
Exploiting DRAM Latency Variations for
Generating True Random Numbers

B. M. S. Bahar Talukder, Joseph Kerns, Biswajit Ray, Thomas Morris, and Md Tauhidur Rahman
Electrical and Computer Engineering Department

University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
Email: {bt0034, jck0012, biswajit.ray, tommy.morris, tauhidur.rahman}@uah.edu

Abstract—True random number generator (TRNG) plays a
vital role in a variety of security applications and protocols. The
security and privacy of an asset rely on the encryption, which
solely depends on the quality of random numbers. Memory chips
are widely used for generating random numbers because of their
prevalence in modern electronic systems. Unfortunately, exist-
ing Dynamic Random-access Memory (DRAM)-based TRNGs
produce random numbers with either limited entropy or poor
throughput. In this paper, we propose a DRAM-latency based
TRNG that generates high-quality random numbers. The silicon
results from Samsung and Micron DDR3 DRAM modules show
that our proposed DRAM-latency based TRNG is robust (against
different operating conditions and environmental variations) and
acceptably fast.

Index Terms—Random number, TRNG, DRAM-based security
primitives, DRAM-based TRNG, Memory-based security primi-
tives, Memory-based TRNG, hardware-based security primitives.

I. INTRODUCTION

Embedded systems are the core of Internet of Things (IoT),
cyber-physical systems (CPS), sensor networks, healthcare,
transportation, etc. The demand and features provided by
the CPS infrastructures have been bringing more and more
components together connected; wired or wireless. Therefore,
the CPS security risk has been increasing quite rapidly which
is reflected as new threats in recent news. The consequences of
CPS attacks can be disastrous; the report says that the cyber-
related attack took-away minimum $56 billion from USA
economy in 2016 [1]. The TRNG plays a vital role in cryptog-
raphy for trusted execution and trusted communications [2],
[3], [4], [5], [6], [7], [8]. The effectiveness of security and
privacy relies on the encryption, which solely depends on the
quality of random numbers [4], [5], [6], [7], [8]. Therefore, the
quality of randomness has to be ensured for the resiliency of
a secure system; a weak random number can leave the system
open to various attacks [9], [10].

Generally, a physical entropy source, such as thermal noise,
atmospheric noise, shot noise, radio noise, flicker noise, chaos,
etc. are translated into random numbers [4], [5], [6], [7]. The
quality of random numbers depends on the quality of entropy
source [4], [5], [6], [7], [8]. Unfortunately, the hardware
generated entropy is affected by environmental variations. For
example, a TRNG can generate the deterministic output at high
temperature or high voltage [7]. An attacker can manipulate
the operating condition to weaken the quality of the random
number. The randomness of a TRNG can also be affected
as device ages or as technology gets matured [7]. Besides

randomness, the TRNG must possess two essential qualities:
(i) low-overhead (area and energy) and (ii) high-throughput.
The TRNG output also has to be robust even at the extreme
operating condition.

In this paper, we present a novel technique to generate
random numbers from DRAM memory, one of the primary
components of an electronic device. Note that the ubiquity
of memory chips is one of the primary reasons to use it as
a TRNG because no additional hardware is required [11],
[12]. However, memory chips offer limited entropy because
they are designed to reduce the impacts of process varia-
tions. For example, SRAM-based TRNG offers ∼ 3% min-
entropy. Hence, SRAM-based TRNG requires expensive post-
processing schemes to produce high-quality random numbers
[13]. Rahman et al. proposed an SRAM-based TRNG but
requires modification of SRAM architecture [13]. Therefore,
not suitable for commercial off-the-shelf SRAM chips. Ray
at el. proposed a technique to generate the random number
from the read noise of the flash memory [14], [15] which
eliminates the requirement of the additional circuitry for those
computer systems which use flash memory as the storage
device. Recently, Eckert et al. [12] and Sutar et al. [16]
proposed DRAM-based TRNGs using power-up states and
Variable Retention Time (VRT), respectively. However, none
of them are suitable for run-time applications as they need a
new power cycle or enhanced DRAM refresh interval.

