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Optimal Power Flow With Step-Voltage Regulators
in Multi-Phase Distribution Networks

Mohammadhafez Bazrafshan
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Abstract—This paper develops a branch-flow-based optimal
power flow (OPF) problem for multi-phase distribution networks
that allows for tap selection of wye, closed delta, and open delta
step-voltage regulators (SVRs). SVRs are assumed ideal and their
taps are represented by continuous decision variables. To tackle the
non-linearity, the branch-flow semidefinite programming frame-
work of traditional OPF is expanded to accommodate SVR edges.
Three types of non-convexity are addressed: (a) rank-1 constraints
on non-SVR edges, (b) nonlinear equality constraints on SVR
power flows and taps, and (c) trilinear equalities on SVR voltages
and taps. Leveraging a practical phase-separation assumption on
the SVR secondary voltage, novel McCormick relaxations are pro-
vided for (c) and certain rank-1 constraints of (a), while dropping
the rest. A linear relaxation based on conservation of power is used
in place of (b). Numerical simulations on standard distribution test
feeders corroborate the merits of the proposed convex formulation.

Index Terms—Multi-phase distribution networks, optimal
power flow, step-voltage regulators, McCormick envelopes.

I. INTRODUCTION

HE step-voltage regulator (SVR) is an autotransformer
T augmented by a tap-changing mechanism. It is used in
medium-voltage distribution networks to maintain steady-state
voltages within acceptable bounds. Traditionally, SVR taps are
automatically controlled via the line-drop compensator based on
an approximate voltage-drop model from a local load-center [1].
Such a scheme is satisfactory for conventional distribution net-
works in which branch power flows are unidirectional from the
substation to the ends of the feeder.

Traditional tap-selection is increasingly challenged by mod-
ern distribution grids with high levels of distributed renewable
generation. A recent report [2] highlights that during reversal
of power flows, the effectiveness of the regulator operation—as
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measured by voltage control per tap—reduces. Of concern is also
wear and tear of SVRs from excessive tap changes following
the fluctuation of renewables [3], [4].

Utilities with bundled retail and operations sectors can avoid
the aforementioned issues by incorporating tap-selection into
their optimal power flow (OPF) programs [5]. Increasing re-
newable hosting capacity by coordinating tap-selection and
other voltage control resources is an additional advantage [6].
Industry-provided integrated volt-var control applications for
energy efficiency already support tap-setting of SVRs alongside
with power factor and capacitor banks optimization; see e.g., the
heuristic-based software product in [7].

Introducing SVR taps as variables in distribution OPF is,
however, technically challenging. Primarily, they add to the non-
convexity of the power flow equations. Since distribution net-
works are inherently unbalanced, tractable methodologies for
multi-phase OPF problems [8]—[12] should be expanded to this
end. Moreover, operational characteristics of various types of
SVRs, i.e., wye, closed- or open-delta are different from each
other. Since precise setting of SVRs aids in higher-quality volt-
age control, raises the permissible loading level on feeders, and
defers capacity investment costs [13], a unified OPF program
handling various SVRs is needed.

This paper develops an OPF that accounts for the tap selection
of wye, closed-delta, and open-delta SVRs in multi-phase dis-
tribution networks. To tackle the non-linearity, the branch-flow
semidefinite programming (SDP) framework of multi-phase
OPF is gracefully expanded to incorporate the full range of
SVR models. Trilinear equalities that constrain SVR voltages
and taps are handled via McCormick relaxations. The relaxation
is made possible due to a phase-separation assumption on the
SVR secondary voltage that is valid in practical multi-phase
systems. This assumption is further leveraged to approximate
rank-1 constraints on the SVR secondary voltage matrix variable
and improve the quality of the relaxation. The relevant literature
is reviewed next.

A. Literature Review

For single-phase radial networks, an OPF considering tap-
selection of on-load tap-changer transformers is presented in
[14] where the trilinear scalar constraint in transformer taps and
voltages is converted to an exact mixed-binary linear constraint
using binary expansion and big-M methods. The second-order
cone relaxation of branch-flow power flows are then utilized
to render an efficient mixed-integer second-order cone program
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(MISOCP). An extension is presented in [15] by incorporating
static and discrete reactive power compensators.

Considering unbalanced multi-phase operation, a compre-
hensive OPF framework is developed in [16] by assembling
ABCD parameters of transmission lines, transformers, as well
as single- and three-phase wye tap-changers. Wye and delta-
connected loads as well as switched shunt capacitors are also
included. The overall formulation is a mixed-integer nonlinear
program (MINLP) which is then translated to a nonlinear pro-
gram via a quadratic penalty function. Under a similar modeling
framework, [17] also develops MINLP formulation of OPF to
coordinate tap-changers and static var compensators with dis-
tributed generation which is ultimately solved via an ad-hoc
two-stage procedure based on interior point branch and bound
methods. Despite their broad scope, these MINLP formulations
turn out to be computationally intensive and may even yield
locally suboptimal results.

A more recent line of work explores convex relaxations. The
work in [18] introduces the tap selection of wye-connected
SVRs inside the full SDP relaxation of the admittance-based
OPEF. Power transfer from the primary to secondary of the SVR
is accommodated by enforcing equal power injections on each
side. The trilinear matrix constraint in taps and voltages is fur-
ther relaxed to a linear constraint that bounds the diagonals of
the SDP variable using minimum and maximum tap changes
per phase. By using the radial topology of distribution networks
to improve computation time, [19] leverages the chordal SDP
relaxation of the admittance-based OPFE. Further, the trilinear
matrix constraint in taps and voltages is relaxed into a linear
semidefinite matrix constraint that implicitly assumes that taps
on every phase of the SVR are equal (gang-operated). An unbal-
anced distribution reconfiguration problem is recently presented
in [20], in which SVR taps are represented via their binary ex-
pansion rendering a mixed-binary semidefinite program, albeit
at the expense of introducing significant computational burden.

The approaches in [18]-[20] consider wye-connected SVRs
for which the primary and secondary power injections are equal
per phase and the secondary voltage of each phase can be regu-
lated independently from other phases. Our previous work [21]
extends the chordal SDP relaxation of the admittance-based
OPF to handle individually operated closed-delta and open-
delta SVRs. However, the formulation of [21] is only applicable
to small-sized networks.

B. Paper Contributions and Outline

A convex OPF formulation that can handle various types of
SVRs and is applicable to larger networks is missing in the liter-
ature. In this paper, instead of using the admittance-based OPF
[18]-[21], the branch-flow form of the power flow equations are
leveraged to improve numerical stability [9]. Specifically, this
work features the following contributions:

e A branch-flow based OPF (BOPF) is introduced that ac-
commodates optimal tap selection of SVRs in multi-phase
distribution networks. The formulation handles any combi-
nation of wye, closed-delta, and open-delta SVRs, as well
as individual and gang operation of SVR taps.
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® A nonlinear and non-convex SDP is developed that is
provably equivalent to BOPF for radial networks, and a
relaxation of BOPF for general meshed networks. The for-
mulation extends the traditional framework of branch-flow
SDP for OPF originally put forth in [9] to incorporate most
common SVR types.

