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Abstract
The topological model is applied to analyze defects associated with albite and pericline twins in plagioclase. Twin growth 
occurs by the motion of twinning disconnections. The same twinning disconnections are shown to produce both twins. The 
topological model is used to predict the atomic details of the disconnections. High-resolution transmission electron micros-
copy results verify the model predictions. Early work on the possibility of pseudo-twinning is also discussed.
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Introduction

Twinning is ubiquitous in minerals. Indeed, the understand-
ing of twinning originated with early work by Mügge (1889) 
and other mineralogists as reviewed by Duparc (2017). It is 
prominent in deformed plagioclase minerals. While twin-
ning has been understood macroscopically for more than a 
century, atomic scale descriptions are still being developed. 
Early work (Bevis and Crocker 1969; Bilby and Crocker 
1965; Frank 1951) established twinning dislocations as the 
defects causing deformation twin growth and highlighted the 
need for atom shuffling in some cases (Bevis and Crocker 
1969). These ideas are reviewed in Christian and Mahajan 
(1995) and Kelly and Knowles (2012). More recently, in the 
topological model (TM) (Pond et al. 2007), the defects have 
been defined as twinning disconnections (TDs) to emphasize 
the importance of the step height. Disconnections are line 
defects resembling dislocations, but have the added feature 
of a step. They are characterized by the step height h and the 
Burgers vector b of any dislocation content. Figure 1 shows 
how a disconnection can be created from two crystals with 
surface steps. For twinning, the Burgers vector is parallel to 

the low index surfaces that join to form a coherent terrace 
plane (dashed red vector). The glide plane on which a dis-
connection glides is the same as that of the component dis-
location. An illustration of such a disconnection with dislo-
cation content in Fig. 1c indicates the strain field, shear and 
step associated with the disconnection. When the discon-
nection glides, one can imagine that the partial dislocation 
moves first, producing shear and translating the interface by 
h, leaving what is tantamount to a stacking fault in its wake. 
Shuffles then occur, thermally activated or athermally, to 
remove the fault and restore the perfect twin interface.

These characteristics are formally defined in reference 
crystallographic spaces in the TM, recently reviewed in 
Hirth et al. (2013); the TM also applies to phase transfor-
mation, grain boundary characterization and other physical 
phenomena. The TM for deformation twinning is reviewed 
in Hirth et al. (2016) and for recovered twins and annealing/
growth twins is considered in Gong et al. (2017). Most of the 
atomic scale theories, atomistic models and high-resolution 
transmission electron microscopy (HRTEM) observations 
have been for metals. In a companion paper (Hirth et al. 
2019), we presented some added concepts within the TM 
that facilitate the description of disconnections in complex 
minerals, i.e., those with many atoms in their unit cell.

Here, we apply the TM to analyze twins in two plagio-
clase feldspars: a relatively pure albite (An01) that formed 
in a pegmatite (Tanco albite) and a deformed labradorite 
(An60) from an oceanic gabbro (Mehl and Hirth 2008). The 
two samples are of interest because they exhibit a range of 
microstructures that are interpreted to indicate nominally 
low stress conditions with little deformation (Tanco albite) 
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and higher stress conditions and more rapid cooling result-
ing from deformation in the oceanic lithosphere (oceanic 
gabbro). The Tanco albite is from the marginal zone of the 
Tanco pegmatite, Ontario; the rock is almost pure albite, 
with 1% apatite and trace amounts of muscovite. The sam-
ple we used shows randomly oriented lathe-shaped grains, 
indicating little deformation occurred after the pegmatite 
crystallized (Tullis et al. 1998). The oceanic gabbro was col-
lected in Ocean Drilling Program Hole 735B. These samples 
of crustal gabbro formed at the Southwest Indian Ridge, 
experience stresses of 20–100 MPa during deformation at 
temperature of 700–850 °C, and then cooled rapidly preserv-
ing the high temperature deformation microstructures (Mehl 
and Hirth 2008).

The major twins in these crystals, albite twins and peri-
cline twins, are well understood macroscopically. Under-
standing the defects in these specimens can help resolve 
issues related to the differences in stress and the time scales 
for twinning in the laboratory and the earth. The time scale 
for atomistic simulations is of the order of a factor of 108 
shorter than those in laboratory deformations (Van Swygen-
hoven and Derlet 2008), which are, in turn, approximately 
108 shorter than those relevant for natural deformation of 
plagioclase. Simulation results agree with those found in 
laboratory studies in metals (Hirth et al. 2016), demonstrat-
ing that laboratory and natural specimens have similar defect 
structures that would indicate that similar mechanisms of 
twinning occur, despite the difference in time scale.

Our purpose here is to examine the twins in plagioclase at 
the atomistic scale to verify the presence of TDs, postulated 
to be the defects responsible for twin growth. Twin bounda-
ries in both specimens are studied by HRTEM to determine 
the TD structure, and then described by the TM. In the fol-
lowing sections, we: (a) first consider macroscopic effects 

of twins in plagioclase in Sect. 2; (b) review concepts of the 
TM and analyze the components of twinning disconnections 
including step height, Burgers vector and shuffle vectors in 
Sect. 3; and (c) present HRTEM observations regarding TDs 
predicted by the TM in Sect. 4.

Macroscopic phenomena

The familiar albite and less common pericline twinning 
systems in plagioclase are known to be a type I and a 
type II twins, respectively, as distinguished by their crys-
tallographic twinning elements (Li and Knowles (2013). 
The classical nomenclature for twinning elements (twin 
plane and twinning direction and angle between them) 
is reviewed by Hardouin Duparc (2017) and illustrated 
in Fig. 2. For a type I twin, the primary (K1) plane (twin 
plane) is the invariant plane of simple (engineering) shear 
that contains the twinning (shearing) direction (�1) . There 
is a second invariant plane (K2) that contains the twinning 
direction ( �2 ), comprising what are called the conjugate 
or reciprocal twin parameters. For type I twins, K1 and �2 
have rational indices and K2 and �1 have irrational indices. 
The twin axis (n) is normal to the shear plane (p) which 
contains the two twinning directions (Duparc 2017). In 
contrast, for type II twins, K1 and �2 have irrational indices 
and K2 and �1 have rational indices. In compound twins, 
common in metals but rare in minerals, all elements are 
rational. To avoid confusion in scenarios where both the 
primary and conjugate twins are present in plagioclase, 
the elements of the type II twin (e.g., a pericline twin) are 
denoted with prime symbols, such that K ′