In this paper, we propose a DRAM-based TRNG by exploit-
ing the inherent latency variations. Our proposed TRNG does
not require any additional hardware and offers high throughput
compared to other existing DRAM-based TRNGs. The major
contributions of this paper are presented below.
• We propose a latency-based TRNG that is acceptably

fast and robust. The DRAM latency is the required time
to move charge from one place to another for reliable
read/write operations. At the reduced DRAM latency, we
can generate random numbers from the erroneous/faulty
read operation.

• Not all cells can be used to obtain random numbers.
Some cells are suitable for PUF and some cells are
suitable for TRNG [17], [18]. We characterize DRAM
cells and propose a filtering technique to select the most
suitable DRAM cells for generating high-quality random
numbers.

• We evaluate the robustness of our proposed latency-based
TRNG at different operating conditions using silicon re-
sults from Samsung and Micron DDR3 DRAM modules.

(a) DRAM system. (b) A DRAM cell array.

Fig. 1: DRAM organization in a modern Computing System [19].

We also report the system throughput of our proposed
latency-based TRNG.

The rest of the paper is organized as follows. In Section II,
we briefly discuss the DRAM organization and operations.
We also discuss existing DRAM-based TRNGs and their
limitations. We describe our proposed latency-based TRNG in
Section III. In Section III-A, we characterize the DRAM cells
based on their erroneous behavior at the reduced precharge
latency. In Section III-B, we propose our cell selection al-
gorithm for generating random numbers from DRAM. We
validate our proposed DRAM-latency based TRNG using
commercial DDR3 modules (Section IV). We conclude our
paper in Section V.

II. BACKGROUND AND EXISTING WORK

In this section, we provide a summary on DRAM organi-
zation and its operation. We also briefly discuss the existing
techniques on the DRAM-based TRNG.

A. DRAM Organization

A simplified DRAM memory system is presented in Fig. 1a.
A DRAM module follows a hierarchical organization, dividing
the data lines into subsections to ensure consistent access to
the DRAM module. Each module can be divided into several
ranks. All ranks share the same data bus, and as a result, only
one rank can be activated at a time which is chosen by a
chip select pin. The number of bits that form the data bus
is the same as the word size; usually a data size of 64-bit.
Each rank is then subdivided into multiple chips. The data
bus is distributed equally among the chips. Finally, each chip
can be partitioned into multiple banks, which can be accessed
by using a proper bank address. The row is commonly called
a wordline and the column is called a bitline. The row of
a DRAM is also known as the page. Each bitline in the
chip is connected to a sense amplifier. A series of sense
amplifiers is known as row-buffer. The row-buffer contains
data waiting/reading from the DRAM input and output. A
DRAM bank is analogous to a 2D array of DRAM cells (Fig.
1b). Each bit of a 64-bit word comes from such 64 individual
DRAM cell array. A DRAM cell is the smallest unit of the
memory module. Each cell consists of a capacitor and an
access transistor (usually NMOS). Wordlines are connected to

the transistor gate. This Access transistor creates a conducting
path between the storage capacitor and the bitline.

