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Abstract—This paper develops a branch-flow-based optimal
power flow (OPF) problem for multi-phase distribution networks
that allows for tap selection of wye, closed delta, and open delta
step-voltage regulators (SVRs). SVRs are assumed ideal and their
taps are represented by continuous decision variables. To tackle the
non-linearity, the branch-flow semidefinite programming frame-
work of traditional OPF is expanded to accommodate SVR edges.
Three types of non-convexity are addressed: (a) rank-1 constraints
on non-SVR edges, (b) nonlinear equality constraints on SVR
power flows and taps, and (c) trilinear equalities on SVR voltages
and taps. Leveraging a practical phase-separation assumption on
the SVR secondary voltage, novel McCormick relaxations are pro-
vided for (c) and certain rank-1 constraints of (a), while dropping
the rest. A linear relaxation based on conservation of power is used
in place of (b). Numerical simulations on standard distribution test
feeders corroborate the merits of the proposed convex formulation.

Index Terms—Multi-phase distribution networks, optimal
power flow, step-voltage regulators, McCormick envelopes.

I. INTRODUCTION

T
HE step-voltage regulator (SVR) is an autotransformer

augmented by a tap-changing mechanism. It is used in

medium-voltage distribution networks to maintain steady-state

voltages within acceptable bounds. Traditionally, SVR taps are

automatically controlled via the line-drop compensator based on

an approximate voltage-drop model from a local load-center [1].

Such a scheme is satisfactory for conventional distribution net-

works in which branch power flows are unidirectional from the

substation to the ends of the feeder.

Traditional tap-selection is increasingly challenged by mod-

ern distribution grids with high levels of distributed renewable

generation. A recent report [2] highlights that during reversal

of power flows, the effectiveness of the regulator operation–as
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measured by voltage control per tap–reduces. Of concern is also

wear and tear of SVRs from excessive tap changes following

the fluctuation of renewables [3], [4].

Utilities with bundled retail and operations sectors can avoid

the aforementioned issues by incorporating tap-selection into

their optimal power flow (OPF) programs [5]. Increasing re-

newable hosting capacity by coordinating tap-selection and

other voltage control resources is an additional advantage [6].

Industry-provided integrated volt-var control applications for

energy efficiency already support tap-setting of SVRs alongside

with power factor and capacitor banks optimization; see e.g., the

heuristic-based software product in [7].

Introducing SVR taps as variables in distribution OPF is,

however, technically challenging. Primarily, they add to the non-

convexity of the power flow equations. Since distribution net-

works are inherently unbalanced, tractable methodologies for

multi-phase OPF problems [8]–[12] should be expanded to this

end. Moreover, operational characteristics of various types of

SVRs, i.e., wye, closed- or open-delta are different from each

other. Since precise setting of SVRs aids in higher-quality volt-

age control, raises the permissible loading level on feeders, and

defers capacity investment costs [13], a unified OPF program

handling various SVRs is needed.

This paper develops an OPF that accounts for the tap selection

of wye, closed-delta, and open-delta SVRs in multi-phase dis-

tribution networks. To tackle the non-linearity, the branch-flow

semidefinite programming (SDP) framework of multi-phase

OPF is gracefully expanded to incorporate the full range of

SVR models. Trilinear equalities that constrain SVR voltages

and taps are handled via McCormick relaxations. The relaxation

is made possible due to a phase-separation assumption on the

SVR secondary voltage that is valid in practical multi-phase

systems. This assumption is further leveraged to approximate

rank-1 constraints on the SVR secondary voltage matrix variable

and improve the quality of the relaxation. The relevant literature

is reviewed next.

A. Literature Review

For single-phase radial networks, an OPF considering tap-

selection of on-load tap-changer transformers is presented in

[14] where the trilinear scalar constraint in transformer taps and

voltages is converted to an exact mixed-binary linear constraint

using binary expansion and big-M methods. The second-order

cone relaxation of branch-flow power flows are then utilized

to render an efficient mixed-integer second-order cone program
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(MISOCP). An extension is presented in [15] by incorporating

static and discrete reactive power compensators.

Considering unbalanced multi-phase operation, a compre-

hensive OPF framework is developed in [16] by assembling

ABCD parameters of transmission lines, transformers, as well

as single- and three-phase wye tap-changers. Wye and delta-

connected loads as well as switched shunt capacitors are also

included. The overall formulation is a mixed-integer nonlinear

program (MINLP) which is then translated to a nonlinear pro-

gram via a quadratic penalty function. Under a similar modeling

framework, [17] also develops MINLP formulation of OPF to

coordinate tap-changers and static var compensators with dis-

tributed generation which is ultimately solved via an ad-hoc

two-stage procedure based on interior point branch and bound

methods. Despite their broad scope, these MINLP formulations

turn out to be computationally intensive and may even yield

locally suboptimal results.

A more recent line of work explores convex relaxations. The

work in [18] introduces the tap selection of wye-connected

SVRs inside the full SDP relaxation of the admittance-based

OPF. Power transfer from the primary to secondary of the SVR

is accommodated by enforcing equal power injections on each

side. The trilinear matrix constraint in taps and voltages is fur-

ther relaxed to a linear constraint that bounds the diagonals of

the SDP variable using minimum and maximum tap changes

per phase. By using the radial topology of distribution networks

to improve computation time, [19] leverages the chordal SDP

relaxation of the admittance-based OPF. Further, the trilinear

matrix constraint in taps and voltages is relaxed into a linear

semidefinite matrix constraint that implicitly assumes that taps

on every phase of the SVR are equal (gang-operated). An unbal-

anced distribution reconfiguration problem is recently presented

in [20], in which SVR taps are represented via their binary ex-

pansion rendering a mixed-binary semidefinite program, albeit

at the expense of introducing significant computational burden.

The approaches in [18]–[20] consider wye-connected SVRs

for which the primary and secondary power injections are equal

per phase and the secondary voltage of each phase can be regu-

lated independently from other phases. Our previous work [21]

extends the chordal SDP relaxation of the admittance-based

OPF to handle individually operated closed-delta and open-

delta SVRs. However, the formulation of [21] is only applicable

to small-sized networks.

B. Paper Contributions and Outline

A convex OPF formulation that can handle various types of

SVRs and is applicable to larger networks is missing in the liter-

ature. In this paper, instead of using the admittance-based OPF

[18]–[21], the branch-flow form of the power flow equations are

leveraged to improve numerical stability [9]. Specifically, this

work features the following contributions:
� A branch-flow based OPF (BOPF) is introduced that ac-

commodates optimal tap selection of SVRs in multi-phase

distribution networks. The formulation handles any combi-

nation of wye, closed-delta, and open-delta SVRs, as well

as individual and gang operation of SVR taps.