1
 (pericline) = K2

(albite); K ′

2
 (pericline) = K1 (albite); �′

1
(pericline) = �2

(albite); �′

2
 (pericline) = �1 (albite). Twin indices are 

Fig. 1   a, b Schematic diagram of a disconnection formed by bonding 
crystals λ and μ at an incompatible step. The height of a disconnec-
tion is denoted as h. The Burgers vector b is the difference between 

the two translation vectors. In the twinning case, step heights are the 
same in the two crystals, the Burgers vector and the translation vector 
t(μ) are indicated by the dashed arrows. c Resultant disconnection
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identified as [hkl]
T
 and the rotated planes in the twin are KT

1
 

and KT

2
. The angle between K1 and KT

1
 is 2 � and the angle 

between K1 and K2 is 2 � , the complement of � (Fig. 2).
Mechanistically, as discussed in the next section, the 

glide plane for TDs for type I twins is the K1 plane, while 
for type II twins the glide plane is K2 . To separate defect-
scale descriptions from macroscopic descriptions, the TM 

follows the Frank notation (Frank 1953) in identifying the 
disconnection glide plane as k1 and the glide direction as 
γ1 with k2 and γ2 for the conjugates. Thus, for a type I twin 
K1 ≡ k1 , K2 ≡ k2 , �1 ≡ �1 , and �2 ≡ �2 . In contrast, for a 
type II twin in the TM (Pond and Hirth 2018; Pond et al. 
2019), K1 ≡ k2 , K2 ≡ k1 , �1 ≡ �2 , and �2 ≡ �1 . The twinning 
elements for the albite and pericline twins are presented 
in Table 1.

A micrograph of twinned labradorite from the oceanic 
gabbro specimen is shown in Fig. 3. Large type I albite twins 
with K1 = (010) are depicted. These are of interest because 
twin barriers, such as defect interactions, and blockage of 
twins should be less likely under low stress/low strain rate 
conditions, so that twins can grow to large size relatively 
unimpeded as compared to those formed at high stress/high 
strain-rate in the laboratory (e.g., Stünitz et al. 2003). Also 
present are finer type I albite twins that presumably formed 
at lower temperatures. In addition, there are finer type II 
pericline twins that are conjugates that have the same sense 
of twin rotation (as indicated by their common extinction in 
the micrograph). The features in this figure closely resem-
ble micrographs of twinning in Mg (see Sect. 10 of Hirth 
et al. 2016). Figure 3c shows the twins that were analyzed 
in HRTEM and identified as albite and pericline twins. Fig-
ure 3b shows changes in contrast at twin crossings (solid 
arrow) and interactions as twins approach one another 
(dashed arrow).

Although the conjugate albite and pericline twins produce 
the same twin rotation, they have rotational incompatibilities 

Fig. 2   Schematic of macroscopic twinning elements. (Hardouin 
Duparc 2017)

Table 1   Twinning elements 
characteristic for twins in low 
albite and labradorite

Twinning mode Mineral K1 K2 �
1

�
2

γ

Albite Labradorite (010) (− 1, 0, 38.33) [1, 0, 2.718] [010] 0.136
Pericline Labradorite (− 1, 0, 38.33) (010) [010] [1, 0, 2.718] 0.136
Albite Low Albite (010) (1, 0, − 1.587) [− 1, 0, 8.057] [010] 0.148

Fig. 3   a Cross-polarized light micrograph of deformed labradorite showing deformation twins with different modes. b Arrow indicates blocking 
at an intersection. c Albite and pericline twins are identified. Small dark rectangles are FIB cuts
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where they intersect. The essence of the compatibility prob-
lem is illustrated schematically in Fig. 4. A conjugate system 
with a large shear is shown in Fig. 4a, with an insert relat-
ing the shear to disconnection properties Fig. 4b shows a 
macroscopic engineering shear γ of unity, producing a dis-
placement angle of 45°, on both the primary and conjugate 
systems. Together, these shears are completely compatible, 
and the twin has an “elbow” configuration with no defects 
at the intersection. Twins of this type have been observed 
in compound twinning systems in hexagonal close-packed 
(hcp) crystals where K1 and K2 are nearly orthogonal (Xu 
et al. 2019). In face centered cubic (fcc) crystals, the com-
pound twins are not orthogonal but the shear is still large. 
There is then an incompatibility, and a higher-order twin 
boundary: e.g., a {221} twin boundary, forms where two 
{111} twin boundaries meet in fcc crystals. In general, when 
twins intersect, they form boundaries, such as the {221} 
boundary, comprised of partial dislocations at the intersec-
tion (Hirth et al. 2016; Yu et al. 2014a, b; Zhu et al. 2009); 
these are conventionally called stair-rod partials (Anderson 
et al. 2017). For albite, the shears are relatively small (see 
Fig. 4c). This also produces an incompatibility at the inter-
section, Fig. 4d. The incompatibility leads to a repulsion 
as a pericline twin approaches an albite twin, or vice versa, 
consistent with the observation in Fig. 3b, where intersecting 
twins tend to be pinched off as they near a previously formed 
twin boundary. If one twin translates through the other, con-
jugate pair twin configurations similar to those in Fig. 3 are 
called “cross twins, cyclical twins, or contact twins” in min-
erals (Smith 1974), while in metals they are called “X”, “Y” 
and “V” (Zhu et al. 2009). Where they cross, a region is 
doubly twinned, and there are differing rotations (e.g., Hahn 
and Klapper 2006), reflected by the change in contrast at the 
intersections observed in cross-polarized light micrographs 
(e.g., Fig. 3b). While other secondary twins are possible 

in plagioclase, most twins are either the type I primary or 
type II conjugate twins discussed above and we restrict the 
analysis mainly to these.

