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Abstract

Stochastic gradient methods are scalable for solving large-scale optimization problems that

involve empirical expectations of loss functions. Existing results mainly apply to optimization

problems where the objectives are one- or two-level expectations. In this paper, we consider the

multi-level compositional optimization problem that involves compositions of multi-level compo-

nent functions and nested expectations over a random path. It finds applications in risk-averse

optimization and sequential planning. We propose a class of multi-level stochastic gradient meth-

ods that are motivated from the method of multi-timescale stochastic approximation. First we

propose a basic T -level stochastic compositional gradient algorithm. Then we develop accel-

erated multi-level stochastic gradient methods by using an extrapolation-interpolation scheme

to take advantage of the smoothness of individual component functions. When all component

functions are smooth, we show that the convergence rate improves to O(n−4/(7+T )) for general

objectives and O(n−4/(3+T )) for strongly convex objectives. We also provide almost sure con-

vergence and rate of convergence results for nonconvex problems. The proposed methods and

theoretical results are validated using numerical experiments.

Keywords: Stochastic gradient · Stochastic optimization · Convex Optimization · Sample com-

plexity · Simulation · Statistical learning

1 Introduction

Over the past decade, stochastic gradient-type methods have drawn significant attention from

various communities such as mathematical programming, signal processing and machine learning,

mainly due to their practical efficiency in minimizing expected-value objective functions or empirical

sums of a large number of loss functions [2, 5, 11, 12, 13, 15, 19, 23, 30]. They are particularly
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popular methods for tackling large-scale problems such as statistical estimation [7, 21], matrix and

tensor factorization [9] and training deep neural networks [14, 29]. Stochastic gradient methods

mainly apply to minimizing the expectation of a stochastic function, i.e.,

min
x

Eω[fω(x)],

where the expectation is taken over a random variable ω. Note that this problem involves one level

of expectation.

In this paper, we propose to study a richer class of stochastic optimization problems, which

involve nested expectations over a sequence of random variables. In particular, we consider the

T -level stochastic compositional optimization problem, given by

min
x∈X

F (x) = Eω1

[
f (1)ω1

(
Eω2

[
f (2)ω2

(
· · ·
(
EωT [f (T )ωT

(x)]
)
· · ·
)])]

, (1.1)

where f
(j)
ωj (·) : Rdj 7→ Rdj−1 for j = 1, · · · , T are continuous mappings, X is a convex and closed set,

and d0 = 1, i.e., F (x) is a real-valued function. The nested composition structure provides a rich

modeling tool for data analysis and decision-making applications. For instance, online principal

component analysis and policy evaluation in reinforcement learning can be formulated into two-

level stochastic compositional optimization [16, 27]. We illustrate an example that arises from

operations research in Section 4, the mean-deviation risk-averse optimization problem. It can be

formulated into a three-level compositional problem [1, 22].

In problem (1.1), for each f
(j)
ωj , we use the subscript ωj to denote a random variable and use

the superscript (j) to denote its level. We focus on situations whether there exist deterministic

functions f (1), . . . , f (T ) such that

f (j)(xj) = E[f (j)ωj
(xj)|ω1, · · · , ωj−1],

for all j = 1, . . . , T with probability 1. We refer to f (1), . . . , f (T ) as component functions. How-

ever, these component functions are not explicitly known to us. Note that the multi-level random

variables ω1, . . . , ωT are not necessarily independent of one another. When we sample from their

joint distribution, we may generate a sample path (ω1, . . . , ωT ) sequentially by sampling each ωj
conditioned on realizations at the previous level’s (ω1, . . . , ωj−1). Throughout this paper, we as-

sume that the component functions f (1), . . . , f (T ) are continuous and that there exists at least one

optimal solution x∗ to problem (1.1). In some part of our analysis, we require the overall objective

function F (x) be convex, but we never require that any individual component function f
(j)
ωj (·) be

convex, linear or monotone. We say that a function f is “smooth” if it has Lipschitz continuous

gradients, and say that it is “non-smooth” otherwise.

Our goal is to solve the T -level stochastic compositional optimization problem (1.1) by sampling

multiple paths of (ω1, . . . , ωT ). We are interested in scenarios where we do not have the explicit

knowledge of the expected-value component functions f (j)’s. This often occurs when evaluating

f (j) requires making expensive passes over large data sets. This also occurs in online learning

applications where f (j) can not be accurately calculated using finitely many samples. Instead of

knowing f (j)’s, we suppose that there is a Sample Oracle (SO) such that:

• Upon each query (x ∈ X , y1 ∈ Rd1 , . . . , yT ∈ RdT ), the SO generates a sample path (ω1, . . . , ωT )

independently from the query.
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• The SO returns a vector f
(T )
ωT (x) ∈ RdT−1 and a gradient/subgradient ∇̃f (T )ωT (x) ∈ RdT×dT−1 .

• The SO returns a vector f
(j)
ωj (yj) ∈ Rdj and a gradient ∇f (j)ωj (yj) ∈ Rdj×dj−1 .

• The SO returns a gradient ∇f (1)ω1 (y1) ∈ Rd1 .

In the above, we denote by ∇̃f (T )ωT (x) a gradient/subgradient, which is to be specified in the con-

text. Let us emphasize that this SO does not return unbiased first-order information regarding

the overall objective function. The SO can be viewed as a component-wise stochastic first-order

oracle that returns noisy first-order information for individual component functions f (j)’s. Detailed

assumptions on the SO will be specified later.

One might attempt to apply the sample average approximation (SAA) method to attack the

multi-level expectation problem (1.1). However, replacing the nested expectations with empirical

averages will not solve the optimization problem. It will reduce one problem with expectations to

another one with empirical expectations. However, the two problems share similar structures and

the latter one is not necessarily easier to solve. What we need is an implementable algorithm that

computes the optimal solution by iteratively querying the SO and making efficient updates.

Another attempt would be to use some version of gradient method or stochastic gradient

method. Stochastic gradient method will not work automatically. The main challenge is that

we do not have access to the unbiased sample gradient of F due to the multi-level nested expecta-

tions. To see this, let us consider the case where each f (j) is differentiable and apply the chain rule

to get

∇F (x) = ∇f (T )(x)∇f (T−1)
(
fT (x)

)
· · · ∇f (1)

(
f (2) ◦ · · · ◦ f (T )(x)

)
.

For a given x ∈ S and a given sample path (ω1, . . . , ωT ), one may formulate an unbiased estimate

of ∇F (x) as

∇f (T )ωT
(x)∇f (T−1)ωT−1

(
f (T )(x)

)
· · · ∇f (1)ω1

(
f (2) ◦ · · · ◦ f (T )(x)

)
,

which unfortunately cannot be calculated by calling the SO once (or even finitely many times).

This is because that computing the preceding unbiased gradient sample requires querying the SO
at values f (T )(x), f (T−1) ◦ f (T )(x), . . . , f (2) ◦ · · · ◦ f (T )(x), which are unfortunately not known. As a

result, the nested composition structure induces substantial bias in the sample gradients for F as

long as T ≥ 2. In contrast, when T = 1, the objective function is linear in the distribution of the

random variable ω. For problems with T ≥ 2, the nonlinear composition between expectations and

component functions creates an objective function that is highly nonlinear with respect to the joint

probability distribution of ω1, . . . , ωT . A graphical illustration of the level of difficulty for dealing

with multi-level composition optimization is given in Figure 1. We can view the optimization

problem (1.1) under the SO as a form of estimation problem, in which we want to estimate the

optimal solution x∗ by taking independent sample paths. We can see that the nonlinear composition

makes this estimation/optimization problem fundamentally challenging.

Existing work on stochastic compositional optimization traces back to [8] which considered

the two-level problem. In Section 6.7 of [8], a two-timescale stochastic approximation scheme

was proposed and its almost sure convergence was established without rate analysis. Recently, [26]

developed a general class of stochastic compositional gradient descent (SCGD) method for two-level

problems and established convergence rate results under various assumptions. [28] developed an
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x
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Figure 1: In one-level stochastic optimization, the objective function is linear in the probability

distribution of ω. In multi-level stochastic compositional optimization, the objective is no longer

linear in the joint probability distribution of the random variables (ω1, . . . , ωm), making the problem

fundamentally harder.

accelerated stochastic compositional proximal gradient (ASC-PG) method for the two-level problem

and proved faster convergence in some cases. [17] considered a special case of the two-level problem

where each expectation takes the form of a finite sum of loss functions and developed variance-

reduced versions of the compositional gradient methods. As for the general T -level problem, to

the best of our knowledge, all existing results only apply to the case where T = 1, 2. Multi-level

stochastic compositional optimization remains largely open.

