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ABSTRACT

A topological model (TM) is presented for the complex crystal structures characteristic of some
minerals. We introduce a tractable method for applying the TM to characterize defects in these com-
plex materials. Specifically, we illustrate how structural groups, each with a motif containing multiple
atoms, provide lattices and structures that are useful in describing dislocations and disconnections in
interfaces. Simplified methods for determining the shuffies that accompany disconnection motion are
also described. We illustrate the model for twinning in albite owing to its potential application for
constraining the rheological properties of the crust at conditions near the brittle-plastic transition, where
plagioclase is a major constituent of common rock types. While deformation twins in plagioclase are
often observed in crustal rocks, the interpretation of the stress states at which they form has not ad-
vanced. The concept of structural groups makes an analysis of the twinning process easier in complex
minerals and explicitly predicts the interface structure of the deformation twins.
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INTRODUCTION

Topological theory, based on crystal symmetry with added
symmetry elements at interfaces (Pond and Vlachavas 1983),
was developed to describe interfaces and defects in crystals
(Pond 1989). It was expanded to include a formal description
of defects called disconnections (Hirth and Pond 1996). The
topological model (TM) entails the application of these ideas to
describe dislocations and disconnections at interfaces, includ-
ing those that provide the mechanism for growth of a phase
normal to the interface (Pond et al. 2007). The same defects
account for interface structure and misfit accommodation. While
almost all applications have dealt with simple metals and simple
compounds (e.g., Medlin and Yang 2012), the TM has many
potential applications in Earth and planetary sciences, for a wide
range of minerals. However, there are added factors that must be
considered for more complicated minerals (i.e., with low sym-
metry and/or a large number of atoms in the unit cell) such as
the plagioclase feldspars. Here, we review the topological model
and then introduce new concepts useful in the application of the
TM to more complicated mineral structures.

Disconnections are linear interface defects with both a step
character and dislocation components characterized by the
Burgers vector. Motion of the disconnection can be envisioned
to occur by a simple engineering shear associated with motion of
the dislocation part, and local rearrangements of atoms (shuffles)
associated with motion of the step part. These components of the
TM and a view of a disconnection are illustrated in Appendix A'
for the case of a twin in a simple cubic structure. In metals, step
heights are small and shuffles are either absent or simple. Min-
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erals often have complex structures containing many atoms, so
step heights and corresponding Burgers vectors can be large and
the associated shuffles are numerous. To facilitate application
of the TM to these complex mineral structures, we propose the
concept of a lattice of structural groups and show that this yields
the Burgers vector in the TM description. While these ideas are
general and can be extended to other processes such as phase
transformations and grain boundary sliding (as outlined in the
discussion), we introduce these concepts for twinning, using the
example of low albite.

Defect properties can be determined by circuit mapping (e.g.,
the familiar Burgers circuits for dislocations) or by line integrals
of symmetry elements. These two techniques were compared in
Pond and Hirth (1994) and shown to give equivalent results for
defects in twinning and phase transformations, where translation
and rotation are the principal symmetry elements. For complex
crystal structures, the new concept of a lattice of structural groups
makes the circuit mapping technique significantly more tractable.
Our focus is on disconnections, interface defects that provide the
mechanism for shear-type phase transformation and twinning
(reviewed in Hirth et al. 2013,2016) and grain boundary processes
(reviewed in Han et al. 2018). More general symmetry consid-
erations and other types of defects are treated in Pond (1989).

REFERENCE SPACES

As reviewed in Howe et al. (2009), early work indicated
that transformation defects have step character. Building on
the early work, the TM precisely defined the Burgers vector
and step height of a disconnection in reference spaces. In the
next sections, we describe three perfect reference spaces in the
TM, analogous to reference structures for the familiar Burgers
circuits for dislocations (Anderson et al. 2017). The volume
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transformed when the disconnection moves by one repeat
distance defines an exchange cell (e-cell) that contains all
displacements associated with the transformation.

