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SUMMARY

We implement a spectral-infinite-element method (SIEM) to compute magnetic anomalies
by solving a discretized form of the Poisson/Laplace equation. The SIEM combines the
highly accurate spectral-element method with the mapped-infinite element method, which
reproduces an unbounded domain accurately and efficiently. This combination is made possible
by coupling Gauss—Legendre—Lobatto quadrature in spectral elements with Gauss—Radau
quadrature in infinite elements along the infinite directions. Our method has two distinct
advantages over traditional methods. First, the higher-order discretization accurately renders
complex magnetized heterogeneities. Second, since the computation time is independent of the
number of observation points, the method is efficient for very large models. We illustrate the
accuracy and efficiency of our method by comparing calculated magnetic anomalies for various
magnetized heterogeneities with corresponding analytical and commonly used computational
solutions. We conclude with a practical example involving a complex 3-D model of an ore
mine.
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merical modelling; Rock and mineral magnetism.

1 INTRODUCTION

Analogous to gravity anomalies induced by density heterogeneities,
magnetized objects produce magnetic anomalies, which can be mea-
sured on Earth’s surface or in space (Vine & Matthews 1963; Heirt-
zler et al. 1968; Briais ef al. 1993). Similar to the gravitational
potential, the magnetic potential is governed by Poisson’s equation
inside a magnetization distribution and by Laplace’s equation else-
where. Most existing methods for computing magnetic anomalies
are based on a direct integral approach. Unlike mass density, mag-
netization is a vector quantity. Therefore, expressions for magnetic
anomalies are often more complex than those for gravity anomalies.
The procedure may be simplified by using the so-called Poisson’s
relation, which takes advantage of analogies between magnetic and
gravity fields to derive the magnetic field from the derivative of the
gravitational potential (Blakely 1995). This method is often limited
to simple isolated objects. There are several studies on computing
magnetic anomalies based on the direct integral approach, for ex-
ample, 2-D objects with a uniform magnetization (Talwani 1965;
Won & Bevis 1987), infinitely thin laminae (Talwani 1965), laminae
of finite thickness (Plouff 1976), rectangular prisms (Bhattacharyya
1964), polyhedrons (Bott 1963; Barnett 1976; Okabe 1979; Hansen
& Wang 1988; Wang & Hansen 1990) and 3-D objects with arbitrary
shapes (Talwani 1965). The software package MBOX is a widely
used tool for computing magnetic anomalies due to uniform rectan-
gular prisms (Plouff 1976; Blakely 1995). It can be used for bodies

of arbitrary shape by dividing the body of interest into a number of
small subprisms and superposing their individual contributions.

Although direct integral approaches are fast for small objects and
a small number of observation points, the computational cost can
quickly increase as the number of observation points grows. Fur-
thermore, the volume integral approximation for complex objects
or objects with variable properties may be inaccurate (Cai & Wang
2005; Martin et al. 2017). The accuracy and efficiency of these
methods may be significantly improved with numerical quadrature.
For example, Martin et al. (2017) used spectral-elements to dis-
cretize the model and GLL quadrature for volume integration to
calculate gravity anomalies.

We are not aware of any method for computing magnetic anoma-
lies based on solving the weak form of Poisson’s equation. Cai
& Wang (2005) used a finite-element method to compute gravity
anomalies by imposing approximate boundary conditions on the
outer surface of an extended model, under the assumption that the
gravitational potential is of the order of 7~* at a distance r from the
centre of mass. An alternative approach is to consider a very large
domain that includes portions of outer space. This strategy requires
large computational resources and is often inaccurate (Tsynkov
1998). A higher-order solver based on a convolution integral was
also proposed to solve the unbounded Poisson equation (Hejlesen
et al. 2013). Alternatively, one may use spherical harmonics for
spherically symmetric models (Dahlen 1974; Tromp & Mitrovica
1999).
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Figure 1. Schematic diagram of an unbounded domain with a fictitious
boundary ', on which the magnetic potential vanishes, & = 0. The un-
bounded domain contains an unmagnetized region where M = 0, and a
magnetized region, €2, where M # 0. The magnetized region 2 has a bound-
ary [ with unit outward normal f, pointing from the inside of the region
(—) to the outside of the region (+).