In this paper, we develop sampling-based algorithms and complexity theory for the T -level

stochastic compositional problem (1.1). We draw motivation from the optimality conditions of

problem (1.1). In particular, we expand the first-order condition into a system of variational

equalities and inequalities by introducing auxiliary variables that correspond to a sequence of

value functions at the optimal solution, i.e., tail compositions of the component functions. Our

first attempt is a basic multi-timescale stochastic approximation iteration to solve this system.

We establish its almost sure convergence using a T -element super-martingale argument for both

convex and non-convex problems. We also show that it converges to the optimal solution at a rate of

O(n−1/2
T

) where n is the number of iterations/oracle queries. This result suggests that the sample

complexity for obtaining an approximate-optimal solution depends exponentially on the number

of nested levels T . Such an exponential dependence is somewhat expected in the worst case. It

is consistent with the sample path complexity for solving multi-stage stochastic programming,

although the optimization formulations and assumptions are slightly different. An O(n−2/(T+1))

rate of convergence is also obtained for strongly convex objectives. These convergence rates are not

yet satisfactory.

Furthermore, we develop accelerated multi-level stochastic gradient methods. The accelerated

algorithms apply to “smooth” composition problems and takes advantages of the smoothness of

individual component functions f (j). An extrapolation-interpolation scheme is used to balance the
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Non-convex Convex Strongly convex

1-level O(n−1/2) [10] O(n−1/2) [24] O(n−1) [20]

2-level
Smooth O(n−4/9) [28] O(n−4/9) [28] O(n−4/5) [28]

Non-smooth O(n−1/4) [26] O(n−1/4) [26] NA

3-level Smooth O(n−2/5) [∗] O(n−2/5) [∗] O(n−2/3) [∗]
T -level Smooth O(n−4/(7+T )) [∗] O(n−4/(7+T )) [∗] O(n−4/(3+T )) [∗]

Table 1: Best-known n-sample error bound for solving multi-level stochastic compositional opti-

mization. These bounds are achieved by stochastic gradient-type methods, so they are n-iteration

error bounds at the same time. Note that we say the composition problem is “smooth” if all the

component functions have Lipschitz continuous gradients. We use [∗] to denote the current paper.

bias-variance tradeoff in approximating each value function. We establish its almost sure conver-

gence using a T -element super-martingale argument for both convex and nonconvex problems. The

accelerated updates for the auxiliary variables can be viewed as first-order running approximations

of the true values, while the basic method without acceleration uses zeroth-order running approxi-

mations. As a result, the accelerated updates are more accurate and thus the overall convergence

rate is improved. In the case when all component functions are smooth, we improve the convergence

rate to O(n−4/(7+T )) for convex objective functions and O(n−4/(3+T )) for strongly convex ones. We

have also obtained convergence and rate of convergence results for nonconvex problems. Table 1

summarizes our results and compare them with the best known ones for the single- and two-level

stochastic compositional optimization problems [10, 20, 24, 26, 28]. We also provide numerical

experiments with a risk-averse regression problem. The numerical results validate our theory.

To the best of our knowledge, this paper proposes for the first time the multi-level stochastic

gradient methods for the composition optimization problem (1.1), where we establish almost sure

convergence results and obtain fast convergence rates. For the case where T = 1, our results match

the best known sample complexity upper- and lower-bounds. For the case where T = 2, our results

improve the convergence rate from O(n−2/9) of the a-SCGD in [26] to O(n−2/5). Besides, with

additional assumption that the inner level function f (T ) in (1.1) has Lipschitz continuous gradients,

we obtain a convergence rate O(n−4/9) for two-level problems, which matches the state-of-art result

achieved by ASC-PG in [28]. A natural further question is how big are the hidden constants in

these error bounds. In the case where T = 1, the hidden constant is merely determined by the

variance of stochastic gradients and the condition number, which can be derived in straightforward

way by analyzing a telescoping sum [10, 20]. However, when T > 1, the hidden constants depend

on a tedious formula involving sums and products of multi-level variances and Lipschitz continuity

constants. Within the scope of the current paper, we focus the dominating order of the error

bounds, leaving the constants unspecified. For the cases where T ≥ 3, our results fill the open gaps

and provide the first few sample complexity benchmarks.

The proposed methods of the paper, while being optimization algorithms, can be viewed as

updating an online estimator by drawing samples from a data stream. Let us evaluate its perfor-

mance from statistical perspectives. For comparison, the most related result is given by [6], which

uses an sample average approximation approach to solve the T -level compositional problem where
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the multi-level random variables are independently identically distribution random variables. For

this case, [6] proved that the batch method achieves an error rate of O(1/
√
n) which is obviously

statistically nonimprovable. More remarkably, the error bound obtained in [6] is independent of

T . In this paper, our result for the smooth convex case is O(n−4/(7+T )), which deteriorates as the

number of levels T increases. There are two possible explanations. First, the problem considered in

this paper is slightly more general than that of [6] because we do not assume independence between

random variables at different levels. Second, the proposed algorithms use multi-timescale updates

so that certain random samples are given less weights than the others, while the batch approach

treats all samples equally. The use of multi-timescale updates, which is critical for the proposed

online method, may have resulted in inefficient use of data and slowed down the convergence. It

remains open whether there exists an online algorithm that can achieve the same rate of conver-

gence as the batch method. We hope the developments of this paper can pave the way to more

complete understanding of the complexity of multi-level composition optimization.

Paper Organization. Section 2 gives a basic algorithm based on multi-timescale stochastic

approximation and establishes its convergence. Section 3 develops accelerated versions of the algo-

rithm and shows that they achieve faster convergence for smooth problems. Section 4 illustrates

one motivating application in operations research and gives numerical experiments.

Notation and Definitions. For x ∈ Rn, we denote by x′ its transpose, and by ‖x‖ its Euclidean

norm (i.e.,‖x‖ =
√
x′x). For two sequences {xk} and {yk}, we write xk = O(yk) if there exists a

constant c > 0 such that ‖xk‖ ≤ c‖yk‖ for each k. We denote by Ivaluecondition the indicator function,

which returns “ value ” if the “ condition ” is satisfied; otherwise 0. We denote by F ∗ the optimal

objective function value for (1.1), and denote by X ∗ the set of optimal solutions. For a set X ⊂ Rn
and a vector y ∈ Rn, we denote by ΠX {y} = argminx∈X ‖y − x‖2 the Euclidean projection of y on

X , where the minimization is always uniquely attained if X is nonempty, convex and closed. For

a function f(x), we denote by ∇f(x) its gradient at x if f is differentiable, denote by ∂f(x) its

subdifferential at x, and denote by ∇̃f(x) some noisy estimate of the gradient/subgradient of f at

x. We denote by “w.p.1” as “with probability 1”.

2 A Basic Algorithm Based On Multi-Timescale Stochastic Ap-

proximation

We start by writing down the optimality condition of problem (1.1) (assuming that the problem is

convex):

∇F (x∗)′(x− x∗) ≥ 0, ∀x ∈ X ,
where

∇F (x) = ∇f (T )(x) · ∇f (T−1)
(
fT (x)

)
· · · ∇f (1)

(
f (2) ◦ · · · ◦ f (T )(x)

)
.

However, this optimality condition is not easy to work with. As we have discussed in Section

1, the chain rule makes obtaining unbiased samples of ∇F (x) difficult. Let us rewrite the the
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optimality condition as follows

(
∇f (T )(x)∇f (T−1)

(
yT−1)

)
· · · ∇f (1)

(
y(1)
))′

(x− x∗) ≥ 0, ∀x ∈ X ,

y(T−1) = f (T )(x)

y(T−2) = f (T−1)(y(T−1)) = f (T−1) ◦ f (T )(x)

y(1) = f (2)(y(2)) = f (2) ◦ · · · ◦ f (T )(x).