The coherent dichromatic pattern

The fundamental crystal structure of interfaces is a di-
chromatic arrangement that superposes the lattices of the two
crystals on either side of the interface; by convention, we refer
to these as the matrix p and product A lattices (Supplemental’
Fig. A1b). The first reference space is the coherent dichromatic
pattern (CDP), which is the superposition of the Bravais lat-
tices of the two crystals. A perfect twin boundary is naturally
coherent, but we retain the coherent modifier to emphasize that
the same reference applies to facets on twin boundaries and to
phase transformations, where coherency stresses are present at
the interface. The origin of the CDP is at a maximum symmetry,
coincident lattice point on a coincident site plane, e.g., the twin
plane. In detail, the CDP is more general than the coincidence
site lattice in that there is no need for registry in the direction
normal to the interface. The symmetry of the CDP is the union
of that of the two component crystals extended by an anti-
symmetry element [designated with a prime (')] unique to the
pattern (Pond 1989). In the resulting dichromatic space group,
some of the point symmetry elements are coincident and some
are anti-symmetric. For an example of the latter, all perfect
twins have m’ mirror symmetry. Several examples of CDPs
in simple metals are given in Hirth et al. (2013). In contrast,
numerous minerals have unit cells containing many atoms. In
the following, we show paired reference spaces in CDPs for a
simple cubic lattice and for the example of a twin in low albite.

The composition of low albite is (NaAlSi;Os), and its con-
ventional unit cell is shown in Figure 1. The lattice parameters
are a = 0.814 nm, b = 1.2785 nm, and ¢ = 0.7158 nm. The
triclinic angles are a = 94.2°, B = 116.6°, and y = 87.7°. The
crystal structure entails a C; point group and a C1-P1 space
group, triclinic with a center of inversion and a basis of four,
with indices (%kl). As discussed in Hahn and Klapper (2006),
Wenk and Bulakh (2016), and Ribbe (1974), this is a large
unit cell selected to parallel the C1 monoclinic structure of
orthoclase. An alternate (smaller) C1 unit cell is shown in red
in Figure 2, with indices (hk[)°. The lattice parameters are a°
=0.814 nm, »°=0.7716 nm, and ¢’ = 0.7158 nm. The triclinic
angles are a = 107.27°, B = 116.61°, and y = 55.87°. From a
defect viewpoint, the vectors in the small cell represent pos-
sible perfect Burgers vectors. For example, when considering
Burgers vectors in plagioclase (e.g., Stiinitz et al. 2003) using
the larger conventional cell, the vectors ¥ [110] and %4[110]
are perfect Burgers vectors (i.e., [010] and [010]) when using
the smaller cell (Fig. 2).

The CDP for albite is shown in Figure 3. Translation vec-
tors t, and t,, with a common origin, connect lattice sites. For
twinning and many phase transformations, the circuits in the
topological theory reduce to the limiting form of the transla-
tion vectors in the two lattices (Pond 1989). Then the Burgers
vectors b for dislocation components of disconnections or for
interface dislocations are given by

b =1t(A) — t(w). (M
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FIGURE 1. Conventional unit cell of low albite. (Color online.)
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FIGURE 2. Conventional crystal lattice in black. Alternate (smaller)

lattice in red. (Color online.)
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FIGURE 3. Coherent dichromatic pattern (CDP) for an [001]
(010) twin in albite. Translation vectors and b shown for an i = A,
disconnection. (a) Projection along [100]. (b) Projection along the normal
to (010). (Color online.)
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Disconnections comprise a dislocation component b and a step
component with height 4. In general, the height is given by
h=ih, @)
where i is an integer and 4, is equal to the interplanar spacing d
of twin (or terrace) planes. Figure 4 shows how a disconnection
could be formed from crystals with free surfaces containing
steps. The step height of the disconnection is the smaller of 4,
and A,.. Disconnections separate low-index terraces and their mo-
tion provides the mechanism for growth normal to the terraces.
The specific disconnection properties are selected so that the
structure of the terraces on either side of the defect are identical.
The Burgers vector and step height for a specific disconnection
with & = h, are included in Figure 4. Thus, some disconnection
properties, b and /4, are directly determinable from the CDP.

The coherent dichromatic complex

The second reference structure is the coherent dichromatic
complex (CDC). The CDC is the superposition of the p and A
crystal structures and includes the local atomic motif (formally
the point group) at a lattice site. Thus, the CDC is a space group
that often has lower symmetry than the CDP. The total displace-
ments, u(}) and u(p), accompanying twinning are depicted in the
CDC. The displacement of a given atom is the sum of the shear
displacement associated with the dislocation component and the
local shuftle displacement that completes the transformation. A
simple example of shuffles is shown in Supplemental' Figure
Al. In most cases, the CDC has coincident symmetry, and we
write the displacements as u’(}) and u’(p). In some cases, the
two structures comprising the CDC can be offset uniformly by
a vector p as a consequence of interfacial free energy minimiza-
tion, with the consequences discussed in Appendix A'. Both the
p and A atoms are displaced by p in the e-cell, so the portion
of the shuffles associated with p cancels. For this reason and
because p is rarely measured and, when present, is often very
small, we neglect it here, so that u’(n) = 0. Then, the shuffles
of a given atom are determined by analysis of Au in the CDC
and are given by:

s=u’(}) —u’(w) —b=u’(})—b. ?3)
Alternatively, a shifted dichromatic complex (SDC), where b is
subtracted from u’(A) (Appendix A' and Supplemental Fig. Alc)

