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Abstract

A topological model (TM) is presented for the complex crystal structures characteristic of some 
minerals. We introduce a tractable method for applying the TM to characterize defects in these com-
plex materials. Specifically, we illustrate how structural groups, each with a motif containing multiple 
atoms, provide lattices and structures that are useful in describing dislocations and disconnections in 
interfaces. Simplified methods for determining the shuffles that accompany disconnection motion are 
also described. We illustrate the model for twinning in albite owing to its potential application for 
constraining the rheological properties of the crust at conditions near the brittle-plastic transition, where 
plagioclase is a major constituent of common rock types. While deformation twins in plagioclase are 
often observed in crustal rocks, the interpretation of the stress states at which they form has not ad-
vanced. The concept of structural groups makes an analysis of the twinning process easier in complex 
minerals and explicitly predicts the interface structure of the deformation twins.
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Introduction

Topological theory, based on crystal symmetry with added 
symmetry elements at interfaces (Pond and Vlachavas 1983), 
was developed to describe interfaces and defects in crystals 
(Pond 1989). It was expanded to include a formal description 
of defects called disconnections (Hirth and Pond 1996). The 
topological model (TM) entails the application of these ideas to 
describe dislocations and disconnections at interfaces, includ-
ing those that provide the mechanism for growth of a phase 
normal to the interface (Pond et al. 2007). The same defects 
account for interface structure and misfit accommodation. While 
almost all applications have dealt with simple metals and simple 
compounds (e.g., Medlin and Yang 2012), the TM has many 
potential applications in Earth and planetary sciences, for a wide 
range of minerals. However, there are added factors that must be 
considered for more complicated minerals (i.e., with low sym-
metry and/or a large number of atoms in the unit cell) such as 
the plagioclase feldspars. Here, we review the topological model 
and then introduce new concepts useful in the application of the 
TM to more complicated mineral structures.

Disconnections are linear interface defects with both a step 
character and dislocation components characterized by the 
Burgers vector. Motion of the disconnection can be envisioned 
to occur by a simple engineering shear associated with motion of 
the dislocation part, and local rearrangements of atoms (shuffles) 
associated with motion of the step part. These components of the 
TM and a view of a disconnection are illustrated in Appendix A1 
for the case of a twin in a simple cubic structure. In metals, step 
heights are small and shuffles are either absent or simple. Min-

erals often have complex structures containing many atoms, so 
step heights and corresponding Burgers vectors can be large and 
the associated shuffles are numerous. To facilitate application 
of the TM to these complex mineral structures, we propose the 
concept of a lattice of structural groups and show that this yields 
the Burgers vector in the TM description. While these ideas are 
general and can be extended to other processes such as phase 
transformations and grain boundary sliding (as outlined in the 
discussion), we introduce these concepts for twinning, using the 
example of low albite.

Defect properties can be determined by circuit mapping (e.g., 
the familiar Burgers circuits for dislocations) or by line integrals 
of symmetry elements. These two techniques were compared in 
Pond and Hirth (1994) and shown to give equivalent results for 
defects in twinning and phase transformations, where translation 
and rotation are the principal symmetry elements. For complex 
crystal structures, the new concept of a lattice of structural groups 
makes the circuit mapping technique significantly more tractable. 
Our focus is on disconnections, interface defects that provide the 
mechanism for shear-type phase transformation and twinning 
(reviewed in Hirth et al. 2013, 2016) and grain boundary processes 
(reviewed in Han et al. 2018). More general symmetry consid-
erations and other types of defects are treated in Pond (1989).

Reference spaces

As reviewed in Howe et al. (2009), early work indicated 
that transformation defects have step character. Building on 
the early work, the TM precisely defined the Burgers vector 
and step height of a disconnection in reference spaces. In the 
next sections, we describe three perfect reference spaces in the 
TM, analogous to reference structures for the familiar Burgers 
circuits for dislocations (Anderson et al. 2017). The volume 
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transformed when the disconnection moves by one repeat 
distance defines an exchange cell (e-cell) that contains all 
displacements associated with the transformation.

