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LARGE DEVIATIONS AND WANDERING EXPONENT FOR

RANDOM WALK IN A DYNAMIC BETA ENVIRONMENT1

BY MÁRTON BALÁZS2, FIRAS RASSOUL-AGHA3 AND TIMO SEPPÄLÄINEN4

University of Bristol, University of Utah and University of Wisconsin-Madison

Random walk in a dynamic i.i.d. beta random environment, conditioned
to escape at an atypical velocity, converges to a Doob transform of the orig-
inal walk. The Doob-transformed environment is correlated in time, i.i.d. in
space and its marginal density function is a product of a beta density and a hy-
pergeometric function. Under its averaged distribution, the transformed walk
obeys the wandering exponent 2/3 that agrees with Kardar–Parisi–Zhang
universality. The harmonic function in the Doob transform comes from a
Busemann-type limit and appears as an extremal in a variational problem
for the quenched large deviation rate function.

1. Introduction. We study an exactly solvable random walk in a random en-
vironment (RWRE) in one space dimension. The walk is nearest-neighbor and
the environment dynamical and product-form. Our main results (i) construct a
Doob transform of the RWRE that conditions the walk on an atypical velocity,
(ii) establish that the transformed walk has path fluctuation exponent 2/3 of the
Kardar–Parisi–Zhang (KPZ) class instead of the diffusive 1/2 and (iii) describe
the quenched large deviation rate function of the walk.

The three points above are tied together. The harmonic functions in the Doob
transform furnish extremals of a variational formula for the quenched large devi-
ation rate function. Explicit distributional properties of these harmonic functions
enable the derivation of the path exponent. The logarithm of the harmonic function
obeys the KPZ longitudinal exponent 1/3.

This work rests on the development of analogues of percolation and polymer
ideas for RWRE. The harmonic functions in the Doob transform arise through
limits that correspond to Busemann functions of percolation and polymers. The
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quenched large deviation rate function is strictly above the averaged one except at
their common minimum. For a deviation of small order h, the difference of these
rate functions is of order h4. These properties are exactly as for the quenched and
averaged free energy of 1 + 1 dimensional directed polymers [11, 18]. As for the
entire KPZ class, proofs of fluctuation exponents are restricted to models with
special features. A natural expectation is that the picture that emerges here should
be universal for 1 + 1 dimensional directed RWRE under some assumptions.

We turn to a detailed introduction of the model.
A dynamical environment is refreshed at each time step. On the two-dimen-

sional space-time lattice Z2, we run time in the diagonal direction (1
2 , 1

2), and the
admissible steps of the walk are e1 = (1,0) and e2 = (0,1). The jump probabilities
are independent and identically distributed at each lattice point of Z2. When the
walk starts at the origin, after n time steps its location is among the points (i, j) in
the first quadrant (i.e., i, j ≥ 0) with i + j = n.

The environment ω = (ωx,x+e1 : x ∈ Z2) is a collection of i.i.d. [0,1]-valued
random variables ωx,x+e1 indexed by lattice points x. Set ωx,x+e2 = 1 − ωx,x+e1 .
(ωx,x+e1,ωx,x+e2) are the jump probabilities from point x ∈ Z2 to one of the neigh-
bors {x + e1, x + e2}. Transitions ω do not allow backward jumps. The distribution
of the environment ω is P with expectation operator E. Given a realization ω and a
point x ∈ Z2, P ω

x denotes the quenched path measure of the Markov chain (Xn)n≥0
on Z2 that starts at x and uses transition probabilities ω:

(1.1)
P ω

x (X0 = x) = 1 and, for y ∈ Z2, n ≥ 0, and i ∈ {1,2},

P ω
x (Xn+1 = y + ei |Xn = y) = ωy,y+ei

.

P ω
x is a probability measure on the path space (Z2)Z+ and X• is the coordinate pro-

cess. This is a special case of random walk in a space-time random environment.
This paper focuses on the beta RWRE where ωx,x+e1 is beta-distributed. Bar-

raquand and Corwin [6] discovered that this case is exactly solvable. This means
that fortuitous coincidences of combinatorics and probability permit derivation of
explicit formulas and precise results far deeper than anything presently available
for the general case. Some limit results uncovered in an exactly solvable case are
expected to be universal. These form natural conjectures for the general case.

An earlier case of exact calculations for RWRE in a static environment appeared
in a series of papers by Sabot and coauthors (see [27] and references therein). They
discovered and utilized special features of the multidimensional Dirichlet RWRE
to prove results currently not accessible for the general multidimensional RWRE.
Section 8 of [27] discusses one-dimensional RWRE in a static beta environment.

Before specializing to the dynamic beta environment, we review results for the
general 1 + 1 dimensional RWRE (1.1) in an i.i.d. environment.

1.1. Nearest-neighbor space-time RWRE. Under an i.i.d. environment for
the quenched model in (1.1), the averaged path measure given by P0(·) =
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∫
P ω

0 (·)P(dω) is a classical random walk with admissible steps {e1, e2} and tran-
sition kernel p(ei) = E(ω0,ei

), i = 1,2. Hence there is a law of large numbers
P0{XN/N → ξ∗} = 1 with limiting velocity ξ∗ = (ξ∗

1 , ξ∗
2 ) = (p(e1),p(e2)). Fu-

bini’s theorem then gives the quenched law of large numbers

(1.2) P ω
0
{
N−1XN → ξ∗}= 1 for P-a.e. ω.

By Donsker’s theorem, under P0 the centered and diffusively rescaled walk
{
WN (t) =

X⌊Nt⌋ − Ntξ∗
√

ξ∗
1 ξ∗

2 N
: t ≥ 0

}

converges weakly to the process {(W(t),−W(t)) : t ≥ 0}, where W(·) is standard
one-dimensional Brownian motion.

The same functional central limit theorem (CLT) holds for the quenched RWRE
if and only if P(ω0,e1 ∈ {0,1}) < 1. That is, for P-almost every ω the distribution
of {WN (t) : t ≥ 0} under P ω

0 converges weakly to that of {(W(t),−W(t)) : t ≥ 0}
(Theorem 1 of [21]). A functional CLT holds also for the quenched mean Eω

0 [XN ]
with scaling N1/4 (Corollary 3.5 of [4]). In summary, as N → ∞, the quenched
mean of the walk has Gaussian fluctuations on a small scale of order N1/4, while
under a typical environment the walk itself has Gaussian fluctuations on the larger
scale of order N1/2. The fluctuations of the quenched walk dominate, and hence
the averaged process has Gaussian fluctuations of order N1/2.