® A novel convex relaxation is developed that ultimately

alleviates the following non-convexity issues: (a) rank-1
constraints of non-SVR edges, (b) nonlinear constraints in
SVR power flows and taps, and (c) trilinear constraints in
SVR voltages and taps.

The particular convex relaxation techniques are described
next. Specifically, all rank-1 constraints of (a) are dropped ex-
cept the ones that pertain to the SVR secondary, which are
replaced by McCormick polyhedra. McCormick relaxations are
also employed for (¢), and a linear relaxation based on conserva-
tion of power is developed for (b). The resulting convex program
is a tight relaxation of the original problem. The McCormick
relaxations are enabled by a realistic assumption that the voltage
angles on different phases of the SVR secondary are sufficiently
separated. Different than this paper, McCormick relaxations for
rank-1 constraints are adopted for single-phase networks [22],
by assuming phase differences between neighboring buses.

The proposed formulation is extensively tested on four stan-
dard distribution feeders that are properly edited to include wye,
closed-delta, open-delta, and a mixture of SVRs. Detailed nu-
merical comparisons with previously proposed convex tech-
niques as well as with traditional nonlinear programming (NLP)
algorithms are also provided. The findings indicate that the pro-
posed convex formulation is capable of delivering tap settings
of SVRs at almost zero optimality gaps (less than 1%) in a
time-span appropriate for OPF applications.

The paper is organized as follows. Notation, network mod-
eling including SVRs, and the non-convex OPF with SVRs are
detailed in Section II. A rank-1 constrained OPF with SVRs is in-
troduced in Section III where the SVR non-convexities represent
themselves as trilinear equalities. Convexifications of the SVR
constraints as well as the rank-1 constraints via McCormick
relaxations are pursued in Section I'V. Formulation differences
with prior work are highlighted in Section V. Numerical tests
that corroborate the practicality of the proposed formulation are
carried out in Section VI. The paper concludes in Section VII.

II. NETWORK MODELING AND BRANCH-FLOW OPF

This section introduces the notations and mathematical mod-
els for elements of the multi-phase distribution network includ-
ing transmission lines, SVRs, and shunt elements. The notation

(.) is used to denote the conjugate transpose of (.).

A. General Multi-Phase Notation

A multi-phase distribution network is mathematically mod-
eled by a graph (N,E&) where A is the set of buses and
E CN x N is the set of edges. The term “edge” is used in-
stead of “line” to avoid confusion. The set of buses represents
shunt elements and can be partitioned as V' = {0} U N, where
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Fig. 1. Series elements. (a) Transmission lines and transformers. (b) SVRs.

For transmission lines and transformers, only one variable i,,,, is required by
Ohm’s law in (1). For SVRs, the per unit current flow from node n to node m
is related through (2b) to the current flow received at node m from node n.

bus 0 stands for the substation and the set M. := {1,...
collects IV user buses.

The set of edges £ represents series elements of a distribution
network and is partitioned as £ = & U &, where &; collects
transmission lines and transformers while &, includes the SVRs.
An ordered pair (n,m) (interchangeably, n — m) belongs to
the set & when n < m and bus n is connected to bus m via
a transmission line or a transformer. An ordered pair (n,m)
belongs to the set & when bus n and m are respectively the
primary of and secondary of an SVR. The notation n : n — m
means node n € N such that (n,m) € £. Define the set of
primary nodes of SVRs connected to node m as NP := {n:
n—mée &}

The approach presented in this paper, as we will show in
our numerical tests, is applicable to multi-phase networks with
missing phases. For the sake of exposition, however, notations
for strictly three-phase network are provided here. That is, all
buses and edges assume the phase set 2 = {a, b, c}. For ¢ € {2,
denote the right shift as ¢ = b, b= ¢, ¢ = a and the left shift as
d:c,i):a,é:b.

N}

B. Modeling of Series Elements

1) Transmission Lines and Transformers: Denote by
U, inm € C? and Z,,, € C3*3 respectively the voltage pha-
sor at node n, the current phasor and the series impedance of the
edge (n,m) € & (see Fig. la). For wye-g-wye-g transformers,
the series impedance is inverse of the per unit shunt admittance.
For other transformers, a suitable programming model would
be to separate an invertible admittance from the common ad-
mittance models and reconnecting the remaining admittances as
shunt (see e.g., [23]). Ohm’s law implies

U = Up — aninma (n7 m) S 81‘- (1)

2) SVR Modeling: A three-phase SVR consists of three
single-phase autotransformers that typically connect in wye,
closed-delta, or open-delta configuration. The following mod-
eling assumption on SVRs is asserted first.

Assumption 1 (Ideal SVRs): SVRs are ideal, i.e., the series
impedance of the constituent autotransformers are negligible.

Assumption 1 is realistic. For instance, [1, Ch. 7] demon-
strates that the per-unit series impedance of the autotransformer
is approximately one tenth of that of the two-winding trans-
former and can be neglected for system-level studies.

For edge (n,m) € &, let iy, and i,,, respectively denote
the current phasors at primary and secondary of the SVR (see
Fig. 1b). Based on Assumption 1, it suffices to model SVRs via

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

TABLE I
SVR VOLTAGE GAIN

I SVR [ Anm [ Dnm [ Fnm
r 0o o
nmeoy 100
Wye o b, 0 010 o
c 001
0 0 7Tom
a a
Tnm 17;‘11,'"1. Ob 1 —-10 010
Cl.-delta 0 oo 1—rb [ 01 (1) —11] [? 9 (1)]
1—r¢ 0 rS -
nm nm
Tam 1=Tam 0 1-10 010
Op.-delta 0 1 0 010 [0 0 o}
0 1-r, rC 0—1 010

their voltage and current gains as follows [24]:

(n,m) € &, (2a)

Up = Anmvmv

— A71 i/

nm-nm:? (n7 m) € 51'7 (Zb)

7 nm

where A,,,, is the voltage gain matrix and depends on the
effective SVR turns ratio 7,,,, :

Anm = diag(rnm)Dnm + Ezmv (nvm) € gr (3)

where D,,,,, and F;,,,, are constant matrices given in Table I for
each SVR type. For (n,m) € &, the vector of effective turns
ratios for wye, closed-delta, and open-delta SVRs is denoted
by 7 = {2,702, .75, }. For closed-delta SVRs, effective
ratios on phase ab, bc, and ca are given the labels a, b, and c. For
open-delta SVRs, effective ratio on phase ab is given the label
a and effective ratio on phase cb is given the label c. Open-delta
SVRs do not have a third autotransformer, thus 7 = 1 s fixed
and is not a variable.