The coherent dichromatic pattern
The fundamental crystal structure of interfaces is a di-

chromatic arrangement that superposes the lattices of the two 
crystals on either side of the interface; by convention, we refer 
to these as the matrix μ and product λ lattices (Supplemental1 
Fig. A1b). The first reference space is the coherent dichromatic 
pattern (CDP), which is the superposition of the Bravais lat-
tices of the two crystals. A perfect twin boundary is naturally 
coherent, but we retain the coherent modifier to emphasize that 
the same reference applies to facets on twin boundaries and to 
phase transformations, where coherency stresses are present at 
the interface. The origin of the CDP is at a maximum symmetry, 
coincident lattice point on a coincident site plane, e.g., the twin 
plane. In detail, the CDP is more general than the coincidence 
site lattice in that there is no need for registry in the direction 
normal to the interface. The symmetry of the CDP is the union 
of that of the two component crystals extended by an anti-
symmetry element [designated with a prime (ʹ)] unique to the 
pattern (Pond 1989). In the resulting dichromatic space group, 
some of the point symmetry elements are coincident and some 
are anti-symmetric. For an example of the latter, all perfect 
twins have mʹ mirror symmetry. Several examples of CDPs 
in simple metals are given in Hirth et al. (2013). In contrast, 
numerous minerals have unit cells containing many atoms. In 
the following, we show paired reference spaces in CDPs for a 
simple cubic lattice and for the example of a twin in low albite.

The composition of low albite is (NaAlSi3O8), and its con-
ventional unit cell is shown in Figure 1. The lattice parameters 
are a = 0.814 nm, b = 1.2785 nm, and c = 0.7158 nm. The 
triclinic angles are α = 94.2°, β = 116.6°, and γ = 87.7°. The 
crystal structure entails a Ci point group and a C1-P1 space 
group, triclinic with a center of inversion and a basis of four, 
with indices (hkl). As discussed in Hahn and Klapper (2006), 
Wenk and Bulakh (2016), and Ribbe (1974), this is a large 
unit cell selected to parallel the C1 monoclinic structure of 
orthoclase. An alternate (smaller) C1 unit cell is shown in red 
in Figure 2, with indices (hkl)0. The lattice parameters are a0 
= 0.814 nm, b0 = 0.7716 nm, and c0 = 0.7158 nm. The triclinic 
angles are α = 107.27°, β = 116.61°, and γ = 55.87°. From a 
defect viewpoint, the vectors in the small cell represent pos-
sible perfect Burgers vectors. For example, when considering 
Burgers vectors in plagioclase (e.g., Stünitz et al. 2003) using 
the larger conventional cell, the vectors ½ [110] and ½[110] 
are perfect Burgers vectors (i.e., [010] and [010]) when using 
the smaller cell (Fig. 2).

The CDP for albite is shown in Figure 3. Translation vec-
tors tμ and tλ, with a common origin, connect lattice sites. For 
twinning and many phase transformations, the circuits in the 
topological theory reduce to the limiting form of the transla-
tion vectors in the two lattices (Pond 1989). Then the Burgers 
vectors b for dislocation components of disconnections or for 
interface dislocations are given by

b = t(λ) – t(μ).	 (1)

Figure 1. Conventional unit cell of low albite. (Color online.)

Figure 2. Conventional crystal lattice in black. Alternate (smaller) 
lattice in red. (Color online.)