Let U = {te1 + (1 − t)e2 : 0 ≤ t ≤ 1} denote the simplex of possible limiting
velocities. For ξ ∈ U and N ∈ N, let [Nξ ] denote a point closest to Nξ on the
antidiagonal {(x1, x2) ∈ Z2 : x1 + x2 = N}. The averaged large deviation principle
(LDP) is the standard Cramér theorem and tells us that for ξ ∈ U

lim
N→∞

N−1 logP0
{
XN = [Nξ ]

}
= −Ia(ξ)

with rate function

(1.3) Ia(ξ) = ξ1 log
ξ1

ξ∗
1

+ ξ2 log
ξ2

ξ∗
2

for ξ = (ξ1, ξ2) ∈ U .

A quenched LDP holds under the assumption

(1.4) E
[
| logω0,ei

|2+ε]< ∞ for i ∈ {1,2} and some ε > 0.

By Theorems 2.2, 4.1, 2.6(b) and 3.2(a) of [22], for all ξ ∈ U ,

(1.5) lim
N→∞

N−1 logP ω
0
{
XN = [Nξ ]

}
= −Iq(ξ)

exists P-almost surely. The rate function Iq does not depend on ω. It is a non-
negative convex continuous function on U with a unique zero at ξ∗. By Fatou’s
lemma and Jensen’s inequality, Iq(ξ) ≥ Ia(ξ) for all ξ ∈ U . It is shown in [31] that
Iq(ξ) > Ia(ξ) for all ξ ∈ U \ {ξ∗}. The proof in [31] utilizes uniform ellipticity,
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namely that P(δ ≤ ω0,e1 ≤ 1 − δ) = 1 for some δ > 0, but their proof works more
generally. Theorem 2.7 below states the strict inequality in the beta case.

General closed formulas for Iq have not been found. Variational representations
exist, for example, in [10, 17, 22, 26, 30]. We state below one particular formula for
the RWRE (1.1) on Z2. In the beta case, extremals for this formula are identified
in Section 2.3 below, in terms of harmonic functions.

Let K denote the space of integrable stationary cocycles defined on the proba-
bility space (�,S,P) of the environments. Elements of K are stochastic processes
{Bx,y(ω) : x, y ∈ Z2} such that, for all x, y, z ∈ Z2 and P-a.e. ω, E|Bx,y | < ∞,
Bx,y(ω)+By,z(ω) = Bx,z(ω), and Bx,y(Tzω) = Bx+z,y+z(ω) where Tz is the shift
(Tzω)x,x+ei

= ωx+z,x+z+ei
. The rate function in (1.5) is then characterized as

Iq(ξ) = − inf
B∈K

{
E[B0,e1]ξ1 +E[B0,e2]ξ2

+ P- ess sup
ω

log
(
ω0,e1e

−B0,e1 (ω) + ω0,e2e
−B0,e2 (ω))}

for ξ ∈ riU .

(1.6)

This formula for Iq is valid for an i.i.d. environment ω under the same moment
assumption (1.4) as the LDP.

For a nearest-neighbor RWRE on Zd for which all directions ±ei satisfy (1.4)
formula (1.6) appeared in Theorem 2 on page 6 of [26]. In the directed case, (1.6)
is a special case of variational formula (4.7) in [14] for the point-to-point limiting
free energy of a directed polymer.

When the transition probabilities in (1.1) are a small perturbation of simple sym-
metric random walk, under suitable space-time scaling the transition probabilities
converge to the solution of the stochastic heat equation (SHE) with multiplicative
noise [12]. This is also a KPZ result, for the logarithm of the SHE is a solution
of the KPZ equation. The result is based on the convergence of chaos expansions,
following the work [2] in the so-called intermediate disorder regime of directed
polymers.

Averaged and quenched central limit theorems and large deviation estimates
have also been proved for random walk in correlated dynamic environments. See,
for example, [3, 7, 8, 25] and their references. However, these results do not ap-
ply to the RWRE with the correlated transition probabilities (2.5) we introduce in
Section 2.1. Indeed, Theorem 2.4 below shows that the fluctuation exponent of the
averaged RWRE is 2/3 instead of 1/2. See also (1.9).

1.2. Beta RWRE. Let α,β > 0 be positive real parameter values. The standard
gamma and beta functions are given by

Ŵ(α) =
∫ ∞

0
sα−1e−s ds and

B(α,β) =
∫ 1

0
sα−1(1 − s)β−1 ds =

Ŵ(α)Ŵ(β)

Ŵ(α + β)
.

(1.7)
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The c.d.f. of the Beta(α,β) distribution is

(1.8) F(t;α,β) = B(α,β)−1
∫ t

0
sα−1(1 − s)β−1 ds for 0 < t < 1.

The case α = β = 1 is the uniform distribution on (0,1).
For the remainder of this paper, the variables {ωx,x+e1 : x ∈ Z2} in the RWRE

(1.1) are i.i.d. Beta(α,β) distributed.
When α = β = 1 and ξ1 − ξ2 > 4/5, Barraquand and Corwin [6] showed

(1.9)
lim

N→∞
P

{
logP ω

0 {XN · (e1 − e2) ≥ N(ξ1 − ξ2)} + NIq(ξ)

c(ξ)N1/3 ≤ y

}

= FGUE(y),

where the limit is the Tracy–Widom GUE distribution. Later, in a less rigorous
paper, Thiery and Le Doussal [29] did the same for logP ω

0 {XN = [Nξ ]}+NIq(ξ)

and all α,β > 0 and ξ 
= ξ∗.
These results revealed that this RWRE possesses features of the 1 + 1 dimen-

sional Kardar–Parisi–Zhang (KPZ) universality class. Where do we find the KPZ
wandering exponent 2/3? Not in the walk (1.1), because the walk in an i.i.d. en-
vironment satisfies a standard CLT under both its quenched and averaged distribu-
tions.

We answer the question by conditioning the walk on an atypical velocity. Then
the quenched process X• converges to a random walk in a correlated environment
which is a Doob transform of the original walk. When the environment is averaged
out, at time N this walk has fluctuations of the order N2/3, and thus has the KPZ
wandering exponent. This behavior deviates from that of classical random walk:
standard random walk conditioned on an atypical velocity converges to a random
walk with altered transitions.

Conditioning on an atypical velocity is intimately tied to large deviations. The
logarithm of the harmonic function in the Doob transform turns out to be an ex-
tremal in (1.6) and its expectation is the gradient of Iq .