Topological model

Twinning disconnections

A detailed analysis of the TD characteristics for plagioclase 
is given in Hirth et al. (2019), and summarized briefly here. 
As shown in Fig. 1, the TDs are characterized by a Burgers 
vector b and a step height h; for twins, step heights like those 
shown in Fig. 1a would be the same for the matrix and the 
twin. Motion of the TD produces the growth of the twin. The 
characteristics are displayed in a coherent (also called com-
mensurate) dichromatic pattern (CDP), the superposition of 
the perfect twin and matrix crystal was aligned in the twin 
orientation so that they are commensurate on the twin plane. 
As an example, Fig. 5 shows the CDP for a {301} twin in 
fcc. The Burgers vector is expressed by

where t(λ) and t(μ) are translation vectors of the matrix � 
and the twin � , respectively, in the CDP. The step height (h) 
is defined by

where h0 is the step height of a unit disconnection, equal to 
the d-spacing parallel to the twin plane, and the integer i is 
the number of planes comprising the step. The unit discon-
nection, that with minimum possible step height, has i = 1 . 
Passage of a disconnection produces an engineering strain

(1)b = t(�) − t(�)

(2)h = ih0 = id

(3)� = b∕h

Fig. 4   a Classical description 
of a twin. b Paired twin systems 
with � = 45

◦ , in a crystal, shear-
ing to the dashed configuration. 
c Equivalent of a for low albite. 
d Equivalent of b for low albite. 
Incompatibility leads to a tilt 
wall A–B at the intersection
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In addition, particularly when i > 1 , local atomic dis-
placements called shuffles (which produce no plastic strain) 
are required to complete the transformation. Shuffles are 
characterized in the coherent dichromatic complex (CDC), 
the superposition of the twin and matrix crystal structures, 
including the local atomic motif, aligned so that they are 
coherent on the twin plane. The shuffle vectors, s, are defined 
in terms of the relative displacements of u(�) and u(�) in the 
CDC as shown in Fig. 5

For simple structures like fcc, the CDC is uncomplicated 
and the determination of Burgers vectors and shuffle vectors 
is straightforward. For complex structures like albite, the 
Burgers vector is easy to determine but the shuffles would be 
extremely difficult to find from an analog of Fig. 3. Instead, 
shuffles are more easily found by identifying reduced sets of 
atoms called structural groups, as discussed in detail in Hirth 
et al. (2019). These groups are described in the next section.

Crystal structure

Plagioclase is a group of feldspars with a solid solution 
between albite (NaAlSi3O8) and anorthite (CaAl2Si2O8). 
For low albite, the conventional unit cell (Hahn and Klap-
per 2006; Smith 1974; Wenk and Bulakh 2016) is shown in 
Fig. 6a. The cell is composed of silicon and aluminum cen-
tered in oxygen tetrahedra, with sodium and calcium atoms 
located at the interstices. The unit cell contains 52 atoms, 
four times the chemical formula. The structure is triclinic 
with a basis of two and a center of inversion symmetry. The 
symmetry of the point group is Ci and that of the space 
group is C1∕P1 (Smith and Brown 2012). There is a smaller 
Niggli cell (Niggli 1928; Santoro and Mighell 1970) that is 
primitive triclinic and more practical to use in the TM (see 

(4)s = u(�) − u(�) − b

Fig. 2 of Hirth et al. 2019). However, we use the conven-
tional unit cell in Fig. 6a in order to agree with the conven-
tional usage (Hahn and Klapper 2006; Smith 1974; Wenk 
and Bulakh 2016). One must notice that the base-centered 
site on the (001) plane is a lattice site. Indeed, the formal 
description of the unit cell in Fig. 6a would be base-centered 
triclinic. Thus, the d-spacing is half that of the (010) planes, 
i.e., the (020) planes in Fig. 6a. The lattice parameters of low 
albite (Harlow and Brown 1980) and labradorite (Horst et al. 
1981) are listed in Table 2.

Each lattice site has an associated atomic motif as rep-
resented in Fig. 6b. It is very difficult to analyze the atomic 
shuffle motions accompanying disconnection motion from 
such a figure. The shuffle analysis can be greatly simplified, 
as described subsequently in Sect. 3.2.3, if one describes 
each atomic motif as a structural group dipole A–B, Fig. 6c. 
The concept of such groups was implied in Li and Knowles 
(2013) and formally described in Hirth et al. (2019). A 
structural group dipole includes all atoms related by the 
point-group symmetry. The groups are space filling and 
each group resembles a Voronoi polyhedron (the smallest 
space-filling volume created by planes constructed perpen-
dicular to and bisecting pairs of lattice sites). From the point 
group symmetry, each atomic site in one group member of 
the structural group dipole has inversion symmetry with 
respect to a site on the other side of the structural group 
dipole (see Hirth et al. 2019). For albite, the Na atoms are 

Fig. 5   Coherent dichromatic complex of a (103) twin in fcc crystals 
(Hirth et al. 2016). Red sites represent the matrix and open sites rep-
resent the twin. Circles and squares are at different levels in the [100] 
direction. Matrix and twin sites coincide on the twin plane. Sub-
scripts indicate the level of the plane

Fig. 6   a Conventional unit cell of albite. b Atomic motif at a lattice 
site in albite (Hirth et al. 2019). c Unit cell showing structural group 
dipoles A–B at lattice sites. d Corresponding crystal lattice
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the logical reference site for the group; they show the dipole 
rotations relative to the crystal axes, and they are the only 
atoms in the group that, mechanistically, are simply rotated 
during twinning (i.e., no Na shuffles are required to complete 
the transformation). Each dipole has a Na–Na spacing of 
0.392 nm, is inclined to the (010) plane by �1 = 4.2◦ , and the 
(010) plane is inclined to the [100] direction by �2 = 2.4◦ . 
Figure 6d shows the corresponding crystal lattice that is the 
foundation for the CDP. We next analyze the Burgers vector 
(whose motion describes the twinning shear) and the shuffles 
(atomic motions necessary to move all atoms into positions 
required by mirror symmetry) for the twins.

Disconnections in twins

Disconnections for type I albite and type II pericline twins in 
plagioclase are schematically illustrated in Fig. 7; a detailed 
analysis for type II twins in general is presented in Pond 
and Hirth (2018) and Pond et al. (2019). Type II pericline 
twins have the same k1 glide plane and the same γ1 glide 
direction, parallel to b, as the type I twin, an unusual if not 
unique inter-relation. In both twin types, the disconnections 
produce the same simple shear. For type II pericline twins, 
the rotation associated with the shear must be partitioned 
between the matrix and the twin to satisfy elastic equilib-
rium. As discussed in Pond et al. (2019), the neglect of this 
partitioning requirement led to some inconsistencies in the 
classical models. However, the TM shows that the rotation 
2 � is partitioned equally to the matrix and twin. After the 
combination of disconnection shear and accommodational 
rotation, the type II twin is precisely the conjugate of the 
type I twin. The shear directions for both types of twins are 
favored by the Peach–Koehler forces (Anderson et al. 2017) 
produced by resolved shear stresses on the twin plane, which 
act on the disconnections and cause them glide under most 
loading conditions. The Peach–Koehler forces acting on TDs 
associated with both types of twins are in general different 
unless their twin planes are perpendicular.