The relationship between the effective turns ratio and the taps
for the SVR is

4
0.00625 @)

1 — ¢
tap? = round [:F( T”"”)} .
The plus sign is used for type-A SVRs while the minus sign is
used for type-B SVRs [1]. The following modeling assumption
regarding the SVR effective turns ratios is used for optimization.
Assumption 2 (Continuous turns ratios): Effective turns ra-

tios of SVRs assume continuous values constrained by

(n,m) € & 5)

Tmin S Tnm S Tmax

where [y, Tmax] = [0.9, 1.1].

This assumption is typical of works considering tap optimiza-
tion of SVRs, see e.g., [18], [19]. Under Assumption 2 holds, the
taps span the interval [—16, +16]. For open-delta SVRs, we set
rb . =rb =1 since it holds that %, = 1. Assumptions 1

and 2 hold throughout this paper.

C. Power Balance Equations

The net current injection 7,, can be a sum of currents from
a variety of sources. Here, we assume that the sources are
constant-power elements with complex power s as well as any
constant-admittances (including capacitor banks and the sum of
line shunt admittances) with admittance Y,,, connected at node
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m, as follows:

. . * \—1 %
tm = dlag(vm) S5

meN. (6)

- Y"m Um

Multiplying (6) by diag(v;, ) and taking conjugate yields

Sm = Sm — diag(vm U Ym)a meN. (N
In (7), s,, denotes the net complex power injection at node m,
while s,, denotes the portion of the net complex power that
originates from constant-power sources at node m. Invoking
KCL at bus m yields

. . . .
bm = Z bmk — Z bym — Z nm meN- (8)

kem —k nm—m nin-—m
b P P
neNn n m

Multiplying (8) by diag(v}, ), taking conjugate, and again uti-
lizing Lemma 2 yields

Sm = Z diag(vmzmk)_ Z dia‘g(’vmz{mn)

s n:m—m
k:m—k nEND
- Z diag(vminm )a me N (9)
n:n—m
ngN,

D. Branch-Flow Optimal Power Flow With SVRs

Let s= {Sm}me/\/a 5= {5m}m€/\/ v = {U’m}me/\/a 1=
{inm}(n,m)eﬁa and ' = {i;mn,}(n.,m)eé}’ r= {rnm}(n,m)eé‘ﬂ
A = {Aum }(n,m)ee, - The branch flow formulation of optimal
power flow problem (BOPF) with SVRs is given below:

BOPF: misnsirlflgze c(s0,8,0,1) (10a)
i A
subjectto (1), (2),(3), (5),(7),(9)
vy = Vo (10b)
Umin < |[n| € Umax, nEN (10c)
ses (10d)

where v is the fixed slack-bus voltage and (10c) are the voltage
limits. Equation (10d) considers an operational set for constant-
power injection. Usually, S = [],,, .- Sm Where for distributed
generation S, is a disk while for constant-power loads, S, is a
singleton. The cost, ¢(sg, , v, ) can account for thermal losses,
power import, or cost of distributed generation.

The BOPF formulation (10) incorporates models of wye,
closed-delta, and open-delta SVRs in the branch flow form
of power flow equations. BOPF is non-convex due to bilin-
ear and quadratic dependencies of (2), (7), and (9) as well as the
non-convexity imposed by the left-hand side of (10c). BOPF is
transformed in the next section to a rank-1 constrained nonlinear
semidefinite program, which makes it amenable for branch-flow
SDP relaxation.

4231

III. RANK-CONSTRAINED SDP FOR BRANCH-FLOW OPF

Let us introduce the following auxiliary matrix variables:

Vin = OO, m €N (11a)
Iy = Z‘nmznm (n,m) €& (11b)
Snm == Ungn,my (na m) ¥ (1 1C)
S;L?YL = Um%;zm? (Tl, m) € 51" (1 ld)
Then, (1), (2), (7), and (9) translate to
Vm = V;L + anIannm
- (Snm an + an Snm), (TL, m) € Et~ (12)
‘/n == Anm ‘/mlenma (77'7 m) S Er (13)
0 = diag(A,}, Spm Anm ) — diag(S.,,), (n,m) € &
(14)
Sm = Sm — diag(‘/m YVm)v meN. (15)
Sm = Z dlag(Smk) - Z diag(s;,m)
km—k n:n—m
TLEJ\/'},),,
- Z dlag (Sn,m - anInm) ) m e N (16)
WENE,

where (12) and (13) are obtained by multiplying (1) and (2a) by
their Hermitian. Equation (14) is obtained by multiplying (2a)
and Hermitian of (2b), incorporating (11c) and (11d), multiply-
ing left and right respectively by A} and A,,,, and then taking
only the diagonal elements. Using (11a) in (7) yields (15). Fi-
nally, using (1) to replace v, in the second line of (9) and sub-
sequently substituting in (11) yield (16). Consider the following

optimization problem:

RBOPF: minimize ¢(sg,s, V, ) (17a)
5,85, V,1,5
S'r A
subjectto  (3), (5), (10d), (12), (13), (14), (15), (16),
Vo = vovo (17b)
(Umin)2 S dlag(v;7) S (Umax)Qa n e N (170)
Va Sum =0, (n,m)eé& (17d)
S?lm Inm o ' n7m
k Voo Sum | _ 1, (n,m)e&. (17e)
ran Snm I =1, n,m)ec. e

The next two propositions characterize the relationship be-
tween RBOPF and BOPF.

Proposition 1: RBOPF is a relaxation of BOPF.

Proof: Ifapoint (s,s,v,1,4,r, A) is feasible for BOPF (10),
then the point (s,s,V, 1, 5,5’ r, A) obtained via (11) is feasi-
ble for (17), as constraints (12)—(16) together with (17b)—(17¢)
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Algorithm 1: Retrieve v, 4,4 from V, I, S, S".
1: Initialize Nyt := {0} and vy = vy.
2: while NV, # N do
Find (n,m) € & such that n € Nyt and m & Noisic -
4 Set Z.TL'NL = ﬁgnm Un,
5: if (n,m) € & then
6: Setv,, = A1y
7.
8

W

nm “n
. e . 71 . Vel
Set Z;Lm T dlag(v;in ) dlag(S;zm)
else
9: Set U = Up — an inm

10:  end if
11:  Update Nyisit := Nyisic U {m}.
12: end while

are satisfied. The latter implies that the feasible set of RBOPF
includes that of BOPF. |

The next proposition asserts that if the three-phase net-
work has a radial topology, then RBOPF (17) is equivalent
to BOPF (10) by providing a unique way to go back from
(s,5,V,1,5,5",r,A)to (s,s,v,4,7,7, A).

Proposition 2: Suppose the graph (A, €) is radial and the
point (s,s,V,I,S,5,r, A) is feasible for (17). Then, the point
(s,8,v,1,7,7r, A) , where v, i, and i’ are computed via Algo-
rithm 1, is feasible for (10).