B. DRAM Operation

DRAM operations (read and write) are sensitive to different
timing parameters. For a reliable operation against a wide
range of operating conditions, a DRAM manufacturer spec-
ifies a set of timing parameters that need to be maintained.
Failure of maintaining these timing parameters leads to faulty
operation. A simplified version of DRAM read operation is
shown in Fig. 2. Initially, all bitlines in a memory module
are precharged to Vdd/2. Then an activation command ACT is
sent from the memory controller to the appropriate wordline.
The ACT command activates the target wordline and turns
on all access transistors connected to that wordline. At this
moment, the bitline voltage is perturbed by the cell content that
is connected to the bitline through the access transistor. The
bitline voltage slightly increases if the corresponding memory
cell holds the logic ‘1’ (that is positively charged) or decreases
slightly if the corresponding memory cell holds logic ‘0’.
Then the sense-amplifier senses the voltage perturbation on the
bitlines and amplifies the data by increasing the intensity of the
change in voltage. Afterward, the sense-amplifier latches the
data and converts into the proper binary value. At this moment
a READ command is applied from the memory controller to
read out the data from the sense-amplifier. The time interval
between the ACT command and READ command is called
activation latency or tRCD. The time interval between the
READ command and the first appearance of the read data in
data is called the Column Access Strobe (CAS) latency or tCL.
Reading from DRAM is destructive because of charge leakage.
Therefore, the cells must be charged back to their original
states to maintain the data integrity. This procedure is called
the restoration process, and total time needed from the ACT
command to the end of data restoration is called the restoration
time or tRAS . After a successful read operation, A precharge
command, PRE is applied from the memory controller to
precharge the bitline to Vdd/2. This command also deactivates
the previously activated wordline for the next read or write
operation. The time needed to precharge all bitlines to Vdd/2
after the PRE command is called the precharge time (tRP).
When a DRAM cell holds the data, the capacitor charge, which

represents the data bit, leaks over time. To assure the integrity
of the stored/processed data, a periodic refresh operation is
necessary to restore the capacitor charge. The time interval
between two refresh operations is called the retention time.
The retention time is directly linked to the leakage rate of
DRAM cells.

A reduction of timing parameters can improve the speed
or reduce the power consumption but might suffer faulty
operations. The variation of different latency parameters has
following effects [16], [19]:
• A reduced tRCD only affects the first accessed cache line

in a row cycle.
• Reduction on tRP has a uniform effect on a row. Fur-

thermore, the number of erroneous bits increases if the
tRP is kept decreasing.

• Almost no bit error is noticed at the reduced tRAS .
• An increment in the refresh interval introduces data errors

(retention failures).

Fig. 2: DRAM Timing at reading cycle [19].

C. Existing DRAM-based Random Number Generators

There have been a few techniques for generating random
numbers from DRAM. Eckert et al. proposed a method to
produce random numbers from the start-up value of DRAM
[12]. At each power-cycle, DRAM memory cells are initialized
to a random value. With proper post-processing technique like
Von-Neumann corrector or/and XORing multiple trials, the
proposed method can generate random numbers. However,
with this method, a new power cycle is needed to generate
a new random sequence, hence, cannot be applicable to run-
time operation.

Recently, Sutar et al. proposed Variable Retention Time
(VRT) based technique to generate random numbers from
DRAM [16]. The retention time of DRAM cell randomly
toggles between high retention time and low retention time
due to the VRT. By taking advantage of this phenomenon, with
suitable retention time and post-processing technique (e.g.,
SHA-256 hashing), the proposed method can generate high-
quality random numbers. However, the actual retention-time
needs to be increased by order of seconds to generate a random
number by exploiting the VRT [16], [20]. Therefore, the
VRT-based TRNG is slow; i.e., long waiting time is required
to generate a random sequence. Also, the DRAM refresh
operation cannot be increased for an arbitrarily selected small
region because of the granularity defined by the vendor [21].
Consequently, the VRT-based TRNG might cause unwanted
data corruption in a different memory location due to long
retention time.

III. METHODOLOGY

To generate a random number from the DRAM by exploit-
ing latency variations, at first, we characterize the DRAM cells
to understand whether the latency can be used to produce
random numbers. Then, we propose a cell selection algorithm
to identify the most suitable DRAM cells for generating
random numbers.

A. DRAM Cells Characterization

In our proposed method, we characterize DRAM cells at
a reduced tRP . The experimental results show that the read
operations produce unreliable data at the reduced tRP . The
error patterns from such incorrect operations vary from chip
to chip. The error patterns also might depend on the data to
be read/written. We categorize the DRAM cells (based on the
error patterns at the reduced tRP) into the following two major
types-

• Measurement Invariant Cells: This type of cells pro-
duces the same error with different measurements. How-
ever, this category can be divided into two subcategories-
i) Pattern independent cells and ii) pattern dependent
cells. With a reduced tRP , the output of pattern indepen-
dent memory cells does not depend on the data already
stored in the DRAM. These cells produce faulty but the
same output from measurement to measurement. There-
fore, ideal candidates for physical unclonable functions
(PUFs) [18], [22]. On the other hand, the output of
pattern dependent cells depends on the initially written
data pattern at the reduced tRP . With proper processing,
pattern dependent cells might be used as a strong PUFs
[23].