� A nonlinear and non-convex SDP is developed that is

provably equivalent to BOPF for radial networks, and a

relaxation of BOPF for general meshed networks. The for-

mulation extends the traditional framework of branch-flow

SDP for OPF originally put forth in [9] to incorporate most

common SVR types.
� A novel convex relaxation is developed that ultimately

alleviates the following non-convexity issues: (a) rank-1

constraints of non-SVR edges, (b) nonlinear constraints in

SVR power flows and taps, and (c) trilinear constraints in

SVR voltages and taps.

The particular convex relaxation techniques are described

next. Specifically, all rank-1 constraints of (a) are dropped ex-

cept the ones that pertain to the SVR secondary, which are

replaced by McCormick polyhedra. McCormick relaxations are

also employed for (c), and a linear relaxation based on conserva-

tion of power is developed for (b). The resulting convex program

is a tight relaxation of the original problem. The McCormick

relaxations are enabled by a realistic assumption that the voltage

angles on different phases of the SVR secondary are sufficiently

separated. Different than this paper, McCormick relaxations for

rank-1 constraints are adopted for single-phase networks [22],

by assuming phase differences between neighboring buses.

The proposed formulation is extensively tested on four stan-

dard distribution feeders that are properly edited to include wye,

closed-delta, open-delta, and a mixture of SVRs. Detailed nu-

merical comparisons with previously proposed convex tech-

niques as well as with traditional nonlinear programming (NLP)

algorithms are also provided. The findings indicate that the pro-

posed convex formulation is capable of delivering tap settings

of SVRs at almost zero optimality gaps (less than 1%) in a

time-span appropriate for OPF applications.

The paper is organized as follows. Notation, network mod-

eling including SVRs, and the non-convex OPF with SVRs are

detailed in Section II. A rank-1 constrained OPF with SVRs is in-

troduced in Section III where the SVR non-convexities represent

themselves as trilinear equalities. Convexifications of the SVR

constraints as well as the rank-1 constraints via McCormick

relaxations are pursued in Section IV. Formulation differences

with prior work are highlighted in Section V. Numerical tests

that corroborate the practicality of the proposed formulation are

carried out in Section VI. The paper concludes in Section VII.

II. NETWORK MODELING AND BRANCH-FLOW OPF

This section introduces the notations and mathematical mod-

els for elements of the multi-phase distribution network includ-

ing transmission lines, SVRs, and shunt elements. The notation

(.) is used to denote the conjugate transpose of (.).

A. General Multi-Phase Notation

A multi-phase distribution network is mathematically mod-

eled by a graph (N , E) where N is the set of buses and

E ⊆ N ×N is the set of edges. The term “edge” is used in-

stead of “line” to avoid confusion. The set of buses represents

shunt elements and can be partitioned as N = {0} ∪ N+ where
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Fig. 1. Series elements. (a) Transmission lines and transformers. (b) SVRs.
For transmission lines and transformers, only one variable in m is required by
Ohm’s law in (1). For SVRs, the per unit current flow from node n to node m
is related through (2b) to the current flow received at node m from node n.

bus 0 stands for the substation and the set N+ := {1, . . . , N}
collects N user buses.

The set of edges E represents series elements of a distribution

network and is partitioned as E = Et ∪ Er , where Et collects

transmission lines and transformers while Er includes the SVRs.

An ordered pair (n,m) (interchangeably, n → m) belongs to

the set Et when n < m and bus n is connected to bus m via

a transmission line or a transformer. An ordered pair (n,m)
belongs to the set Er when bus n and m are respectively the

primary of and secondary of an SVR. The notation n : n → m
means node n ∈ N such that (n,m) ∈ E . Define the set of

primary nodes of SVRs connected to node m as N p
m := {n :

n → m ∈ Er}.

The approach presented in this paper, as we will show in

our numerical tests, is applicable to multi-phase networks with

missing phases. For the sake of exposition, however, notations

for strictly three-phase network are provided here. That is, all

buses and edges assume the phase set Ω = {a, b, c}. For φ ∈ Ω,

denote the right shift as á = b, b́ = c, ć = a and the left shift as

à = c, b̀ = a, c̀ = b.

B. Modeling of Series Elements

1) Transmission Lines and Transformers: Denote by

vn , inm ∈ C
3 and Znm ∈ C

3×3 respectively the voltage pha-

sor at node n, the current phasor and the series impedance of the

edge (n,m) ∈ Et (see Fig. 1a). For wye-g–wye-g transformers,

the series impedance is inverse of the per unit shunt admittance.

For other transformers, a suitable programming model would

be to separate an invertible admittance from the common ad-

mittance models and reconnecting the remaining admittances as

shunt (see e.g., [23]). Ohm’s law implies

vm = vn − Znm inm , (n,m) ∈ Et . (1)

2) SVR Modeling: A three-phase SVR consists of three

single-phase autotransformers that typically connect in wye,

closed-delta, or open-delta configuration. The following mod-

eling assumption on SVRs is asserted first.

Assumption 1 (Ideal SVRs): SVRs are ideal, i.e., the series

impedance of the constituent autotransformers are negligible.

Assumption 1 is realistic. For instance, [1, Ch. 7] demon-

strates that the per-unit series impedance of the autotransformer

is approximately one tenth of that of the two-winding trans-

former and can be neglected for system-level studies.

For edge (n,m) ∈ Er , let inm and i′nm respectively denote

the current phasors at primary and secondary of the SVR (see

Fig. 1b). Based on Assumption 1, it suffices to model SVRs via

TABLE I
SVR VOLTAGE GAIN

their voltage and current gains as follows [24]:

vn = Anm vm , (n,m) ∈ Er , (2a)

inm = Ā−1
nm i′nm , (n,m) ∈ Er , (2b)

where Anm is the voltage gain matrix and depends on the

effective SVR turns ratio rnm :

Anm = diag(rnm )Dnm + Fnm , (n,m) ∈ Er (3)

where Dnm and Fnm are constant matrices given in Table I for

each SVR type. For (n,m) ∈ Er , the vector of effective turns

ratios for wye, closed-delta, and open-delta SVRs is denoted

by rnm := {ra
nm , rb

nm , rc
nm}. For closed-delta SVRs, effective

ratios on phase ab, bc, and ca are given the labels a, b, and c. For

open-delta SVRs, effective ratio on phase ab is given the label

a and effective ratio on phase cb is given the label c. Open-delta

SVRs do not have a third autotransformer, thus rb
nm = 1 is fixed

and is not a variable.

The relationship between the effective turns ratio and the taps

for the SVR is

tapφ = round

[

∓(1 − rφ
nm )

0.00625

]

. (4)

The plus sign is used for type-A SVRs while the minus sign is

used for type-B SVRs [1]. The following modeling assumption

regarding the SVR effective turns ratios is used for optimization.

Assumption 2 (Continuous turns ratios): Effective turns ra-

tios of SVRs assume continuous values constrained by

rmin ≤ rnm ≤ rmax , (n,m) ∈ Er (5)

where [rmin , rmax ] = [0.9, 1.1].
This assumption is typical of works considering tap optimiza-

tion of SVRs, see e.g., [18], [19]. Under Assumption 2 holds, the

taps span the interval [−16,+16]. For open-delta SVRs, we set

rb
min = rb

max = 1 since it holds that rb
nm = 1. Assumptions 1

and 2 hold throughout this paper.