Notation and conventions. Z denotes the integers, Q the rationals, R the reals
and C the complex numbers. Z+ = {0,1,2,3, . . .}, N = {1,2,3, . . .}, and R+ =
[0,∞). For real a, ⌊a⌋ is the largest integer ≤ a.

Vector notation on R2 is x = (x1, x2) = x1e1 + x2e2, with canonical basis e1 =
(1,0) and e2 = (0,1). The scalar product is x ·y and the ℓ1 norm |x|1 = |x1|+|x2|.
Coordinatewise integer parts: ⌊x⌋ = (⌊x1⌋, ⌊x2⌋). For x · (e1 + e2) ∈ Z+, [x] is a
closest point to x in {y ∈ Z2 : y1 + y2 = x1 + x2}. Inequality y ≥ x is interpreted
coordinatewise: y1 ≥ x1 and y2 ≥ x2.

Shifts Tz act on environments ω by (Tzω)x,x+ei
= ωx+z,x+z+ei

for x, y ∈ Z2.
When subscripts are bulky ωx,y becomes ω(x, y), with the same convention for
πx,y , Bx,y and ρx,y . A finite or infinite sequence is denoted by xi,j = (xi, . . . , xj ),
for −∞ ≤ i < j ≤ ∞. The simplex of asymptotic velocities is U = {te1 + (1 −
t)e2 : 0 ≤ t ≤ 1}, with relative interior riU = {te1 + (1 − t)e2 : 0 < t < 1}.
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2. Results for beta RWRE. In Section 2.1, we construct the Doob-
transformed RWRE that is the limiting process of the quenched walk conditioned
on an atypical velocity. Section 2.2 states the KPZ fluctuation exponent of the
averaged Doob-transformed walk. In Section 2.3, we describe the quenched large
deviation rate function and its connection with the harmonic functions of the Doob
transform.

Parameters α,β > 0 are fixed, and the environment ω = (ωx,x+e1)x∈Z2 has the
i.i.d. Beta(α,β) distribution. The probability space of the environment is (�,S,P)

where S is the Borel σ -field on the product space � = [0,1]Z2
.

2.1. Doob transform of the quenched walk. The first main result is the exis-
tence of a family of increment-stationary harmonic functions, indexed by direc-
tions in riU = {te1 + (1 − t)e2 : 0 < t < 1}.

THEOREM 2.1. On (�,S,P), there exists a stochastic process {Bξ
x,y(ω) :

x, y ∈ Z2, ξ ∈ riU} with the following properties.

For each ξ ∈ riU , e
−B

ξ
0,x is a harmonic function: for all x ∈ Z2,

(2.1) ωx,x+e1e
−B

ξ
0,x+e1

(ω) + ωx,x+e2e
−B

ξ
0,x+e2

(ω) = e
−B

ξ
0,x(ω)

P-a.s.

For each ξ ∈ riU , there is an event �(ξ) such that P(�(ξ)) = 1 and for every

ω ∈ �(ξ),

(2.2) Bξ
x,y(ω) = lim

N→∞

(
logP ω

x {X|zN−x|1 = zN } − logP ω
y {X|zN−y|1 = zN }

)

for all x, y ∈ Z2, and any sequence zN ∈ Z2 such that |zN |1 → ∞ and zN/

|zN |1 → ξ .
In the law of large numbers direction ξ∗ = ( α

α+β
,

β
α+β

), we have

(2.3) Bξ∗
x,y(ω) = 0.

By analogy with limits of increments in percolation and polymers, we could
call Bξ the Busemann function in direction ξ . For ξ 
= ξ∗, the variables B

ξ
x,x+ei

are marginally logarithms of beta-variables. From limit (2.2), we get

(2.4) Bξ
x,y(Tzω) = B

ξ
x+z,y+z(ω) and Bξ

x,y(ω) + Bξ
y,z(ω) = Bξ

x,z(ω)

for all x, y, z ∈ Z2 and P-a.e. ω. In other words, Bξ is a member of the space K of
integrable stationary cocycles defined above (1.6). Harmonicity (2.1) comes from
limit (2.2) and the Markov property

P ω
x {X|zN−x|1 = zN } = ωx,x+e1P

ω
x+e1

{X|zN−x|1−1 = zN }

+ ωx,x+e2P
ω
x+e2

{X|zN−x|1−1 = zN }.
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Further continuity, monotonicity and explicit distributional properties of the pro-
cess Bξ are given in Theorem 3.6.

Theorem 2.1 is proved by constructing a family of harmonic functions on quad-
rants to control the convergence on the right of (2.2). This approach is the RWRE
counterpart of the arguments used for an exactly solvable polymer model in [16]
and for the corner growth model with general i.i.d. weights in [15].

By (2.1) and (2.4),

(2.5) κ
ξ
x,x+ei

(ω) = ωx,x+ei

e
−B

ξ
0,x+ei

(ω)

e
−B

ξ
0,x(ω)

= ωx,x+ei
e
−B

ξ
x,x+ei

(ω)
, i ∈ {1,2},

defines a new transition probability on Z2, as a Doob-transform of the orig-
inal transition ω. It is an RWRE transition as a function on � because, by
(2.4), it obeys shifts: κ

ξ
x,x+ei

(Tzω) = κ
ξ
x+z,x+z+ei

(ω). The environment κξ (ω) =
(κ

ξ
x,x+e1

(ω))x∈Z2 is in general correlated over locations x, except that its restric-
tion on antidiagonals is i.i.d. as stated in the next theorem.

Let P κξ

x be the quenched path measure of the Markov chain with transition

probability κξ . In other words, P κξ

x satisfies (1.1) with κ
ξ
y,y+ei

instead of ωy,y+ei
.

P κξ

x = P
κξ (ω)
x is a function of ω through its transition probability.

THEOREM 2.2. Fix ξ ∈ riU . Then for any n ∈ Z, the random variables

{κξ
x,x+e1

(ω) : x1 + x2 = n} are i.i.d. We have the law of large numbers:

(2.6) P
κξ (ω)
0

{
N−1XN → ξ

}
= 1 for P-a.e. ω.

In [16], a RWRE in a correlated environment arose as a limit of the quenched
log-gamma polymer. Its transition, probability is marginally beta-distributed. Tran-
sition κξ above is different: the marginal distribution of κ

ξ
x,x+ei

is not beta. Its
density function is given in Theorem 3.7.

The next theorem records the limits of conditioned quenched walks.

THEOREM 2.3. For each fixed ξ ∈ riU , there is an event �(ξ) such that

P(�(ξ)) = 1 and the following holds for every ω ∈ �(ξ): if zN ∈ Z2 is any se-

quence such that |zN |1 = N and zN/N → ξ , then the conditioned quenched path

distribution P ω
0 (· |XN = zN ) converges weakly on the path space (Z2)Z+ to the

Doob transformed path measure P
κξ (ω)
0 .