• Noisy Cells: The output of noisy cells varies from
measurement to measurement and do not show any con-
sistency with the initially written data pattern. Hence, this
type of cells can be used to generate the true random
numbers. We denote the collection of the noisy cells as
NC .

B. Cell Selection for Random Number Generator

Our experimental result shows that all noisy cells cannot be
used for generating random numbers. We observe that most
of the noisy cells are biased to a particular value (either ‘0’ or
‘1’). These biased cells might produce a deterministic random
number. Hence, to create truly random numbers, we apply a
cell selection technique on noisy cells (discussed below).

1) Filtering temporally unbiased cells: From our exper-
imental results, we notice that many of the noisy cells are
biased to a specific value (either ‘0’ or ‘1’). So, for proper
randomness, these type of cells need to be filtered out. At first,
the contents of all noisy cells are recorded multiple times with
different input patterns at the reduced tRP . We only accept
those cells, for which, the output is ‘1’ for 40 − 60% of the
total measurements (and ‘0’ for the rest of the time) regardless
of input patterns. The locations of this subset of noisy cells
are saved in data-set FC .

2) Applying Existing post-processign technique to gen-
erate random sequence: To entirely remove the biasness
from the generated random sequence, we can apply several
post-processing techniques such as Von Neumann corrector,
XORing multiple bits, cryptographic hash function, etc. [24].
We use the cryptographic hash function SHA-256 [25], [26]
to the sequence obtained from FB . The input size (block Size,
Bl) of SHA-256 hash function is 512 bit and the output size
(Message Digest Size, Dl) is 256 bit. We split the whole
random sequence into a fixed length (Bl) sub-sequence to feed
them in the SHA-256. We denote the output of the SHA-256
as HC .

IV. RESULT AND ANALYSIS

We collected silicon results from Samsung and Micron
DDR3 memory modules. We used SoftMC (Soft Memory
Controller [27]) with a Xilinx ML605 Evaluation Kit as the
test platform. To characterize the DRAM cells, we collected
a total of 20-set measurement data with four different 8-bit
input patterns: (0xFF, 0xAA, 0x55, 0x00) for each memory
bank. We chose the smallest possible value of tRP , 19% of
the recommended tRP . The smallest possible value of tRP
ensures the maximum number of incorrect outputs.

A. Cell Characterization and Filtering Temporally Unbiased
Cells

We characterized the DRAM cells according to III-A. The
result shows that, on average, ∼82% cells are pattern inde-
pendent, ∼17.5% cells are noisy, and <1% cells are pattern
dependent in a bank. The output varies from manufacturer to
manufacturer. It was found that most of the pattern indepen-
dent cells output ‘0’ in the Micron memory module. On the
other hand, output ‘1’ is dominant in the Samsung module.
The result also shows that noisy cells are not entirely random;
instead, most of the cells are biased to a specific value (as
mentioned in sec. III-B1).

Fig. 3: Noisy cell characteristics: most of the cells are
biased to ‘1’

Fig. 3 represents the frequency of ‘1’ from noisy cells at
different measurements for a randomly chosen memory bank
(combined for all input patterns). We noticed that most of the
cells are biased to a specific value (in this case, biased to logic
‘1’) which is not desirable for random number generation.
With the filtering technique as described in sec. III-B1, we

only chose those cells (set FB) that output ‘1’ for 40− 60%
of total measurements (rest of the time they produced ‘0’).

Vendor Bank* #Cells (MBit) Average bit per
page (∈ FC)NC FC

Micron
a 15.742 2.041 130.648
b 86.147 0.792 54.917
c 101.092 0.784 54.331

Samsung a 282.423 0.795 53.102
b 409.773 1.960 130.695

*Size of each bank = 1GBit.