C. Power Balance Equations

The net current injection im can be a sum of currents from

a variety of sources. Here, we assume that the sources are

constant-power elements with complex power s as well as any

constant-admittances (including capacitor banks and the sum of

line shunt admittances) with admittance Ym connected at node
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m, as follows:

im = diag(v∗
m )−1

s
∗
m − Ym vm , m ∈ N . (6)

Multiplying (6) by diag(v∗
m ) and taking conjugate yields

sm = sm − diag(vm v̄m Ȳm ), m ∈ N . (7)

In (7), sm denotes the net complex power injection at node m,

while sm denotes the portion of the net complex power that

originates from constant-power sources at node m. Invoking

KCL at bus m yields

im =
∑

k :m→k

imk −
∑

n :n→m
n∈N p

m

i′nm −
∑

n :n→m
n /∈N p

m

inm , m ∈ N . (8)

Multiplying (8) by diag(v∗
m ), taking conjugate, and again uti-

lizing Lemma 2 yields

sm =
∑

k :m→k

diag(vm īmk ) −
∑

n :n→m
n∈N p

m

diag(vm ī′nm )

−
∑

n :n→m
n /∈N p

m

diag(vm īnm ), m ∈ N . (9)

D. Branch-Flow Optimal Power Flow With SVRs

Let s = {sm}m∈N , s = {sm}m∈N v = {vm}m∈N , i =
{inm}(n,m )∈E , and i′ = {i′nm}(n,m )∈Er

, r = {rnm}(n,m )∈Er
,

A = {Anm}(n,m )∈Er
. The branch flow formulation of optimal

power flow problem (BOPF) with SVRs is given below:

BOPF: minimize
s,s,v ,i
i ′,r,A

c(s0 , s, v, i) (10a)

subject to (1), (2), (3), (5), (7), (9)

v0 = v0 (10b)

vmin ≤ |vn | ≤ vmax , n ∈ N (10c)

s ∈ S (10d)

where v0 is the fixed slack-bus voltage and (10c) are the voltage

limits. Equation (10d) considers an operational set for constant-

power injection. Usually, S =
∏

m∈N Sm where for distributed

generation Sm is a disk while for constant-power loads, Sm is a

singleton. The cost, c(s0 , s, v, i) can account for thermal losses,

power import, or cost of distributed generation.

The BOPF formulation (10) incorporates models of wye,

closed-delta, and open-delta SVRs in the branch flow form

of power flow equations. BOPF is non-convex due to bilin-

ear and quadratic dependencies of (2), (7), and (9) as well as the

non-convexity imposed by the left-hand side of (10c). BOPF is

transformed in the next section to a rank-1 constrained nonlinear

semidefinite program, which makes it amenable for branch-flow

SDP relaxation.

III. RANK-CONSTRAINED SDP FOR BRANCH-FLOW OPF

Let us introduce the following auxiliary matrix variables:

Vm = vm v̄m ,m ∈ N (11a)

Inm = inm īnm (n,m) ∈ E (11b)

Snm = vn īnm , (n,m) ∈ E (11c)

S ′
nm = vm ī′nm , (n,m) ∈ Er . (11d)

Then, (1), (2), (7), and (9) translate to

Vm = Vn + Znm Inm Z̄nm

− (Snm Z̄nm + Znm S̄nm ), (n,m) ∈ Et . (12)

Vn = Anm Vm Ānm , (n,m) ∈ Er (13)

0 = diag(A−1
nm Snm Anm ) − diag(S ′

nm ), (n,m) ∈ Er

(14)

sm = sm − diag(Vm Ȳm ), m ∈ N . (15)

sm =
∑

k :m→k

diag(Smk ) −
∑

n :n→m
n∈N p

m

diag(S ′
nm )

−
∑

n :n→m
n /∈N p

m

diag (Snm − Znm Inm ) , m ∈ N . (16)

where (12) and (13) are obtained by multiplying (1) and (2a) by

their Hermitian. Equation (14) is obtained by multiplying (2a)

and Hermitian of (2b), incorporating (11c) and (11d), multiply-

ing left and right respectively by A−1
nm and Anm and then taking

only the diagonal elements. Using (11a) in (7) yields (15). Fi-

nally, using (1) to replace vm in the second line of (9) and sub-

sequently substituting in (11) yield (16). Consider the following

optimization problem:

RBOPF: minimize
s,s,V ,I ,S

S ′,r,A

c(s0 , s, V, I) (17a)

subject to (3), (5), (10d), (12), (13), (14), (15), (16),

V0 = v0 v̄0 (17b)

(vmin)2 ≤ diag(Vn ) ≤ (vmax)
2 , n ∈ N (17c)

[

Vn Snm

S̄nm Inm

]


 O, (n,m) ∈ E (17d)

rank

([

Vn Snm

S̄nm Inm

])

= 1, (n,m) ∈ E . (17e)

The next two propositions characterize the relationship be-

tween RBOPF and BOPF.

Proposition 1: RBOPF is a relaxation of BOPF.

Proof: If a point (s, s, v, i, i′, r, A) is feasible for BOPF (10),

then the point (s, s, V, I, S, S′, r, A) obtained via (11) is feasi-

ble for (17), as constraints (12)–(16) together with (17b)–(17e)
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Algorithm 1: Retrieve v, i, i′ from V, I, S, S′.

1: Initialize Nvisit := {0} and v0 = v0 .

2: while Nvisit �= N do

3: Find (n,m) ∈ E such that n ∈ Nvisit and m /∈ Nvisit .

4: Set inm := 1
tr (Vn ) S̄nm vn

5: if (n,m) ∈ Er then

6: Set vm := A−1
nm vn

7: Set i′nm := diag(v∗
m )−1diag(S̄ ′

nm )
8: else

9: Set vm := vn − Znm inm

10: end if

11: Update Nvisit := Nvisit ∪ {m}.

12: end while

are satisfied. The latter implies that the feasible set of RBOPF

includes that of BOPF. �

The next proposition asserts that if the three-phase net-

work has a radial topology, then RBOPF (17) is equivalent

to BOPF (10) by providing a unique way to go back from

(s, s, V, I, S, S′, r, A) to (s, s, v, i, i′, r, A).
Proposition 2: Suppose the graph (N , E) is radial and the

point (s, s, V, I, S, S′, r, A) is feasible for (17). Then, the point

(s, s, v, i, i′, r, A) , where v, i, and i′ are computed via Algo-

rithm 1, is feasible for (10).

Proof: The proof is provided in Appendix B. It relies on

Lemma 1, which states that conforming currents inm and i′nm

can be retrieved from RBOPF (17). �

Lemma 1: Suppose for (vn , vm , inm , i′nm , Snm , S ′
nm ) with

|vm | > 0, equalities (2a), (11c), (14) and the following hold:

diag(S ′
nm ) = diag(vm ī′nm ), (n,m) ∈ Er . (18)

Then, (2b) also holds.