As shown in Fig. 7, twin formation involves the nuclea-
tion (at a source) and growth (by glide of TDs). When 
the disconnection has a high ratio of glide mobility, Ġ , to 
nucleation rate, Ṅ , a type I twin forms directly. With a large ⋅

G∕Ṅ ratio, a nucleated defect pair is widely separated when 
the next pair nucleates and a type I twin is formed. With 
a small 

⋅

G∕Ṅ ratio, the separation of the first pair is small 
and a type II twin is formed. Thus, type II twins become 
more likely if the ratio is sufficiently small. Consequently, 

the disconnections accumulate into a tilt wall (which makes 
them less mobile), and the twin boundary forms on an irra-
tional k2 plane, with accommodational relaxation producing 
a rotation of the wall. The unusual case for plagioclase is 
that both the type I and II twins can form with identical TDs 
(we know of no prior example). Thus, for type-II pericline 
twinning, the topological disconnection parameters are the 
same as those for type I albite twinning, as shown in Fig. 7.

Since the actual CDP for albite is difficult to envision, 
we first present the simpler case where b is parallel to [001]. 
As seen in Fig. 8, the t vectors lie in the (100) plane and 

Table 2   Lattice parameters of 
labradorite and low albite in nm 
and degrees

Mineral Space group a
0

b
0

c
0

�
0

�
0

�
0

Labradorite C1 0.8178 1.2865 0.7109 93.53 116.21 89.92

Low Albite C1 0.8142 1.2785 0.7159 94.19 116.61 87.68

Fig. 7   Schematic illustration of the topological model for the for-
mation of type I albite and type II pericline twins. The shear plane 
p (which contains both γ1 and γ2) is parallel to the page, and is irra-
tional. Sources for the nucleation of a disconnection pair operate on 
the disconnection glide plane, k1, in both cases, as indicated by the 
inset sketches, producing the simple shear displacement parallel to 
the relevant twin direction. After relaxation, the k1 planes within the 
type II twin are rotated by an angle α from their original orientation. 
The notation Ń indicates a repeated nucleation site. For type I, the 
mobility/nucleation rate ratio Ġ∕Ṅ is large so the spacing L of a pair 
is large when a new pair nucleates at the source. For type II, the ratio 
is small when a new pair nucleates and interactions of the dislocation 
components tends to form a tilt wall, which rotates the wall by α to 
the final k2 position
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the determination of b is straightforward. In the actual case, 
Table 1, b is close to [ 108 ]. Figure 9a shows an axonomet-
ric projection (Hartman et al. 2008) of the CDP of a type I 
albite twin in labradorite. Orthogonal axes (x, y, z), used to 
describe shuffle vector components, and crystal axes (a0, b0, 
c0), are shown. The bottom plane drawn in black is the k1 
disconnection glide plane, (010). The background plane is 
the shear plane p, which contains the twinning direction γ1 
and the conjugate twinning direction γ2. The lattice vectors in 
the μ and λ crystals are depicted in red and blue, respectively. 

The conjugate twinning directions γ2 and � ′

2
 are also shown. 

The vectors t(μ) and t(λ) are designated OC and OC′, respec-
tively; the end points of these vectors are located at the face-
centered lattice sites illustrated in Fig. 6c, d. Figure 9b is the 
projection of the t vectors on p. The b vector lies in the plane 
of the projection and the unit step height h is shown. Hence, 
the Burgers vector and step height are identified by this topo-
graphical analysis. All parameters are listed in Table 3.

Relative to Fig.  4, the angle 2 � = 86.1◦ and the 
angle 2� = 7.8◦ = 7.8°, Table  3. Therefore, there is an 

Fig. 8   a The CDP for the ideal case when b is parallel to [001]. b The CDP projected normal to the plane of shear p =(100)

Fig. 9   a An axonometric view of the CDP for plagioclase. The bot-
tom plane is the k1 plane, and the back plane is the plane of shear 
p. The translation vectors and the twinning elements �

1
 and �

2
 are 

shown. The twinning elements �
1
 and �

2
 lie in the plane p. b The pro-

jection of the translation vectors on the plane of shear p. The angle 
between translation vectors is the rotation tilt angle of the wall in the 
type-II twin. The Burgers vector b and step height h are depicted
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incompatibility when the two types of twins meet and there 
is a repulsion as two twins near intersection as manifested 
by the variation in the pattern of extinction in Fig. 3c and 
the narrowing of a twin tip as it meets another twin. Because 
the incompatibility is small, as indicated by the small angle 
� , the repulsion in the albite–pericline case is weaker than 
many other systems with large � values, such as fcc metals.

One can postulate that the generally observed tendency 
to see more type II twins in more anorthitic plagioclase, 
i.e., as the Ca content increases, is a consequence of solid 
solution hardening. That is, the strain fields of the Ca and 
Al “solutes” increase the activation energy for disconnec-
tion motion (i.e., the twin growth rate Ġ ) to the degree that 
it causes a gradual transition from type I to type II as the 
more favored system.

Disconnections in recovered twins

The structure of deformation twins can be modified by 
recovery. Prior to recovery, the type I twin interface com-
prises disconnections with short heights (i.e., h ≤ ~ 2ho) and 
(010) terraces, as shown for plagioclase, where the TDs are 
unit (i.e., h = d), in Fig. 10a. The strain fields that accom-
pany these defects drive recovery. After dynamic or static 

recovery, macroscopically curved portions of twin bounda-
ries contain a structure of terraces offset by large steps as 
shown in Fig. 10b. The large steps have small Burgers vec-
tors, which minimize the strain energy (Hirth et al. 2016). 
We describe these as recovered deformation twins to dis-
tinguish them from annealing twins formed by a different 
mechanism during recrystallization or crystal growth (Full-
man and Fisher 1951). For example, in a high symmetry 
crystal like fcc, recovery of deformation twins produces pure 
steps (i = 3) with zero Burgers vectors (Gong et al. 2017).