TABLE I: Cell statistics after applying the different levels of
filtering.

Table I presents a detailed statistics for noisy cells. First
two columns of the table represent the vendor and bank label.
Next two columns represent the total number of noisy cells
and the number of cells under FC . The last column presents
the average number of bits in each page. Note that, we only
considered those pages which have at least one cell that lies
into FC . In our case, all memory banks consist of an equal
number of page (214), and for each bank, we found that at
least 92% of total memory pages contain at least one memory
cell, that lies into FC . The results show that the number of
eligible cells decreases after performing our proposed filtering.
Still, we have enough cells to generate high-quality random
numbers.

B. Evaluation
A good-quality TRNG has to be robust against different

operating conditions. For evaluation, we have collected four
sets of test data at different operating condition:

1) At nominal voltage and room temperature (1.5v, 25◦C).
2) With +20◦C change in operating temperature (−∆T).
3) With −20mv change in the supply voltage (−∆V).
4) With +75mv change in the supply voltage (+∆V).
As most of the modern DDR controller’s output is bounded

within ±20mv [28], [29], so, for our test purpose, changing the
output voltage by ±20mv is reasonably sufficient. However,
we changed the voltage by +75mv (in fourth data-set) and
found that the random numbers generated from all of the
memory banks were still robust. At nominal condition (i.e.,
room temperature and nominal voltage), we took two mea-
surements for each input pattern. On the other hand, in other
operating conditions, we took one measurement to validate our
proposed TRNG. We perform two different tests to evaluate
the effectiveness of our proposed TRNG: (i) the frequency test
of individual bits with the Central Limit Theorem [30] and (ii)
the NIST test [31].

1) Frequency Test of individual bits with the Central Limit
Theorem Test: Each bit in an ideal TRNG is analogous to
a fair coin toss. Practically, the TRNG bit deviates from an
equal probability of having ‘0’ or ‘1’. However, according to
the Central Limit Theorem (CLT) [30], the distribution of the
outcome can be approximated with a normal distribution with
µ ≈ µx = 0.5 and σ ≈ σx=0.5√

n
, where µx and σx are the mean

and standard deviation of individual coin toss respectively and
n is the sample size. In this experiment, we took a total of eight

measurements for each TRNG cells (i.e., n = 8) at nominal
voltage and room temperature. So, if the probability of having
‘1’ is equal for all TRNG cells, then, according to the CLT,
the distribution of occurring ‘1’ of the TRNG cells can be
approximated with a normal distribution (with µ ≈ 0.5 =
50% and σ ≈ 0.5√

8
= 17.68%). Fig. 4 shows the frequency

histogram of occurring ‘1’ for a randomly chosen memory
bank. The blue histogram is for the selected TRNG cells with
our proposed filtering technique (i.e., the cells that are under
the subset FB). The results show that this frequency histogram
is perfectly fitted with a bell curve (plotted with a green line),
which signifies that our proposed TRNG produces (with such
small n) high-quality random bits. The mean and standard
deviation of normal approximation for TRNG bits in each bank
are shown in table II. The results show that for each memory
bank, the µ ≈ 50%, and the σ ≈ 21%, which are very close
to ideal TRNG (from the CLT).

Fig. 4: Frequency of occurring ‘1’ for a random
memory bank.

Vendor Micron Samsung
Bank a b c a b
µ 49.47 50.43 50.27 50.14 52.65
σ 21.75 20.95 21.01 20.91 20.68

TABLE II: Mean and stand deviation of normal
approximation for each bank at nominal operating condition.