Figure 3. Coherent dichromatic pattern (CDP) for an [001] 
(010) twin in albite. Translation vectors and b shown for an h = h0 
disconnection. (a) Projection along [100]. (b) Projection along the normal 
to (010). (Color online.)
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Disconnections comprise a dislocation component b and a step 
component with height h. In general, the height is given by

h = ih0	  (2)

where i is an integer and h0   is equal to the interplanar spacing d 
of twin (or terrace) planes. Figure 4 shows how a disconnection 
could be formed from crystals with free surfaces containing 
steps. The step height of the disconnection is the smaller of hλ 
and hμ. Disconnections separate low-index terraces and their mo-
tion provides the mechanism for growth normal to the terraces. 
The specific disconnection properties are selected so that the 
structure of the terraces on either side of the defect are identical. 
The Burgers vector and step height for a specific disconnection 
with h = h0 are included in Figure 4. Thus, some disconnection 
properties, b and h, are directly determinable from the CDP.

The coherent dichromatic complex
The second reference structure is the coherent dichromatic 

complex (CDC). The CDC is the superposition of the μ and λ 
crystal structures and includes the local atomic motif (formally 
the point group) at a lattice site. Thus, the CDC is a space group 
that often has lower symmetry than the CDP. The total displace-
ments, u(λ) and u(μ), accompanying twinning are depicted in the 
CDC. The displacement of a given atom is the sum of the shear 
displacement associated with the dislocation component and the 
local shuffle displacement that completes the transformation. A 
simple example of shuffles is shown in Supplemental1 Figure 
A1. In most cases, the CDC has coincident symmetry, and we 
write the displacements as u0(λ) and u0(μ). In some cases, the 
two structures comprising the CDC can be offset uniformly by 
a vector p as a consequence of interfacial free energy minimiza-
tion, with the consequences discussed in Appendix A1. Both the 
μ and λ atoms are displaced by p in the e-cell, so the portion 
of the shuffles associated with p cancels. For this reason and 
because p is rarely measured and, when present, is often very 
small, we neglect it here, so that u0(μ) = 0. Then, the shuffles 
of a given atom are determined by analysis of Du in the CDC 
and are given by:

s = u0(λ) – u0(μ) – b = u0(λ) – b. 	 (3)

Alternatively, a shifted dichromatic complex (SDC), where b is 
subtracted from u0(λ) (Appendix A1 and Supplemental Fig. A1c) 

is useful in describing shuffles. The displacements of a given 
atom in the SDC are those associated only with the shuffles, u(λ) 
= u0(λ) – b. Hence, the same shuffles are given by

s = u(λ).	  (4)

Similarly, if the two lattices rotate as a consequence of trans-
formation, the Burgers vectors and shuffles are represented in a 
rotated RCDP or RDC, respectively (Hirth et al. 2013).

Here we illustrate how the concept of structural groups 
facilitates the characterization of defects. A unit cell comprised 
of structural group dipoles is shown in Figure 5a. The motifs 
of a structural group dipole in the atomic CDC are depicted 
in Figure 5b. Figure 5c is a rotated view of the motifs with the 

Figure 4. Schematic of disconnection. (a) Two free surfaces, with 
translation vectors and h labeled, are joined to create coherent terraces 
bounding a disconnection (b), with b shown for h = hl. (Color online.)

Figure 5. (a) Unit cell of structural group dipoles. (b) Atomic 
motif of one structural group dipole. (c) Projection of panel b normal 
to the twinning direction. (d) Projection of panel b normal to (010). 
(Color online.)
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twinning direction (η) pointing toward the viewer. The unit cell 
shown in Figure 5a comprises structural group dipoles centered 
on cell corners. In both Figures 5a and 5b, the dipoles represent 
the matrix part of the e-cell: the smallest repeating unit of trans-
formation. As seen in Figure 5b, all atoms occur in pairs with 
their midpoints at the center of the pair at the same position as 
the center of the structural group dipole. Hence, the atom pairs 
also exhibit inversion symmetry. The cell of structural groups is 
triclinic P1 with a basis of two. A portion of the CDC is presented 
in Figure 6. To maintain twin symmetry, the structural group 
dipoles are displaced in the [010] direction, producing a rotation. 
The rotation can be represented by a vector R = nθ, where n is 
a unit vector along the axis of rotation, perpendicular to the line 
connecting the dipole members, and θ is the angle of rotation in 
the plane normal to n. For lower albite, n = [–0.0432 0 1] and 
θ = 8.4°. Figure 6a shows that the component of R normal to 
(010) is zero as a structural group moves from the matrix to the 
twin. However, the out-of-plane rotation is non-zero (Fig. 6b). 
The R vector lies in the (010) plane, with components (R1, 0, 
R3). Hence, for the h = 1 albite twin, all shuffles are associated 
with this rotation, i.e., the entire unit in Figure 6a rotates during 
the twin transformation. The use of structural groups simplifies 
the analysis of shuffles, which otherwise would be difficult.