The weak convergence claim in the theorem amounts to checking that

lim
N→∞

P ω
0 (X0,m = x0,m|XN = zN ) =

m−1∏

k=0

κξ
xk,xk+1

(ω) for ω ∈ �(ξ)
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for any finite path x0,m with x0 = 0. This is an immediate consequence of limit
(2.2). Combining (2.3) with the theorem above tells us that if zN/N → ξ∗, then
P ω

0 (· |XN = zN ) → P ω
0 . In other words, conditioning on the typical velocity ξ∗

introduces no new correlations in the limit and leads back to the original path
measure. This is consistent with classical random walk.

Observe that P
κξ (ω)
0 (X0,m = x0,m|XN = zN ) = P ω

0 (X0,m = x0,m|XN = zN ) for

0 ≤ m ≤ N . Consequently, the family {P κξ

0 } is closed under taking limits of path
distributions conditioned on velocities.

Theorems 2.1, 2.2 and 2.3 are proved after the statement of Theorem 3.6.

2.2. Fluctuation bounds. In 1 + 1 dimensional KPZ models, exponent 1
3 ap-

pears in fluctuations of heights of growing interfaces and free energies of poly-
mer models, while 2

3 appears in spatial correlations and path fluctuations. The
Barraquand–Corwin limit (1.9) indicated that logarithms of quenched probabilities
have N1/3 fluctuations. The theorem below shows the same exponent for process
Bξ , though only in the direction ξ , as quantified by (2.7) below. If the endpoint
(m,n) deviates from Nξ by Nν for ν > 2

3 , the fluctuations of B
ξ
0,(m,n) become

Gaussian. (This follows similar observations for directed polymers in [9], Corol-
lary 1.4, and [28], Corollary 2.2.)

THEOREM 2.4. Fix α,β > 0. Fix ξ = (ξ1, ξ2) ∈ (riU)\ {ξ∗}. Given a constant

0 < γ < ∞, there exist positive finite constants c, C, and N0, depending only on

α, β , γ and ξ , such that

cN2/3 ≤Var
[
B

ξ
0,(m,n)

]
≤ CN2/3

for all N ≥ N0 and (m,n) ∈N2 such that

(2.7) |m − Nξ1| ∨ |n − Nξ2| ≤ γN2/3.

The same constants can be taken for (α,β, γ, ξ) varying in a compact subset of

(0,∞)3 × (riU) \ {ξ∗}.

Theorem 2.4 was proved independently and concurrently in the present work
and as part of a more general result for exactly solvable directed polymers by
Chaumont and Noack (Theorem 1.2 of [9]). A proof appears in Section 4.1 of the
first preprint version [5] of this paper. In the present version, we omit the proof
and cite [9] for details. The translation between the Doob-transformed walk and
the beta polymer is explained in Section 4.

The second fluctuation result quantifies the deviations of the walk from its lim-
iting velocity, under the averaged measure Pξ (·) =

∫
P κξ (ω)(·)P(dω) of the Doob-

transformed RWRE. This walk is superdiffusive with the KPZ wandering exponent
2
3 instead of the diffusive 1

2 of classical random walk.
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THEOREM 2.5. Fix α,β > 0. Fix ξ ∈ (riU) \ {ξ∗}. There exist finite positive

constants C, c, r0 and δ0, depending only on α, β and ξ , such that for r ≥ r0,
δ ∈ (0, δ0), and any N ≥ 1 we have

P
ξ
0

{
|XN − Nξ |1 ≥ rN2/3}≤ Cr−3 and(2.8)

P
ξ
0

{
|XN − Nξ |1 ≥ δN2/3}≥ c.(2.9)

The same constants can be used for (α,β, ξ) varying in a compact subset of

(0,∞)2 × (riU) \ {ξ∗}.

Theorem 2.5 is proved in Section 6. The bounds come from using harmonic
functions to control the exit point of the walk from rectangles.

2.3. Large deviations. This section records large deviation rate functions and
their relation to the process Bξ of Theorem 2.1.

We begin with a point needed for the remainder of the paper. The next lemma
links three parameters: ξ ∈ U is an asymptotic velocity of the walk, t ∈ R is dual
to ξ and 0 < λ < ∞ parametrizes harmonic functions constructed in Section 3.2.
As ξ ranges across U from left to right (in the direction of ξ1), λ goes from 0 to ∞
and back, with λ = ∞ at ξ = ξ∗ (see Figure 1).

The polygamma functions are ψ0(s) = Ŵ′(s)/Ŵ(s) and ψn(s) = ψ ′
n−1(s) for

s > 0 and n ∈ N. Properties of these functions are given in Appendix A of the
first preprint [5] of this paper. Qualitatively speaking, ψ0 is strictly concave and
increasing from ψ0(0+) = −∞ to ψ0(∞−) = ∞, while ψ1 is strictly convex and
decreasing from ψ1(0+) = ∞ to ψ1(∞−) = 0.

LEMMA 2.6. Fix α,β > 0.

FIG. 1. Leftmost and middle plots are of λ as a function of ξ1. The left plot stretches the λ-axis to

reveal the behavior away from ξ∗
1 . The rightmost plot is of λ as a function of t . These graphs are for

(α,β) = (1,2).
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(a) Given ξ = (ξ1,1 − ξ1) ∈ U there is a unique λ = λ(ξ) ∈ [0,∞] such that

ξ1 =
ψ1(λ) − ψ1(α + λ)

ψ1(λ) − ψ1(α + β + λ)
for ξ1 ∈

[
ξ∗

1 ,1
]

and(2.10)

ξ1 = 1 −
ψ1(λ) − ψ1(β + λ)

ψ1(λ) − ψ1(α + β + λ)
for ξ1 ∈

[
0, ξ∗

1
]
,(2.11)

with λ = 0 ⇐⇒ ξ ∈ {e1, e2} and λ = ∞ ⇐⇒ ξ = ξ∗ = ( α
α+β

,
β

α+β
).

Furthermore, λ is strictly increasing on ξ1 ∈ [0, ξ∗
1 ) and strictly decreasing on

ξ1 ∈ (ξ∗
1 ,1].

(b) Given t ∈ [0,∞], there is a unique λ = λ(t) ∈ [0,∞] such that

(2.12) t = ψ0(α + β + λ) − ψ0(λ),

where λ = 0 ⇐⇒ t = ∞ and λ = ∞ ⇐⇒ t = 0.