Proof: The proof is provided in Appendix B. It relies on
Lemma 1, which states that conforming currents i, and #,,,,
can be retrieved from RBOPF (17). |

Lemma 1: Suppose for (U, Uy G s Gy s Snm s Sy ) With

nm

|vp | > 0, equalities (2a), (11c), (14) and the following hold:

diag(9S),,,) = diag(vni,,,), (n,m) € &,. (18)
Then, (2b) also holds.
Proof: Substitute (11c¢) and (18) into (14) to obtain
0 = diag(A, L, vninm Apm ) — diag(vy, i, ). 19)
Using (2a) in (19) then yields
0 = diag [vin (ipm Anm — 1y )] - (20)

Equation (20) is the pointwise multiplication of the non-zero
vector v, with the vector ', — i, A . Therefore, (2b) is
inferred by concluding that 7/, — i, Ay = 0. [ ]

Remark 1: Theradiality assumption in Proposition 2 is lever-
aged only in the construction of Algorithm 1, allowing for a way
to compute a feasible point of BOPF from a feasible point of
RBOPF. Equivalence between RBOPF and BOPF is thus only
established for radial networks. However, the ensuing convex
relaxations for RBOPF are valid relaxations for BOPF under
general network topologies, as per Proposition 1.

The RBOPF (17) is non-convex due to SVR constraints (14)
and (13) as well as the rank constraint (17¢). The next section
examines convex alternatives for these constraints.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

IV. CoNVEX OPF WITH TAP SELECTION

A. Convexifying the Power Equality (14)

Partition &, as & = & U &, U &, where &, &, and &, re-
spectively denote the set of wye, open-delta, and closed-delta
SVRs. For wye SVRs, A,,,,, is diagonal. Therefore, it is easily
observed that constraint (14) is equivalent to

diag (S, ) = diag(S),,,),

nm (n,m) € SV (21)

For open-delta and closed-delta SVRs, A,,,, is not diagonal
and therefore (21) does not hold. In this case, due to the cir-
cular property of the trace of matrix products, we resort to the
following relaxed constraint on power conservation:

tr (Sppm) =tr(S),,), (n,m)e & U&.. (22)
B. Convexifying the Voltage Equality (13)
Define the following groups of variables:

U, =Re[V,], W, =Im[V,], n:(n,m)eé& (23a)

Un =Re[V,], W, =Im[V,,], m:(n,m) €&
(23b)
Jum = DumUn Dy, (nym) € & (24a)
Vim = Do Wiy Dyy  (nym) € & (24b)
Tum = Do U Fpy (n,m) € & (24¢)
Wom = Dy Wiy Fyy,  (n,m) € &, (24d)
S = diag(rnm ) Upm diag(rnm ), (n,m) € & (25a)
U, = diag(rpm ) Whmdiag(ram ), (n,m) € &  (25b)
Uy = diag(rom ) Upm,  (n,m) € & (25¢)
U, = diag(rnm)Wn,m (n,m) € &,. (25d)

Using (3) and (23)—(25), constraint (13) is recast as

Un = ilnm + 21n'm + ﬂmn + -an Um an 9 (na m) S gr
(26a)

- i’TL'NL + F/LWL WVVI F’L'NL? (n7 m) E 51"
(26b)

VV’/L = ‘I’nm + \I’nm

The nonconvexity now lies only in (25). Based on Hermitian
symmetry of V,, and V,, and recalling that ¢ is the right shift
of phase ¢, (25) is equivalent to

Yoo = po 0" o9

nm-°'nm nm?

pe¢ €{p o}, (27a)
¢ €Q, ¢ € {6,0}, (27b)

Yoo — po 0 pireot

nm nm-" nm nm
Ao =0, U 9.8 €Q, (27¢)
oo =rl Wi ¢4 €. (27d)
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Linear relaxations of the bilinear and trilinear equalities
in (27) are based on McCormick envelopes given in Defini-
tion 1. To employ McCormick envelopes, bounds on r and v
provided in (5) and (10c) are leveraged together with the fol-
lowing assumption on the secondary voltage of the SVR.

Assumption 3 (Phase separation): Let the complex voltage
phasor on the secondary of an SVR be equal to v, =
{Jo2 e |vb e | |vE, |1} for m :nm — m. There exists
A > 0 such that 0, 6°, and #° satisfy

90° <120 — A < 0% — 0% <120+ A < 180°,¢ € Q. (28)

Assumption 3 is based on the fact that phases of a distribution
network, are well separated even under unbalanced operation.
Based on Assumption 3, the following proposition is provided
whose proof is furnished in Appendix C.

Proposition 3: Under Assumption 3 and the bounds in (10c),

entry-WISC bounds On UUL’ W"L? UIL’VVIV’ WILTH’ Uﬂ’/ﬂr’ and WTL’/VL
form : (n,m) € & are computed given vy,in, Vmax, and A:

Unin < Up <Upax, m:(n,m) € & (29a)
Winin < Wi < Whax, m:(n,m) € & (29b)
Tnin < Upm < Unax,  m: (n,m) € & (30a)
Wain < Wam < Wiax, m: (n,m) € & (30b)
Unin < Upm < Unaxs,  m: (n,m) € & (31a)
Wain < Wom < Winax, m: (n,m) € & (31b)

Definition 1: For variables u, w, and x as well as the given
parameters U in s Umaxs Wmin» and Wmax with Umin < Umax and
Wiin < Wiax, consider the following set of inequalities:

Unin < U < Upax (32a)
Wmin < W < Winax (32b)
UpinW + UWpin — UninWmin < T (320)
UmaxW + UWmax — UmaxWmax < T (32d)
UnaxW + Umin — UnaxWmin > T (32e)
UminW + UWmax — UminWmax = T (32f)
We compactly denote (32) by
M (u, W, 25 Unnin s Umax, Winin, Wmax) < 0 (33)

We refer to (33) as the McCormick polyhedron of variables w,
w, and x, which is a linear relaxation of the bilinear constraint
& = uw when v and w are bounded by (32a) and (32b).
Let us introduce the additional variables R?¢/ constrained as
follows:
ROO =0 ¥

nm h'm hm7 (n7 m) e 51'7¢7 ¢l E Q' (34)
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The bounds in (5) enable the following relaxation for (34):
(n,m) € &,6,¢ € Q:
M (Tgm ) Tf:w ’ Rﬁ% 5 Tmin s "max s T'min rlnax) S 0. (35)

Further, notice that (34) is equivalent to R,,,;, = 7y, 7, Where
matrix R,,,, is assembled by concatenating the values of R?;?’
for ¢, ¢' € Q. Therefore, a semidefinite relaxation of (34) may
be additionally used:

Rn m

F’Il m 1

rnm

= 0, (n,m) €¢&,. (36)