(2) (b)

o

FIGURE 4. Schematic of disconnection. (a) Two free surfaces, with
translation vectors and 4 labeled, are joined to create coherent terraces
bounding a disconnection (b), with b shown for # = £,. (Color online.)
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is useful in describing shuffles. The displacements of a given
atom in the SDC are those associated only with the shuffles, u(})
=u’(A) — b. Hence, the same shuffles are given by

s=u(}p). “4)
Similarly, if the two lattices rotate as a consequence of trans-
formation, the Burgers vectors and shuffles are represented in a
rotated RCDP or RDC, respectively (Hirth et al. 2013).

Here we illustrate how the concept of structural groups
facilitates the characterization of defects. A unit cell comprised
of structural group dipoles is shown in Figure 5a. The motifs
of a structural group dipole in the atomic CDC are depicted
in Figure 5b. Figure 5c is a rotated view of the motifs with the

FIGURE 5. (a) Unit cell of structural group dipoles. (b) Atomic
motif of one structural group dipole. (¢) Projection of panel b normal
to the twinning direction. (d) Projection of panel b normal to (010).
(Color online.)
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twinning direction (1)) pointing toward the viewer. The unit cell
shown in Figure 5a comprises structural group dipoles centered
on cell corners. In both Figures Sa and 5b, the dipoles represent
the matrix part of the e-cell: the smallest repeating unit of trans-
formation. As seen in Figure 5b, all atoms occur in pairs with
their midpoints at the center of the pair at the same position as
the center of the structural group dipole. Hence, the atom pairs
also exhibit inversion symmetry. The cell of structural groups is
triclinic P1 with a basis of two. A portion of the CDC is presented
in Figure 6. To maintain twin symmetry, the structural group
dipoles are displaced in the [010] direction, producing a rotation.
The rotation can be represented by a vector R = n0, where n is
aunit vector along the axis of rotation, perpendicular to the line
connecting the dipole members, and 0 is the angle of rotation in
the plane normal to n. For lower albite, n = [-0.0432 0 1] and
0 = 8.4°. Figure 6a shows that the component of R normal to
(010) is zero as a structural group moves from the matrix to the
twin. However, the out-of-plane rotation is non-zero (Fig. 6b).
The R vector lies in the (010) plane, with components (R, 0,
R5). Hence, for the & = 1 albite twin, all shuffles are associated
with this rotation, i.e., the entire unit in Figure 6a rotates during
the twin transformation. The use of structural groups simplifies
the analysis of shuffles, which otherwise would be difficult.
We split the shuftle analysis for albite into several stages. The
CDC for structural groups is shown in Figure 6. A depiction of
the full CDC would be too complicated, so we show the matrix
and the twin separately and deduce the CDC or SDC from these
figures. Figures 7a, 7b, and 7c¢ show the matrix, a portion of the
matrix sheared but not shuffled, and the true twin, respectively.
All are projected along [101],=[101], which is very close to .
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FIGURE 6. CDC for structural groups viewed along @ and normal to
the (010) plane. Rotation of the structural group dipole in the CDC also
shown. (Color online.)
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FIGURE 7. (a) Repeat unit of two (010)° planes viewed along [1017°.
Solid line will become the twin symmetry plane and the dashed line will
become the twin interface. Matrix part of e-cell is enclosed in red. (b)
Structure of panel a is sheared by b above the twin boundary, but no
shuffles are imposed. In panel b, shuffles are added to the matrix part of
the e-cell of panel a. The extension of the e-cell to encompass the entire
region above the twin plane creates the CDC. In panel ¢, the matrix part
of'the e-cell is in the SDC, with b subtracted from panel b. (Color online.)