The TM provides a prediction of the step height of dis-
connections in recovered albite twins. The CDP in low albite 
viewed along a [ 100 ] direction is shown in Fig. 11a. The 
Burgers vectors are projected (owing to the triclinic sym-
metry), but the projected lengths are proportional to b. The 
magnitudes of projected Burgers vectors are plotted for dif-
ferent values of h. The length of the net Burgers vector (bnet) 
is smallest around the 8th layer. Hence, steps with h = 8d

(5.1 nm) have the minimum possible strain energy. The illus-
trations in Fig. 10 convey that recovery occurs by coales-
cence of unit disconnections into a square step configuration 
to reduce their attendant strain fields. This process requires 
emission of a lattice dislocation (emissary dislocation), with 
a compensating Burgers vector nearly equal to − 8b into the 
matrix or the twin (Wang et al. 2009). The emission requires 
nucleation of the emissary dislocation, a thermally activated 
process, which is why it is a recovery process.

Shuffles for deformation twins in plagioclase

Knowledge of shuffle vectors is of interest in predicting acti-
vation energies for TD motion and whether diffusional relax-
ation is likely (short vectors) or less likely (long vectors). 

Table 3   Topological parameters of albite twin in labradorite

t(λ) ½ [110]
T

d
′
020

0.641 nm

t(μ) ½ [110] d020 0.641 nm
b [− 0.0504, 0, − 0.1370] H 0.641 nm
|b| 0.0874 nm b/h 0.136
2� 86.1° 2� 7.8°

Fig. 10   a Unit disconnections on an as-deformed twin interface. b 
After recovery, the minimum strain-energy configuration has h = 8h

0
 . 

A lattice dislocation with Burgers vector b
L
 has been emitted to 

reduce the strain-energy. The net Burgers vector b
net

 is very small in 
this case. c Cross-polarized light micrograph of annealed albite sam-
ple containing recovered twins
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We determine the shuffle vectors by identifying the shortest 
atomic displacements between twin and matrix according to 
Eq. (3). For disordered plagioclase, Ca and Na atoms occupy 
the same type of sites and Al and Si atoms occupy the same 
type of sites. For low albite, these elements are ordered.

For simple crystal systems, such as hcp, the CDC is suf-
ficient to illustrate the shear and shuffle vector of twinning 
(Gong et al. 2019; Pond et al. 2016). However, the displace-
ments in the CDC contain both shuffle and shear components 
which impede the straightforward visualization of shuffle 
vectors in complicated crystal structures. To solve this prob-
lem, the shifted dichromatic pattern (SDC) in which only 
shuffle displacements are shown is constructed as described 
in Hirth et al. (2019). The matrix is sheared by � in accord 
with Eq. (3). With the shear displacements removed, the 
SDC is then created by forming a dichromatic complex of 
the sheared matrix and the twin. The remaining displace-
ments required to match the sheared matrix to the twin 
comprise shuffles. Shuffles have been analyzed for simple 
metals but not for complex minerals. They are predicted here 
for albite by analyzing shuffle displacements for a single 
structural group, which then yields all displacements via 
symmetry operations. Shuffles can be envisioned to occur 
in two stages. First, while the centers-of-symmetry of the 
dipoles are in proper position after shear, each individual 
structural group must undergo additional rotation to satisfy 
mirror symmetry. They must be displaced (shuffled) equally 
and oppositely in the y direction, resulting in a dipole rota-
tion of −2�1 as shown in Fig. 12. After this, all atoms other 
than Na are not in the proper positions required by the twin 
symmetry and must undergo shuffles additional to those 
imparted by the rigid rotation.

The shuffles are determined for one structural group A, 
Fig. 6c. Those for group B and those at all other lattice 

sites then follow from symmetry operations. The details of 
the total shuffles in structural group A are depicted in the 
SDC of Fig. 13a–c which show separately the shuffles of 
Na, Al–Si, and O atoms. The shuffles in structural group 
B follow from the inversion symmetry. The coordinates 
of the crystal and the orthogonal system are shown on the 
side of Fig. 12. The SDC is viewed along the normal to 
the (010) twin plane (b* direction) and the [100] direc-
tion, as shown in the upper and lower figures, respectively. 
These two perpendicular directions give the planar-view 
and edge-on view of the twin plane. The shuffle vectors 
are labeled at the tips of the displacement arrows. We 

Fig. 11   a The CDP of low albite with the shortest Burgers vector labeled for each layer. b The b∗
0
 projection of CDP for the 8th layer. The Burg-

ers vector is close to the [100] direction

Fig. 12   The SDC of the structural group dipole formed by the super-
position of Fig. 6b for both the matrix and the twin. The vertical line 
separates group A from group B. The rotation angle 2β1 is shown in 
this figure. This SDC is projected along the rotation axis of the dipole 
and parallel to the (010) plane. All Na, Al, Si and O atoms in group 
A are shown as hollow circles and those in group B as solid circles, 
respectively. The matrix atoms are red and the twin atoms are blue. 
The “swapping” oxygen atoms under and above the c–o–s are high-
lighted by two rectangles
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determined the shuffle vectors from Eq. (4) utilizing the 
SDC.

The Na atoms (and the structural groups) undergo the 
purely rotational shuffles noted in Table 4, with compo-
nents only in the y-direction. The shuffles of all other 
atoms are listed in Tables 5 and 6. For all O atoms and 
some Si and Al atoms, these shuffles are small, of the order 
of 0.05 nm. Hence, these should move relatively rapidly, 
analogous to the small shifts observed in a computer simu-
lation of the relaxation of a perfect twin plane in albite (Li 

and Knowles 2013). The exception is the pair of Al and Si 
atom shown in the detail of a structural group in Fig. 14. 
These shuffles have an order of magnitude greater length, 
as indicated. At lower temperatures or shorter times, this 
exchange is suppressed and the Al–Si pair remains as an 
anti-site defect as described in Appendix 1. The corre-
sponding anti-site shuffles are identified in Table 5 as s*. 
These are small, of the same order as the other shuffles. In 
the unrelaxed configuration, the configuration would be 
a pseudo-twin (Smith 1974). The relaxation of the Al–Si 
pair should have an activation energy similar to that of 
self-diffusion. However, the mechanism is not simple, with 
resemblance to ring diffusion, since the relaxation motion 
is coupled. The importance of the Al–Si pair in disorder 
was noted early on by Laves (1952a, b). The disconnec-
tion model in Fig. 14 supports the Laves proposal. These 