We split the shuffle analysis for albite into several stages. The 
CDC for structural groups is shown in Figure 6. A depiction of 
the full CDC would be too complicated, so we show the matrix 
and the twin separately and deduce the CDC or SDC from these 
figures. Figures 7a, 7b, and 7c show the matrix, a portion of the 
matrix sheared but not shuffled, and the true twin, respectively. 
All are projected along [101]0 = [101], which is very close to –η. 

Here, b has an out-of-plane component, which is already known 
from the CDP. One can imagine the SDP by extending the lattices 
in Figure 7b and deducing the displacements that create the true 
twin shown in Figure 7c. In the creation of the true twin, the net 
result of the shuffles is to rotate the motif dipole in Figure 5b 
by the same angle θ as the structural groups in Figure 5a. This 
accomplishes one increment of transformation. The shuffles are 
of two types: exchanges and shifts. The exchange-type shuffles 
are apparent in the SDC of Figure 7c, or, less straightforwardly, 
from the CDC of Figure 7b. For the SDC the final structure after 
shuffling is equivalent to the rotation of the dipole illustrated in 
Figure 5a about n by the same angle as the structural group dipole 
in Figure 5b. Viewing the dipole in Figures 5c and 5d together 
with Figure 7b, one sees that most of the Si atoms and all of the 
O atoms undergo small shifts and some small exchanges. The 
lengths of the shuffle vectors range from 0.01 to 0.06 nm.

The end-members of the dipole undergo much larger shuffles. 
Figure 8a shows just the end arrangement of the dipole. To satisfy 
the mirror symmetry, these Si and Al toms must switch positions 
in the dipole. The specific view of a portion of the SDC along the 
dipole axis in Figure 8b shows that these shuffles are large (0.26 
to 0.46 nm), roughly an order of magnitude larger than the other 
shuffles. These are so large that it may be energetically favorable 
for the Si and Al atoms to shuffle to the wrong type of site as in 
Figure 8c, creating anti-site defects and disorder. These would 
have much smaller shuffles, 0.06 nm, of the order of the smaller 
shifts of oxygen and the Si atoms other than the end-members. The 
resulting structure would be a pseudo-twin as depicted in Figure 9. 
The shuffles nominally parallel to the interface are more probable. 
They are shorter, which means that their self-energy is smaller. 
Also, they are less likely to produce local, nonlinear displacements 
normal to the interface, implying a smaller contribution to the 
activation energy for disconnection motion.

In general, if shuffles are incomplete, there could be two lev-
els of pseudo-twin formation. First, no shuffles could accompany 
disconnection motion, with all later occurring by thermal relax-
ation. Second, the smaller shift-type shuffles could accompany 
disconnection motion, with only the exchange-type shuffles then 
occurring by thermal relaxation. Both are possible, since the 
atomistic simulation of the relaxation of an ideal albite twin by 

Figure 6. CDC for structural groups viewed along a and normal to 
the (010) plane. Rotation of the structural group dipole in the CDC also 
shown. (Color online.)

