1975; Dreger &
Helmberg 1990; Wald et al. 1995), which has compressional and
shear wave speed profiles as shown in Fig. 6(a). It is composed of
1 105920 spectral elements, and each element has 5 GLL points
in each direction, resulting in 74 242 880 degrees of freedom. The
largest element size in the model is 9.3 km while the smallest ele-
ment size is 1.3 km. The second model is a 3-D Southern California
model (Tape et al. 2009), which has the shear wave speed distri-
bution shown in Fig. 6(b). This model consists of 902 880 spectral,
elements, and, with the same number of GLL points per element,
this gives 61288276 degree of freedom. The largest element size
in the model is 20.6 km and the smallest element size is 0.5 km. It

is worth noting that the smallest wave speeds in the 3-D model are
significantly lower than in the 1-D model, while the largest wave
speeds are approximately the same for both models. The highest
frequency resolved by the models is of order 0.1 Hz.

For each model we use two different source configurations, for a
total of four simulations. The first source is a point source represen-
tation of the 1994 Northridge earthquake (Field et al. 1998) with a
Gaussian source time function, a half duration of 5.4 s, and an onset
time 7y = 8.2 s. The source represents a blind thrust event of magni-
tude M,, = 6.7 at a depth of 16.8 km. The second source is the finite
source used in Krishnan ez al. (2006), mapping a 2002 earthquake
on the Denali fault system (Eberhart-Phillips ez al. 2003) onto the
San Andreas fault. The rupture starts at the northern end of the
fault and propagates in a southeasterly direction for a total of about
290 km. The source is represented as a collection of 45240 point
sources evenly distributed along the San Andreas fault. Each source
has a Gaussian source time function, with half durations ranging
from 0.4 to 6.0 s, and the onset times are in the range #, = 0.0—
100.0 s. The source represents a strike-slip event of magnitude M,,
= 7.9 at depths less than 10 km.

For all simulations we use a timestep of Az = 5.0 ms and we
run the simulations for 200 s. We record the three components of
displacement at each timestep for every point in the model. In order
to compare the simulation results with the classical theory, we also
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run the simulations with an SEM implementation of the classical
theory. To ensure that the two simulations are driven by the exact
same source, in both simulations we use the infinitesimal strain
measure in spectral elements where the source is located. To get a
better sense of the differences between the results, we compute the
following measure for every point in the model:

[ sp(x. ) dt)] . 45)

1
Alx) = 5 log [ Ts2(x. 1) dr

Here s; denotes the norm of the displacement field recorded in
the simulations using the classical (linear) formulation and s, the
norm of the displacement field recorded in the simulations using
the general (geometrically non-linear) formulation. The results are
shown in Fig. 7, where the measure is plotted in percent (100 - A)
on the surface. The results show that the differences are similar for
the 3-D model simulations and the 1-D model simulations, but they
are larger with the finite source configuration than with the point
source configuration. We note, however, that even for the finite
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source simulations, the largest difference in the entire volume is
about 0.1 per cent, which is insignificant.

This experiment suggests that the effect of solving the geomet-
rically non-linear equations is minor for wave propagation in an
isotropic elastic medium. This result is not surprising, since ob-
served displacements in seismology are commonly small, which
makes the linearized, classical theory a good approximation for
this application. For the single source simulation, the non-linear
implementation takes about three times longer than the classical
implementation. This is because the boundary conditions and the
source must be updated with the deformation gradient for every
timestep. This is only done in the mesh partitions that contain the
source and along the boundary, respectively, which means that the
non-linear implementation is more poorly load balanced. The per-
formance can be greatly improved by accounting for this additional
work in the load balancing. Since our intention here is to provide
a proof of concept, we have omitted this optimization for now. For
every element in the model there is also some cost associated with
having to compute the strain as a series expansion. The workload
imbalance is more pronounced in the finite source simulations since
it is represented by 45 240 point sources. This causes the mesh par-
titions that contain the source to have much more work for each
time step than the partitions that do not contain the source. For this
reason, the non-linear implementation takes about 15 times longer
than the classical implementation for the finite source simulations.

4 CONCLUSIONS

We have shown that the equation of motion governing seismic wave
propagation can be written in a Lagrangian framework in such
a way that its weak form is analogous to the weak form of the
linearized equation of motion. The added complexity is that we
need to track the deformation gradient. Tracking the deformation
gradient enables us to express all the relevant quantities in terms of
the reference domain, and it allows us to introduce the logarithmic
strain measure into our formulation. This makes it a geometrically
non-linear formulation, where we make no assumption about the
size of deformation.

Our numerical experiments show that the effect of solving the ge-
ometrically non-linear equations can be significant in cases where
finite deformation occurs, such as cantilever beam bending. In cases
where the deformations are smaller, such as for seismic wave prop-
agation, the results are similar to solving the classical equations.
However, since the formulations are nearly the same, we might as
well solve the geometrically non-linear equations. The geometri-
cally non-linear implementation is found to take about three times
as long to run compared to the classical implementation. This could
potentially be improved by properly load balancing the geometri-
cally non-linear implementation.

We have not considered material non-linearities in this work,
but these could be incorporated in the constitutive relation. In
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seismology, non-linear effects are often tied to the material. An
example is soil amplification in weak and strong motion, where
non-linear effects are observed as sediments begin to yield beyond
a certain level of strain. This type of material behaviour violates
Hooke’s law, which suggests that it is necessary to use a more so-
phisticated constitutive relation in such cases. Therefore, one might
expect that extending our geometrically non-linear formulation to
capture some degree of material non-linearity could lead to larger
differences in our seismic numerical experiment, especially in low-
wavespeed sedimentary basins close to the surface, where material
non-linearities would be most significant.
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