Here, b has an out-of-plane component, which is already known
from the CDP. One can imagine the SDP by extending the lattices
in Figure 7b and deducing the displacements that create the true
twin shown in Figure 7c. In the creation of the true twin, the net
result of the shuffles is to rotate the motif dipole in Figure 5b
by the same angle 0 as the structural groups in Figure Sa. This
accomplishes one increment of transformation. The shuffles are
of two types: exchanges and shifts. The exchange-type shuffles
are apparent in the SDC of Figure 7c, or, less straightforwardly,
from the CDC of Figure 7b. For the SDC the final structure after
shuffling is equivalent to the rotation of the dipole illustrated in
Figure 5a about n by the same angle as the structural group dipole
in Figure 5b. Viewing the dipole in Figures Sc and 5d together
with Figure 7b, one sees that most of the Si atoms and all of the
O atoms undergo small shifts and some small exchanges. The
lengths of the shuffle vectors range from 0.01 to 0.06 nm.

The end-members of the dipole undergo much larger shuffles.
Figure 8a shows just the end arrangement of the dipole. To satisfy
the mirror symmetry, these Si and Al toms must switch positions
in the dipole. The specific view of a portion of the SDC along the
dipole axis in Figure 8b shows that these shuffles are large (0.26
to 0.46 nm), roughly an order of magnitude larger than the other
shuffles. These are so large that it may be energetically favorable
for the Si and Al atoms to shuffle to the wrong type of site as in
Figure 8c, creating anti-site defects and disorder. These would
have much smaller shuffles, 0.06 nm, of the order of the smaller
shifts of oxygen and the Si atoms other than the end-members. The
resulting structure would be a pseudo-twin as depicted in Figure 9.
The shuffles nominally parallel to the interface are more probable.
They are shorter, which means that their self-energy is smaller.
Also, they are less likely to produce local, nonlinear displacements
normal to the interface, implying a smaller contribution to the
activation energy for disconnection motion.

In general, if shuffles are incomplete, there could be two lev-
els of pseudo-twin formation. First, no shuffles could accompany
disconnection motion, with all later occurring by thermal relax-
ation. Second, the smaller shift-type shuffles could accompany
disconnection motion, with only the exchange-type shuftles then
occurring by thermal relaxation. Both are possible, since the
atomistic simulation of the relaxation of an ideal albite twin by

American Mineralogist, vol. 104, 2019

Downloaded from https://pubs.geoscienceworld.org/msa/ammin/article-pdf/104/7/966/4775647/am-2019-6892.pdf
by Univ Nebraska Lincoln user

on 13 July 2019



970

Si@ Osi

OAl AlOD

0.43nm
0.46nm

@4 () ©

FIGURE 8. (a) Atoms at the ends of the structural group dipoles in the
e-cell in Figure 5b viewed along the dipole axis. The atoms must shuffle
as shown the satisfy mirror symmetry. (b) Specific shuffles in a portion
of the SDC. (¢) Shorter shuffles, creating anti-site defects. (Color online.)
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FIGURE 9. Pseudo-twin, with the anti-site defects of Figure 8
unrelaxed. (Color online.)

the even smaller local nonlinear displacements near the boundary
also required thermal activation (Li and Knowles 2013).

THE IDEAL BICRYSTAL

There are several procedures to determine disconnection
characteristics. The traditional scheme is to use the coherent CDP
to determine b and 4, and the CDC to find all displacements u.
In the formation of the ideal bicrystal (the final reference space)
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from the CDC, these displacements are separated into b, s, and p
vectors. This method best reflects the underlying symmetry and
is preferable for simple crystals. This type of CDC is illustrated
in Supplemental' Figure Alb.

Alternatively, one can use the SDC shifted by b and p, leav-
ing only the SDC for the step portion of the dislocation (Hirth
et al. 2016). Such a SDC is illustrated for the case where p is
zero in Supplemental' Figure Alc. Only shuffles are present
in this reduced SDC, as given by Equation 3. In the e-cell of
the SDC, the rotation of the atomic dipole suffices to yield all
shuffles. Thus, as shown here, the latter method simplifies the
determination of shuffles when the crystal structure is complex.
In progressing from the CDC to the SDC to the ideal bicrystal,
there is a continued reduction in symmetry.