Proof: Substitute (11c) and (18) into (14) to obtain

0 = diag(A−1
nm vn īnm Anm ) − diag(vm ī′nm ). (19)

Using (2a) in (19) then yields

0 = diag [vm (̄inm Anm − ī′nm )] . (20)

Equation (20) is the pointwise multiplication of the non-zero

vector vm with the vector ī′nm − īnm Anm . Therefore, (2b) is

inferred by concluding that ī′nm − īnm Anm = 0. �

Remark 1: The radiality assumption in Proposition 2 is lever-

aged only in the construction of Algorithm 1, allowing for a way

to compute a feasible point of BOPF from a feasible point of

RBOPF. Equivalence between RBOPF and BOPF is thus only

established for radial networks. However, the ensuing convex

relaxations for RBOPF are valid relaxations for BOPF under

general network topologies, as per Proposition 1.

The RBOPF (17) is non-convex due to SVR constraints (14)

and (13) as well as the rank constraint (17e). The next section

examines convex alternatives for these constraints.

IV. CONVEX OPF WITH TAP SELECTION

A. Convexifying the Power Equality (14)

Partition Er as Er = Ey ∪ Eo ∪ Ec where Ey , Eo , and Ec re-

spectively denote the set of wye, open-delta, and closed-delta

SVRs. For wye SVRs, Anm is diagonal. Therefore, it is easily

observed that constraint (14) is equivalent to

diag(Snm ) = diag(S ′
nm ), (n,m) ∈ Ey . (21)

For open-delta and closed-delta SVRs, Anm is not diagonal

and therefore (21) does not hold. In this case, due to the cir-

cular property of the trace of matrix products, we resort to the

following relaxed constraint on power conservation:

tr (Snm ) = tr (S ′
nm ), (n,m) ∈ Eo ∪ Ec . (22)

B. Convexifying the Voltage Equality (13)

Define the following groups of variables:

Un = Re[Vn ], Wn = Im[Vn ], n : (n,m) ∈ Er (23a)

Um = Re[Vm ], Wm = Im[Vm ], m : (n,m) ∈ Er

(23b)

Ũnm = Dnm Um D̄nm , (n,m) ∈ Er (24a)

W̃nm = Dnm Wm D̄nm , (n,m) ∈ Er (24b)

Ûnm = Dnm Um F̄nm , (n,m) ∈ Er (24c)

Ŵnm = Dnm Wm F̄nm , (n,m) ∈ Er (24d)

Ũnm = diag(rnm )Ũnm diag(rnm ), (n,m) ∈ Er (25a)

Ψ̃nm = diag(rnm )W̃nm diag(rnm ), (n,m) ∈ Er (25b)

Ûnm = diag(rnm )Ûnm , (n,m) ∈ Er (25c)

Ψ̂nm = diag(rnm )Ŵnm , (n,m) ∈ Er . (25d)

Using (3) and (23)–(25), constraint (13) is recast as

Un = Ũnm + Ûnm +
¯̂
Unm + Fnm Um F̄nm , (n,m) ∈ Er

(26a)

Wn = Ψ̃nm + Ψ̂nm −
¯̂
Ψnm + Fnm Wm F̄nm , (n,m) ∈ Er .

(26b)

The nonconvexity now lies only in (25). Based on Hermitian

symmetry of Vn and Vm , and recalling that φ́ is the right shift

of phase φ, (25) is equivalent to

Ũ
φφ ′

nm = rφ
nm rφ ′

nm Ũφφ ′

nm , φ ∈ Ω, φ′ ∈ {φ, φ́}, (27a)

Ψ̃φφ ′

nm = rφ
nm rφ ′

nm W̃ φφ ′

nm , φ ∈ Ω, φ′ ∈ {φ, φ́}, (27b)

Û
φφ ′

nm = rφ
nm Ûφφ ′

nm , φ, φ′ ∈ Ω, (27c)

Ψ̂φφ ′

nm = rφ
nm Ŵ φφ ′

nm , φ, φ′ ∈ Ω. (27d)
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Linear relaxations of the bilinear and trilinear equalities

in (27) are based on McCormick envelopes given in Defini-

tion 1. To employ McCormick envelopes, bounds on r and v
provided in (5) and (10c) are leveraged together with the fol-

lowing assumption on the secondary voltage of the SVR.

Assumption 3 (Phase separation): Let the complex voltage

phasor on the secondary of an SVR be equal to vm =
{|va

m |ejθa
, |vb

m |ejθ b
, |vc

m |ejθ c
} for m : n → m. There exists

∆ > 0 such that θa , θb , and θc satisfy

90◦ ≤ 120 − ∆ ≤ θφ − θφ́ ≤ 120 + ∆ ≤ 180◦, φ ∈ Ω. (28)

Assumption 3 is based on the fact that phases of a distribution

network, are well separated even under unbalanced operation.

Based on Assumption 3, the following proposition is provided

whose proof is furnished in Appendix C.

Proposition 3: Under Assumption 3 and the bounds in (10c),

entry-wise bounds on Um , Wm , Ũnm , W̃nm , Ûnm , and Ŵnm

for m : (n,m) ∈ Er are computed given vmin , vmax , and ∆:

Umin ≤ Um ≤ Umax , m : (n,m) ∈ Er (29a)

Wmin ≤ Wm ≤ Wmax , m : (n,m) ∈ Er (29b)

Ũmin ≤ Ũnm ≤ Ũmax , m : (n,m) ∈ Er (30a)

W̃min ≤ W̃nm ≤ W̃max , m : (n,m) ∈ Er (30b)

Ûmin ≤ Ûnm ≤ Ûmax , m : (n,m) ∈ Er (31a)

Ŵmin ≤ Ŵnm ≤ Ŵmax , m : (n,m) ∈ Er . (31b)

Definition 1: For variables u, w, and x as well as the given

parameters umin , umax , wmin , and wmax with umin ≤ umax and

wmin ≤ wmax , consider the following set of inequalities:

umin ≤ u ≤ umax (32a)

wmin ≤ w ≤ wmax (32b)

uminw + uwmin − uminwmin ≤ x (32c)

umaxw + uwmax − umaxwmax ≤ x (32d)

umaxw + uwmin − umaxwmin ≥ x (32e)

uminw + uwmax − uminwmax ≥ x (32f)

We compactly denote (32) by

M (u,w, x;umin , umax , wmin , wmax) ≤ 0 (33)

We refer to (33) as the McCormick polyhedron of variables u,

w, and x, which is a linear relaxation of the bilinear constraint

x = uw when u and w are bounded by (32a) and (32b).