Fig. 13   a–c The SDCs for Na, Al, Si, and O atoms, respectively. The 
Al and Si atoms are represented by solid and open symbols, respec-
tively, in b. The shuffle vectors are those for group A in Fig. 11. The 

shuffles of points in group B have the same magnitude but opposite 
direction in accordance with the point group symmetry. Two vectors 
for Si and Al, respectively, are much larger than the rest

Table 4   The rotational shuffle vectors of Na atoms accompanying 
disconnection motion in one structural group

The unit of distance is nm

Displacements x y Z Magnitude

s1 0.0000 0.0288 0.0000 0.0288

Table 5   The shuffle vectors of Si and Al atoms accompanying dis-
connection motion in one structural group

The unit of distance is nm. The vectors s* represent shuffles to anti-
site positions

Displace-
ments

x y Z Magnitude

s1 0.0000 0.4300 0.0000 0.4300
s2 0.0000 − 0.4574 0.0000 0.4574
s3 0.0351 0.0098 − 0.0472 0.0596
s4 − 0.0351 0.0098 0.0472 0.0596
s1

* − 0.0316 − 0.0137 0.0460 0.0575
s2

* 0.0316 − 0.0137 − 0.0460 0.0575

Table 6   The shuffle vectors of O atoms accompanying disconnection 
motion in one structural group

The unit of distance is nm

Displace-
ments

x y Z Magnitude

s1 0.0288 0.0494 − 0.0640 0.0858
s2 − 0.0288 0.0494 0.0640 0.0858
s3 0.0471 − 0.0291 − 0.0490 0.0739
s4 − 0.0471 − 0.0291 0.0490 0.0739
s5 0.0418 0.0046 − 0.0566 0.0705
s6 − 0.0418 0.0046 0.0566 0.0705
s7 0.0000 0.0063 0.0000 0.0063
s8 0.0431 0.0000 − 0.0636 0.0769
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observations indicate that while other shuffles can influ-
ence the activation energy for disconnection motion, the 
Al–Si pair should limit the relaxation, leaving a pseudo-
twin prior to recovery.

One other shuffle pair in Fig. 13 is unique. Most shuffles 
in Fig. 13 entail A–A and B–B displacements. However, 
motion of the O pair situated above and below the center-
of-symmetry in Fig. 13 entails paired A–B and B–A shuf-
fles. These structural groups are exchanged as described in 
Appendix 1. While these have no consequences structurally, 
they are important in the detailed motion of a disconnec-
tion. In this regard, the details of the atom motions as a 
disconnection moves are not simple. The shuffles certainly 
cannot occur simultaneously, which would lead to an inor-
dinately large activation energy. Also, since the Al–O and 
Si–O bonding is strong, the polyhedra of oxygens that are 
nearest neighbors of Al or Si must tend to move as a unit. An 
atomistic simulation, which would reveal the actual details, 
would be valuable.

TEM observations of defects on twin 
boundaries

Experimental details

TEM samples were prepared from FIB lift-outs of polished 
sections. Before using the FIB, samples were gold coated to 
avoid charging of the surface and improve the image quality 
in dual-beam system. The TEM specimens were prepared 
with FEI Helios 660 Dual-beam system. The samples were 
extracted with an ion beam voltage of 30 kV and then final 
polished with 5 kV. TEM observations were performed in 
an FEI Tecnai Osiris operated at 200 kV.

Deformation twins in labradorite

The albite twin in labradorite was imaged in HRTEM. Fig-
ure 15a shows a bright field image, showing two twin bound-
aries. The diffraction patterns are collected from multiple 
directions, as shown in Fig. 15c–e, with the zone axes along 
[001], [102], and [100], respectively. The (020) spots from 
the twin and matrix overlap, and other spots have mirror 
symmetry relative to the (020) plane, verifying that the band 
is an albite twin. Figure 15b shows an HRTEM image taken 
with the electron beam parallel to the [100] direction, reveal-
ing four steps along a twin boundary. The height of these 
steps is equal to the d-spacing of (020) planes, correspond-
ing to a unit disconnection according to the topological anal-
ysis discussed previously. These structures indicate that the 
growth of a type I twin (i.e., an albite twin) is accomplished 
by the glide of unit TDs on the twinning plane.

TEM characterization was also performed on the pericline 
twin (type II). The bright field image in Fig. 16a shows two 
twin boundaries. The selected area electron diffraction 
(SAED) pattern presented in Fig. 16c was taken with the 
electron beam parallel to [010], revealing an identical pattern 
for the twin and the matrix, consistent with the 180° rotation 
about the [ 010 ] direction, relative to the matrix, for a peri-
cline twin. To identify steps, we collected SAED patterns 
from the 

[
110

]

M

‖‖‖‖

[
110

]

T

 and 
�
100

�

M
‖[100]T directions as 

shown in Fig. 16d, e. In addition to the split spots from the 
perfect crystals of the matrix and the twin, there are added 
satellites spots which have been well documented in previous 
studies (e.g., McLaren and Marshall 1974). These can arise 
from double diffraction or from ordering, but they do not 
affect our analysis and are not considered further. These two 
pairs of directions are not parallel to each other because of 
the rotation 2 � that accommodates the incompatibility. The 

Fig. 14   a An SDC showing 
the large shuffle vectors for Si 
and Al from Fig. 9. b The short 
shuffle vectors create anti-site 
positions. These short vectors 
are labeled s* in Table 5. (Hirth 
et al. 2019)
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bright field image in Fig. 16a was collected in the same area 
as Fig. 16e. The trace of the twin boundary is perpendicular 
to the vector from the center spot to that of the (001) plane in 
Fig. 16e, which means that the twin boundary is close to the 
(001) plane. The HRTEM image in Fig. 16b was taken from 
a [100] direction, also revealing that the twin plane is near to 
a (001) plane. But a perfect (001) plane would not be stress 
free for a type-II twin. The equilibrium type II twin plane 
should be irrational with the index ( 1 , 0, 38.3), which is 

inclined to the (001) plane by 1.5°. Measurements of the 
inclination angle from the images range from 1° to 2°. Thus, 
agreement of the TM with the observation is good. Some 
scatter is expected in measurements at this scale, since extrin-
sic defects can be present on the boundary.