The ideal Bilby bicrystal is perfect on either side of the
interface (Hirth et al. 2013). This is the space that is used in
conjunction with ordinary Burgers circuits. As illustrated in
Supplemental' Figure Ala, a dividing surface in the CDC is
located midway between the last plane transformed and the next
untransformed plane (Pond et al. 2016). Hence, it is displaced
from the coherent interface in the CDC by d/2, where d is the
interplanar spacing (the twin symmetry plane remains the coher-
ent plane). Matrix atoms are removed below the dividing surface
and twin planes are removed above the dividing surface, creating
the Bilby bicrystal, which also has an interface displaced from
atomic planes by d/2. This interface corresponds to the thermo-
dynamic Gibbs interface. In this reference bicrystal, one could
construct circuits around a defect to determine b. However, the
CDC would still be needed to determine shuffles.

The real bicrystal, another representation, would have addi-
tional strains, but these would be localized to the near-interface
region. These nonlinear strains are not considered here. They
could be found in an atomistic simulation or possibly by atomic
resolution HRTEM.

Imperfect defects

Imperfect defects are most conveniently depicted in the CDC.
For such defects, the vectors analogous to t, do not connect the
origin to a lattice site in A: hence, they are designated as q(}).
Consequently, there is a stacking fault on one side of the defect.
Equation 1 is modified to

b = q(}) - t(). @)
One simple example is a /4<112> partial in a face-centered
cubic (fce) structure. Another is the defect observed in Al when
a 4<111> disconnection at a twin boundary dissociated into a
%<111> partial and a %<111> partial (Pond 1989). Such im-
perfect defects do not form unless the fault associated with q;
is low in energy, which usually requires that q; is rational. For
example, the intrinsic fault associated with a /6<112> partial in
fce is rational, has local symmetry and is associated with low
stacking fault energy. Similar defects are found in layer structures
such as graphite and mica (Amelinckx 1964). Another special
type relates to CDCs with simple dipoles or multipoles at cell
sites. The structural group dipole in Figure 6a is of this type.
This CDC can be envisioned as two interpenetrating, simple,
triclinic, structural group complexes, A (red) and B (gray). A
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possible partial is one with b connecting an A site to a B site.
Similarly, a shuffle vector could connect A and B sites. These
are more likely when £ is 24, or more, since the local strains ac-
companying shuffles decrease with increasing 4. Shuffles of this
type have been observed in a simulation of hep (1120) twinning
in Zr (Khater et al. 2013). Partials of this type also have been
associated with disconnections of a synchroshear type in alumina
(Kronberg 1957), olivine-spinel transformations (Poirier 1981),
and in Laves phases (Hazzledine and Pirouz 1993). In most cases,
the glide plane or twin plane has sufficient symmetry that a given
fault can be created either by glide (e.g., by a /6<112> partial in
fcc) or by climb (e.g., by a /4<111> partial in fcc).

Other defects

Several other defects including disclinations (Barrett and El
Khadiri 2014), facets (Li et al. 2010), interface junctions (Pond
1989), and type II twins (Pond and Hirth 2018), have been
described with the TM. By applying the concept of structural
groups, one can describe these defects in an identical manner to
that presented here. In all cases, including the defects described
in the previous sections, the kinetics of motion entails the ad-
dition of atoms at kinks or jogs on the defect lines. Discussion
of the details is beyond the scope of the present treatment.
For disconnections in either the phase transformation case or
the twinning case, the activation energy for defect motion has
contributions from shuffle motions, not simply those associated
with the dislocation component.

DISCUSSION

Much of the description here entails tractable methods for
determining shuffles in complex minerals. The simpler CDP suf-
fices to define b, 4, and the shear accompanying twinning. The
complete description of a disconnection entails the shuffles (s)
as well. Understanding the shuffles is essential in determining
the most likely disconnection for a given twin and in model-
ing disconnection motion (twin growth). The basic concept,
incorporated in the TM, is that the most likely disconnection is
that with the shortest set of shuffle vectors (Bilby and Crocker
1965; Christian and Mahajan 1995). For albite, we see that the
determination of shuffle vectors is greatly simplified if one
first removes the shuftles associated with the structural groups
(which removes effects associated with b and p), and then uses
the SDC to determine the remaining shuffles. Our analysis also
demonstrates the possibility (likelihood) of large steps with many
shuffles, based on the requirement for switching of atoms from
Si and Al sites; the application of these techniques for twinning
in plagioclase solid-solution phases could involve similar steps
related to switching between Ca-Na sites.