Figure 2. The unmagnetized region (light grey elements) and the mag-
netized region (interior dark grey elements) are discretized using spectral
elements. A single layer of infinite elements is added outside the domain of
interest to capture outer space (outer dark grey elements).
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Figure 3. Model geometry for a spherical magnetization.
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In solid and fluid mechanics, infinite or semi-infinite domain
problems are frequently solved using the displacement descent ap-
proach (Bettess 1977; Medina & Taylor 1983; El-Esnawy et al.
1995) and the coordinate ascent approach (Beer & Meek 1981;
Zienkiewicz et al. 1983; Kumar 1985; Angelov 1991). In the dis-
placement descent approach an element is mapped to a natural
domain of interval [0, co]. This is realized by multiplying the stan-
dard interpolation functions by suitable decay functions. Since the
integration interval is [0, oo], classical Gauss—Legendre quadrature
cannot be employed. Either Gauss—Legendre quadrature has to be
modified to accommodate the [0, co] interval, or Gauss—Laguerre
quadrature can be used (Mavriplis 1989). In terms of programming,
both the Jacobian of the mapping and the numerical quadrature
have to be modified from the classical finite-element method. In
the coordinate ascent approach—also referred to as the ‘mapped
infinite element’ approach—an element that extends to infinity in
the physical domain is mapped to a standard natural element with
interval [—1, 1]. This is achieved by defining shape functions using
a pole—a point located outside the element opposite to the infinite
direction. The corresponding shape function possesses a singularity
at the far end of the infinite element. Unlike the displacement de-
scent approach, standard Gauss—Legendre quadrature can be used,
and only the Jacobian of the mapping needs to be modified from the
classical finite-element method.

The spectral-element method (SEM) is a higher-order finite-
element method that uses nodal quadrature, specifically, Gauss—
Legendre—Lobatto (GLL) quadrature. For dynamic problems, the
mass matrix is diagonal by construction. The method is highly ac-
curate and efficient and is widely used in applications involving
wave propagation (Faccioli et al. 1997; Seriani & Oliveira 2008;
Tromp et al. 2008; Peter ef al. 2011), fluid dynamics (Patera 1984;
Canuto et al. 1988; Deville et al. 2002), as well as for quasi-static
problems (Gharti ef al. 2012a,b).

The spectral-infinite-element method (SIEM) combines the
infinite-element approach based on coordinate ascent with the SEM.
Gharti & Tromp (2017) originally developed the SIEM to calculate
the background gravity field of the Earth, and subsequently applied
the technique to several other problems, for example, gravity anoma-
lies (Gharti et al. 2018), coseismic and post-earthquake deformation
(Gharti et al. 2019a) and earthquake-induced gravity perturbations
(Gharti et al. 2019b). In this paper, we present an implementation of
the SIEM for magnetic anomalies. The method is validated based
on calculations of magnetic fields and total-field anomalies for a
range of problems. Finally, we demonstrate a 3-D application of the
method to an ore mine in Finland.

2 SPECTRAL-INFINITE-ELEMENT
FORMULATION

2.1 Governing equation

Let Q denote a magnetized region of interest with boundary I', as
illustrated in Fig. 1. All of space is denoted by ), and the ‘boundary’
at infinity is denoted by I'«. The scalar magnetic potential, &,
induced by a magnetization distribution, M, is governed by the
Poisson’s equation

Vo=V -M—h-M, (1)
subject to the essential boundary conditions

[®]F =0 on T,

2
®=0 on I, @
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Figure 4. Left-hand panel: spectral-element mesh for a spherical magnetization. Right-hand panel: infinite elements radiating from the outer surface of the
model (outer grey). The model is sectioned to visualize one quadrant of the magnetized sphere (dark grey). Only infinite elements from the visible outer

surfaces are shown for clarity.
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Figure 5. Profiles for the total field anomaly at z = 0 along the x-axis (North) for a spherical magnetization.

and the natural boundary condition
[A-V®]T=0 on T. 3)

Here [-]* denotes the jump in the enclosed quantity when going
from the —ve side of boundary T" to the +ve side, and n denotes the
unit outward normal to the boundary, pointing from the —ve side to
the +ve side. In eq. (1), the term V - M is defined throughout 2,
whereas the term fi - M is restricted to the surface I'. For a uni-
form magnetization, V - M vanishes, and only n - M contributes.
Alternatively, the magnetization may also be expressed in terms of
a volume and surface distribution of magnetostatic charges, Q, and
Qs , respectively, such that

QV=—VM in Q,

4
Q;=0-M on T, @

and

Vo = — (Qv + Qs) (5)

Outside the magnetization domain 2 the magnetization vanishes
and the governing eq. (1) reduces to Laplace’s equation: V?® = 0.
From hereon the approach is quite analogous to the approach
of Gharti ef al. (2018) for gravity anomalies problems, so we will
be relatively brief, referring the reader to Gharti et al. (2018) for
more detailed explanations of the method and its implementation.