Figure 7. (a) Repeat unit of two (010)0 planes viewed along [101]0. 
Solid line will become the twin symmetry plane and the dashed line will 
become the twin interface. Matrix part of e-cell is enclosed in red. (b) 
Structure of panel a is sheared by b above the twin boundary, but no 
shuffles are imposed. In panel b, shuffles are added to the matrix part of 
the e-cell of panel a. The extension of the e-cell to encompass the entire 
region above the twin plane creates the CDC. In panel c, the matrix part 
of the e-cell is in the SDC, with b subtracted from panel b. (Color online.)
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the even smaller local nonlinear displacements near the boundary 
also required thermal activation (Li and Knowles 2013).

The ideal bicrystal

There are several procedures to determine disconnection 
characteristics. The traditional scheme is to use the coherent CDP 
to determine b and h, and the CDC to find all displacements u. 
In the formation of the ideal bicrystal (the final reference space) 

from the CDC, these displacements are separated into b, s, and p 
vectors. This method best reflects the underlying symmetry and 
is preferable for simple crystals. This type of CDC is illustrated 
in Supplemental1 Figure A1b.

Alternatively, one can use the SDC shifted by b and p, leav-
ing only the SDC for the step portion of the dislocation (Hirth 
et al. 2016). Such a SDC is illustrated for the case where p is 
zero in Supplemental1 Figure A1c. Only shuffles are present 
in this reduced SDC, as given by Equation 3. In the e-cell of 
the SDC, the rotation of the atomic dipole suffices to yield all 
shuffles. Thus, as shown here, the latter method simplifies the 
determination of shuffles when the crystal structure is complex. 
In progressing from the CDC to the SDC to the ideal bicrystal, 
there is a continued reduction in symmetry.

The ideal Bilby bicrystal is perfect on either side of the 
interface (Hirth et al. 2013). This is the space that is used in 
conjunction with ordinary Burgers circuits. As illustrated in 
Supplemental1 Figure A1a, a dividing surface in the CDC is 
located midway between the last plane transformed and the next 
untransformed plane (Pond et al. 2016). Hence, it is displaced 
from the coherent interface in the CDC by d/2, where d is the 
interplanar spacing (the twin symmetry plane remains the coher-
ent plane). Matrix atoms are removed below the dividing surface 
and twin planes are removed above the dividing surface, creating 
the Bilby bicrystal, which also has an interface displaced from 
atomic planes by d/2. This interface corresponds to the thermo-
dynamic Gibbs interface. In this reference bicrystal, one could 
construct circuits around a defect to determine b. However, the 
CDC would still be needed to determine shuffles.

The real bicrystal, another representation, would have addi-
tional strains, but these would be localized to the near-interface 
region. These nonlinear strains are not considered here. They 
could be found in an atomistic simulation or possibly by atomic 
resolution HRTEM.

Imperfect defects
Imperfect defects are most conveniently depicted in the CDC. 

For such defects, the vectors analogous to tλ do not connect the 
origin to a lattice site in λ: hence, they are designated as q(λ). 
Consequently, there is a stacking fault on one side of the defect. 
Equation 1 is modified to

b = q(λ) – t(μ).	  (4)

One simple example is a 1⁄2<112> partial in a face-centered 
cubic (fcc) structure. Another is the defect observed in Al when 
a 1⁄3<111> disconnection at a twin boundary dissociated into a 
1⁄9<111> partial and a 2⁄9<111> partial (Pond 1989). Such im-
perfect defects do not form unless the fault associated with qλ 
is low in energy, which usually requires that qλ is rational. For 
example, the intrinsic fault associated with a 1⁄6<112> partial in 
fcc is rational, has local symmetry and is associated with low 
stacking fault energy. Similar defects are found in layer structures 
such as graphite and mica (Amelinckx 1964). Another special 
type relates to CDCs with simple dipoles or multipoles at cell 
sites. The structural group dipole in Figure 6a is of this type. 
This CDC can be envisioned as two interpenetrating, simple, 
triclinic, structural group complexes, A (red) and B (gray). A 

Figure 8. (a) Atoms at the ends of the structural group dipoles in the 
e-cell in Figure 5b viewed along the dipole axis. The atoms must shuffle 
as shown the satisfy mirror symmetry. (b) Specific shuffles in a portion 
of the SDC. (c) Shorter shuffles, creating anti-site defects. (Color online.)