Lower and upper bounds on variables Unm, Unm, I/T/nm, and
an are provided by Proposition 3. Upon substituting (34)
into (27a) and (27b) and utilizing the bounds of Proposition 3,
the constraints in (27) are respectively relaxed to

(n,m) € &,¢ € Q,¢ € {h, ¢} :

60" 198" (99, .2 2
M (an s Umn ’L‘nm > "mins "maxo

o’ U@”@’) <0 (37a)

min’ ¥ max

nm? nm? nm>? ' mins ' max> min? max

MR W B2 e Wi, WS ) €0 (370)

(n,m) € &, 6,8 € Q:

M (Tf,m ) Uf?7ir7ilj?ﬁl’ s Tmin s "max ﬁé@ ﬁ¢¢’ ) < 0 (370)

min’ Y max

, Y Y 2 bd Irdd!
M (7‘37” ) WG)d) \I’Z;‘;L ; TH]iIl? Tmaxa WOO WO(Z) ) S O (37d)

nm min?’ max

C. Rank Reinforcements

Recall that the third source of nonconvexity in RBOPF (17)
is the Rank-1 constraint (17¢). The goal here is to improve the
quality of the voltage solution provided by the relaxation of
RBOPF by approximating the constraint

Rank(V,,) =1 (38)
which is a consequence of (11a). We first borrow the following
result [22, Proposition 3.1].

Proposition 4: The Hermitian matrix V;,, is positive semidef-
inite and rank-1 if and only if the diagonal entries of V,,, are
nonnegative and all of 2 x 2 minors of V,,, are zero.

We use Propositions 3 and Proposition 4 to provide a linear
relaxation of (38). Since V;, € C**3 is Hermitian, setting its
minors to zero yields 9 equalities:

L {7 't 2 1 2
Usoyss (Uﬁ,’f’) - (W;;’f’) =0, 6€Q (3%)
U;%LO Ujrﬁlgb - Wr(rbLO W;EJLQ - Uﬁﬁ Uf:lo = 07 d) € (39b)
—URPWE? + USSWE — Ut Wo? =0, $eQ. (3%)
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Define the following variables for m : (n,m) € &.,¢ € Q:

Xl = vgeut = ()X = (w)
(40a)

XSLS _ Wd’d;Wd\"’& X906 — U@@(ﬂﬂﬁ

m m m m m

(40b)

X4 — Uff?@ Ud)d;

m m m

XOT = USOWS0,  XOT =USWoo, X909 =UPWo.
(40c)

By capturing the bilinear relation in (39) using McCormick
envelopes, we can again obtain its linear relaxation as

X‘SLI - X':Z:LZ - Xff =0 (41&)
Xoh =X = X0 =0 (41b)
— X0 4 X9 X909 =0 (41c)
M (U U8 X0 U, Ui Unt s Und ) S0 (410D
M (U2 088 X33 UGS Ui, Ul Ui ) <0 (dle)

M (WM Wo X3 oo yyred oo Wxﬁ(gx) <0

m m m min? max’ min?
(41f)

m ) Y min’ Y max’ ~ min’

M (U32, U X0 UGt Ut Ust Ui ) <0 (A1)

M (Wao W<Z>¢3 X@5.w<)>¢ WOO WOO V[/Iﬁﬁx) <0

m m o “rtm min? max’ min’
(41h)

U£¢37XT¢;6;U¢¢ e U¢¢ U{W’

min’ Ymax’ ~min’ < max

U(b@

m

) <0 (410

<0 (41))

m 'm0 “tm oy Ymin? Y max? "' min’ " max

M(
M(U‘w W@‘é X¢7.U<i>¢ wa WM; WW;
M(

b6 o0
Um 7VV7n ’ min’ ¥ max? min’

<0 41D

min’ Y max’ " min’ "’ max

X% Ul Ut Wit W2, ) < 041K
M (Urﬁqb’WT@;é’XgQ;UcbO oo W@(b W¢¢ )
form: (n,m) € &,¢ € Q.

D. Convex Relaxation of BOPF With SVRs
The proposed convex formulation, MBOPF, is

MBOPF:  minimize ¢(so,s,V,I)
5,8,V,1,5
S'r,R,AU
w,U,W.,.U,W

IIRRIR D'

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

Fig. 2. Schematic representation of the feasible sets for BOPF, RBOPF, and
MBOPF. (a) Meshed networks. (b) Radial networks.

subject to  (3), (5), (10d), (12), (15), (16),

17b), (17¢), (17d), (21), (22),

(
(
(23), (24), (26), (29), (30), (31),
(35), (36), (37), (41). (42)

The following proposition clarifies the relationship between
MBOPF and RBOPE.

Proposition 5: Under Assumption 3, MBOPF is a relaxation
of RBOPFE.

Proof: Constraint (14) of RBOPF is relaxed to con-
straints (21) and (22) of MBOPEFE. Constraint (13) of RBOPF
is relaxed to constraints (23), (24), (26), (29)—(31), and (35)-
(37) of MBOPE. Constraint (17¢) of RBOPF is relaxed to con-
straint (41) of MBOPEF. ]

Per Propositions 1 and 5, MBOPF (42) is a convex relaxation
of the non-convex BOPF (10). The relationship between feasi-
ble sets of BOPF, RBOPF, and MBOPF for meshed and radial
networks is schematically portrayed in Fig. 2.

V. DIFFERENCES WITH PREVIOUS CONVEX RELAXATIONS

In this section, we highlight the formulation differences
between the proposed approach and previously available convex
relaxation techniques for OPF with SVRs. The premier for-
mulation of [18], abbreviated here as CIOPF, investigates wye
SVRs within the full SDP relaxation of the admittance-based
power flow equations combined with following relaxation in
place of (13):

e diag(V;,) < diag(V,,) < rinaxdiag(vm)

min

(43)

Equation (43) can be related to a special case of relaxing (27a)
for any ¢ = ¢'. The work in [19], abbreviated here as CGOPF,
similarly uses admittance-based power flows but employs the
chordal SDP relaxation together with

2 Vi 2V, <02

min max

Vin, (44)

in place of (13)—based on the simplifying assumption
that all SVRs are modeled as gang-operated wye, that is,
re =rb =r¢  for (n,m) € &. Our previous work [21]
also uses the chordal SDP relaxation but includes valid inequal-
ities in the flavor of (43) that are appropriately constructed for
closed-delta and open-delta SVRs. However, the applicability
of [21] is limited to smaller-sized networks.