2.2 Discretization

The weak form of the governing eq. (1) subject to the boundary
conditions (2) and (3) is

f Vw- -VodlV = —/wV'MdV—I-/.waMdS
0 Q r

+/wﬁ-V<I>dS, ()
T

where w denotes a test function and where we have used the fact
that the magnetization vanishes outside of 2.
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Figure 6. Magnetic field components (left-hand panel: By; middle: By; right-hand panel: B;) plotted on the ground surface for a magnetized sphere located at

latitudes 0°, 15°, 30° and 90° (top to bottom).
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Figure 7. Magnetic field lines plotted on a mid-vertical plane for a magne-
tized sphere.
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Figure 8. Model geometry for a magnetized rectangular prism.

The domain 2 is meshed using spectral elements (Fig. 2). A
single layer of infinite elements is added outside the domain in or-
der to reproduce the behaviour in outer space. Spectral and infinite
elements share the same interpolation functions, namely Lagrange
polynomials, but use different quadratures. Thus, the magnetic po-
tential @ is discretized in natural coordinates & as

DE) =Y D, No(). ()

a=1

where @, denotes the value of magnetic potential at quadrature
point £,, and N, an interpolation function. The total number of
quadrature points in an element is denoted by » and is given by the
product of the number of quadrature points in each dimension, 7/,
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Figure 9. Left-hand panel: spectral-element mesh of a model with a buried
rectangular prism. The model is sectioned to visualize the prism (dark grey).
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Figure 10. Profile for the total field anomaly at z = 0 for a rectangular
prism.

j=1,2,3, thatis, n = ]_[i.=1 n/. The interpolation functions N,
in natural coordinates are determined by the tensor product of 1-D
Lagrange polynomials, that is

RN G )
N g =T] —2-, 8
“ ﬂl:_l[ (Ei/ _‘Sé) ( )
p#a)
such that
3
N&) =[] N, )

Jj=1

Here o denotes the index of quadrature point &, = {£,1, §,2, §,3}.
The test function w is taken to be an interpolation function N,,
making the approach a Galerkin method. Upon substituting w = N,
and @ given by eq. (7), in eq. (6), we obtain a set of elemental linear
equations that may be written conveniently in matrix—vector form:

K. ®. = F. (10)

The quantities K. and F. are known, respectively, as the stiffness
matrix and force vector of an element. Similarly, ®, is the magnetic
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Figure 11. Magnetic field components (Top: B,; Middle: B,; Bottom: B)
plotted on the ground surface for a rectangular prism.
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Figure 12. Magnetic field lines plotted on the mid-vertical plane for a
rectangular prism.

potential vector. Symbolically, we write

K.= | B'BdV, am
Qe
F. = —/ V-MNedV—i—/ n-MN,dS
e FC
+/ (- V), N.dS.
Te
Here
Ne={N N> Ns3---N,}, (12)
O, ={d; D, D3---9,}, (13)
and

B=dN/, (14)
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Figure 13. Layout of an array of 100 spheres of varying size.

Figure 14. Left-hand panel: spectral-element mesh for an ensemble of 100 spheres. Mesh elements on the spheres are not shown for clarity. Right-hand panel:
zoom in on a frontal view of the mesh. Spheres with the same colour have the same magnetic properties.
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Figure 15. Total-field anomaly profiles at elevations of z = Okm and z =
—25km for an ensemble of spheres.

where

a 9 3"
d={— — —1 .
ox dy oz
After assembling the elemental matrices and vectors, we obtain

a set of global linear equations

Ko =F,

(15)

(16)
where K and F are known, respectively, as the global stiffness matrix
and global force vector. Similarly, ® is the global magnetic potential
vector.

After determining the magnetic potential ¢, we compute the
perturbed magnetostatic field or the magnetic field intensity, H, by
simply calculating a numerical derivative within a spectral element:
H=—V<b=—Z<I>aJ;1~VNa=—BCI>e, 17

a=1
where J! denotes the inverse of the Jacobian of the mapping at
node «.