2) NIST Test: We performed the NIST test [31] based
on the generated sequence from the test data. For each set
of test data, the generated sequences are divided into sub-
sequences and passed through the hash function (as discussed
in sec. III-B2). In this paper, we chose SHA-256 as the
hash algorithm. However, other hash function also produced
a satisfactory result (tested with MD-2 and SHA-512, passed
all NIST test). The output of the hash function is concate-
nated and divided into ten equal-length bitstreams. Then, we
directly applied the NIST test suite to evaluate the randomness.
Table III shows the NIST test result for randomly chosen
one memory bank from each vendor. The results show that
the voltage reduction affects the randomness more than the
voltage increment. Therefore, we reported only the negative
voltage change (i.e., the worst case). In the table, p is the
p-value, which calculated from the chi-square test and S is
the proportion of bit sequence that passes the corresponding

test. In order to pass the randomness test, the p-value should
be minimum of 0.0001 and the S should be higher than
a certain proportion (for example, for 10 test sequences, at
least 8 sequences should be passed). The Table III also shows
that our proposed DRAM-latency based TRNG is capable of
generating random numbers at extreme operating conditions.

C. Throughput Analysis

In our proposed algorithm, the cell characterization and
filtering the temporally unbiased cells need to be performed
once during registration (i.e., once in a full life-cycle of a
DRAM). The objective of the registration step is to identify the
most suitable cells for generating random numbers, i.e., FB .
Hence, we ignore the registration process during throughput
calculation. The throughput of our proposed TRNG can be
calculated as follows:

T =
Dl

tdata,Bl
+ thash

(1)

where Dl is the length of the hashed output (Message Digest
Size) of the hash function, tdata,Bl

is the time required to read
data of length Bl from DRAM (where Bl is the input block
size of the hash function), and thash is the time required to
hash the input bit sequence of length Bl. We used existing
standard SHA-256. A complete benchmark of different cryp-
tographic hash functions based on their performance can be
found at [32]. An efficient cryptographic hash function like
SHA-256 can hash a 512-bit long sequence with a speed of
3.78 cycle/byte (AMD EPYC 7601, 64x2.2GHz) [32]. With
a single core, it would take only 242 cycles (∼ 0.11µs,
neglecting overhead cycles) to hash the complete 512-bit block
message. Furthermore, DRAM operations also consumes time.
The results show that (from table I), each page produces ∼84.7
random bit on average (∈ FB). So, to produce a 512-bit as the
input of the SHA-256 hash function, we need on average ∼6
pages. In our evaluation board, with a single read cycle, to read
a full 8KByte page, it takes on average ∼91.2µs. So according
to the equation 1, our system level throughput is around
∼0.47Mbps, which is comparable with the performance of
many popular hardware-based random numbers [5], [14], [33].
Note that, with our experimental setup, we were only able to
read the memory module with an average speed of ∼720Mbps
(400MHz system clock frequency), although, the maximum
throughput of the memory module is almost double than
that. An efficient implementation of DRAM controller can
improve the overall performance of our proposed random
number generator. Moreover, instead of reading a full page
from the memory module, reading a selective location of FB
cells can also increase the throughput.

V. CONCLUSION

In these paper, we presented a methodology to generate
high-quality random number using the inherent DRAM latency
variations. At first, we characterized the DRAM cells at the
reduced precharge latency, tRP , for selecting a set of cells that
can be used to generate robust random numbers. The proposed
hardware characterization and cell selection algorithm offer
robust and high-throughput random numbers. The results show

Vendor Micron Samsung

Operating Condition ∆V = 0mv
∆C = 0◦C

∆V = 0mv
∆C = 20◦C

∆V = 20mv
∆C = 0◦C

∆V = 0mv
∆C = 0◦C

∆V = 0mv
∆C = 20◦C

∆V = 20mv
∆C = 0◦C

Result Type p S p S p S p S p S p S
Frequency 0.035174 10/10 0.350485 10/10 0.534146 10/10 0.122325 10/10 0.739918 10/10 0.534146 10/10

BlockFrequency 0.350485 10/10 0.213309 10/10 0.534146 10/10 0.350485 10/10 0.534146 9/10 0.534146 10/10
CumulativeSums 0.122325 10/10 0.213309 10/10 0.911413 10/10 0.534146 10/10 0.350485 10/10 0.350485 10/10