To improve scalability, the formulation MBOPF (42) is pre-

sented here, where models of SVRs are incorporated within the
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TABLE II
COMPARISON BETWEEN VARIOUS CONVEX FORMULATIONS

Net. SVR. type Method [ c (pu) [ ¢ (pu) [ Gap % [ min ¥ (pu) [ max ¥ (pu) [ Dunb. [ A (deg.) [ A2/ [ Time (s) l
Wye CIOPF 0.7115 | 0.7135 0.2688 0.9960 1.1118 0.0654 0.10 0.46 3.21
Wye CGOPF | 0.7140 | 0.7141 0.0216 0.9911 1.0998 0.0660 0.10 0.00 3.13
13-bus Wye MBOPF | 0.7135 | 0.7135 0.0033 0.9960 1.1000 0.0534 0.10 0.00 3.40
Cl.-delta MBOPF | 0.7131 0.7138 0.1038 0.9959 1.0975 0.0435 0.86 0.00 3.55
Op.-delta MBOPF | 0.7136 | 0.7145 0.1314 0.9770 1.0967 0.0438 5.99 0.02 3.41
Wye CIOPF 1.0351 1.0363 0.1245 0.9236 1.0499 0.0364 1.37 0.75 2.10
Wye CGOPF 1.0362 1.0363 0.0147 0.9236 1.0501 0.0363 1.37 0.00 2.03
37-bus Wye MBOPF 1.0363 1.0363 0.0000 0.9236 1.0501 0.0363 1.37 0.00 2.57
Cl.-delta MBOPF 1.0328 1.0337 0.0912 0.92438 1.0921 0.0294 0.35 0.00 3.03
Op.-delta MBOPF 1.0344 1.0347 0.0222 0.9013 1.0938 0.0718 8.66 0.00 2.74
Wye CIOPF 0.6997 | 0.7225 3.2609 0.9592 1.0791 0.0405 2.86 0.60 2.61
Wye CGOPF | 0.7120 | 0.7232 1.5806 0.9581 1.0644 0.0424 2.89 0.00 2.82
123-bus Wye MBOPF | 0.7218 | 0.7218 0.0026 0.9611 1.0997 0.0307 2.89 0.00 3.74
Cl.-delta MBOPF | 0.7204 | 0.7233 0.4061 0.9594 1.0691 0.0491 2.13 0.01 5.76
Op.-delta MBOPF | 0.7219 | 0.7224 0.0760 0.9324 1.0989 0.0653 7.61 0.02 4.33
Mixed MBOPF | 0.7204 | 0.7242 0.5315 0.9585 1.0432 0.0449 1.08 0.02 4.16
Wye CIOPF 0.3972 | 0.4189 5.4660 0.9407 1.1109 0.0817 5.15 0.22 10.80
Wye CGOPF | 0.4037 | 0.4184 3.6370 0.9544 1.0969 0.0693 5.03 0.00 13.65
8500-node Wye MBOPF | 0.4162 | 0.4176 0.3430 0.9561 1.0999 0.0527 4.72 0.01 15.23
Cl.-delta MBOPF | 04157 | 0.4196 0.9384 0.9106 1.0996 0.0904 5.34 0.01 15.14
Mixed MBOPF | 0.4157 | 0.4195 0.9056 0.9047 1.0961 0.0840 542 0.01 16.81

branch flow formulation of power flow equations. The branch-
flow formulation uses the series impedances of transmission
lines and transformers, whereas the full or chordal SDP for-
mulations rely on the nodal admittance model. The provided
formulation MBOPF is general and suitable for cases when
a mix of wye, closed-delta, and open-delta SVRs are present
within the same network.

If gang operation is desired, the formulation can enforce
entries of the effective ratios equal to each other, thereby re-
quiring a single r,,,, variable for the particular SVR on edge
(n,m) € &,. Such versatility is not available in [18], [19], [21]
as the effective ratio is not an optimization variable in the for-
mulations of the aforementioned works.

VI. NUMERICAL EXPERIMENTS

The performance of the proposed method is evaluated in this
section. Specifically, Section VI-A compares the performance
of MBOPF to two previously available convex formulations.
Section VI-B features comparisons with traditional NLP formu-
lations, and provides an instance where MBOPF is preferable
over those.

The standard IEEE 13-bus, 37-bus, 123-bus, and 8500-node
networks comprising a variety of three-, two-, and one-phase
lines are selected for the numerical tests. Transformers are
modeled as wye-g—wye-g connections. Switches are replaced
by short lines. Line shunt admittances are ignored, however,
capacitors are accounted for as provided by the documentation.

SVR types for these networks can be wye, closed-delta, and
open-delta. For the 123-bus network, the mixed SVR type means
that SVR ID #1 is modeled as closed-delta, SVR ID #4 is mod-
eled as open-delta, while the two other SVRs are modeled as
wye. For the 8500-node network, the mixed SVR type means
that SVR IDs #2 and #3 are modeled as closed-delta while the
two other SVRs are modeled as wye. Voltage regulation on the

8500-node feeder with only open-delta SVRs was not success-
ful, presumably due to lack of a third tap position, and thus is
not reported for any method.

The convex optimization problems are modeled via
CVX [25], [26] and solved by MOSEK [27]. NLPs are modeled
with YALMIP [28] and solved by IPOPT [29] through the OPTI
interface [30]. Experiments in Section VI-A are conducted on a
laptop with a 2-GHz CPU, 8 GB of RAM, and Unix operating
system. Experiments in Section VI-B are conducted on the same
laptop under Microsoft Windows.

A. Performance of the Convex Relaxation

In this section, the OPF cost function is the power import to
the distribution network:
c(s0,5,V,I) = Re[lsg]. (45)
The operational set of power injection [cf. (10d)] is selected
to be a singleton which amounts to the specified load power
consumption per phase and per node. The selection of phase
separation parameter A is as follows: A = 5° for the wye SVR;
A = 3°,5°10°,15° respectively for the 13-bus, 37-bus, 123-
bus, and 8500-node networks with closed-delta SVRs; A =
10°,10°, 15° for the 13-bus, 37-bus, and 123-bus feeders with
open-delta SVRs; and A = 15° for the 123-bus and 8500-node
networks with mixed SVR types. For voltages, the minimum
and maximum limits are set to 0.9 pu and 1.1 pu, respectively.
After solving the MBOPF, we retrieve the turns ratios
using #¢, = /Ry for wye and closed-delta SVRs. For
open-delta SVRs, we use 7, as a solution to the equation
O — Apm (Pom ) Om exp(j0,, ) = 0 where 0,, and ¥,, are respec-
tively the spectral decomposition of the rank-1 approximate of
V, and V,, for (n,m) € &, and 0, is an arbitrary angle variable.
We found this retrieval process for SVR ratios to be more effec-
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tive in producing feasible voltages during a load-flow, however
other methods may also be used.

Upon fixing the ratios, the Z-Bus method is run to obtain
voltage solutions v [31]. Sufficient conditions for convergence
of the Z-Bus method in three-phase distribution networks are
typically satisfied by IEEE networks [31], [32]. However, other
methods such as the forward-backward sweep may also be used
to retrieve voltages [1].