Figure 9. Pseudo-twin, with the anti-site defects of Figure 8 
unrelaxed. (Color online.)
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possible partial is one with b connecting an A site to a B site. 
Similarly, a shuffle vector could connect A and B sites. These 
are more likely when h is 2h0 or more, since the local strains ac-
companying shuffles decrease with increasing h. Shuffles of this 
type have been observed in a simulation of hcp (1120) twinning 
in Zr (Khater et al. 2013). Partials of this type also have been 
associated with disconnections of a synchroshear type in alumina 
(Krönberg 1957), olivine-spinel transformations (Poirier 1981), 
and in Laves phases (Hazzledine and Pirouz 1993). In most cases, 
the glide plane or twin plane has sufficient symmetry that a given 
fault can be created either by glide (e.g., by a 1⁄6<112> partial in 
fcc) or by climb (e.g., by a 1⁄3<111> partial in fcc).

Other defects
Several other defects including disclinations (Barrett and El 

Khadiri 2014), facets (Li et al. 2010), interface junctions (Pond 
1989), and type II twins (Pond and Hirth 2018), have been 
described with the TM. By applying the concept of structural 
groups, one can describe these defects in an identical manner to 
that presented here. In all cases, including the defects described 
in the previous sections, the kinetics of motion entails the ad-
dition of atoms at kinks or jogs on the defect lines. Discussion 
of the details is beyond the scope of the present treatment. 
For disconnections in either the phase transformation case or 
the twinning case, the activation energy for defect motion has 
contributions from shuffle motions, not simply those associated 
with the dislocation component.

Discussion

Much of the description here entails tractable methods for 
determining shuffles in complex minerals. The simpler CDP suf-
fices to define b, h, and the shear accompanying twinning. The 
complete description of a disconnection entails the shuffles (s) 
as well. Understanding the shuffles is essential in determining 
the most likely disconnection for a given twin and in model-
ing disconnection motion (twin growth). The basic concept, 
incorporated in the TM, is that the most likely disconnection is 
that with the shortest set of shuffle vectors (Bilby and Crocker 
1965; Christian and Mahajan 1995). For albite, we see that the 
determination of shuffle vectors is greatly simplified if one 
first removes the shuffles associated with the structural groups 
(which removes effects associated with b and p), and then uses 
the SDC to determine the remaining shuffles. Our analysis also 
demonstrates the possibility (likelihood) of large steps with many 
shuffles, based on the requirement for switching of atoms from 
Si and Al sites; the application of these techniques for twinning 
in plagioclase solid-solution phases could involve similar steps 
related to switching between Ca-Na sites.

The major focus of the mechanistic applications of the TM 
has been on phase transformations and twinning. There are other 
disconnection models and mechanisms with many similarities. 
In particular we note the extensive work on grain boundary 
sliding (e.g., Rajabzadeh et al. 2014; Combe et al. 2016; Han et 
al. 2018), a process that has been interpreted to be important for 
several geologic materials, including olivine (e.g., Hansen et al. 
2011), calcite (e.g., Austin et al. 2014), plagioclase (Miranda et al. 
2016), and quartz (Cross et al. 2017). In all of these applications, 
the reference lattices provide the basis for the application of the 

TM to all disconnection models. While earlier work emphasized 
the importance of interface steps for phase transformations (e.g., 
Howe and Smith 1992), twinning (e.g., Hardouin Duparc 2017), 
and grain boundary sliding (e.g., Langdon 2006), the formal 
description of the TM is not trivial (Hirth et al. 2013; Han et al. 
2018). Long-range fields are associated with the Burgers vector 
for dislocation components or the Frank vector for disclination 
components. The motion of the step component produces pure 
rotation related to disclination quadrupoles. Similarly, the refer-
ence spaces of the TM describe spacing defects, line forces, and 
non-equilibrium structures. The motion of the step component 
produces pure rotation related to disclination quadrupoles.