Runs 0.739918 10/10 0.739918 10/10 0.911413 10/10 0.739918 10/10 0.213309 10/10 0.350485 10/10
LongestRun 0.534146 10/10 0.350485 9/10 0.911413 10/10 0.534146 10/10 0.350485 10/10 0.350485 10/10

Rank 0.739918 10/10 0.911413 10/10 0.534146 10/10 0.534146 10/10 0.350485 9/10 0.534146 9/10
FFT 0.739918 9/10 0.534146 10/10 0.534146 10/10 0.739918 10/10 0.534146 10/10 0.534146 10/10

NonOverlappingTemplate 0.122325 8/10 0.066882 8/10 0.122325 9/10 0.350485 8/10 0.008879 9/10 0.739918 8/10
OverlappingTemplate 0.350485 10/10 0.534146 9/10 0.066882 10/10 0.739918 9/10 0.534146 10/10 0.350485 10/10

Universal —- —- —- —- —- —- 0.350485 10/10 0.911413 10/10 0.350485 10/10
ApproximateEntropy 0.350485 10/10 0.534146 10/10 0.350485 10/10 0.350485 10/10 0.350485 9/10 0.213309 10/10
RandomExcursions —- 4/4 —- 1/1 —- 3/3 —- 6/7 —- 4/4 —- 5/5

RandomExcursionsVariant —- 4/4 —- 1/1 —- 3/3 —- 6/7 —- 4/4 —- 5/5
Serial 0.017912 10/10 0.739918 10/10 0.008879 10/10 0.739918 10/10 0.035174 10/10 0.350485 10/10

LinearComplexity 0.534146 10/10 0.911413 10/10 0.911413 10/10 0.534146 10/10 0.739918 10/10 0.004301 10/10
*NB. —- did not perform due to insufficient data [31].

TABLE III: The worst-case NIST test results show the robustness of our proposed TRNG.

that our proposed post-processing algorithm passes all NIST
tests at extreme operating conditions without requiring any
modification in the DRAM architecture.

VI. ACKNOWLEDGMENT

We thank ETH Zürich and CMU for the SoftMC software.

REFERENCES

[1] “Cyberattacks took $56B from U.S. economy in 16: Report”, American
Banker, 16 February 2018

[2] Rahman, Md Tauhidur, Domenic Forte, Quihang Shi, Gustavo K. Contr-
eras, and Mohammad Tehranipoor. “CSST: an efficient secure split-test
for preventing IC piracy.” In Test Workshop (NATW), 2014 IEEE 23rd
North Atlantic, pp. 43-47. IEEE, 2014.

[3] K. T. Nguyenet al., “Survey on secure communication protocols for the
Internet of Things,” Ad Hoc Networks, vol. 32, pp. 17-31, 2015.

[4] B. Yang et al., On-chip jitter measurement for true random number
generators, Asian Hardware Oriented Security and Trust Symp., 2017.

[5] B. Sunar et al., “A Provably Secure True Random Number Generator
with Built-In Tolerance to Active Attacks,” IEEE Transactions on
Computers, vol. 56, no. 1, pp. 109119, 2007.

[6] A. P. Johnson et al., An Improved DCM-Based Tunable True Random
Number Generator for Xilinx FPGA, IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 64, no. 4, pp. 452-456, 2017.

[7] Rahman, Md Tauhidur, Kan Xiao, Domenic Forte, Xuhei Zhang, Jerry
Shi, and Mohammad Tehranipoor. “TI-TRNG: Technology independent
true random number generator.” In Proceedings of the 51st Annual
Design Automation Conference, pp. 1-6. ACM, 2014.

[8] Lampert, Ben et al., “Robust, low-cost, auditable random number
generation for embedded system security.” In Proceedings of ACM
Conference on Embedded Network Sensor Systems, pp. 16-27, 2016.

[9] Z. Gutterman and D. Malkhi, “Hold Your Sessions: An Attack on Java
Session-Id Generation,” Lecture Notes in Computer Science Topics in
Cryptology − CT-RSA 2005, pp. 44−57, 2005.