One key advantage of the SEM is that derivatives are directly
computed on quadrature points, rendering this operation highly ac-
curate. However, derivatives may be discontinuous across elemental
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Figure 17. Magnetic field lines plotted on the mid-vertical plane for an
array of magnetic spheres.

boundaries, and therefore on such boundaries we average over all
elements that touch a given node.

Finally, the magnetic induction or the magnetic field, B, is given
by

B = o (H+ M), (18)

where, (o denotes the magnetic permeability of free space and has
avalue47 x 1077 Hm™'.

For a given regional magnetic field, F, the total-field anomaly can
be approximated as (Blakely 1995)

ST =F B, (19)

where, F denotes the direction of the regional field F.

As described in detail in Gharti ef al. (2018) within spectral el-
ements we use GLL quadrature to construct the stiffness matrix,
whereas in infinite elements we use Gauss—Radau quadrature in the
infinite direction and GLL quadrature in other directions. Quadra-
ture points on a spectral-infinite element interface coincide, thereby
naturally coupling the two domains.

3 NUMERICAL EXAMPLES

We rely on MeshAssist (Gharti ef al. 2017) and Trelis/CUBIT (CU-
BIT 2017) for model preparation and meshing for all examples
included in this paper. Each spectral element involves three GLL
points in each direction, resulting in a total of 27 nodes per element.
Our method is fully parallelized based on domain decomposition
and the message passing interface. We use the mesh partitioning
tool SCOTCH (Pellegrini & Roman 1996) to partition the mesh.
We implemented parallel iterative Krylov solvers using PETSc, a
portable and extensible toolkit for scientific computation (Balay
et al. 2015). We use a conjugate gradient solver with a geometric
algebraic multigrid preconditioner (e.g. Stiilben 2001) with a relative
tolerance of 10~7. We have previously performed extensive conver-
gence and strong scaling performance tests of our solver (Gharti
etal. 2018, 2019a).

3.1 Spherical magnetization

In this section we consider a spherical magnetization of radius 2 m
buried at a depth of z = 5Sm, as shown in Fig. 3. The sphere has
a magnetization strength, M = |M| = 10 Am~'. We assume that
the sphere is located at four different latitudes, namely, A = 0°, 15°,
30° and 90°, such that the inclination of the magnetization, / varies
according to the geocentric dipole approximation

tan(/) = 2 tan(}), (20)
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600

Figure 18. Left-hand panel: Pyhédsalmi mine with surrounding infrastructure: copper/zinc ore body (brown/pink), access tunnels (yellow), elevator shaft (dark
blue) and seismic stations (numbered). The passage for quarried ore is labelled KN1. Right-hand panel: 3-D model of the Pyhdsalmi mine: stopes (blue) and
ore body (brown). The remainder is host rock. Geophones are indicated by black dots and numbered.

Figure 19. Left-hand panel: spectral-element mesh for the Pyhédsalmi mine model. Right-hand panel: interior section of the mesh visualizing the ore body

(brown) and stopes (cyan).

and we impose zero magnetic declination for all locations.

We created a model of size 40m x 20m x 12m that covers
the sphere and the observation points. For reasons of accuracy,
we slightly extended the model above the ground surface to avoid
placing the infinite element layer adjacent to observation points. We
meshed the model using hexahedral elements. Initially, we selected
an element size of 0.5m inside the sphere and 1 m outside the
sphere, as shown in Fig. 4 (left-hand panel). The mesh consists of
8576 elements and honours the sphere. We added an infinite-element
layer outside the model surface based on a pole positioned at the
centre of the sphere, as shown in Fig. 4 (right-hand panel). Opposite
faces of infinite elements must be parallel or diverging with respect
to the pole so that they do not converge at infinity. We performed
four different simulations for the magnetized sphere located at four
different latitudes. Simulations were run on a single processor and
took about 40 s for each simulation. The analytical expression for
the magnetic induction due to a sphere is given by eq. (Al).

Fig. 5 shows total-field anomaly profiles calculated at the ground
surface, z = 0, along the x-axis from —20 to 20 m. The computed
result is in good agreement with the analytical solution, although
we observe some discrepancies near the largest magnitudes. Both
magnitude and direction of the total-field anomaly vary with the
location of the magnetization. For the sphere located at latitudes,
0° and 90°, the total-field anomaly is symmetric about the centre of
the sphere. The total-field anomaly is asymmetric about the centre
of the sphere for other locations.