Let us introduce the additional variables Rφφ ′

nm constrained as

follows:

Rφφ ′

nm = rφ
nm rφ ′

nm , (n,m) ∈ Er , φ, φ′ ∈ Ω. (34)

The bounds in (5) enable the following relaxation for (34):

(n,m) ∈ Er , φ, φ′ ∈ Ω :

M
(

rφ
nm , rφ ′

nm , Rφφ ′

nm ; rmin , rmax , rmin , rmax

)

≤ 0. (35)

Further, notice that (34) is equivalent to Rnm = rnm r̄nm where

matrix Rnm is assembled by concatenating the values of Rφ,φ ′

nm

for φ, φ′ ∈ Ω. Therefore, a semidefinite relaxation of (34) may

be additionally used:

[

Rnm rnm

r̄nm 1

]


 O, (n,m) ∈ Er . (36)

Lower and upper bounds on variables Ũnm , Ûnm , W̃nm , and

Ŵnm are provided by Proposition 3. Upon substituting (34)

into (27a) and (27b) and utilizing the bounds of Proposition 3,

the constraints in (27) are respectively relaxed to

(n,m) ∈ Er , φ ∈ Ω, φ′ ∈ {φ, φ́} :

M
(

Rφφ ′

nm , Ũφφ ′

nm , Ũφφ ′

nm ; r2
min , r2

max , Ũ
φφ ′

min , Ũφφ ′

max

)

≤ 0 (37a)

M
(

Rφφ ′

nm , W̃ φφ ′

nm , Ψ̃φφ ′

nm ; r2
min , r2

max , W̃
φφ ′

min , W̃ φφ ′

max

)

≤ 0 (37b)

(n,m) ∈ Er , φ, φ′ ∈ Ω :

M
(

rφ
nm , Ûφφ ′

nm , Ûφφ ′

nm ; rmin , rmax , Û
φφ ′

min , Ûφφ ′

max

)

≤ 0 (37c)

M
(

rφ
nm , Ŵ φφ ′

nm , Ψ̂φφ ′

nm ; rmin , rmax , Ŵ
φφ ′

min , Ŵ φφ ′

max

)

≤ 0. (37d)

C. Rank Reinforcements

Recall that the third source of nonconvexity in RBOPF (17)

is the Rank-1 constraint (17e). The goal here is to improve the

quality of the voltage solution provided by the relaxation of

RBOPF by approximating the constraint

Rank(Vm ) = 1 (38)

which is a consequence of (11a). We first borrow the following

result [22, Proposition 3.1].

Proposition 4: The Hermitian matrix Vm is positive semidef-

inite and rank-1 if and only if the diagonal entries of Vm are

nonnegative and all of 2 × 2 minors of Vm are zero.

We use Propositions 3 and Proposition 4 to provide a linear

relaxation of (38). Since Vm ∈ C
3×3 is Hermitian, setting its

minors to zero yields 9 equalities:

Uφφ
m U φ́ φ́

m −
(

Uφφ́
m

)2

−
(

W φφ́
m

)2

= 0, φ ∈ Ω (39a)

U φ̀φ
m Uφφ́

m − W φφ́
m W φ̀φ

m − Uφφ
m U φ̀ φ́

m = 0, φ ∈ Ω (39b)

−U φ̀φ
m W φφ́

m + Uφφ́
m W φ̀φ

m − Uφφ
m W φ̀ φ́

m = 0, φ ∈ Ω. (39c)
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Define the following variables for m : (n,m) ∈ Er , φ ∈ Ω:

Xφ1
m = Uφφ

m U φ́ φ́
m , Xφ2

m =
(

Uφφ́
m

)2

, Xφ3
m =

(

W φφ́
m

)2

(40a)

Xφ4
m = U φ̀φ

m Uφφ́
m , Xφ5

m = W φφ́
m W φ̀φ

m , Xφ6
m = Uφφ

m U φ̀ φ́
m

(40b)

Xφ7
m = U φ̀φ

m W φφ́
m , Xφ7

m = Uφφ́
m W φ̀φ

m , Xφ9
m = Uφφ

m W φ̀ φ́
m .

(40c)

By capturing the bilinear relation in (39) using McCormick

envelopes, we can again obtain its linear relaxation as

Xφ1
m − Xφ2

m − Xφ3
m = 0 (41a)

Xφ4
m − Xφ5

m − Xφ6
m = 0 (41b)

− Xφ7
m + Xφ8

m − Xφ9
m = 0 (41c)

M
(

Uφφ
m , U φ́ φ́

m , Xφ1
m ;Uφφ

min , Uφφ
max , U

φ́ φ́
min , U φ́ φ́

max

)

≤ 0 (41d)

M
(

Uφφ́
m , Uφφ́

m , Xφ2
m ;Uφφ́

min , Uφφ́
max , U

φφ́
min , Uφφ́

max

)

≤ 0 (41e)

M
(

W φφ́
m ,W φφ́

m , Xφ3
m ;W φφ́

min ,W φφ́
max ,W

φφ́
min ,W φφ́

max

)

≤ 0

(41f)

M
(

U φ̀φ
m , Uφφ́

m , Xφ4
m ;U φ̀φ

min , U φ̀φ
max , U

φφ́
min , Uφφ́

max

)

≤ 0 (41g)

M
(

W φ̀φ
m ,W φφ́

m , Xφ5
m ;W φ̀φ

min ,W φ̀φ
max ,W

φφ́
min ,W φφ́

max

)

≤ 0

(41h)

M
(

Uφφ
m , U φ̀ φ́

m , Xφ6
m ;Uφφ

min , Uφφ
max , U

φ̀ φ́
min , U φ̀ φ́

max

)

≤ 0 (41i)

M
(

U φ̀φ
m ,W φφ́

m , Xφ7
m ;U φ̀φ

min , U φ̀φ
max ,W

φφ́
min ,W φφ́

max

)

≤ 0 (41j)

M
(

U φ̀φ
m ,W φφ́

m , Xφ8
m ;U φ̀φ

min , U φ̀φ
max ,W

φφ́
min ,W φφ́

max

)

≤ 0 (41k)

M
(

Uφφ
m ,W φ̀ φ́

m , Xφ9
m ;Uφφ

min , Uφφ
max ,W

φ̀ φ́
min ,W φ̀ φ́

max

)

≤ 0 (41l)

for m : (n,m) ∈ Er , φ ∈ Ω.

D. Convex Relaxation of BOPF With SVRs

The proposed convex formulation, MBOPF, is

MBOPF: minimize
s,s,V ,I ,S

S ′,r,R,A,U

W,Ũ ,W̃ ,Û ,Ŵ

Ũ,Ψ̃ ,Û,Ψ̂ ,X

c(s0 , s, V, I)

Fig. 2. Schematic representation of the feasible sets for BOPF, RBOPF, and
MBOPF. (a) Meshed networks. (b) Radial networks.

subject to (3), (5), (10d), (12), (15), (16),

(17b), (17c), (17d), (21), (22),

(23), (24), (26), (29), (30), (31),

(35), (36), (37), (41). (42)

The following proposition clarifies the relationship between

MBOPF and RBOPF.