The proof of Lemma 2.6 is in Section 7. The formula for the quenched rate Iq

in (1.5) in the beta environment can now be given; see Figure 2.

THEOREM 2.7. Fix α,β > 0 and let ω have i.i.d. Beta(α,β) distribution. Then

for ξ = (ξ1, ξ2) ∈ U we have Iq(ξ
∗) = 0 and

(2.13) Iq(ξ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ1ψ0
(
α + β + λ(ξ)

)
+ ξ2ψ0

(
λ(ξ)

)

− ψ0
(
α + λ(ξ)

)
, ξ1 ∈

(
ξ∗

1 ,1
]
,

ξ2ψ0
(
α + β + λ(ξ)

)
+ ξ1ψ0

(
λ(ξ)

)

− ψ0
(
β + λ(ξ)

)
, ξ1 ∈

[
0, ξ∗

1
)
,

where in both cases λ and ξ determine each other uniquely via (2.10) and (2.11).
Iq is a strictly convex function on [0,1] and satisfies Iq(ξ) > Ia(ξ) for all ξ ∈
U \ {ξ∗}.

FIG. 2. A plot showing Iq (higher, thicker graph) and Ia (lower, thinner graph) as functions of ξ1.
Here, (α,β) = (1,2).
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REMARK 2.8 (Regularity of Iq ). One can show that Iq is analytic away from
ξ∗. We verified that Iq has at least four continuous derivatives across ξ∗ by explic-
itly computing derivatives, and obtained the following expansion around ξ∗:

(2.14)

Iq(ξ) =
(α + β)2

2αβ

(
ξ1 − ξ∗

1
)2 +

(α + β)3(α − β)

6α2β2

(
ξ1 − ξ∗

1
)3

+
(α + β)4(2α2 − 2αβ + 2β2 + 1)

24α3β3

(
ξ1 − ξ∗

1
)4 + O

(∣∣ξ1 − ξ∗
1

∣∣4).

These details are in Appendix B of the first preprint [5] of this paper.
For the sake of comparison, here is the expansion around ξ∗ of the averaged rate

function Ia from (1.3):

(2.15)

Ia(ξ) =
(α + β)2

2αβ

(
ξ1 − ξ∗

1
)2 +

(α + β)3(α − β)

6α2β2

(
ξ1 − ξ∗

1
)3

+
(α + β)3(α3 + β3)

12α3β3

(
ξ1 − ξ∗

1
)4 +O

(∣∣ξ1 − ξ∗
1

∣∣5).

The expansions of Iq and Ia agree to third order. This explains the minute differ-
ence between the two graphs in Figure 2. One can check that

d4

dξ4
1

[
Iq(ξ1,1 − ξ1) − Ia(ξ1,1 − ξ1)

]
ξ=ξ∗ =

(α + β)4

α3β3
> 0.

Thus the fourth-order terms differ in the two expansions.

EXAMPLE 2.9 (Case α = β = 1). In the i.i.d. uniform environment λ and Iq

can be found in closed form:

(2.16) Iq(ξ) = 1 − 2
√

ξ1ξ2 =
∞∑

n=1

(
1
2

n

)
(−1)n+14n

(
ξ1 −

1

2

)2n

for ξ ∈ U .

The series illustrates that this rate function is analytic on the entire open segment
riU , a property which is open for general (α,β).

We also record the convex conjugate

I ∗
q (h) = sup

ξ∈U

{
h · ξ − Iq(ξ)

}
= lim

n→∞
n−1 logEω

0
[
eh·Xn

]
, h ∈ R2.

The second equality above is an instance of Varadhan’s theorem [23], page 28.
Since (Xn − X0) · (e1 + e2) = n, we have I ∗

q (te1 + se2) = s + I ∗
q ((t − s)e1) and it

suffices to consider h = te1 for real t .
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THEOREM 2.10. Fix α,β > 0 and let ω have i.i.d. Beta(α,β) distribution.
For t ≥ 0,

I ∗
q (te1) = ψ0

(
α + λ(t)

)
− ψ0

(
λ(t)

)
and(2.17)

I ∗
q (−te1) = −t + ψ0

(
β + λ(t)

)
− ψ0

(
λ(t)

)
,(2.18)

where λ and t determine each other via (2.12).

Formula (2.13) for Iq appeared earlier in equations (8)–(9) of [6] where it was
derived by nontrivial asymptotic analysis. We derive Iq through I ∗

q , which is cal-
culated with the help of harmonic functions we construct below.

Next, we state the connections between Iq and the processes Bξ .

THEOREM 2.11. (a) Fix ξ ∈ riU . Then the process Bξ is an extremal for vari-

ational formula (1.6). In particular, we have

(2.19)
Iq(ξ) = −E

[
B

ξ
0,e1

]
ξ1 −E

[
B

ξ
0,e2

]
ξ2

= − inf
ζ∈riU

{
E
[
B

ζ
0,e1

]
ξ1 +E

[
B

ζ
0,e2

]
ξ2
}
,

where the last infimum is uniquely attained at ζ = ξ .
(b) Extend Iq homogeneously to all of R2

+, that is, by Iq(cξ) = cIq(ξ) for c > 0
and ξ ∈ U . Then the gradient of Iq satisfies

(2.20) ∇Iq(ξ) = −E
[
B

ξ
0,e1

]
e1 −E

[
B

ξ
0,e2

]
e2, ξ ∈ riU .

Corollary 4.5 and Remark 5.7 in [14] put equations (2.19)–(2.20) in the context
of a general theory for directed walks in random potentials. Theorems 2.7, 2.10
and 2.11 are proved in Section 7.

Lastly, we record the LDP for the Doob-transformed RWRE. Definition (2.5)
and the cocycle property in (2.4) imply that

P
κξ (ω)
0 (XN = x) = P ω

0 (XN = x)e
−B

ξ
0,x(ω)

.

Bξ has i.i.d. increments along horizontal and vertical lines [Theorem 3.6(c)], and
hence the law of large numbers applies: P-almost surely

lim
N→∞

N−1B
ξ
0,[Nζ ] = E

[
B

ξ
0,e1

]
ζ1 +E

[
B

ξ
0,e2

]
ζ2 = −ζ · ∇Iq(ξ) ∀ζ ∈ riU .

The quenched LDP (1.5) of the beta walk then gives this theorem.

THEOREM 2.12. For any fixed ξ ∈ riU , the following holds P-almost surely,
simultaneously for all ζ ∈ riU :

lim
N→∞

N−1 logP κξ

0
{
XN = [Nζ ]

}
= −Iq(ζ ) + ζ · ∇Iq(ξ).