We refer to f (j) ◦ · · · ◦ f (T )(x), j = 1, . . . , T − 1 as the value functions, i.e., tail compositions of

multi-level component functions. By introducing the auxiliary variables y(j)’s to represent the value

functions, we can decouple the chain product. Now for a given (x, y(1), . . . , y(T−1)), our sampling

oracle allows us to get unbiased estimates for all the quantities in the preceding system of optimality

conditions.

2.1 A T -Level Stochastic Gradient Method

Motivated by the system of optimality conditions, we develop our first algorithm - a multi-timescale

approximation iteration. It is also a generalization of the basic-SCGD in [26] which applies only

to two-level problems. Our algorithm runs iteratively. Denote by k the iteration counter. A key

ingredient of our algorithm is to introduce auxiliary variables y
(j)
k ’s, defined recursively, as running

estimates for the value functions Eωj,k
[f

(j)
ωj,k(y

(j+1)
k )|ω1,k, · · · , ωj−1,k], where j = 1, · · · , T − 1, and

xk = y
(T )
k . At the k-th iteration, we update the current solution xk by using a quasi-stochastic

gradient step given by

xk+1 = ΠX

{
xk − αk∇̃f (T )ωT,k

(xk)∇f (T−1)ωT−1,k
(y

(T−1)
k ) · · · ∇f (1)ω1,k

(y
(1)
k )
}
.

Then, we update the auxiliary variables y
(j)
k ’s by taking a weighted average between the previous

values and the new samples returned by the SO, i.e., for j = T − 1, T − 2, . . . , 1,

y
(j)
k+1 = (1− βj,k)y(j)k + βj,kf

(j+1)
ωj+1,k+1

(y
(j+1)
k+1 ), (2.1)

where ωj,k denotes the realization of j-th level random variable at the k-th iteration, βj,k’s are

pre-specified stepsizes. We refer to this update for y
(j)
k as a basic update step. Letting y

(T )
k = xk

and αk = βT,k to simplify the notation, we refer to the preceding iteration as the basic T -level

Stochastic Compositional Gradient Descent (T -SCGD) method and summarize it in Algorithm 1.

Note that we choose the stepsizes such that βj+1,k/βj,k → 0 as k →∞ for all j’s, in order to control

and balance the convergence speed for each auxiliary variables.

To analyze the convergence of the algorithm, we impose the following assumptions on the

smoothness and bounded second-order moments for the stochastic component functions.

Assumption 2.1. Let C1, C2, · · · , CT , V1, · · · , VT , L2, L3, · · · , LT be positive scalars.

(i) The outer functions f (T−1), f (T−2), · · · , f (1) are continuously differentiable, the inner function

f (T ) is continuous, the feasible set X is closed and convex, and there exists at least one optimal

solution x∗ to problem (1.1).
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Algorithm 1 Basic Stochastic Compositional Gradient Descent (T-SCGD)

Input : x0 ∈ RdT , y
(j)
0 ∈ Rdj , for j = T − 1, · · · , 1, SO, K, stepsizes {αk}Kk=0, {βj,k}Kk=0 for

j = T − 1, ..., 1.

Output : The sequence {xk}Kk=0.

for k = 0, 1, 2, ...,K do

Query the SO for the sample values of f (T ), · · · , f (1) at (xk, y
(T−1)
k , · · · , y(1)k ), obtain the sample

gradients/ subgradients ∇̃f (T )ωT,k(xk),∇f (T−1)ωT−1,k(y
(T−1)
k ), · · · ,∇f (1)ω1,k(y

(1)
k ).

Update the main iterate by

xk+1 = ΠX

{
xk − αk∇̃f (T )ωT,k

(xk)∇f (T−1)ωT−1,k
(y

(T−1)
k ) · · · ∇f (1)ω1,k

(y
(1)
k )
}
.

Query the SO for the sample value of f (T )(·) at xk+1, obtain f
(T )
ωT,k+1(xk+1).

Update y
(T−1)
k by

y
(T−1)
k+1 = (1− βT−1,k)y(T−1)k + βT−1,kf

(T )
ωT,k+1

(xk+1).

for j = T − 2, · · · , 1 do

Query the SO for the sample value of f (j) at y
(j)
k+1, obtain f

(j)
ωj,k+1(y

(j)
k+1).

Update

y
(j)
k+1 = (1− βj,k)y(j)k + βj,kf

(j+1)
ωj+1,k+1

(y
(j+1)
k+1 ).

end for

end for

(ii) The sample paths (ω1,0, ω2,0, · · · , ωT,0), (ω1,1, ω2,1, · · · , ωT,1),...,(ω1,k, ω2,k, · · · , ωT,k) are inde-

pendent across k and satisfy with probability 1

E[f (j)ωj,0
(xj)|ω1,0, · · · , ωj−1,0] = f (j)(xj), ∀xj ∈ Rdj for j = 1, · · · , T, and E[∇̃Fω0(x)] ∈ ∂F (x),

for all x ∈ X , where ∇̃Fω0(x) ≡ ∇̃f (T )ωT,0(x)∇f (T−1)ωT−1,0

(
f (T )(x)

)
· · · ∇f (1)ω1,0

(
f (2) ◦ · · · ◦ f (T )(x)

)
.

(iii) The function f (T )(·) is Lipschitz continuous with parameter CT , and the samples f
(T )
ωT,0(·),

∇̃f (T )ωT,0(·) have bounded second-order moments such that with probability 1

E
[
‖∇̃f (T )ωT,0

(x)‖2|ωT−1,0, · · · , ω1,0

]
≤ CT ,E

[
‖f (T )ωT,0

(x)− f (T )(x)‖2|ωT−1,0, · · · , ω1,0

]
≤ VT ,

for all x ∈ X .

(iv) For j = 1, · · · , T − 1, the functions f (j)(·)’s and f
(j)
ωj,0(·)′s have Lj-Lipschitz continuous gradi-

ents such that with probability 1

E
[
‖∇f (j)ωj,0

(xj)‖2|ωj−1,0, · · · , ω1,0

]
≤ Cj ,E

[
‖f (j)ωj,0

(xj)− f (j)(xj)‖2|ωj−1,0, · · · , ω1,0

]
≤ Vj ,
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and ‖∇f (j)ωj,0
(xj)−∇f (j)ωj,0

(x̄j)‖ ≤ Lj‖xj − x̄j‖,

for all xj , x̄j ∈ Rdj .

In some part of the analysis, we also assume that the overall objective is sufficiently smooth as

follows.

Assumption 2.2. The function F (x) has Lipschitz continuous gradient, i.e., there exists LF > 0

such that

F (z)− F (x) ≤ 〈∇F (x), z − x〉+
LF
2
‖z − x‖2, ∀x, z.

Note that in Assumption 2.1, we require the functions f (1)(·), · · · , f (T−1)(·) to have Lipschitz

continuous gradients, and we do not impose such assumptions on f (T )(·). Hence, we cannot guar-

antee that F (x) has a Lipschitz continuous gradient, which means Assumption 2.1 does not imply

Assumption 2.2.

Although Assumptions 2.1-2.2 may seem complicated, they are actually quite mild. They es-

sentially require that the component function be sufficiently smooth and the samples have bounded

second moments. The conditions on smoothness can be easily satisfied when the component func-

tions are polynomial functions. The conditions on second-moment boundedness can be satisfied

when the random variables are drawn from a finite set or when the random variables have subgaus-

sian distributions, which are typically satisfied in big data applications. Please see the numerical

example used in Section 4 as an example.

2.2 Convergence Results for T -SCGD

Theoretical analysis of Algorithm 1 is challenging due to the nested level of expectations over a

path of random variables. The multiple nested levels of expectations need to be carefully estimated

and balanced to ensure convergence of the algorithm.

We first show the almost sure convergence of the algorithm as long as the step-sizes are properly

chosen and diminishing under Assumption 2.1. For convex problems, we show that the algorithm

generates a sequence of solutions that converges to an optimal solution to problem (1.1) with

probability 1. For nonconvex problems with smooth objective, we show that all limiting points

of the sequence generated by this algorithm are stationary points with probability 1 under mild

assumptions.