[10] J. Kelsey et al., “Cryptanalytic Attacks on Pseudorandom Number
Generators,” Fast Software Encryption Lecture Notes in Computer
Science, pp. 168−188, 1998.

[11] K. Xiao et al., “Bit selection algorithm suitable for high-volume produc-
tion of SRAM-PUF,” 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), Arlington, VA, 2014, pp. 101-106.

[12] C. Eckert et al., “DRNG: DRAM-based random number generation using
its startup value behavior,” IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), 2017.

[13] Rahman, M. Tauhidur, Domenic Forte, Xiaoxiao Wang, and Mark
Tehranipoor. “Enhancing noise sensitivity of embedded SRAMs for
robust true random number generation in SoCs.” In Hardware-Oriented
Security and Trust (AsianHOST), IEEE Asian, pp. 1-6. IEEE, 2016.

[14] B. Ray and A. Milenkovic, “True Random Number Generation Using
Read Noise of Flash Memory Cells,” IEEE Transactions on Electron
Devices, vol. 65, no. 3, pp. 963969, 2018.

[15] P. Poudel et al., “Microcontroller TRNGs Using Perturbed States of
NOR Flash Memory Cells, IEEE Transactions on Computers, 2018.

[16] S. Sutar et al., “D-PUF: An Intrinsically Reconfigurable DRAM PUF
for Device Authentication and Random Number Generation,” ACM
Transactions on Embedded Computing Systems, vol. 17, no. 1, 2017.

[17] Rahman, M. Tauhidur et al., ”Systematic Correlation and Cell Neighbor-
hood Analysis of SRAM PUF for Robust and Unique Key Generation.”
Journal of Hardware and Systems Security 1, no. 2 (2017): 137-155.

[18] B. M. S. B. Talukder et al., “LDPUF: Exploiting DRAM Latency Vari-
ations to Generate Robust Device Signatures,” 2018, arXiv:1808.02584.

[19] Kevin K. Chang et al., “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimiza-
tion,” SIGMETRICS Perform. Eval. Rev. 44, 1 (June 2016), 323-336.

[20] H. Kim et al., “Characterization of the Variable Retention Time in
Dynamic Random Access Memory,” IEEE Transactions on Electron
Devices, vol. 58, no. 9, pp. 29522958, 2011.

[21] JEDEC, ”DDR3 SDRAM Standard,” July 2012.
[22] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical

Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in
Modern Commodity DRAM Devices, 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2018.

[23] Q. Tang et al., “A DRAM based physical unclonable function capable
of generating > 1032 Challenge Response Pairs per 1Kbit array for se-
cure chip authentication,” IEEE Custom Integrated Circuits Conference,
2017.

[24] S.-H. Kwok et al., “A comparison of post-processing techniques for
biased random number generators, in IFIP International Workshop on In-
formation Security Theory and Practices. Springer, 2011, pp. 175−190.

[25] Q. H. Dang, “Secure Hash Standard,” NIST, 2015.
[26] S. S. Thomsen and L. R. Knudsen, “Cryptographic Hash Functions,”

2009.
[27] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infras-

tructure for Enabling Experimental DRAM Studies,” IEEE International
Symposium on High Performance Computer Architecture, 2017, pp.
241-252.

[28] www.nxp.com/docs/en/data-sheet/MC34716.pdf, accessed 19 July 2018.
[29] www.ti.com/product/tps51916/datasheet, accessed 19 July 2018.
[30] T. H. Wonnacott and R. J. Wonnacott, “Introductory statistics,” New

York: Wiley, 1969.
[31] L. Bassham et al., “A Statistical Test Suite for Random and Pseudoran-

dom Number Generators for Cryptographic Applications,” NIST, 2010.
[32] Daniel J. B. and T. Lange (editors), “eBACS: ECRYPT Benchmarking of

Cryptographic Systems,” https://bench.cr.yp.to, accessed 19 July 2018.
[33] N. Torii et al., “ASIC implementation of random number generators

using SR latches and its evaluation,” EURASIP Journal on Information
Security, vol. 2016, no. 1, 2016.