Table II provides a summary of performances. Columns 5-10
respectively provide the following values that are computed
based on o:

¢=Re [tr (vofj}_’o.)] (46)
Gap% =100 x (¢ — ¢)/c 47)
min ¥ = r,?{pn |02], max¥ = max |09 | (48)
Bunp. = max [ 1= [5]] /Ty (49)
A = max 69 — 69 —120°,m: (n,m) € &.  (50)

Equation (46) computes the power import based on load-flow
voltages ©. The notation Yj. denotes the 3 x (N + 1) block
of the network admittance matrix that corresponds to the slack
bus. Equation (47) assesses the quality of the objective obtained
through the load-flow, that is, ¢, in comparison with the objective
provided by the corresponding relaxed OPF solution ¢ [cf. (45)].
The quantity Gap is the optimality gap, if the load-flow solution
0 turns out to be feasible for the relaxed OPF. The minimum and
maximum magnitude of load-flow voltages are given by (48).
In (49), U,y is the average magnitude of voltages. The quantity
Dunb. 1S @ measure of voltage unbalance [1, eq. (7.1)]. Last, (50)
measures the maximum angle difference from 120° on the sec-
ondary of SVRs based on 0, assessing validity of Assumption 3.

Column 11 of Table II provides a measure for the rank-1
constraint (17e) (and the corresponding rank-1 constraint for the
CIOPF and CGOPF formulations) based on the ratio between
second-largest eigenvalue (12) to the largest eigenvalue (1) of
the matrix in (17e) averaged over all non-SVR edges. A high
value of A9 /A; implies that the matrix is far from being rank-1,
while a value close to 0 implies proximity to a rank-1 solution.
Finally, column 12 of Table II depicts the computation time
reported by the solver.

We highlight the following key points from Table II:

e For networks with wye SVRs, the optimality gap provided
by the proposed MBOPF approach is smaller than the
gap obtained from the CIOPF and CGOPF relaxations.
Specifically, the gap obtained from the proposed approach
is below 1% in all networks. The corresponding gap for
CIOPF and the CGOPF approaches is above 1% for the
123-bus and 8500-node networks.

® As aconsequence, for networks with only wye SVRs, the
proposed MBOPF approach provides the least-cost feasi-
ble solution to the OPF. Furthermore, the MBOPF yields
the smallest voltage unbalance in comparison to CIOPF
and CGOPE.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

TABLE III
OPTIMAL TAPS OBTAINED BY VARIOUS CONVEX FORMULATIONS
FOR WYE SVRS

SVRID CIOPF  CGOPF  MBOPF
13-1 15,1515 13,13,13  15,13,15
37-1 16,16,16  16,16,16  16,16,16
123-1 41,2 1,-2,0 1137
1232 3 0 9
123-3F 1,-4 0,0 11,7
123-4 15,1416 14,13,13  16,16,16

8500-1 7.8,5 8.9,7 6.8,6

8500-2  6,12,10 54,1 54,1

8500-3 3.0,-3 432 12,10,1

8500-4 152 12,2 6,7,-11

® The proposed MBOPF approach provides a high-quality
relaxation for feeders with closed-delta, open-delta, or
mixed types of SVRs. In all these cases, the optimality
gap is below 1%. In contrast, CIOPF and CGOPF are only
valid for networks with wye SVRs.

e In the IEEE 37-bus feeder, utilizing a closed- or open-
delta SVR yields smaller power import costs compared
to utilizing a wye SVR, emphasizing the importance of
developing convex optimization tools for delta SVRs.

We conclude that MBOPF is a reliable and scalable convex

formulation for the OPF problem with various types of SVRs.

SVR taps obtained by feeding #*,, into (4) are tabulated in

Table III for networks with wye SVRs. Observe that with the
exception of the 37-bus feeder, different formulations of the OPF
with wye SVRs, that is CIOPF, CGOPF, and MBOPF, result in
entirely different tap positions.

B. Convex vs. NLP Formulation

This section compares the solution of the nonlinear
BOPF (10) produced by NLP solvers to that of the convex
MBOPF formulation (42). In order to highlight the advantages
of the convex formulation, we consider an OPF problem that
requires joint optimization of distributed generation (DG) dis-
patch decisions and SVR taps.'

To this end, the constant-power injection set (10d) is ex-
pressed as S = [[ S, where S,,, is the set of complex constant-
power injections s,, that satisfy the following constraints for a
given load vector s!, :

5, = 8%, — 8, (51a)
|Im [s8 ]| < Re [s&, ] tan (arccos PF) (51b)
\/Re [55,0° 4+ Im [s5]% < Smax (51c)

In (51), s5 is a variable representing the complex power

generation of the DG at node m, and the constants s,,,; and

The NLP solver for the BOPF formulation managed to find the global opti-
mum to many of the OPF problems of Section VI-A upon good initialization. A
more complicated OPF problem is thus presented here to showcase the advan-
tages of a convex formulation over an NLP formulation.
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TABLE IV
CONVEX VS. NONLINEAR PROGRAMMING

Method [ ¢ (pu) [ Gap % [ min ¥ (pu) [ max U (pu) [ Time (s) ]

MBOPF | 0.3871 0.0020 0.9609 1.0415 8.71
BOPF 0.3872 0.0000 0.9733 1.0112 187.17
TABLE V

OPTIMAL TAPS OBTAINED BY MBOPF AND BOPF

SVRID MBOPF  BOPF
8500-1 -6 -3-3.1
8500-2" 3,1,1 11,1
8500-3"  -1,1,-4 1,14
8500-4  -3,2,-10 02,4

PF respectively denote the apparent power capacity and the
maximum power factor (capacitive of inductive) of the DG. The
objective is to minimize the total amount of real power injection
and power import to the distribution network, i.e.,

c(s0,85,v,1) = c(s0,5%) = Re[1sg + 1s%], (52)

where &8 = {s8 },,cn collects all load vectors.

Voltage limits are set to vy,i, = 0.95 and vy,,x = 1.05. DG is
only connected to buses with three available phases and specific
values of PF = 0.9 and s™** = 0.001 pu have been selected.
The BOPF is initialized with voltages obtained from a load-flow
when the network contains no DGs and the SVR taps are set to
0. BOPF (10) and MBOPF (42) are then solved by the respective
solvers and system configurations as detailed at the beginning
of Section VI.

The resulting tap ratios 7 and constant-power injections s
from the optimization stage are fed into a Z-Bus load-flow to
compute the feasible objective

¢ =Re [tr (vo0Y0e) + 1s%] . (53)
The gap between the optimal value of the optimization stage
and the feasible objective ¢, that is the discrepancy between (52)
and (53), as well the minimum and maximum voltages are com-
puted similar to (47) and (48).