Meanwhile, we analyze the convergence rate of Algorithm 1. Specifically, we derive the rate

through taking the averaged iterates x̂n = 1
Nn

∑n
k=n−Nn+1 xk, where Nn = dn/2e. Note that

similar results still hold if we let Nn = n/C, where C > 1 is a positive integer. Clearly, the rate of

convergence is closely related to the stepsizes αk’s and βj,k’s. We consider stepsizes of the form

αk = k−a and βj,k = k−bj for all j = T − 1, ..., 1, (2.2)

where a and bj ’s are real numbers, and obtain the convergence rate by optimizing over a and bj ’s.

Furthermore, we consider multi-level compositional problems with optimally strongly convex

objective. Algorithm 1 achieves a much faster convergence rate for such problems. In particular,
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denote by X ∗ the set of optimal solutions x∗ to problem (1.1). We say that the objective function

F is optimally strongly convex with parameter λ > 0 if

F (x)− F
(
ΠX ∗(x)

)
≥ λ‖x−ΠX ∗(x)‖2, ∀x ∈ X . (2.3)

Clearly, the class of optimally strongly convex functions strictly contains all strongly convex func-

tions, and is thus more general.

Theorem 2.1 (Convergence of T -SCGD). Let Assumption 2.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0

be the sequence generated by the T -SCGD Algorithm 1 starting with an arbitrary initial point

(x0, y
(T−1)
0 , · · · , y(1)0 ).

(a) Let the step-sizes {α1,k}, {β2,k}, · · · , {βT,k} be such that

∞∑

k=0

αk =∞,
∞∑

k=0

βj,k =∞, for all j = T − 1, ..., 1,

and

∞∑

k=0

(
α2
k + β2T−1,k + · · ·+ β21,k +

α2
k

β2,k
+

α2
k

β3,k
+ · · ·+ α2

k

βT−1,k
+
β2T−1,k
βT−2,k

+ · · ·+
β22,k
β1,k

)
<∞.

(i) If F is convex, {xk} converges almost surely to a random point in the set of optimal

solutions to problem (1.1).

(ii) Suppose Assumption 2.2 holds in addition, X = RdT , and all samples generated by

the SO are uniformly bounded, then any limiting point of the sequence {xk}∞k=0 is a

stationary point to problem (1.1) almost surely.

(b) If F is convex, let Dx > 0 be such that supx∈X ‖x − x∗‖ ≤ Dx and set the stepsizes be

αk = k−a, βj,k = k−bj for j = T − 1, · · · , 1, where (a, bT−1, bT−2, · · · , b1) ∈ (0, 1), then we

obtain

E[F (x̂n)− F ∗] ≤ O(n−1/2
T

),

by choosing a = 1− 1
2T
, bT−1 = 1− 1

2T−1 , · · · , b1 = 1− 1
2 .

(c) Suppose that Assumption 2.2 holds, and F is optimally strongly convex with some parameter

λ > 0 defined in (2.3). Letting αk = 1
λk
−a, βj,k = k−bj for j = T − 1, · · · , 1, we obtain

E[‖xn −ΠX ∗(xn)‖2] ≤ O(n−2/(T+1)),

by choosing a = 1 and bj = j+1
T+1 for j = T − 1, T − 2, · · · , 1.

This result characterizes the conditions under which Algorithm 1 converges almost surely. It also

provides a sample complexity upper bound for the multi-level stochastic compositional optimization

problems. In the case where T = 2, this result guarantees a convergence rate of O(n−1/4) for convex

problems and an O(n−2/3) rate of convergence for strongly convex problems, which matches the

convergence rates of convex and strongly convex basic-SCGD given in [26] respectively.

10



When dealing with nonconvex objectives (e.g., part (ii)), we assume the condition “all samples

generated by the SO are uniformly bounded,” which may seem somewhat restrictive. The same

condition will be used in subsequent analysis for nonconvex problems. It can be verified in many

practical training problems in machine learning that involve finite data sets. We also note that it is

possible to extend the result to the case where this condition is replaced by a milder condition like

“X is a closed and bounded.” Such an extension would require a more sophisticated update rule

and more complex analysis to deal with the constraint, which is beyond the scope of the current

paper. In this paper, we choose to present the most succinct result for nonconvex problems under

the uniformly bounded assumption.

The detailed proof of Theorem 2.1 can be derived similarly as in the proofs of Theorem 3.1,

3.2 and 3.3. In this paper, we omit the proof to avoid repetition, which can be found in our online

supplementary materials.

3 Accelerated Multi-Level Stochastic Gradient Algorithm

In the previous section, we establish an O(n−1/2
T

) rate of convergence for the T -level stochastic

compositional optimization problem. A key question is whether and when we can better utilize

noisy gradients of component functions and improve the overall convergence rate.

Throughout this section, in addition to Assumption 2.1, we impose the following assumption:

Assumption 3.1. Let C1, C2, · · · , CT , V1, · · · , VT be positive scalars.

(i) The samples f
(j)
ωT,k(·), ∇̃f (j)ωT,k(·) have bounded fourth-order moments such that with probability

1,

E[‖∇̃f (T )ωT,0
(x)‖4|ω1,0, · · · , ωT−1,0] ≤ C2

T ,

and E[‖f (T )ωT,0
(x)− f (T )(x)‖4|ω1,0, · · · , ωT−1,0] ≤ V 2

T , ∀x ∈ X .

(ii) The samples f
(j)
ωj,k(·)’s and ∇f (j)ωj,k(·)’s have bounded fourth-order moments such that with

probability 1,

E[‖∇f (j)ωj,0
(xj)‖4|ω1,0, · · · , ωj−1,0] ≤ C2

j ,

and E[‖f (j)ωj,0
(xj)− f (j)(xj)‖4|ω1,0, · · · , ωj−1,0] ≤ V 2

j , ∀xj ∈ Rdj , and for j = T − 1, · · · , 1.

We also consider the case when the first inner level function f (T ) also has Lipschitz continuous

gradients. In some part of our subsequent analysis, we make the following assumption.

Assumption 3.2. The function f (T ) has Lipschitz continuous gradient such that

‖∇f (T )(x)−∇f (T )(x̄)‖ ≤ LT ‖x− x̄‖,

for all x, x̄ ∈ X .

In what follows, we propose an accelerated algorithm to better utilize those smoothness prop-

erties and achieve improved convergence rates.
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3.1 An Extrapolation-Interpolation Scheme For Acceleration

The basic idea of acceleration is to refine the running estimates of the value functions by using

additional extrapolations. The same idea has been used for the case where T = 2. Specifically, in

[26], with an additional bounded fourth moments assumption, the authors developed an accelerated

SCGD (a-SCGD) algorithm and achieved faster convergence rate using an extra extrapolation step

per iteration.

Now we develop a new accelerated algorithm for the multi-level problem that runs as follows:

At the k-th iteration, we first update the main iterate solution xk+1 by the chain rule,

xk+1 = ΠX

{
xk − αk∇̃f (T )ωT,k

(xk)∇f (T−1)ωT−1,k
(y

(T−1)
k ) · · · ∇f (1)ω1,k

(y
(1)
k )
}
.

We then update the running estimate y
(T−1)
k for EωT,k

[f
(T )
ωT,k(xk)|ω1,k, · · · , ωT−1,k] by taking weighted

average between the new sample and the previous estimate. Specifically, we update y
(T−1)
k by letting

y
(T−1)
k+1 = (1− βT−1,k)y(T−1)k + βT−1,kf

(T )
ωT,k+1

(xk+1).

Next, we conduct extrapolation steps for acceleration. The intuition is that we can use sample

gradients of individual component functions more efficiently when these functions are smooth, which

allows us to obtain better estimates of f (j)’s. In particular, our accelerated updates for the auxiliary

variables are performing first-oder running approximations of the true values. In comparison, the

corresponding updates used in T -SCGD can be viewed as zeroth-order running approximations.

Specifically, at the k-th iteration, we refine our estimate y
(j)
k+1 by taking an additional extrapolation

step and obtaining a new auxiliary variable ŷ
(j)
k+1:

ŷ
(j)
k+1 = (1− 1/βj,k)y

(j+1)
k + y

(j+1)
k+1 /βj,k.

Then, when we update y
(j)
k+1, we plug in this auxiliary variable aiming for a better estimate that

y
(j)
k+1 = (1− βj,k)y(j)k + βj,k · f (j+1)

ωj+1,k+1
(ŷ

(j)
k+1).