We emphasize that the shuffles found in the reference spaces 
of the TM are important in describing the mechanism of discon-
nection motion, e.g., in twin growth. In atomistic simulations of 
twin growth, it is important to determine the height and Burgers 
vector (or Frank vector) for the most likely disconnection In this 
case, for a given growth rate the twin stress can be predicted. 
In one example, only the TM accurately predicts the geometry 
of a type II twin (Pond et al. 2018). Many researchers are em-
ploying disconnections and advancing new ideas, mainly for 
simple structures. In all cases, the concept of structural groups 
would be a useful tool for the extension of this body of work to 
complex minerals.

The topic of disconnections is a burgeoning field. We an-
ticipate that there will be many applications for minerals. We 
have given one example of twinning for low albite. The twin 
methodology should be important in the computer simulation 
of deformation twin growth, and in modeling dislocation-twin 
intersections. The same TM methodology can be applied to 
order-disorder transformations, phase changes, slip, defect-
boundary interactions, and boundary details such as facets. The 
TM concepts described here can serve as a template to analyze 
these processes as well. What we have emphasized here is that the 
analysis of structural aspects of disconnections, most importantly 
shuffling, can be simplified by treating unit cells of complex 
structures comprised of structural groups.

Implications

The model presented here describes the mechanism for de-
formation twinning and applies as well to shear-type transforma-
tions and grain boundary deformation. We chose to illustrate the 
model for twinning in albite owing to its potential application for 
constraining the rheological properties of the crust at conditions 
near the brittle-plastic transition, where plagioclase is a major 
constituent of common rock types. While deformation twins in 
plagioclase are often described from microstructural analyses in 
crustal rocks, the interpretation of the stress states at which they 
form has not advanced partly owing to difficulties in quantifying 
constitutive laws. The concept of structural groups makes an 
analysis of the twinning transformation process easier in complex 
minerals and explicitly predicts the interface structure of the 
deformation twins. Twinning is particularly important at lower 
temperatures, where creep by diffusional relaxation is limited and 
large stress concentrations arise at triple points and near grain 
boundaries. At these conditions dislocation slip in plagioclase 
becomes limited, partly because of the large Burgers vectors. 
Twinning then becomes a possible mechanism to satisfy the von 
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Mises requirement and to accommodate stress concentrations. 
Recent advances in microscopy (e.g., high-angular resolution 
electron backscatter diffraction, Wallis et al. 2016) presage new 
analyses of twinning in feldspars (as well as other minerals) that 
could be used to investigate stress states at these conditions, 
in addition to the role of crystal plasticity during semi-brittle 
flow and fracture near the base of the seismogenic zone and in 
regions near impacts.

Atomistic simulation of deformation is a burgeoning field. 
For twinning simulations, the TM analysis is useful in provid-
ing the likely twinning disconnection and the proper boundary 
conditions. The shear and the shuffles provide a basis for ana-
lyzing the activation energy (including the stress dependence) 
for twin growth, important in developing constitutive relations 
for deformation, which in turn provide input for analyzing the 
microstructure of polycrystals. This is important because twins 
created in the laboratory can form at rates up to eight orders 
of magnitude faster and have twin sizes two or three orders 
of magnitude smaller than those formed naturally. Thus, if the 
interface structures observed in high-resolution electron micros-
copy are the same for both laboratory and natural structures, 
then constitutive relations for deformation (determined in the 
laboratory) should also apply to the natural twins. Knowledge of 
the constitutive relations enables one to know the critical stress 
and temperature for the twinning-slip transition. Disconnection 
concepts apply directly to grain boundary sliding and twinning 
and would also be essential in developing constitutive relations 
for these processes.
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