Proposition 5: Under Assumption 3, MBOPF is a relaxation

of RBOPF.

Proof: Constraint (14) of RBOPF is relaxed to con-

straints (21) and (22) of MBOPF. Constraint (13) of RBOPF

is relaxed to constraints (23), (24), (26), (29)–(31), and (35)–

(37) of MBOPF. Constraint (17e) of RBOPF is relaxed to con-

straint (41) of MBOPF. �

Per Propositions 1 and 5, MBOPF (42) is a convex relaxation

of the non-convex BOPF (10). The relationship between feasi-

ble sets of BOPF, RBOPF, and MBOPF for meshed and radial

networks is schematically portrayed in Fig. 2.

V. DIFFERENCES WITH PREVIOUS CONVEX RELAXATIONS

In this section, we highlight the formulation differences

between the proposed approach and previously available convex

relaxation techniques for OPF with SVRs. The premier for-

mulation of [18], abbreviated here as CIOPF, investigates wye

SVRs within the full SDP relaxation of the admittance-based

power flow equations combined with following relaxation in

place of (13):

r2
mindiag(Vm ) ≤ diag(Vn ) ≤ r2

maxdiag(Vm ) (43)

Equation (43) can be related to a special case of relaxing (27a)

for any φ = φ′. The work in [19], abbreviated here as CGOPF,

similarly uses admittance-based power flows but employs the

chordal SDP relaxation together with

r2
minVm � Vn � r2

maxVm , (44)

in place of (13)—based on the simplifying assumption

that all SVRs are modeled as gang-operated wye, that is,

ra
nm = rb

nm = rc
nm for (n,m) ∈ Er . Our previous work [21]

also uses the chordal SDP relaxation but includes valid inequal-

ities in the flavor of (43) that are appropriately constructed for

closed-delta and open-delta SVRs. However, the applicability

of [21] is limited to smaller-sized networks.

To improve scalability, the formulation MBOPF (42) is pre-

sented here, where models of SVRs are incorporated within the
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TABLE II
COMPARISON BETWEEN VARIOUS CONVEX FORMULATIONS

branch flow formulation of power flow equations. The branch-

flow formulation uses the series impedances of transmission

lines and transformers, whereas the full or chordal SDP for-

mulations rely on the nodal admittance model. The provided

formulation MBOPF is general and suitable for cases when

a mix of wye, closed-delta, and open-delta SVRs are present

within the same network.

If gang operation is desired, the formulation can enforce

entries of the effective ratios equal to each other, thereby re-

quiring a single rnm variable for the particular SVR on edge

(n,m) ∈ Er . Such versatility is not available in [18], [19], [21]

as the effective ratio is not an optimization variable in the for-

mulations of the aforementioned works.

VI. NUMERICAL EXPERIMENTS

The performance of the proposed method is evaluated in this

section. Specifically, Section VI-A compares the performance

of MBOPF to two previously available convex formulations.

Section VI-B features comparisons with traditional NLP formu-

lations, and provides an instance where MBOPF is preferable

over those.

The standard IEEE 13-bus, 37-bus, 123-bus, and 8500-node

networks comprising a variety of three-, two-, and one-phase

lines are selected for the numerical tests. Transformers are

modeled as wye-g–wye-g connections. Switches are replaced

by short lines. Line shunt admittances are ignored, however,

capacitors are accounted for as provided by the documentation.

SVR types for these networks can be wye, closed-delta, and

open-delta. For the 123-bus network, the mixed SVR type means

that SVR ID #1 is modeled as closed-delta, SVR ID #4 is mod-

eled as open-delta, while the two other SVRs are modeled as

wye. For the 8500-node network, the mixed SVR type means

that SVR IDs #2 and #3 are modeled as closed-delta while the

two other SVRs are modeled as wye. Voltage regulation on the

8500-node feeder with only open-delta SVRs was not success-

ful, presumably due to lack of a third tap position, and thus is

not reported for any method.

The convex optimization problems are modeled via

CVX [25], [26] and solved by MOSEK [27]. NLPs are modeled

with YALMIP [28] and solved by IPOPT [29] through the OPTI

interface [30]. Experiments in Section VI-A are conducted on a

laptop with a 2-GHz CPU, 8 GB of RAM, and Unix operating

system. Experiments in Section VI-B are conducted on the same

laptop under Microsoft Windows.

A. Performance of the Convex Relaxation

In this section, the OPF cost function is the power import to

the distribution network:

c(s0 , s, V, I) = Re[1̄s0 ]. (45)

The operational set of power injection [cf. (10d)] is selected

to be a singleton which amounts to the specified load power

consumption per phase and per node. The selection of phase

separation parameter ∆ is as follows: ∆ = 5◦ for the wye SVR;

∆ = 3◦, 5◦, 10◦, 15◦ respectively for the 13-bus, 37-bus, 123-

bus, and 8500-node networks with closed-delta SVRs; ∆ =
10◦, 10◦, 15◦ for the 13-bus, 37-bus, and 123-bus feeders with

open-delta SVRs; and ∆ = 15◦ for the 123-bus and 8500-node

networks with mixed SVR types. For voltages, the minimum

and maximum limits are set to 0.9 pu and 1.1 pu, respectively.

After solving the MBOPF, we retrieve the turns ratios

using r̆φ
nm =

√

Rφφ
nm for wye and closed-delta SVRs. For

open-delta SVRs, we use r̆φ
nm as a solution to the equation

v̂n − Anm (rnm )v̂m exp(jθm ) = 0 where v̂n and v̂m are respec-

tively the spectral decomposition of the rank-1 approximate of

Vn and Vm for (n,m) ∈ Eo and θm is an arbitrary angle variable.

We found this retrieval process for SVR ratios to be more effec-
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tive in producing feasible voltages during a load-flow, however

other methods may also be used.

Upon fixing the ratios, the Z-Bus method is run to obtain

voltage solutions v̆ [31]. Sufficient conditions for convergence

of the Z-Bus method in three-phase distribution networks are

typically satisfied by IEEE networks [31], [32]. However, other

methods such as the forward-backward sweep may also be used

to retrieve voltages [1].

Table II provides a summary of performances. Columns 5–10

respectively provide the following values that are computed

based on v̆:

c̆ = Re
[

tr
(

v0
¯̆vȲ0•

)]

(46)

Gap% = 100 × (c̆ − c)/c (47)

min v̆ = min
n,φ

|v̆φ
n |, max v̆ = max

n,φ
|v̆φ

n | (48)

v̆unb. = max
n,φ

∣

∣1 − |v̆φ
n |/v̆avg

∣

∣ (49)

∆̆ = max
φ∈Ω

|θ̆φ́
m − θ̆φ

m − 120◦|,m : (n,m) ∈ Er . (50)

Equation (46) computes the power import based on load-flow

voltages v̆. The notation Y0• denotes the 3 × (N + 1) block

of the network admittance matrix that corresponds to the slack

bus. Equation (47) assesses the quality of the objective obtained

through the load-flow, that is, c̆, in comparison with the objective

provided by the corresponding relaxed OPF solution c [cf. (45)].