We point out that this is essentially a weighted smoothing scheme, where ŷ
(j)
k ’s are obtained

through extrapolation steps to further utilize the smoothness in order to improve the conver-

gence rate. Roughly speaking, this further extrapolation step helps us achieve estimators y
(j)
k+1’s

for f (j+1)(y
(j+1)
k+1 )’s accurate up to the second order terms if we take Taylor expansions of f (j)’s. In

comparison, without the extrapolation, if we directly plug in y
(j+1)
k+1 ’s instead, the estimators are

only accurate up to the first order terms. We call this an accelerating update step. Note that here

we do not assume f (T ) has Lipschitz continuous gradient as in some applications, f (T ) includes

some sparse-inducing regularization terms and is not continuously differentiable.

When Assumption 3.2 holds, we update the main iteration by the chain rule, and then apply

extrapolation to this level to better utilize the smoothness. That is, we refine our estimate y
(T−1)
k+1

with an additional extrapolation step and an auxiliary variable ŷ
(T−1)
k+1 as

ŷ
(T−1)
k+1 = (1− 1/βT−1,k)xk + xk+1/βT−1,k.

12



Next, we update y
(T−1)
k+1 by this auxiliary variable such that

y
(T−1)
k+1 = (1− βT−1,k)y(T−1)k + βT−1,kf

(T )
ωT,k+1

(ŷ
(T−1)
k+1 ).

For the remaining levels, we apply the same procedure as in the accelerating update steps previously

described. We summarize those two slightly different accelerated algorithms in Algorithm 2.

In the remaining part of this section, we provide theoretical guarantees for this accelerated

algorithm. We first provide the almost sure convergence result that almost surely, our algorithm

converges to an optimal solution when the problem is convex, and any limiting point of the generated

solution path is a stationary point. Next, we obtain an improved convergence rate for our algorithm

for general nonconvex objective functions. Furthermore, we investigate the case when the objective

function is strongly convex, and show that one can achieve faster convergence. For all results, we

provide outlines and key lemmas in the main text, and defer the detailed proofs in Appendix A, B

and C.

3.2 Almost Sure Convergence Of a-TSCGD

We first investigate whether and under what condition the algorithm converges almost surely. In

particular, we provide sufficient conditions of the stepsizes, such that when the problem is convex,

the algorithm converges to an optimal solution almost surely, and when the problem is nonconvex,

all limiting points of the solution path generated by the algorithm are stationary points almost

surely when F (x) has Lipschitz continuous gradient.

Theorem 3.1 (Almost sure convergence for a-TSCGD). Let Assumptions 2.1 and 3.1 hold, and

let the stepsizes {αk}, {βT−1,k}, · · · , {β1,k} be such that

∞∑

k=0

αk =∞,
∞∑

k=0

βT,k =∞, · · · ,
∞∑

k=0

β1,k =∞,

∞∑

k=0

(
α2
k + β2T−1,k + · · ·+ β21,k +

α2
k

βT−1,k
+ · · ·+ α2

k

β1,k

)
<∞,

and
∞∑

k=0

(β4T−1,k
β3T−2,k

+ · · ·+
β42,k
β31,k

)
<∞.

Let
{

(xk, y
(T−1)
k , · · · , y(1)k )

}∞
k=0

be the sequence generated by Algorithm 2 starting with an arbitrary

initial point (x0, y
(T−1)
0 , · · · , y(1)0 ). Then:

(a) If F is convex, the sequence {xk}∞k=0 converges almost surely to a random point in the set of

optimal solutions to problem (1.1).

(b) Suppose in addition that Assumption 2.2 holds, X = RdT , and all samples generated by the

SO are uniformly bounded, then any limiting point of the sequence {xk}∞k=0 is a stationary

point of problem (1.1) almost surely.
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Algorithm 2 Accelerated T -Level Stochastic Compositional Gradient Descent (a-TSCGD)

Input: x0 ∈ RdT , y(j)0 ∈ Rdj for j = T − 1, ..., 1, SO, K, stepsizes {αk}Kk=0,{βj,k}Kk=0 for

j = T − 1, ..., 1.

Output: The sequence {xk}Kk=0.

for k = 0, 1, 2, ...,K do

Query the SO for the sample values of f (T ), · · · , f (1) at xk, y
(T−1)
k , · · · , y(1)k , obtain ∇̃f (T )ωT,k(xk),

∇f (T−1)ωT−1,k+1(y
(T−1)
k ), · · · ,∇f (1)ω1,k(y

(1)
k ).

Update the main iterate by

xk+1 = ΠX

{
xk − αk∇̃f (T )ωT,k

(xk)∇f (T−1)ωT−1,k
(y

(T−1)
k ) · · · ∇f (1)ω1,k

(y
(1)
k )
}
.

if Assumption 3.2 is known to hold then

Update the auxiliary variable ŷ
(T−1)
k+1 by

ŷ
(T−1)
k+1 = (1− 1/βT−1,k)xk + xk+1/βT−1,k.

Query the SO for the sample value of f (T ) at ŷ
(T−1)
k+1 , obtain f

(T )
ωT,k+1(ŷ

(T−1)
k+1 ).

Update

y
(T−1)
k+1 = (1− βT−1,k)y(T−1)k + βT−1,kf

(T )
ωT,k+1

(ŷ
(T−1)
k+1 ).

else if Assumption 3.2 is NOT known to hold then

Query the SO for the sample values of f (T ) at xk+1, obtain f
(T )
ωT,k+1(xk+1).

Update y(T−1) by

y
(T−1)
k+1 = (1− βT−1,k)y(T−1)k + βT−1,kf

(T )
ωT,k+1

(xk+1).

end if

for j = T − 1, · · · , 2 do

Update the auxiliary variable ŷ
(j−1)
k+1 by

ŷ
(j−1)
k+1 = (1− 1

βj−1,k
)y

(j)
k +

1

βj−1,k
y
(j)
k+1.

Query the SO for the sample value of f (j) at z
(j−1)
k+1 , obtain f

(j)
ωj,k+1(z

(j−1)
k+1 ).

Update y(j) by

y
(j−1)
k+1 = (1− βj−1,k)y(j−1)k + βj−1,kf

(j)
ωj,k+1

(ŷ
(j−1)
k+1 ).

end for

end for
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Furthermore, if Assumption 3.2 also holds, i.e., when f (T ) has Lipschitz continuous gradient, then

if the stepsizes also satisfy
∞∑

k=0

α4
k

β3k
<∞,

the assertions in (a) and (b) also hold.

Proof Outline. We provide the proof outline here for the case when the first inner level function

f (T ) is non-smooth. The analysis for problems with a smooth first inner level function could be

derived from the non-smooth case, and we present the details for both cases in Appendix A.

We denote by Fk the collection of random variables up to the k-th iteration to help us better

analyze the convergence properties:

Fk =
{
{xi}ki=0, {y(T−1)i }k−1i=0 , · · · , {y

(1)
i }k−1i=0 , {ŷ

(T−2)
i }k−1i=0 , · · · , {ŷ

(1)
i }k−1i=0 , {ωT,i}k−1i=1 , · · · , {ω1,i}k−1i=1

}
.

To derive the almost sure convergence of Algorithm 2, we construct two different T -element

super-martingales for the convex and non-convex objectives, respectively.

Firstly, for problems with convex objective F , in the k-th iteration, we have the following lemma

to analyze the improvement from ‖xk − x∗‖ to ‖xk+1 − x∗‖ by ‖y(T−1)k − f (T )(xk)‖, ‖y(T−2)k −
f (T−1)(y

(T−1)
k )‖, · · · , and ‖y(1)k − f (2)(y

(2)
k )‖.

Lemma 3.1. Let Assumption 2.1 hold, and let F = f (1) ◦ f (2) ◦ · · · ◦ f (T ) be convex. Then

Algorithm 2 generates a sequence {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 such that there exists a constant C0 >

0 and an optimal solution x∗ ∈ X ∗, for all k, with probability 1,

E[‖xk+1 − x∗‖2|Fk]

≤
(

1 +
[ α2

k

βT−1,k
+ · · ·+ α2

k

β1,k

]
C0

)
‖xk − x∗‖2 + α2

kC1C2 · · ·CT − 2αk
(
F (xk)− F ∗

)

+ (T − 1)βT−1,kE[‖y(T−1)k − f (T )(xk)‖2|Fk] + (T − 2)βT−2,kE[‖y(T−2)k − f (T−1)(y(T−1)k )‖2|Fk]
+ · · ·+ β1,kE[‖y(1)k − f (2)(y

(2)
k )‖2|Fk].