In general, a perfect k2 boundary of a type II twin would 
comprise closely spaced dislocations forming a high-angle 
tilt wall. In the present case, the tilt wall in Fig. 16 is close 
to the (001) plane. This suggests that in order to lower the 

Fig. 15   a A bright field image 
of labradorite showing an albite 
twin. b An HRTEM image of 
albite twin boundary containing 
multiple unit steps. c–e SEAD 
patterns of the twin bound-
ary taken from [ 001 ], [ 102 ], 
and [ 100 00] directions. The 
subscripts in these and the fol-
lowing figures indicate: T-twin, 
M-matrix, A and B, grains

Fig. 16   a The bright field 
image of labradorite showing a 
pericline twin. The dashed line 
in a indicates the (001) plane 
according to the SEAD in c. b 
An HRTEM image of pericline 
twin boundary containing a big 
step. This accounts for the devi-
ation of (001) plane in a from 
(001) plane in b. The center part 
of the step became amorphous 
because of radiation dam-
age under the electron beam. 
c–e SEAD patterns of the twin 
boundary taken from the [ 010 ], 
[ 110 ], and [ 100 ] directions
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interfacial energy, the ( 1 , 0, 38.3) plane should decompose into 
a zig–zag structure, forming (001) facets separated by discon-
nections with small step heights, as indicated by the structure 
in Fig. 16b. Facet formation would not introduce long-range 
stresses, but there could be local stresses near the facet ends. 
The Burgers vector of these disconnections is irrational and 
has a large component of 0.2087 nm in the (001) plane and 
a small component normal to it. Like transformation discon-
nections in phase transformations, these defects are glissile in 
the (001) plane. Propagation of these defects advances the ( 1 , 
0, 38.3) K′

1
 twin plane. Hence, although such a disconnection 

could not nucleate to produce a type I twin because of its large 
self-energy, it can form as a product of the type II mechanism. 
The presence of disconnections on the k1 plane for a type I twin 
increases the strain energy and hence the total free energy. In 
contrast, the presence of disconnections on the k2 plane for a 
type II twin decreases coherency strains (i.e., incompatibility) 
and lowers the free energy. The HRTEM image in Fig. 16b 
shows a disconnection with a height of 5.8 nm separating two 
(100) terraces. This large step could form as in Fig. 10 by the 
glide association of unit disconnections.

Recovered twins in low albite

We also characterized recovered deformation twins in the low 
albite specimen. HRTEM images and diffraction patterns are 
shown in Fig. 17a, c. In the diffraction patterns, the (020) spots 
overlap. The diffraction patterns and lattice fringes exhibit 

mirror symmetry relative to the (020) plane, a typical char-
acteristic of a type-I twin. Figure 17a, b shows the albite twin 
boundary as observed along the [100] direction, revealing a 
band parallel to the twin boundary. The width of the band is 
about 5 nm. The band probably is associated with a step that 
is not parallel to the beam direction. When the beam is along 
[ 101 ], the band feature disappears, implying that the step is 
parallel to [ 101 ]. Figure 17d shows a [ 101 ] HRTEM image at 
higher magnification. In the center of the image, the bright area 
was amorphized by electron radiation damage. The level of the 
twin boundary is different on the two sides of the amorphous 
area, which means that there was a step in this amorphous area. 
The steps on the twin boundary have higher energy and can be 
amorphized more easily. The height of this step is measured 
to be 5 nm. From these observations, we conclude that there 
is a step with height of 5 nm in nearly the [100] direction on 
a recovered type I albite twin boundary. The existence of this 
step is consistent with the recovered step predicted from the 
coherent dichromatic pattern in Fig. 9. These large steps are 
sessile with respect to glide. They can only move by extensive 
diffusion-like shuffles, or by disconnection pair nucleation on 
the step riser (Pond et al. 1999; Wang et al. 2014)

Albite–Carlsbad twin

Another kind of boundary is shown in the TEM image and 
SEAD patterns in Fig. 18a, b. For this boundary, the (020) 

Fig. 17   a An HRTEM image 
of albite twin boundary in low 
albite showing a bright band. 
The insertion is a SEAD pattern 
of this area, collected along a 
[100] direction. b Magnified 
HRTEM image of the bound-
ary in a. The bright band has a 
width of 5 nm. c HRTEM image 
of the twin boundary, with a 
SEAD pattern, collected along 
a [102] direction, inserted. d 
Magnified HRTEM image of 
the boundary in c showing 
a step with height of 5 nm. 
The center part of the step is 
amorphous
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diffraction spots overlap. The diffraction patterns reveal that 
t h e  o r i e n t a t i o n  r e l a t i o n s h i p  ( O R )  i s 
(020)A

‖‖‖‖

(
020

)

B

[1001]A
‖‖‖‖

[
001

]

B

 . This OR can be obtained 

by a 180° rotation around an axis perpendicular to both the 
normal to the (010) plane and the [001] direction. The latter 
alone would be a Carlsbad twin, possibly with a (100) twin 
plane (Smith and Brown 2012). Alternatively, a 180° rota-
tion around the normal of (010) plane plus a 180° rotation 
around the [001] direction can lead to the same OR. The 
operation is illustrated in Fig. 19a. In mineralogy, these two 

steps of rotation corresponded to those that are characteristic 
of an albite twin and a Carlsbad twin, respectively. However, 
the interface is formally a grain boundary rather than a twin 
since it does not have twin symmetry at any interface (Laves 
1952a, b; Smith and Brown 2012). The structure can be pro-
duced by double twinning or twinning plus slip that pro-
duces a grain boundary at the interface (Smith and Brown 
2012). This dual nature is why it is called an Albite–Carls-
bad twin, but this terminology is regarded aa improper 
(Laves et al. 1974). A better terminology would be a defor-
mation band.

Fig. 18   a HRTEM image of a 
boundary showing an “Albite–
Carlsbad twin” in low albite. 
b The SEAD pattern of this 
boundary. c A bright field image 
of the Albite–Carlsbad twin 
showing periodic amorphous 
spots on the boundary. d Magni-
fied HRTEM image showing 
unit steps. a–c Taken from 
[101]A and [100]B direction

Fig. 19   a View of the (010) plane showing a rotation operation that 
produces the Albite–Carlsbad twin. b The overlapped (010) plane of 
matrix and twin crystals at an Albite–Carlsbad twin boundary. This 

figure shows the incompatible misfit, which must be accommodated 
by misfit dislocations
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After illumination in the electron beam for several minutes, 
periodic amorphous spots appeared on the upper boundary 
in Fig. 18c. As shown in Fig. 19b, the lattice for two sides of 
this grain boundary has a small mismatch which should be 
accommodated by periodic grain-boundary disconnections. 
The HRTEM image in Fig. 18d is taken from this boundary 
and shows unit grain-boundary disconnections on the bound-
ary decorated by amorphous regions arising from electron 
beam irradiation damage. Because of the strain field of these 
disconnections, the nucleation of the amorphous phase is more 
likely there. The mobility of these sorts of defects can accom-
modate creep by grain-boundary sliding mechanisms (Han 
et al. 2018). The observation of disconnections on this grain 
boundary, together with their presence in type-II twinning, is 
important, demonstrating that all types of deformations twins, 
as well as related structures with grain boundary disconnec-
tions, can translate in accordance with the TM. In some cases, 
the disconnections have large steps and many shuffles, so that 
the TD mobility might be quite limited or may require climb.