Rate function Iq(ζ ) − ζ · ∇Iq(ξ) is uniquely minimized at ζ = ξ , by convexity
and homogeneity of Iq . The main results have been stated and we turn to proofs.
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3. Increment-stationary harmonic functions. In this section, we construct
quenched harmonic functions whose probability distributions are suitably invariant
under lattice translations. This is done first on restricted subsets of the lattice by
solving a boundary value problem, then extended to the entire lattice by taking
limits. That this is possible with explicit distributions and useful independence
properties is a feature of exact solvability.

The boundaries of the positive and negative quadrants v +Z2
+ and v −Z2

+ with
a corner at v ∈ Z2 are denoted by

B+
v =

{
v + (i,0), v + (0, j) : i, j ≥ 0

}
and

B−
v =

{
v − (i,0), v − (0, j) : i, j ≥ 0

}
.

(3.1)

Hitting times of the boundaries follow analogous notation:

(3.2) τ±
v = inf

{
n ≥ 0 : Xn ∈ B±

v

}
.

The separate axes of these boundaries are distinguished by the notation

(3.3) B(±1)
v =

{
v ± (i,0) : i ≥ 0

}
and B(±2)

v =
{
v ± (0, j) : j ≥ 0

}
.

In particular, B±
v = B

(±1)
v ∪B

(±2)
v .

3.1. An involution for beta variables. This section is technical preparation for
the construction of harmonic functions. A distribution-preserving involution of
triples of beta variables is defined and its properties recorded. We motivate this
construction through a Dirichlet problem.

Consider backward nearest-neighbor transition probabilities
̂
ωx,x−ei

, i ∈ {1,2},
on the lattice Z2. These transition probabilities allow two steps −e1 and −e2 and
satisfy

̂
ωx,x−e1 +

̂
ωx,x−e2 = 1 at each x ∈ Z2. Suppose a function f is given on the

boundary B+
0 of the first quadrant Z2

+. When the backward walk starts in the first
quadrant, the hitting time τ+

0 is obviously finite. Then

(3.4) H(x) = E

̂
ω
x

[
f
(
X
(
τ+

0

))]

defines an
̂
ω-harmonic function on the positive first quadrant. That is,

(3.5) H(x) =
̂
ωx,x−e1H(x − e1) +

̂
ωx,x−e2H(x − e2) for x ∈ N2.

We solve (3.5) inductively, by beginning from the boundary values and then
defining H(x) once H(x − e1) and H(x − e2) have been defined. We formulate
this induction in terms of ratios

ρx,y = H(y)/H(x).

The induction assumption is that the nearest-neighbor ratios ρx−e2,x−e1−e2 and
ρx−e1,x−e1−e2 have been defined on the south and west sides of a unit square with
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northeast corner at x. Then, by (3.5), the ratios on the north and east sides are
obtained from the equations

ρx−e1,x =

̂
ωx,x−e1ρx−e1−e2,x−e1 + (1 −

̂
ωx,x−e1)ρx−e1−e2,x−e2

ρx−e1−e2,x−e1

,(3.6)

ρx−e2,x =

̂
ωx,x−e1ρx−e1−e2,x−e1 + (1 −

̂
ωx,x−e1)ρx−e1−e2,x−e2

ρx−e1−e2,x−e2

.(3.7)

It is useful to augment this pair of equations with a third equation

(3.8) ωx−e1−e2,x−e2 =
ρx−e1−e2,x−e2(ρx−e1−e2,x−e1 − 1)

ρx−e1−e2,x−e1 − ρx−e1−e2,x−e2

provided the denominator never vanishes. Together the three equations define an
involution. In the case we specialize to below, ωx−e1−e2,x−e2 is a forward transition
probability from x − e1 − e2 to x − e2. The complementary transition probability
from x − e1 − e2 to x − e1 is then

(3.9) ωx−e1−e2,x−e1 = 1 − ωx−e1−e2,x−e2 .

Equations (3.6)–(3.9) are illustrated by Figure 3, with x in the upper right corner
of the unit square and with

(U,V,W) = (ρx−e1−e2,x−e2, ρx−e1−e2,x−e1,

̂
ωx,x−e1) and

(
U ′,V ′,W ′)= (ρx−e1,x, ρx−e2,x,ωx−e1−e2,x−e2).

Now assume that the transition probabilities
̂
ω come from a beta RWRE; in

other words, that the variables {
̂
ωx,x−e1}x∈Z2 are i.i.d. Beta(α,β). The next lemma

indicates how to choose the distributions of the ratios of the boundary values in
order to get tractable harmonic functions. We regard the parameters α,β of the en-
vironment fixed, while 0 < λ < ∞ parametrizes two different boundary conditions
in cases (a) and (b) in the lemma.

FIG. 3. Involution (3.10): Respectively, weights U and V on the south and west edges and

west/south transition (W,1 − W) become weights U ′ and V ′ on the north and east edges and

east/north transition (W ′,1 − W ′), and vice versa.



2200 M. BALÁZS, F. RASSOUL-AGHA AND T. SEPPÄLÄINEN

LEMMA 3.1. The equations

U ′ =
WV + (1 − W)U

V
, V ′ =

WV + (1 − W)U

U
, and

W ′ =
U(V − 1)

V − U

(3.10)

define an involution (U,V,W) �→ (U ′,V ′,W ′) on (0,1) × (1,∞) × (0,1).
Let 0 < α,β,λ < ∞.

(a) Suppose that (U,V,W) are independent variables with distributions

(3.11) U ∼ Beta(α + λ,β), V −1 ∼ Beta(λ,α), and W ∼ Beta(α,β).

Then the triples (U ′,V ′,W ′) and (U,V,W) have the same distribution.
(b) Suppose that (U,V,W) are independent variables with distributions

(3.12) U−1 ∼ Beta(λ,β), V ∼ Beta(β + λ,α), and W ∼ Beta(α,β).

Then again the triples (U ′,V ′,W ′) and (U,V,W) have the same distribution.

PROOF. Algebra checks the involution property. We prove part (a). Part (b)
follows by switching around α and β and by switching around the axes.

Let (W,Ŵα,Ŵβ,Ŵλ) be jointly independent with W ∼ Beta(α,β) and Ŵν ∼
Gamma(ν,1). Set

(3.13) U =
Ŵα + Ŵλ

Ŵα + Ŵβ + Ŵλ

and V =
Ŵα + Ŵλ

Ŵλ

.