(3.1)

Lemma 3.1 states that for T -level SCGD with convex objective function F , the optimality error

‖xk+1−x∗‖ can be bounded by ‖xk−x∗‖, ‖y(T−1)k − f (T )(xk)‖, ‖y(T−2)k − f (T−1)(y(T−1)k )‖, · · · , and

‖y(1)k − f (2)(y
(2)
k )‖ in a super-martingale form.

Next, we present a lemma used in the analysis in part (b).

Lemma 3.2. Suppose that Assumption 2.1 and 2.2 hold, and X = RdT . Let F ∗ = minx∈X F (x),

then Algorithm 2 generates a sequence {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 such that

E[F (xk+1)− F ∗|Fk]

≤ F (xk)− F ∗ −
αk
2
‖∇F (xk)‖2 +

1

2
α2
kLFC1C2 · · ·CT + (T − 1)βT−1,kE[‖y(T−1)k − f (T )(xk)‖2|Fk]

+ (T − 2)βT−2,kE[‖y(T−2)k − f (T−1)(y(T−1)k )‖2|Fk] + · · ·+ β1,kE[‖y(1)k − f (2)(y
(2)
k )‖2|Fk],

for k sufficiently large, with probability 1.
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This lemma tells us that for T -level SCGD with general nonconvex objective function F ,

(F (xk+1)− F ∗) can be bounded by (F (xk)− F ∗), ‖y(T−1)k − f (T )(xk)‖, ‖y(T−2)k − f (T−1)(y(T−1)k )‖,
· · · , and ‖y(1)k −f (2)(y

(2)
k )‖ in a super-martingale form. Similar as in Lemma 3.1, we shall construct

the super-martingales for ‖y(T−1)k −f (T )(xk)‖ and ‖y(j)k −f (j+1)(y
(j+1)
k )‖ for j = T−2, · · · , 1 respec-

tively, and then use Lemma 3.6 to show the almost sure convergence of (F (xk)− F ∗) for a T -level

SCGD with nonconvex objective F . With further analysis, we show that any limiting point of the

sequence {xk}∞k=0 is a stationary point with probability 1, which proves part (b) of Theorem 3.1.

Next, we analyze the term ‖y(j)k − f (j+1)(y
(j+1)
k )‖ for j = T − 1, · · · , 1 and construct the proper

super-martingales for them respectively.

Essentially, we construct a T -element super-martingale to derive the almost sure convergence of

the algorithm. For the first inner level, since f (T ) is non-smooth, we construct the super-martingale

for this level as follows:

Lemma 3.3. Let Assumption 2.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence gener-

ated by Algorithm 2. Suppose E[‖xk+1 − xk‖2] ≤ O(α2
k) for all k, then we have

(a) For all k, with probability 1,

E[‖y(T−1)k+1 − f (T )(xk+1)‖2|Fk+1]

≤(1− βT−1,k)‖y(T−1)k − f (T )(xk)‖2 + β−1T−1CTE[‖xk+1 − xk‖2|Fk+1] + 2VTβ
2
T−1,k.

(3.2)

(b) If
∑∞

k=1 α
2
k/βT−1,k <∞, then

∞∑

k=1

β−1T−1,kE[‖xk+1 − xk‖2|Fk+1] <∞, w.p.1.

(c) There exists a constant DT−1 ≥ 0 such that E[‖y(T−1)k+1 − f (T )(xk+1)‖2] ≤ DT−1 for all k.

(d) E[‖y(T−1)k+1 − y(T−1)k ‖2] ≤ O(β2T−1,k) for all k.

With the additional finite fourth-moment Assumption 3.1, we can derive a stronger result in

the following lemma.

Lemma 3.4. Let Assumptions 2.1 and 3.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence

generated by Algorithm 2. Suppose E[‖xk+1−xk‖4] ≤ O(α4
k) for all k and αk/βT−1,k → 0 as k → 0,

in addition to Lemma 3.3 (a) (b) (c) and (d), we have:

(a) There exists a constant ST−1 > 0 such that E[‖y(T−1)k − f (T )(xk)‖4] ≤ ST−1 for all k.

(b) E[‖y(T−1)k+1 − y(T−1)k ‖4] ≤ O(β4T−1,k) for all k.

Note that here we use y
(T )
k = xk and βT,k = αk for ease of notation. This lemma constructs

super-martingales of
{
‖y(j)k − f (j+1)(y

(j+1)
k )‖

}∞
k=1

for j = T − 1 · · · , 1 respectively, and it also

shows that under proper assumptions, the tail part for the super-martingale, β−1j Cj+1E[‖y(j)k+1 −
y
(j)
k ‖2|Fk] + 2Vj+1β

2
j,k, converges almost surely.

Next, to construct the super-martingale for the accelerating update steps, we present the fol-

lowing lemma.

16



Lemma 3.5. Let Assumption 2.1 and 3.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=1 be the sequence

generated by Algorithm 2. For j = T − 2, · · · , 1, suppose E[‖y(j+1)
k+1 − y

(j+1)
k ‖4] ≤ O(β4j+1,k) for all

k and βj+1,k/βj,k → 0 as k → 0, then there exists a random variable e
(j)
k ∈ Fk+1 for all k satisfying

‖y(j)k − f (j+1)(y
(j+1)
k )‖ ≤ e(j)k such that:

(a) For all k, with probability 1,

E[[e
(j)
k+1]

2|Fk+1] ≤ (1− βj,k
2

)[e
(j)
k ]2 + 2β2j,kVj+1 +O

(
E[‖y(j+1)

k+1 − y
(j+1)
k ‖4|Fk+1]

β3j,k

)
.

(b) If
∑∞

k=1 β
4
j+1,k/β

3
j,k <∞, we have

∞∑

k=1

E[‖y(j+1)
k+1 − y

(j+1)
k ‖4|Fk+1]

β3j,k
<∞ w.p.1.

(c) There exists a constant Dj ≥ 0 such that E[e
(j)
k ]2 ≤ Dj for all k.

(d) There exists a constant Sj ≥ 0 such that E[‖y(j)k − f (j+1)(y
(j+1)
k )‖4] ≤ Sj for all k.

(e) E[‖y(j)k+1 − y
(j)
k ‖4] ≤ O(β4j,k) for all k.

Previous lemmas provide basic blocks for us to build a T -element super-martingale. We then

provide the T -element super-martingale convergent lemma to establish the convergence property

of {xk − x∗}.

Lemma 3.6 (T -element supermartingale convergence). Let {Xk},{Y (T−1)
k },· · · ,{Y (1)

k }, {ηk}, and

{u(j)k },{µ
(j)
k },{θ

(j)
k } for j = 1, · · · , T be sequences of nonnegative random variables such that

E[Xk+1|Gk] ≤ (1 + ηk)Xk − u(T )k +

T−1∑

j=1

cjθ
(j)
k Y

(j)
k + µ

(T )
k ,

and

E[Y
(T−1)
k+1 |Gk] ≤ (1− θ(j)k )Y

(j)
k − u(j)k + µ

(j)
k , for j = T − 1, ..., 1,

for all k, where Gk is the collection of random variables
{
{Xi}ki=0, {Y (T−1)

i }ki=0, · · · , {Y (1)
i }ki=0, {ηi}ki=0, {u(j)i }ki=0, {µ(j)i }ki=0, {θ(j)i }ki=0, for j = 1, · · · , T

}
,

and cT−1, cT−2 · · · , c1 are positive scalars. Assume that

∞∑

k=0

ηk <∞,
∞∑

k=0

µ
(j)
k <∞, for j = 1, · · · , T.