Discussion

The HRTEM observations of type-I albite and type-II pericline 
deformation twins are consistent with the predictions of the 
topological model. The same disconnections describe both 
types of twins. This result was unexpected and may be novel. 
However, it demonstrates a way in which a single disconnection 
system can produce two of the five deformation systems needed 
to satisfy the von Mises requirement, essentially because rota-
tion and strain are separate mechanisms. Unit twinning discon-
nections are observed on some of the interfaces, indicating that 
twin growth occurs by motion of these defects. Also seen are 
disconnections with larger step height and reduced dislocation 
content. These must have formed by dynamic or static recovery. 
The recovery mechanism involves ejection of emissary disloca-
tions from the boundary. The recovered twin defects are sessile 
with respect to glide and pin the interface under unloading or 
reverse loading. This result is parallel to the observations in 
metals with simpler crystal structure. The only difference is that 
the metal atoms are replaced by structural groups. We anticipate 
that deformation twinning in other minerals can be explained 
by similar mechanisms.

Extensive studies in metals show unequivocally that the 
mechanism of deformation twin growth is by the motion 
of twinning disconnections (called twinning dislocations 
in older literature), see the reviews: Christian and Mahajan 
(1995), Kelly and Knowles (2012) and Hirth et al. (2016). 
Nicolas et al. (1977) suggested that twinning in miner-
als occurred by a TD mechanism but this was questioned 
(Smith and Brown 2012). Our observations demonstrate that 
a TD mechanism described by the TM applies for albite 

and pericline twins. There is no other mechanism that can 
explain all observations.

The observation and characterization of deformation 
twins can be used to constrain the magnitude paleostress 
and the heterogeneity of stress state in natural rocks (e.g., 
Rowe and Rutter 1990). Twinning can be promoted by tec-
tonic deformation, impact processes, thermal stresses, and 
the stress concentrations around fractures and fault zones. 
In many of these deformation environments, the microstruc-
tural constraints on differential stress are not straightforward 
to apply. For example, grain size application of grain size 
piezometry requires documentation of the activation of 
nominally steady-state dislocation creep. The analyses we 
present here provide a framework through which to investi-
gate twinning in both laboratory and natural samples. Grain 
boundary sliding can also be accommodated by motion of 
disconnections (Han et al. 2018), such as those we document 
in Fig. 19, suggesting new ways to investigate creep behav-
ior at conditions where grain boundary sliding mechanisms 
have been interpreted in plagioclase-rich lithologies (e.g., 
Miranda et al. 2016), as well as other geologic materials 
(e.g., Hansen and Warren 2016; Warren and Hirth 2006).

Conclusions

HRTEM observations support the predictions of the topo-
logical model for deformation twinning. Type I albite twins 
and type II pericline twins grow by the glide of unit twin-
ning disconnections. The disconnection characteristics are 
determined. Calculated twinning shears agree with classical 
values. A method of determining shuffles from structural 
groups of atoms simplifies their determination.

Both the albite and pericline twins grow by the glide of 
the same disconnections, producing a conjugate twin pair. 
Hence, the same disconnection supplies two of the five sys-
tems needed to satisfy the von Mises requirement. Incom-
patibilities at Albite–Pericline intersections result in mutual 
repulsion between the two.

In addition to unit disconnections, both types of twin 
reveal disconnections with larger step heights and reduced 
dislocation content. These form by dynamic or static recov-
ery and tend to pin the boundaries.
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Appendix 1: Lattice site and atom exchanges

Almost all Burgers vectors in twins connect prefect lattice 
sites that are perfect translational t vectors in dichromatic 
spaces. However, there are a few cases where the vectors 
shear and shuffle to alternate sites in a process called syn-
chroshear (Kronberg 1957). A better term is synchroshuffle, 
since the displacements are not the long-range ones defined 
by the Burgers vector. These are not perfect displacement 
vectors and create a special type of imperfect dislocation or 
disconnection. Examples of synchroshuffle include twinning, 
e.g., in alumina (Kronberg 1957), and phase transformations, 
e.g., in spinel (Poirier 1981) and Laves phases (Hazzledine 
and Pirouz 1993). The synchroshear displacements are of 
two kinds, knock-on and coupled pairs (Anderson et al. 
2017). Synchroshear usually occurs in crystals with a basis, 
i.e., a structural group of atoms, or in simple structures a pair 
of atoms, at a lattice site that has point-group symmetry. For 
example, with a basis of 2, the dipole groups can be labeled 
as A and B. For more common cases, the shuffle or shear 
exchanges are A–A and B–B. For the synchronous cases the 
exchanges are A–B and B–A. To maintain stoichiometry 
there must be equal numbers of A–B and B–A exchanges. 
There are analogous displacements that we describe as anti-
site exchanges. These arise during disconnection motion and 
entail atoms shuffling (or, less likely shearing) to the wrong 
site chemically. Again, there must be balanced A–B and 
B–A shifts.

Synchroshuffle was applied to twinning in alumina in the 
original work of Kronberg (1957). Often in twinning, the 
displacements are similar synchroshuffles. In twinning, the 
synchroshear/shuffle constraints often can be partly relaxed, 
as illustrated in the main text. For example, in a simulation 
of ( 1012 ) twinning in Zr (Khater et al. 2013), knock-on, B–A 
and B–A exchanges (called swaps) occur. However, since the 
shuffle vectors simply complete perfect vector displacements 
from matrix to twin, no added fault is created. Thus, the 
distinction as an exchange is not as important. However, the 
exchange is of interest with regard to the atomic mechanism 
of motion. In contrast, the anti-site shuffles are important 
since they create local disorder, corresponding to a disorder 
fault in the wake of a moving disconnection. We describe 
the fault as a disorder fault since there is no incorrect layer 
stacking as in a stacking fault.
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