Then (U,V,W) have the desired distribution because V is independent of Ŵα +Ŵλ.
Compute

(3.14)

U ′ = W + (1 − W)
U

V
= W + (1 − W)

Ŵλ

Ŵα + Ŵβ + Ŵλ

,

V ′ = W
V

U
+ 1 − W = W

Ŵα + Ŵβ + Ŵλ

Ŵλ

+ 1 − W,

W ′ =
U(V − 1)

(V − U)
=

Ŵα

Ŵα + Ŵβ

.

W ′ is independent of the pair (U ′,V ′) because it is independent of Ŵα + Ŵβ . It
also clearly has the same distribution as W .

It remains to show that (U ′,V ′) has the same distribution as (U,V ). Set

Y =
Ŵλ

Ŵα + Ŵβ + Ŵλ

.

Observe that U ′ = W + (1 − W)Y and V ′ = WY−1 + 1 − W . Also

W ′ +
(
1 − W ′)Y = Y + W ′(1 − Y) =

Ŵα + Ŵλ

Ŵα + Ŵβ + Ŵλ

= U
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and similarly, W ′Y−1 + 1 − W ′ = V . Furthermore, (Y,W ′) are independent and
so are (Y,W). Consequently, the two pairs have the same distribution and (U ′,V ′)
has the same distribution as (U,V ). The lemma is proved. �

Observe from (3.10) that

(3.15)
W ′

U
+

1 − W ′

V
= 1 and

W

U ′ +
1 − W

V ′ = 1.

This is how the Doob transformed transition probabilities arise from a given for-
ward transition (W ′,1 − W ′) or backward transition (W,1 − W). We derive the
probability distribution of W ′/U (which is the same as that of W/U ′). 2F1 below
is the standard Gauss hypergeometric function

(3.16) 2F1(a, b, c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where (c)k = c(c+1) · · · (c+k−1) is the ascending factorial. Other rational func-
tions of beta variables whose densities involve hypergeometric functions appear in
[13, 20].

PROPOSITION 3.2. The random variables W ′/U and W/U ′ of Lemma 3.1
have the following density functions gλ and g̃λ on the interval (0,1).

In case (a) under assumption (3.11),

(3.17)
gλ(x) =

B(α + λ,α + β)

B(α + λ,β)
·
xα−1(1 − x)λ−1

B(λ,α)

× 2F1(α + λ,α + λ,2α + β + λ;x).

In case (b) under assumption (3.12),

(3.18)
g̃λ(x) =

B(β + λ,α + β)

B(β + λ,α)
·
xλ−1(1 − x)β−1

B(λ,β)

× 2F1(β + λ,β + λ,α + 2β + λ;1 − x).

Neither gλ nor g̃λ is the density function of any beta distribution.

PROOF. Consider case (a). Let FV −1 denote the Beta(λ,α) c.d.f. of V −1. Fix
0 < x < 1. From W ′/U = (1 − V −1)/(1 − UV −1),

gλ(x) =
d

dx
P

(
W ′

U
≤ x

)
=

d

dx
P

(
V −1 ≥

1 − x

1 − xU

)

=
1

B(α + λ,β)

∫ 1

0

∂

∂x

(
1 − FV −1

(
1 − x

1 − xu

))

× uα+λ−1(1 − u)β−1 du(3.19)
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=
xα−1(1 − x)λ−1

B(λ,α)B(α + λ,β)

∫ 1

0
(1 − xu)−α−λ

× uα+λ−1(1 − u)α+β−1 du.

The last integral equals B(α+λ,α+β)2F1(α+λ,α+λ,2α+β +λ;x) (equation
(9.09) on page 161 in [19]). This verifies (3.17).

In case (b), write W ′/U = 1 − (1 − U−1)/(1 − U−1V ) where the last fraction
has the distribution of case (a) but with α and β interchanged. Hence we have
(3.18).

Formulas (3.17) and (3.18) can be used to show that gλ and g̃λ are not beta
densities. Details can be found in Proposition 3.2 in [5]. �

3.2. Harmonic functions on quadrants. Lemma 3.1 is applied to construct two
processes: (ωλ, ρλ) using case (a) of the lemma and (ω̃λ, ρ̃λ) using case (b). Pa-
rameters (α,β) are fixed while in both cases 0 < λ < ∞. ωλ and ω̃λ are new i.i.d.
Beta(α,β) environments. ρλ and ρ̃λ are harmonic functions on Z2

+ that give rise
to Doob transformed transition probabilities πλ and π̃λ, respectively.

The need for two cases (a) and (b) arises from the two-to-one connection be-
tween parameters ξ ∈ (riU) \ {ξ∗} and 0 < λ < ∞, given in Lemma 2.6(a). To
parametrize in terms of ξ , let λ(ξ) be given by Lemma 2.6(a) and define

(3.20)
(
ω̄ξ , ρ̄ξ , π̄ ξ )=

⎧
⎪⎪⎨
⎪⎪⎩

(
ωλ(ξ), ρλ(ξ), πλ(ξ)), ξ1 ∈

(
ξ∗

1 ,1
)
=
(

α

α + β
,1
)
,

(
ω̃λ(ξ), ρ̃λ(ξ), π̃λ(ξ)), ξ1 ∈

(
0, ξ∗

1
)
=
(

0,
α

α + β

)
.

This way we establish in Theorem 3.5 that ξ ∈ (riU) \ {ξ∗} is the limiting velocity
of the Doob transformed RWRE with transition π̄ ξ . The law of large numbers
velocity ξ∗ = ( α

α+β
,

β
α+β

) does not arise from any transition πλ or π̃λ for a finite λ.

We now perform construction (3.6)–(3.9) of harmonic functions ρλ and for-
ward transition probabilities ωλ. Their distributional properties come from part (a)
of Lemma 3.1. The inputs of the construction are boundary variables and backward
transition probabilities in the bulk. We create infinitely many coupled systems in-
dexed by the parameter 0 < λ < ∞. Remark 3.4 below comments on the similar
construction of (ω̃λ, ρ̃λ) based on case (b) of Lemma 3.1.

Let P be the joint distribution of mutually independent random variables

(3.21)
{
�(i,0),�(0,j),

̂
ωx,x−e1 : i, j ∈ N, x ∈ N2}

with marginals �(i,0),�(0,j) ∼ Unif(0,1) and
̂
ωx,x−e1 ∼ Beta(α,β). Set

(3.22)
̂
ωx,x−e2 = 1 −

̂
ωx,x−e1 .