Then {Xk}, {Y (1)
k }, {Y

(2)
k }, · · · , {Y

(T−1)
k } converge almost surely to T nonnegative random variables

respectively, and we have

T∑

j=1

∞∑

k=0

u
(j)
k <∞,

∞∑

k=0

T−1∑

j=1

cjθ
(j)
k Y

(j)
k <∞ w.p.1.
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By Lemmas 3.1, 3.3, 3.4 and 3.5, we construct the T -element super-martingale and show its

convergence by letting

Xk = ‖xk − x∗‖2, Y (T−1)
k = E[‖y(T−1)k − f (T )(xk)‖2|Fk],

Y
(T−2)
k = E[[e

(T−2)
k ]2|Fk], · · · , Y (1)

k = E[[e
(1)
k ]2|Fk],

ηk = [
α2
k

βT−1,k
+ · · ·+ α2

k

β1,k
]C0, u

(T )
k = 2αk(F (xk)− F ∗),

u
(1)
k = u

(2)
k = · · · = u

(T−1)
k = 0, c1 = 2, · · · , cT−2 = 2(T − 2), cT−1 = T − 1,

µ
(T−1)
k = CTβ

−1
T−1,kE[‖xk+1 − xk‖2|Fk] + 2VTβ

2
T−1,k,

µ
(T−2)
k = 2β2T−2,kVT−1 +O(

E[‖y(T−1)k+1 − y(T−1)k ‖4|Fk]
β3T−2,k

), · · · ,

µ
(1)
k = 2β21,kV1 +O(

E[‖y(2)k+1 − y
(2)
k ‖4|Fk]

β31,k
),

µ
(T )
k = α2

kC1C2 · · ·CT ,
θ
(1)
k = β1,k/2, · · · , θ(T−2)k = βT−2,k/2, θ

(T−1)
k = βT−1,k.

Under the conditions in Theorem 3.1, we obtain that the T -element super-martingale converges

almost surely to T random variables by Lemma 3.6, thus ‖xk − x∗‖ converges almost surely, and

∞∑

k=0

αk(F (xk)− F ∗) <∞, w.p.1,

which further implies that

lim inf
k→∞

F (xk) = F ∗, w.p.1.

Finally, the following lemma shows the the sequence {xk}∞k=0 converges almost surely to an optimal

solution to problem (1.1), which completes the proof of part (a).

Lemma 3.7. Let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence generated by Algorithm 2. Let F ∗ =

F (x∗), where x∗ is an optimal solution to problem (1.1). Suppose

lim inf
k→∞

F (xk) = F ∗, w.p.1,

then {xk} converges almost surely to a random point in the set of optimal solutions to problem

(1.1).

For part (b), by Lemma 3.2 and Lemma 3.3, we construct the T -element super-martingale

for general non-convex functions, and show {F (xk)− F ∗} converges almost surely by Lemma 3.6,

which further implies
∑∞

k=0 αk‖∇F (xk)‖2 < ∞ with probability 1. Then, we have the following

lemma concluding that any limiting point of the sequence {xk} is a stationary point of F (x) with

probability 1.
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Lemma 3.8. Let
{

(xk, y
(T−1)
k , · · · , y(1)k )

}∞
k=0

be the sequence generated by Algorithm 2. Suppose∑∞
k=0 αk = ∞ and

∑∞
k=0 αk‖∇F (xk)‖2 < ∞ with probability 1, and all the random variables

generated by SO are uniformly bounded, then any limiting point of the sequence {xk} is a stationary

point of F (x) with probability 1.

This concludes the proof for part (b).

3.3 Convergence Rate Results For a-TSCGD

In this subsection, we study the rate of convergence of the algorithm. We consider stepsizes of the

form

αk = k−a, βT−1,k = k−bT−1 , and βj,k = 2k−bj for all j = T − 2, · · · , 1,
where a and bj ’s are real numbers if the first inner level function f (T ) is nonsmooth, and we choose

the step-sizes to be

αk = k−a, and βj,k = 2k−bj for all j = T − 1, · · · , 1,

if f (T ) is smooth. After optimizing the rate over all a and bj ’s, we get the following result for both

convex and nonconvex F (x).

Theorem 3.2 (Convergence rate of a-TSCGD). Suppose that Assumptions 2.1, 2.2 and 3.1 hold

and X = RdT . Let the stepsizes be αk = k−a, βT−1,k = k−bT−1 and βj,k = 2k−bj for j = T−2, · · · , 1,

where a, bT−1, ..., b1 ∈ (0, 1). If we choose the step-sizes as a = 4+T
8+T and bj = j+3

8+T for j = T−2, ..., 1,

letting {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence generated by a-TSCGD Algorithm 2, we obtain

∑n
k=1 E[‖∇F (xk)‖2]

n
≤ O(n−4/(8+T )).

Furthermore, if Assumption 3.2 also holds, Algorithm 2 achieves

∑n
k=1 E[‖∇F (xk)‖2]

n
≤ O(n−4/(7+T )),

with αk = k−a and βj,k = 2k−bj , where a = 3+T
7+T and bj = j+3

7+T for j = T − 1, ..., 1.

Proof Outline. We present the outline of proof here and defer the detailed analysis in Appendix B.

We first derive the convergence rate of ‖y(j)k+1 − f (j+1)(y
(j+1)
k+1 )‖ and ‖y(j)k+1 − y

(j)
k ‖ for j =

T − 1, · · · , 1. By Lemma 3.3 and Lemma B.1 in the Appendix, we have the following lemma

characterizing the corresponding convergence rates:

Lemma 3.9. Let Assumption 2.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence gener-

ated by Algorithm 2. Consider the basic update step for the first inner level, we have

E[‖y(T−1)k − f (T )(xk)‖2] ≤ O(k−2a+2bT−1) +O(k−bT−1) for all k.

For the accelerating update steps, by Lemma 3.5 and Lemma B.1 in the Appendix, we have the

following result:
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Lemma 3.10. Let Assumptions 2.1 and 3.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence

generated by Algorithm 2. Then for any accelerated update step, we have for all k

E[‖y(j)k+1 − f (j+1)(y
(j+1)
k+1 )‖2] ≤ O(k4(bj−bj+1)) +O(k−bj ), j = T − 2, · · · , 1.

Under additional Assumption 2.2 that F has Lipschitz gradient, we obtain the following result.

Lemma 3.11. Let Assumptions 2.1, 2.2 and 3.1 hold, and let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the

sequence generated by Algorithm 2, then we have for all k

E[‖∇F (xk)‖2]
≤2α−1k E

[
F (xk)]− 2α−1k E[F (xk+1)

]
+O

(
E[‖y(T−1)k+1 − f (T )(xk)‖2]

)
+O

(
E[‖y(T−2)k+1 − f (T−1)(y(T−1)k+1 )‖2]

)

+ · · ·+O
(
E[‖y(1)k+1 − f (2)(y

(2)
k+1)‖2]

)
+O(αk).

Summing up the inequalities in the previous lemma from k = 0 to n, by Lemma 3.9 and

Lemma 3.10, we obtain
∑n

k=1 E[‖∇F (xk)‖2]
n

≤ O
(
na−1 + n−2a+2bT−1Ilogn2(a−bT−1)=1 + n−bT−1 + n−a

)

+O
( T−2∑

j=1

[n4(bj−bj+1)Ilogn4(bj+1−bj)=1 + n−bj ]
)

≤ O(n−4/(8+T )),

by choosing a = 4+T
8+T and bj = 3+j

8+T for j = T − 1, · · · , 1.

Furthermore, if Assumption 3.2 also holds, i.e., the first inner level function f (T ) has Lipschitz

continuous gradient, then the first inner level could also be updated by the accelerating update

rule. By similar analysis as in Lemma 3.10, we have for all k,

E[‖y(T−1)k+1 − f (T )(xk+1)‖2] ≤ O(k4(bT−1−a)) +O(k−bT−1).

Combine this inequality with Lemmas 3.10 and 3.11, by choosing a = 3+T
7+T and bj = 3+j

7+T for

j = T − 1, · · · , 1, we obtain
∑n

k=1 E[‖∇F (xk)‖2]
n

≤ O(n−4/(7+T )),

which completes the proof.

This result shows that one can solve the multi-level composition problem using few calls to

the sampling oracle when individual component functions are smooth. In the special case where

T = 2, when the first inner level is smooth, our result strictly improves the convergence rate of

the a-SCGD in [26] from O(n−2/7) to O(n−4/9). In this case our result matches the convergence

rate by ASC-PG in [28]. To the best of our knowledge, our results for the T -level problem strictly

improve and generalize existing results which work for the case where T = 2.