We refined the mesh by decreasing the element size to 0.25 and
0.5 m, respectively, inside and outside the dome, which increases the
number of elements to 53 615. As shown in Fig. 5, the resulting total-
field anomaly profile is very close to the analytical result, but we still
observe some small discrepancies near the largest magnitudes. We
further refined the mesh with element sizes of 0.125 and 0.25m,
respectively, inside and outside the dome, thereby increasing the
total number of elements to 156 538. This refinement gives a nearly
perfect match with the analytical solution. The spherical geometry
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Figure 21. Magnetic field lines plotted on the mid-vertical plane for an ore
mine.

poses a challenge for the mesher, because the coarser meshes fail
to properly capture the spherical shape of the magnetization.

In Fig. 6, we plot the components of the magnetic induction com-
puted on the ground surface of the model. As expected, we observe
different patterns for each component depending on the location of
the magnetized spheres. The figure also illustrates how the mag-
netic field gradually changes according to the angle of magnetic

inclination. For magnetic inclinations of 0° and 90°, all three com-
ponents are either symmetric or antisymmetric about the centre of
the sphere. This is not the case for other locations. The magnetic
field is stronger near the magnetized sphere and decays away from
it.

Finally, we plot the magnetic field lines on the vertical mid-plane,
as shown in Fig. 7. It is interesting to see how the magnetic field
lines emanate differently from the spheres for each location due
to the different magnetic inclinations. These field lines explain the
symmetry or asymmetry we observed for the total-field anomaly

(Fig. 5).

3.2 Rectangular prism

Next, we consider a rectangular prism of size 3 km x 4km x 1km
with a magnetization strength M = 10 Am™! located at a depth of
2.5 km from the ground surface, as shown in Fig. 8. The magnetiza-
tion has an inclination of 30° and a declination of 0°. We created a
model of size 28 km x 16 km x 8 km, which sufficiently covers the
prism and the observation points. We extended the model slightly
above the ground surface to avoid placing the infinite-element layer
adjacent to observation points.

Initially, we selected a coarse element size of 1 km and meshed
the model using hexahedral elements. The mesh consists of only
4176 elements and honours the prism, as shown in Fig. 9. A single
layer of infinite elements was added outside the mesh domain. We
positioned the pole for the decay function required by the infinite
elements at the centre of the prism.

An analytical expression for the total-field anomaly of a prism
is given by eq. (AS5). Fig. 10 shows a total-field anomaly profile
computed at the ground surface, z = 0. We observe good agreement
with the analytical result. Although we used a very coarse mesh, we
obtain acceptable results because the mesh perfectly honours the
prism.

Next, we refined the mesh by decreasing the element size from
1 to 0.5km. The refinement increases the number of elements to
33408. The resulting profile for the total-field anomaly is in ex-
cellent agreement with the analytical solution, demonstrating rapid
convergence in terms of mesh refinement.

In Fig. 11, we plot the components of the magnetic induction
computed on the ground surface. Due to the magnetic inclination,
the magnetic field is not symmetric. It is stronger near the magne-
tized prism and decays ways from the prism.

Finally, we plot the magnetic field lines on the mid-vertical plane
as shown in Fig. 12. The magnetic field lines emanate from and con-
verge at the magnetic source at 30°, that is, the angle of inclination.

3.3 Multiple spheres with varying size and magnetization

In this section, we design a problem similar to the example discussed
in Gharti ef al. (2018) and Martin et al. (2017) for gravity anoma-
lies. We consider 100 spheres with varying radii and magnetization
strengths organized in a vertical plane, as shown in Fig. 13. The
model consists of 10 horizontally equidistant lines in the vertical
plane with a vertical spacing of 10 km. Each horizontal line consists
of 10 equidistant spheres with a horizontal spacing of 14 km. The
Ith horizontal line has a constant sphere radius, 7;, and magnetiza-
tion strength, M, determined by the relations, 7, =24+ 0.2(/ — 1)
and M = 1.5/ Am™!, respectively, such that lines / = 1to 10 are
numbered top to bottom. The first sphere in the first horizontal line
is located at x = 40 km, y = Okm and z = — 5 km from the origin.
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Figure 22. Total-field anomaly plotted on the ground surface for an ore mine. (Left-hand panel) MBOX. (Right-hand panel) SIEM.

We set the magnetic inclination and declination to 35° and 10°,
respectively, for all spheres.