Table IV tabulates the performance of the convex MBOPF and
NLP BOPF formulations for the 8500-node network with mixed
SVRs. Table V reveals that the taps obtained from MBOPF and
BOPF can be significantly different. A first glance on Table IV
shows that the NLP formulation BOPF remarkably finds a so-
lution whose cost is practically equal to the cost obtained by
the convex MBOPE. However, column 6 of Table IV reveals
that solving the convex formulation MBOPF is significantly
faster—a remarkable speedup of at least 20 times.

It is worth emphasizing that the good performance of the
NLP formulation BOPF is in general dependent on the initial-
ization point. Furthermore, NLP solvers potentially could get
stuck in a local minimum. On the contrary, the convex MBOPF
formulation provides a useful lower bound along with a feasible
solution within a very short time-span. Accordingly, the solu-
tion obtained by MBOPF can be powerful for both assessing the
quality of solution of NLP solvers and for warm-starting them.
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VII. CONCLUDING REMARKS

This paper introduces an SDP framework for OPF problems
that include tap selection of the most common SVRs in prac-
tice. The branch flow model of the power flow equations is
adopted and extended to handle SVR edges. A phase separation
assumption is introduced, which is realistic and adopted only
for the secondary voltages of SVRs. Specialized techniques are
developed to relax the various non-convexities that show up due
to the rigorous modeling of SVRs. The resultant convex pro-
gram represents a quite tight relaxation that is coupled with a
tap recovery scheme leading to very small optimality gaps even
in large-scale networks. Future work includes extending the
present framework to multi-period OPF and tap selection prob-
lems that limit the cycling and wear-and-tear of the regulation
equipment.

APPENDIX A
USEFUL LINEAR ALGEBRA RESULTS

Lemma 2: For two complex vectors v and w, we have that

diag(u)w* = diag(uw). (34

Proof: The proof is omitted due to its simplicity. |

APPENDIX B
PROOF OF PROPOSITION 2

The proof follows the procedure in [9] but extends it to handle
SVR edges. The proofis based on induction. At the n-th iteration

with A7)

isit» Un 18 given and the following holds:

Vn = VpUp,n € N(")

visit® (55)
‘We have to then show that (1), (2), (7), (9), and (10c) are satisfied.
First notice that (1) and (2a) are satisfied by construction of
Algorithm 1. To prove that (7) is satisfied, we will show that

(11a) holds for (n,m) € &€ and m ¢ N/").. The equality (11a)
and constraint (17¢) automatically yield (10c). To prove that (9)
is satisfied, we will show that (11b) and (11¢) hold for (n,m) €
£ and the diagonal of (11d) holds for (n,m) € &, that is (18)
holds. Finally, based on (2a), (11c), (18), and (14) Lemma 1
proves that (2b) also holds. Therefore, it suffices to show that
from v,, satisfying (55), we can construct (v, , éym , i, ) that
satisfy (11a)—(11c) and (18).
For every (n,m) € &, (17d) and (17¢) hold, which implies

B R M RO
for some complex vectors u and w. Therefore,
V., =uu (57a)
Spm = uw (57b)
Inm = ww (§87c)
Equations (57a) together with (55) imply that
v, = uexp(jo) (58)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 02,2020 at 18:33:08 UTC from IEEE Xplore. Restrictions apply.



4238

for some vector € and the product in (58) is entrywise. Us-
ing (57a), (57b) and (58) in Algorithm 1 update 1 yields
(59)

lnm =

1
—wuuexp(j0) = wexp(j6).
U

Substituting « and w in (57b) and (57¢) readily yield (11b) and
(11c). To obtain (11a), if (n,m) € &; then

Um @m = (Un - an inm)(’ljn - Z-nm an)

= Vn + an Inm an - (Snm an + an Snm) = V;n

(60)

where the last equality comes from (12). If (n,m) € &, then
Algorithm 1 update 6 gives

v AL = ALV AL = 61)

U Uy, = A nm

nm

where the last equality comes from (13). Therefore, (11a)—(11c)
hold. It remains to show that (18) holds for (n,m) € &,. From
Algorithm 1 update 1 it holds that

dlag(snm ) - diag(vm )(ih771 )* - diag(vm gﬂm) (62)
where the last equality uses Lemma 2. Lemma 1 can now be
invoked to show that (2b) also holds. [ |

APPENDIX C
PROOF OF PROPOSITION 3
To prove (29), notice from (I1la) that V¢ =2 5?0,
Therefore, for diagonal elements it holds that
U2? =Re [Veo] = |vg 2 and W2 =Im[V2?] =0
which implies that we have U’? = Vmins Ubox = Vmas

while W = W2 —0. For the (QS ¢)-th element it

holds that U‘W’ = Re [V""] v ||vm | cos(¢ — &)

W,‘fﬂ’ = \vm||vm\sm(¢ ¢) which together with (28) im-
U = o2 cos (120° + A), Uss =

min m&X max
and WP =22 sin(120° + A) and
Winax = v2;, sin (120° — A). The remaining entries are filled
by acknowledging that V,,, is Hermitian.

Bounds in (30) and (31) are computed next. For wye SVRs,
it holds that D,,,,, = I and F},,, = O. Hence, for wye SVRs,
Umin, Umax, Wmin, and Wmax are resgectively equal to Umin’
Ude5 Wmina and Wmdx while Uminv Umax» Wmin: and Wmax
are zeros. For closed-delta and open-delta SVRs, the expressions
for Umm, Umaxy Vlen, Wmaxa U1111n7 Umaxa Vanu and Wmax
contain more terms. However, it turns out that the (1), v’)-th
element of U,,, and U,,,, denoted here by u’"", is of the form

R Z [ i ||v | cos <¢ ¢)

peN

bww [v? ||v% | cos (qb ¢)}

and

plies that we have
v2. cos (120° — A),

min

+ Z d“’ \v‘b |2 (63)
$eQ
where aw bw t ¥ and d” are all non-negative constants

for ¢, 9, w’ € Q Therefore based on (10c) and (28), the bounds
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on u’"" are given by

*U:/n?n = Z [am’ v2 . cos (120° + A)

[0
peN
b)Y v, cos (120° — A)
+3 ek, — dY e, (64a)
deN
ulle =" [ U2, cos (120° = A)
HeEN
—b"Y"02  cos (120° + A)}
3R~ A (64b)

$en

_ Similarly, it turns out that the (1), 1')-th element of Wi and
W,um » denoted here by w’?’, is of the form

w =3 [l e e sin (6 - 6)

GeN

12 il sin (¢ = 6)

"and fw are non-negative constants. Hence, based

(65)

where ¥
O

on (lOc) and (28) the bounds on w??" are given by

hap’ 2 : )
>k’wmin - |:€(D(/)

sin (120° + A)

m in

e
b0 sin (1207 = A)] (62)
pol Yo' 2 ; o _
Wiy = Z {ew Uiy Sin (120° — A)
peQ
E R sin (1204 A)] . (66b)
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