Next we investigate the convergence rate of Algorithm 2 for optimally strongly convex objective

defined in (2.3). In the next theorem, we prove that for optimally strongly convex objective, our

algorithm converges faster. We defer the detailed proof to Appendix C.
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Theorem 3.3 (Convergence rate of a-TSCGD for strongly convex problems). Let Assumptions 2.1,

2.2 and 3.1 hold. Suppose that the objective function F (x) in (1.1) is optimally strongly convex

with some parameter λ > 0 defined in (2.3) . Set αk = 1
λk
−a, βT−1,k = k−bT−1 and βj,k = 2k−bj

for j = T − 2, · · · , 1. Let {(xk, y(T−1)k , · · · , y(1)k )}∞k=0 be the sequence generated by a-TSCGD

Algorithm 2, then

E[‖xn −ΠX ∗(xn)‖2] ≤ O
(
n−a + n−2(a−bT−1) + n−bT−1 +

T−2∑

j=1

[n−4(bj+1−bj) + n−bj ]
)
.

With the choice of a = 1, bT−1 = 2+T
4+T , bT−2 = 1+T

4+T , · · · , b1 = 4
4+T , we have

E[‖xn −ΠX ∗(xn)‖2] ≤ O(n−4/(4+T )).

Furthermore, if Assumption 3.2 also holds, Algorithm 2 achieves

E[‖xn −ΠX ∗(xn)‖2] ≤ O(n−4/(3+T )),

with the stepsizes being αk = 1
λk
−a and βj,k = 2k−bj , where a = 1 and bj = 3+j

3+T for j = T−1, · · · , 1.

This result shows that our algorithm achieves a faster convergence for those problems of op-

timally strongly convexity in the objective functions. For the speical case T = 1 with a smooth

strongly convex function, this result achieves a convergence rate of O(n−1), which meets the con-

vergence rate of the single-level strongly convex stochastic optimization. Besides, for a special case

T = 2 with a smooth first inner level function, this result achieves a convergence rate of O(n−4/5),

which matches the convergence rate ASC-PG in [28] for optimally strongly convex problems.

4 Example and Numerical Experiments

In this section, we provide a practical example of the T -level stochastic compositional optimization

problem (1.1), the risk-averse stochastic optimization, and conduct numerical experiments. Risk-

averse stochastic optimization finds wide applications in many fields such as risk management [4]

and government planning [3]. Among different formulations of risk-averse stochastic optimization

problems, one particular important problem is the mean-deviation risk-averse optimization problem

that

min
x
ρ(U(x,w)) := min

x

{
Eω [U(x, ω)] + λE

[
(E [U(x, ω)]− U(x, ω))p+

]1/p}
. (4.1)

Here the objective ρ is the composition of three expected-value functions. It is also a law-invariant

coherent risk measure. See [22, 1] for more detailed discussions.

This problem falls into the problem class (1.1) as a three-level stochastic compositional opti-

mization problem. In particular, the problem is equivalent to

min
x

(f (1) ◦ f (2) ◦ f (3))(x),

where

f (1)
(
(y1, y2)

)
= y1 − y1/p2 , f (2)

(
z, x
)

=
(
z,Eω

[
(z − U(x, ω))p+

])
, and f (3)(x) = (Eω [U(x, ω)] , x).
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Figure 2: Averaged difference between generated solution and the optimal solution and empirical

convergence rate when d = 50

Note that this problem involves only two random variables (in the nested inner functions f (2) and

f (3)), yet it is a three-level composition problem due to the outer function f (1). We remark that

stochastic composition optimization is challenging due to the bias induced by using the chain rule

to calculate stochastic gradients. In three-level problems, the bias is caused by the inner two levels,

so the current problem is as hard as any three-level problem, even though its most outer level is

deterministic. As a result, it can not be solved using existing methods for the two-level problem.

Using methods developed in this paper, we can now solve it using a three-level SCGD algorithm.

Next, we conduct numerical experiments. We consider the risk-averse stochastic optimization

in a regression setting. In particular, consider a linear model Y = Xβ∗ + ε, where we assume

all samples of X and ε are independently and identically distributed. Our goal is to estimate β∗,

and we consider a risk-averse formulation. Consider the risk-averse optimization problem (4.1).

Denoting the i-th sample by ωi = {xi, yi}, we take

U(β, ωi) = (yi − xTi β)2,

and we set p = 2. To the best of our knowledge, our algorithm is the first gradient-based method

which can be adopted to solve this 3-level stochastic optimization problem. We point out that this

approach of risk-averse regression tends to provide “stable” solutions. This defines a general notion

of stability in statistics in [18, 25], where the stability is usually defined as variance, and we also

penalize the “good” cases when the empirical error is smaller than its expectation. In comparison,

in our approach, we do not penalize these “good” cases.

Let the dimension of the covariate xi be d. We consider three setups to generate the data that

• Setup 1: X ∼ N(0, Id).

• Setup 2: X ∼ N(0,Σ), where Σjj = 1 and Σjk = 0.5 for j, k = 1, ..., d and j 6= k.

• Setup 3: X ∼ N(0,Σ), where Σjk = 0.5e−
|j−k|

d .

Since our problem is convex, by our theoretical analysis, the generated sequence of solutions

converges to the optimal solution. As the true optimal solution is unknown (Note that β∗ is
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Figure 3: Averaged difference between generated solution and the optimal solution and empirical

convergence rate when d = 100.
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Figure 4: Averaged difference between generated solution and the optimal solution and empirical

convergence rate when d = 150.
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Figure 5: Averaged difference between generated solution and the optimal solution and empirical

convergence rate when d = 200.
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not necessarily the optimal solution), we take the solution after 500,000 iterations as the optimal

solution. Meanwhile, in all setups, we draw the random variables ε ∼ N(0, 0.2), and generate each

component of β∗ ∈ Rd independently from a standard normal distribution. We set the stepsizes to

be αk = k−3/5, β2,k = 2k−1/2, and β1,k = 2k−2/5. The samples of X are generated independently

by the distribution specified in corresponding setup. In each iteration of the algorithm, we draw a

new sample of (X,Y ), and update the solution using Algorithm 2.

We have experimented the proposed algorithm with multiple values of the dimension, i.e.,

d ∈ {50, 100, 150, 200}. For each instance, we run 100 replications and plot the averaged differences

between the solution at the k-th iteration βk and the optimal solution β̂ in Figures 2, 3, 4 and 5.

Let us study the performance of the algorithm when d varies. Comparing to case where d = 50,

we notice that it takes approximately twice many iterations to reach the same accuracy in the

case where d = 200. This is mainly because the variance of stochastic gradient increases as the

dimension grows, due to the fact that the noise in our experiment is Gaussian with unit variance

per entry. As a result, the hidden constant inside the error bound, involving sums and products

of multi-level variances and Lipschitz constants, also grows polynomially as d grows. Therefore it

takes more iterations for the algorithm to converge to the same accuracy level when the overall

variance increases with growing dimensions.

Besides, to further investigate empirical rates of convergence under all different settings, we plot

the averaged log(k) vs. log(‖βk − β̂‖) after 100 replications in the figures, where β̂ is the optimal

solution. As we can see from the figures, the slopes remain the same regardless of the dimension d.

We find that for all cases, the slopes of the lines are close to −2/5, which matches our theoretical

analysis that our algorithm converges at a rate of O(k−2/5) for three-level problems.

5 Conclusion

In this paper, we propose the first gradient-type algorithms for a class of multi-level stochastic

compositional optimization problems. We provide strong theoretical guarantees for our algorithms.

In particular, we prove almost sure convergence results that when the problem is convex, our

algorithm converges to an optimal solution, and when the problem is nonconvex, every limiting

point of the sequence of solutions is an stationary point. Under various assumptions, we further

characterize the rates of convergence of our algorithms. In the case where T = 2, our convergence

rate result matches and strictly generalizes the best known result by [28]. In the case where

T ≥ 3, our results provide the first few benchmarks on the sample complexity for solving multi-

level stochastic optimization problems.

There are several interesting future research questions. First, our convergence rate result re-

quires that the inner-level functions f (2), · · · , f (T ) be smooth. It is unclear how to achieve fast

convergence when some of these functions are non-smooth. Second, it is not clear whether the

convergence rate can be improved or not. We are not aware of any sample complexity lower bound

for the multi-level stochastic optimization problem. Third, it is of practical interest to consider the

special case where all expectations are finite sums. In this case, one may conjecture that variance

reduction can be used to further improve the algorithms’ efficiency.
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