We created a model of size 206 km x 80 km x 170 km covering
all spheres and observation points. The outer surfaces of the model
lie 40km in each direction from the nearest sphere centre. We
selected an element size of 0.2 7 inside a sphere and 0.4 outside
a sphere, where r; is the sphere’s radius. This approach gradually
coarsens the mesh from top to bottom, varying the element size
inside the sphere from 0.4 to 0.76 km and outside the sphere from
0.8 to 1.52 km. This strategy ensures the same number of elements in
all spheres (Fig. 14). Although not strictly necessary, this maintains
a relatively uniform resolution for all spheres. The mesh consists
of 2886 000 spectral elements for a total of 22 808 007 degrees of
freedom. We used 160 processors, on which it took about 7 min to
compute the magnetic field. We set the magnetic inclination and
declination of the regional field to 35° and 10°, respectively.

As a benchmark, we computed the total-field anomaly using
MBOX (Blakely 1995). MBOX divides the model into a number
of rectangular prisms. Each subprism uses the analytical solution
given in eq. (AS5) and the total-field anomaly is given by the super-
position of the contributions of all the subprisms. We discretized
the model using uniform cubic cells. Since the smallest spectral
element has a size of 0.4km and each spectral element has three
GLL points in each direction, we chose a cubic cell of size 0.2 km.
Consequently, the MBOX grid resolution is similar to the finest
region of the spectral-element mesh, and hence the MBOX model
is sampled more finely than the spectral-element model. There are
a total of 1611488 cells with non-zero magnetization. We set 293
observation points each at two elevations, namely, 0 and 25 km,
along the x-axis, resulting in a total of 586 observation points. The
calculations took about 45 min on a single processor. Since the com-
putational cost for the MBOX solution is proportional to the number
of observation points for a given discretization, the total computa-
tional cost for the 22 808 007 points, that is, the total number of
points in the spectral-element mesh, would be huge. On the other
hand, the total computational cost for the SIEM is independent of
the number of observation points for a given discretization.

We plot total-field anomaly profiles at two elevations along the
x-axis, specifically at 0 and 25 km, as shown in Fig. 15. For both pro-
files, we observe excellent agreement of the SIEM and the MBOX
solutions, with the analytical solution given by eq. (A3). At zero
elevation, we clearly observe the influence of individual spheres as
indicated by peaks and troughs. Magnitude of the peaks decreases
and that of the troughs increases along x, that is, North direction

due to the magnetic inclination. At far away from the sphere ensem-
ble, that is, elevation 25 km, individual influences diminish and all
spheres behave as a single entity as indicated by a smooth curve.

In Fig. 16, we plot the components of the magnetic field on the
ground surface. We clearly observe the influence of each column
of magnetized spheres. Although the spheres are symmetrically
placed about the x-axis, the magnetic field is not symmetric due to
the inclination and declination.

Finally, we plot magnetic filed lines on the mid-vertical planes
through the sphere centres, as shown in Fig. 17. We observe the
complicated interactions of the magnetic fields contributed by the
individual spheres. Outside the spheres ensemble, magnetic field
lines are regular as the individual influence of the spheres dimin-
ishes.

3.4 Application to an underground ore mine

To demonstrate our method for realistic 3-D problems, we compute
the magnetic field for an existing underground ore mine, namely, the
Pyhidsalmi mine in Finland. This active, deep mine contains mas-
sive sulphide deposits with copper and zinc ore bodies (Puustjarvi
1999). The complete mine layout and surrounding infrastructure
are shown in Fig. 18 (left-hand panel). For more details on the mine
and its microseismic event characteristics, see Oye et al. (2005).
Fig. 18 (right-hand panel) shows the 622m x 622m x 622m 3-
D mine model, which consists of host rock, ore body and stopes,
that is, mined-out cavities. Due to the mine’s complex geometry, it
is a very challenging problem to calculate the magnetic field. We
assume uniform magnetization within the ore body with a magne-
tization strength of 20 A m™', a magnetic inclination of 75° and an
declination of 10°.

We meshed the model using an average element size of 10 m.
Due to the complex geometry, actual element sizes may differ in
some areas, as shown in Fig. 19. The mesh involves 294 500 spectral
elements and 2 517 769 degrees of freedom. We used 80 processors
for the parallel simulation which took about 1 min.

Fig. 20 shows the components of the magnetic field computed on
the top surface, that is, at z = O m.