The quantity Gap is the optimality gap, if the load-flow solution

v̆ turns out to be feasible for the relaxed OPF. The minimum and

maximum magnitude of load-flow voltages are given by (48).

In (49), v̆avg is the average magnitude of voltages. The quantity

v̆unb. is a measure of voltage unbalance [1, eq. (7.1)]. Last, (50)

measures the maximum angle difference from 120◦ on the sec-

ondary of SVRs based on v̆, assessing validity of Assumption 3.

Column 11 of Table II provides a measure for the rank-1

constraint (17e) (and the corresponding rank-1 constraint for the

CIOPF and CGOPF formulations) based on the ratio between

second-largest eigenvalue (λ2) to the largest eigenvalue (λ1) of

the matrix in (17e) averaged over all non-SVR edges. A high

value of λ2/λ1 implies that the matrix is far from being rank-1,

while a value close to 0 implies proximity to a rank-1 solution.

Finally, column 12 of Table II depicts the computation time

reported by the solver.

We highlight the following key points from Table II:
� For networks with wye SVRs, the optimality gap provided

by the proposed MBOPF approach is smaller than the

gap obtained from the CIOPF and CGOPF relaxations.

Specifically, the gap obtained from the proposed approach

is below 1% in all networks. The corresponding gap for

CIOPF and the CGOPF approaches is above 1% for the

123-bus and 8500-node networks.
� As a consequence, for networks with only wye SVRs, the

proposed MBOPF approach provides the least-cost feasi-

ble solution to the OPF. Furthermore, the MBOPF yields

the smallest voltage unbalance in comparison to CIOPF

and CGOPF.

TABLE III
OPTIMAL TAPS OBTAINED BY VARIOUS CONVEX FORMULATIONS

FOR WYE SVRS

� The proposed MBOPF approach provides a high-quality

relaxation for feeders with closed-delta, open-delta, or

mixed types of SVRs. In all these cases, the optimality

gap is below 1%. In contrast, CIOPF and CGOPF are only

valid for networks with wye SVRs.
� In the IEEE 37-bus feeder, utilizing a closed- or open-

delta SVR yields smaller power import costs compared

to utilizing a wye SVR, emphasizing the importance of

developing convex optimization tools for delta SVRs.

We conclude that MBOPF is a reliable and scalable convex

formulation for the OPF problem with various types of SVRs.

SVR taps obtained by feeding r̆φ
nm into (4) are tabulated in

Table III for networks with wye SVRs. Observe that with the

exception of the 37-bus feeder, different formulations of the OPF

with wye SVRs, that is CIOPF, CGOPF, and MBOPF, result in

entirely different tap positions.

B. Convex vs. NLP Formulation

This section compares the solution of the nonlinear

BOPF (10) produced by NLP solvers to that of the convex

MBOPF formulation (42). In order to highlight the advantages

of the convex formulation, we consider an OPF problem that

requires joint optimization of distributed generation (DG) dis-

patch decisions and SVR taps.1

To this end, the constant-power injection set (10d) is ex-

pressed as S =
∏

Sm where Sm is the set of complex constant-

power injections sm that satisfy the following constraints for a

given load vector sl
m :

sm = s
g
m − s

l
m (51a)

|Im [sg
m ]| ≤ Re [sg

m ] tan (arccos PF) (51b)

√

Re [sg
m ]

2
+ Im [sg

m ]
2 ≤ smax (51c)

In (51), sg
m is a variable representing the complex power

generation of the DG at node m, and the constants smax and

1The NLP solver for the BOPF formulation managed to find the global opti-
mum to many of the OPF problems of Section VI-A upon good initialization. A
more complicated OPF problem is thus presented here to showcase the advan-
tages of a convex formulation over an NLP formulation.
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TABLE IV
CONVEX VS. NONLINEAR PROGRAMMING

TABLE V
OPTIMAL TAPS OBTAINED BY MBOPF AND BOPF

PF respectively denote the apparent power capacity and the

maximum power factor (capacitive of inductive) of the DG. The

objective is to minimize the total amount of real power injection

and power import to the distribution network, i.e.,

c(s0 , s, v, i) = c(s0 , s
g) = Re [1̄s0 + 1̄s

g ] , (52)

where sg = {sg
m}m∈N collects all load vectors.

Voltage limits are set to vmin = 0.95 and vmax = 1.05. DG is

only connected to buses with three available phases and specific

values of PF = 0.9 and smax = 0.001 pu have been selected.

The BOPF is initialized with voltages obtained from a load-flow

when the network contains no DGs and the SVR taps are set to

0. BOPF (10) and MBOPF (42) are then solved by the respective

solvers and system configurations as detailed at the beginning

of Section VI.

The resulting tap ratios r̆ and constant-power injections s

from the optimization stage are fed into a Z-Bus load-flow to

compute the feasible objective

c̆ = Re
[

tr
(

v0
¯̆vȲ0•

)

+ 1̄s
g
]

. (53)

The gap between the optimal value of the optimization stage

and the feasible objective c̆, that is the discrepancy between (52)

and (53), as well the minimum and maximum voltages are com-

puted similar to (47) and (48).

Table IV tabulates the performance of the convex MBOPF and

NLP BOPF formulations for the 8500-node network with mixed

SVRs. Table V reveals that the taps obtained from MBOPF and

BOPF can be significantly different. A first glance on Table IV

shows that the NLP formulation BOPF remarkably finds a so-

lution whose cost is practically equal to the cost obtained by

the convex MBOPF. However, column 6 of Table IV reveals

that solving the convex formulation MBOPF is significantly

faster—a remarkable speedup of at least 20 times.

It is worth emphasizing that the good performance of the

NLP formulation BOPF is in general dependent on the initial-

ization point. Furthermore, NLP solvers potentially could get

stuck in a local minimum. On the contrary, the convex MBOPF

formulation provides a useful lower bound along with a feasible

solution within a very short time-span. Accordingly, the solu-

tion obtained by MBOPF can be powerful for both assessing the

quality of solution of NLP solvers and for warm-starting them.

VII. CONCLUDING REMARKS

This paper introduces an SDP framework for OPF problems

that include tap selection of the most common SVRs in prac-

tice. The branch flow model of the power flow equations is

adopted and extended to handle SVR edges. A phase separation

assumption is introduced, which is realistic and adopted only

for the secondary voltages of SVRs. Specialized techniques are

developed to relax the various non-convexities that show up due

to the rigorous modeling of SVRs. The resultant convex pro-

gram represents a quite tight relaxation that is coupled with a

tap recovery scheme leading to very small optimality gaps even

in large-scale networks. Future work includes extending the

present framework to multi-period OPF and tap selection prob-

lems that limit the cycling and wear-and-tear of the regulation

equipment.