The major focus of the mechanistic applications of the TM
has been on phase transformations and twinning. There are other
disconnection models and mechanisms with many similarities.
In particular we note the extensive work on grain boundary
sliding (e.g., Rajabzadeh et al. 2014; Combe et al. 2016; Han et
al. 2018), a process that has been interpreted to be important for
several geologic materials, including olivine (e.g., Hansen et al.
2011), calcite (e.g., Austin et al. 2014), plagioclase (Miranda et al.
2016), and quartz (Cross et al. 2017). In all of these applications,
the reference lattices provide the basis for the application of the
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TM to all disconnection models. While earlier work emphasized
the importance of interface steps for phase transformations (e.g.,
Howe and Smith 1992), twinning (e.g., Hardouin Duparc 2017),
and grain boundary sliding (e.g., Langdon 2006), the formal
description of the TM is not trivial (Hirth et al. 2013; Han et al.
2018). Long-range fields are associated with the Burgers vector
for dislocation components or the Frank vector for disclination
components. The motion of the step component produces pure
rotation related to disclination quadrupoles. Similarly, the refer-
ence spaces of the TM describe spacing defects, line forces, and
non-equilibrium structures. The motion of the step component
produces pure rotation related to disclination quadrupoles.

We emphasize that the shuffles found in the reference spaces
of the TM are important in describing the mechanism of discon-
nection motion, e.g., in twin growth. In atomistic simulations of
twin growth, it is important to determine the height and Burgers
vector (or Frank vector) for the most likely disconnection In this
case, for a given growth rate the twin stress can be predicted.
In one example, only the TM accurately predicts the geometry
of a type Il twin (Pond et al. 2018). Many researchers are em-
ploying disconnections and advancing new ideas, mainly for
simple structures. In all cases, the concept of structural groups
would be a useful tool for the extension of this body of work to
complex minerals.

The topic of disconnections is a burgeoning field. We an-
ticipate that there will be many applications for minerals. We
have given one example of twinning for low albite. The twin
methodology should be important in the computer simulation
of deformation twin growth, and in modeling dislocation-twin
intersections. The same TM methodology can be applied to
order-disorder transformations, phase changes, slip, defect-
boundary interactions, and boundary details such as facets. The
TM concepts described here can serve as a template to analyze
these processes as well. What we have emphasized here is that the
analysis of structural aspects of disconnections, most importantly
shuffling, can be simplified by treating unit cells of complex
structures comprised of structural groups.

IMPLICATIONS

The model presented here describes the mechanism for de-
formation twinning and applies as well to shear-type transforma-
tions and grain boundary deformation. We chose to illustrate the
model for twinning in albite owing to its potential application for
constraining the rheological properties of the crust at conditions
near the brittle-plastic transition, where plagioclase is a major
constituent of common rock types. While deformation twins in
plagioclase are often described from microstructural analyses in
crustal rocks, the interpretation of the stress states at which they
form has not advanced partly owing to difficulties in quantifying
constitutive laws. The concept of structural groups makes an
analysis of the twinning transformation process easier in complex
minerals and explicitly predicts the interface structure of the
deformation twins. Twinning is particularly important at lower
temperatures, where creep by diffusional relaxation is limited and
large stress concentrations arise at triple points and near grain
boundaries. At these conditions dislocation slip in plagioclase
becomes limited, partly because of the large Burgers vectors.
Twinning then becomes a possible mechanism to satisfy the von
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Mises requirement and to accommodate stress concentrations.
Recent advances in microscopy (e.g., high-angular resolution
electron backscatter diffraction, Wallis et al. 2016) presage new
analyses of twinning in feldspars (as well as other minerals) that
could be used to investigate stress states at these conditions,
in addition to the role of crystal plasticity during semi-brittle
flow and fracture near the base of the seismogenic zone and in
regions near impacts.

Atomistic simulation of deformation is a burgeoning field.
For twinning simulations, the TM analysis is useful in provid-
ing the likely twinning disconnection and the proper boundary
conditions. The shear and the shuffles provide a basis for ana-
lyzing the activation energy (including the stress dependence)
for twin growth, important in developing constitutive relations
for deformation, which in turn provide input for analyzing the
microstructure of polycrystals. This is important because twins
created in the laboratory can form at rates up to eight orders
of magnitude faster and have twin sizes two or three orders
of magnitude smaller than those formed naturally. Thus, if the
interface structures observed in high-resolution electron micros-
copy are the same for both laboratory and natural structures,
then constitutive relations for deformation (determined in the
laboratory) should also apply to the natural twins. Knowledge of
the constitutive relations enables one to know the critical stress
and temperature for the twinning-slip transition. Disconnection
concepts apply directly to grain boundary sliding and twinning
and would also be essential in developing constitutive relations
for these processes.
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