Additionally, we plot magnetic field lines on the mid-vertical
plane, as shown in Fig. 21. Imprints of cavities are observed in the
field lines.

Finally, we also compute the total-field anomaly on the top surface
and compare with the MBOX solution, as shown in Fig. 22. For the
MBOX simulation we use a cell size of 3.8875m. There are a
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total of 25921 observation points on the top surface. Since only
the ore body is magnetized, there are only 149 739 non-zero cells.
The MBOX calculation takes about 2 hr 42 min to run on a single
processor to compute the total-field anomaly at 25921 observation
points. This is significantly larger than the SIEM, which takes only
I min to run on 80 processors for 2517769 observation points.
Since MBOX’s computational cost is proportional to the number of
observation points, the total computational time would be huge if
we had to compute the solution for all 2 517 769 observation points

The total-field anomaly computed by the SIEM and MBOX are
very similar in pattern, but the magnitude of the MBOX total-field
anomaly is less than the SIEM. The cubic cells used for the MBOX
solution are unable to accurately capture the complex shape of the
ore body and generally underestimate the surface area or the volume
of complicated 3-D objects.

4 CONCLUSIONS

We have successfully implemented an SIEM to solve the unbounded
Poisson/Laplace equation for magnetic anomalies induced by mag-
netized objects. We benchmarked our results with analytical solu-
tions and the MBOX package (Blakely 1995) for arange of problems
and used the Pyhésalmi mine as a practical 3-D example.

Our tests show that the method is highly accurate and efficient.
Since there is only a single layer of infinite elements, the additional
computational cost associated with ‘outer space’ is insignificant.
The computational cost is independent of the number of observa-
tion points. Consequently, the method is very efficient for large-scale
problems. For additional performance improvement, GPU acceler-
ation will be of future interest.

Inversion of magnetic data is also a future interest, in particular,
the planetary magnetic fields (Holme & Bloxham 1996; Lewis &
Simons 2012; Plattner & Simons 2017). The main advantage of our
numerical discretization of the unbounded Poisson equation is that
it can be naturally coupled with the laws of continuum mechanics
that govern geostatic and geodynamic deformation.
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APPENDIX A: ANALYTICAL
SOLUTIONS

In this section, we list all analytical solutions used in our bench-
marks. In what follows, depth z is positive downwards.

A1 Dipole or sphere

The magnetic field at a point x,, due to a sphere of radius a with a
magnetization M and its centre located at x, is given by (Blakely
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1995)
o m 3(m-r)r
el A e i Al
47 |: 73 7’ ] ’ (AD
where
4 5
=3 7a M, (A2)

and the position vector r of the observation point is measured from
the centre of the sphere, that is, r = x, — X,;. The point x,, lies
outside the sphere, and = ||r||.

A2 Multiple spheres

The magnetic field at a point x,, due to n, spheres of radii a, and
magnetizations M; located at points x; is obtained by superposing
the magnetic fields of individual spheres:

to ~~[ m;  3(m-ror
B=2 R A3
47 ;[ rl + r3 (A3)
where
4 5
m; = g Tag M;, (A4)

and the position vector r, of the observation point is measured from
the centre of the individual spheres, that is, r, = X, — x,. The point
X, lies outside the spheres and r; = ||r,||

A3 Semi-infinite rectangular prism

The total-field anomaly observed at the origin due to a buried semi-
infinite rectangular prism with a magnetization M = M, i+ M, j +
M. k and dimensions x; < x < xp, y; Sy=» and21 <z< o0

under a regional field directed parallel to F = Fi+ F Vi FKkis
given by (Bhattacharyya 1964; Blakely 1995):
5T = KO | 28 jog (=1
4m 2 r+x’
— /
+% lo (ﬁi) — U2 log(r +Zl)
— M, F, tan”! <L2>
x?+rz; 4z
—M, F), tan™ <r2 e —x’z)
x/ , x'=xp¥'=n
—|—MZ I:"z tan™! (—y >:| s (AS)
“ x'=x1 y'=y
where,
A1) = M i‘? + Vi, F
a13=Mﬁ+MF (A6)
o3 = M F +M ﬁ'
and
rr=x? 4y 422 (A7)

We may compute the total-field anomaly for a rectangular prism
of thickness / by evaluating eq. (AS5) twice. The total-field anomaly
for this case is equal to the total-field anomaly evaluated for z,
minus the total-field anomaly evaluated for z; = z; + A.
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