APPENDIX A

USEFUL LINEAR ALGEBRA RESULTS

Lemma 2: For two complex vectors u and w, we have that

diag(u)w∗ = diag(uw̄). (54)

Proof: The proof is omitted due to its simplicity. �

APPENDIX B

PROOF OF PROPOSITION 2

The proof follows the procedure in [9] but extends it to handle

SVR edges. The proof is based on induction. At the n-th iteration

with N
(n)
visit , vn is given and the following holds:

Vn = vn v̄n , n ∈ N
(n)
visit . (55)

We have to then show that (1), (2), (7), (9), and (10c) are satisfied.

First notice that (1) and (2a) are satisfied by construction of

Algorithm 1. To prove that (7) is satisfied, we will show that

(11a) holds for (n,m) ∈ E and m /∈ N
(n)
visit . The equality (11a)

and constraint (17c) automatically yield (10c). To prove that (9)

is satisfied, we will show that (11b) and (11c) hold for (n,m) ∈
E and the diagonal of (11d) holds for (n,m) ∈ Er , that is (18)

holds. Finally, based on (2a), (11c), (18), and (14) Lemma 1

proves that (2b) also holds. Therefore, it suffices to show that

from vn satisfying (55), we can construct (vm , inm , i′nm ) that

satisfy (11a)–(11c) and (18).

For every (n,m) ∈ E , (17d) and (17e) hold, which implies
[

Vn Snm

S̄nm Inm

]

=

[

u
w

]

[

ū w̄
]

, (56)

for some complex vectors u and w. Therefore,

Vn = uū (57a)

Snm = uw̄ (57b)

Inm = ww̄ (57c)

Equations (57a) together with (55) imply that

vn = u exp(jθ) (58)
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for some vector θ and the product in (58) is entrywise. Us-

ing (57a), (57b) and (58) in Algorithm 1 update 1 yields

inm =
1

ūu
wūu exp(jθ) = w exp(jθ). (59)

Substituting u and w in (57b) and (57c) readily yield (11b) and

(11c). To obtain (11a), if (n,m) ∈ Et then

vm v̄m = (vn − Znm inm )(v̄n − īnm Z̄nm )

= Vn + Znm Inm Z̄nm − (Snm Z̄nm + Znm S̄nm ) = Vm

(60)

where the last equality comes from (12). If (n,m) ∈ Er , then

Algorithm 1 update 6 gives

vm v̄m = A−1
nm vn v̄n Ā−1

nm = A−1
nm Vn Ā−1

nm = Vm (61)

where the last equality comes from (13). Therefore, (11a)–(11c)

hold. It remains to show that (18) holds for (n,m) ∈ Er . From

Algorithm 1 update 1 it holds that

diag(S ′
nm ) = diag(vm )(i′nm )∗ = diag(vm īnm ) (62)

where the last equality uses Lemma 2. Lemma 1 can now be

invoked to show that (2b) also holds. �

APPENDIX C

PROOF OF PROPOSITION 3

To prove (29), notice from (11a) that V φφ ′

m = vφ
m v̄φ ′

m .

Therefore, for diagonal elements it holds that

Uφφ
m = Re

[

V φφ
m

]

= |vφ
m |2 and W φφ

m = Im
[

V φφ
m

]

= 0

which implies that we have Uφφ
min = v2

min , Uφφ
max = v2

max ,

while W φφ
min = W φφ

max = 0. For the (φ, φ́)-th element it

holds that Uφφ́
m = Re

[

V φφ́
m

]

= |vφ
m ||vφ́

m | cos(φ − φ́) and

W φφ́
m = |vφ

m ||vφ́
m | sin(φ − φ́) which together with (28) im-

plies that we have Uφφ́
min = v2

max cos (120◦ + ∆), Uφφ́
max =

v2
min cos (120◦ − ∆), and W φφ́

min = v2
min sin (120◦ + ∆) and

Wmax = v2
min sin (120◦ − ∆). The remaining entries are filled

by acknowledging that Vm is Hermitian.

Bounds in (30) and (31) are computed next. For wye SVRs,

it holds that Dnm = I and Fnm = O. Hence, for wye SVRs,

Ũmin , Ũmax , W̃min , and W̃max are respectively equal to Umin ,

Umax , Wmin , and Wmax while Ûmin , Ûmax , Ŵmin , and Ŵmax

are zeros. For closed-delta and open-delta SVRs, the expressions

for Ũmin , Ũmax , W̃min , W̃max , Ûmin , Ûmax , Ŵmin , and Ŵmax

contain more terms. However, it turns out that the (ψ,ψ′)-th
element of Ũnm and Ûnm , denoted here by uψψ ′

, is of the form

uψψ ′

=
∑

φ∈Ω

[

aψψ ′

φφ́
|vφ

m ||vφ́
m | cos

(

φ − φ́
)

−bψψ ′

φφ́
|vφ

m ||vφ́
m | cos

(

φ − φ́
)]

+
∑

φ∈Ω

cψψ ′

φ |vφ
m |2 − dψψ ′

φ |vφ
m |2 (63)

where aψψ ′

φφ́
, bψψ ′

φφ́
, cψψ ′

φ , and dψψ ′

φφ are all non-negative constants

for φ, ψ, ψ′ ∈ Ω. Therefore, based on (10c) and (28), the bounds

on uψψ ′
are given by

∗uψψ ′

min =
∑

φ∈Ω

[

aψψ ′

φφ́
v2

max cos (120◦ + ∆)

−bψψ ′

φφ́
v2

min cos (120◦ − ∆)
]

+
∑

φ∈Ω

cψψ ′

φ v2
min − dψψ ′

φ v2
max (64a)

uψψ ′

max =
∑

φ∈Ω

[

aψψ ′

φφ́
v2

min cos (120◦ − ∆)

−bψψ ′

φφ́
v2

max cos (120◦ + ∆)
]

+
∑

φ∈Ω

cψψ ′

φ v2
max − dψψ ′

φ v2
min (64b)

Similarly, it turns out that the (ψ,ψ′)-th element of W̃nm and

Ŵnm , denoted here by wψψ ′
, is of the form

uψψ ′

=
∑

φ∈Ω

[

eψψ ′

φφ́
|vφ

m ||vφ́
m | sin

(

φ − φ́
)

−fψψ ′

φφ́
|vφ

m ||vφ́
m | sin

(

φ − φ́
)]

(65)

where eψψ ′

φφ́
and fψψ ′

φφ́
are non-negative constants. Hence, based

on (10c) and (28), the bounds on wψψ ′
are given by

∗wψψ ′

min =
∑

φ∈Ω

[

eψψ ′

φφ́
v2

min sin (120◦ + ∆)

−bψψ ′

φφ́
v2

max sin (120◦ − ∆)
]

(66a)

wψψ ′

max =
∑

φ∈Ω

[

eψψ ′

φφ́
v2

max sin (120◦ − ∆)

−fψψ ′

φφ́
v2

min sin (120◦ + ∆)
]

. (66b)
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