For fixed positive a and b, let F−1(·;a, b) : [0,1] → [0,1] denote the inverse
function of the Beta(a, b) c.d.f. (1.8). For 0 < λ < ∞, define coupled boundary
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variables on the coordinate axes:

(3.23)

ρλ
(i−1,0),(i,0) = F−1(�(i,0);α + λ,β) for i ≥ 1 and

ρλ
(0,j−1),(0,j) =

1

F−1(�(0,j);λ,α)
for j ≥ 1.

{ρλ
(i−1,0),(i,0) : i ≥ 1} are i.i.d. Beta(α + λ,β), {(ρλ

(0,j−1),(0,j))
−1 : j ≥ 1} are i.i.d.

Beta(λ,α), and the two collections are independent of each other and of {
̂
ωx,x−e1 :

x ∈ N2}.
For each λ > 0, apply (3.6)–(3.8) inductively to define random variables

(3.24)
{
ρλ

x,x+e1
, ρλ

x,x+e2
,ωλ

x,x+e1
: x ∈ Z2

+
}

indexed by the full quadrant. For x ∈ Z2
+, define additionally

ωλ
x,x+e2

= 1 − ωλ
x,x+e1

.

Conservation equations

(3.25) ρλ
x,x+e1

ρλ
x+e1,x+e1+e2

= ρλ
x,x+e2

ρλ
x+e2,x+e1+e2

are satisfied around all unit squares. Extend the definition of ρλ
x,x+ei

from directed
nearest-neighbor edges to ρλ

x,y for all x, y ∈ Z2
+ so that ρλ

x,x = 1 and

(3.26) ρλ
x,yρ

λ
y,z = ρλ

x,z for all x, y, z ∈ Z2
+.

In the sequel, we write ρλ(x, y) for ρλ
x,y when subscripts are not convenient.

A down-right lattice path {xj }j∈Z is a nearest-neighbor path with incre-
ments xj − xj−1 ∈ {e1,−e2}. Any bounded portion of a down-right path in
Z2

+ can be obtained by finitely many corner flips starting from the path xj =
(j+, j−) that lies on the coordinate axes. A single corner flip is the transforma-
tion (U,V,W) �→ (U ′,V ′,W ′) in Figure 3. Figure 4 illustrates successive corners
flips. By Lemma 3.1(a), each iteration of (3.6)–(3.8) preserves the properties in the
next proposition. Inequalities on Z2 are interpreted coordinatewise.

FIG. 4. Illustration of the corner-flipping procedure. Left and center: To obtain the ρλ values on the

thick edges of the down-right path inside the quadrant start with the known values on the boundary

edges and consecutively flip the corners of the squares, for example, in the indicated order. Right:
ratios ρλ along the down-right path, transitions

̂
ω out of sites northeast of the path, and transitions

ωλ southwest of it are jointly independent.
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PROPOSITION 3.3. Let random variables (3.21) and (3.23) be given, and de-

fine the process (3.24) inductively through (3.6)–(3.8). Then for each 0 < λ < ∞
we have the following distributional properties.

Random variables {ωλ
x,x+e1

: x ∈ Z2
+} are i.i.d. Beta(α,β). For each x ∈ Z2

+, we

have the marginal distributions

(3.27) ρλ
x,x+e1

∼ Beta(α + λ,β) and
1

ρλ
x,x+e2

∼ Beta(λ,α).

For any down-right path {xj }j∈Z in Z2
+, the following random variables are all

mutually independent:
{
ρλ

xj ,xj+1
: j ∈ Z

}
,

⋃

j∈Z

{̂
ωz,z−e1 : z ≥ xj + (1,1)

}
, and

⋃

j∈Z

{
ωλ

x,x+e1
: 0 ≤ x ≤ xj − (1,1)

}
.

In particular, we have the translation invariance of the joint distribution: for

any a ∈ Z2
+,

(3.28)

(
ωλ

x,x+e1
, ρλ

u,v,

̂
ωz,z−e1

)
x,u,v∈Z2

+,z∈N2

d=
(
ωλ

a+x,a+x+e1
, ρλ

a+u,a+v,

̂
ωa+z,a+z−e1

)
x,u,v∈Z2

+,z∈N2 .

Translation invariance (3.28) is a consequence of the down-right path statement:
with a new origin at a, the edge variables ρλ

a+(i−1)ek,a+iek
for i ∈ N and k ∈ {1,2}

and the bulk variables (

̂
ωz,z−e1)z∈a+N2 have the same joint distribution as the orig-

inal ones given in (3.21) and (3.23).
Equations (3.15) give the identities

ωλ
x,x+e1

ρλ
x,x+e1

+
ωλ

x,x+e2

ρλ
x,x+e2

= 1 for x ∈ Z2
+ and(3.29)

̂
ωx,x−e1

ρλ
x−e1,x

+

̂
ωx,x−e2

ρλ
x−e2,x

= 1 for x ∈ N2.(3.30)

Consider the RWRE P ωλ
that uses forward transitions ωλ. Combining (3.29)

with (3.26) gives the following for any fixed y ∈ Z2
+:

(3.31) ωλ
x,x+e1

ρλ
x+e1,y

+ ωλ
x,x+e2

ρλ
x+e2,y

= ρλ
x,y for x ∈ Z2

+.

In other words, for any fixed y, ρλ
x,y is a harmonic function of x for transition

probabilities ωλ
x,x+ei

on Z2
+. In particular, for two points u ≤ y in Z2

+,

(3.32) ρλ
u,y = Eωλ

u

[
ρλ(Xτ−

y
, y)

]
.
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By (3.30), the same function ρλ works for backward transitions
̂
ω and gives

(3.33) ρλ
u,y = E

̂
ω
y

[
ρλ(u,Xτ+

u
)
]
.

Perform a Doob transform on P ωλ
by introducing transition probabilities

(3.34) πλ
x,x+ei

=
ωλ

x,x+ei

ρλ
x,x+ei

, i ∈ {1,2}.

The RWRE that uses transitions πλ is the ρλ-tilted RWRE and its quenched path
measure is denoted by P πλ

. Let x0,k = (x0, . . . , xk) be an up-right path from x0 =
u that first enters the boundary B−

y [recall (3.1)] at the endpoint xk . Then

P πλ

u {X0,k = x0,k} =
k−1∏

i=0

ωλ
xi ,xi+1

ρλ
xi ,xi+1

=
P ωλ

u {X0,k = x0,k}
ρλ

u,xk

=
P ωλ

u {X0,k = x0,k}ρλ
xk,y

ρλ
u,y

=
Eωλ

u [ρλ(Xτ−
y
, y),X0,k = x0,k]

Eωλ

u [ρλ(Xτ−
y
, y)]

.

(3.35)

A useful consequence for later is the following identity for the probability of hitting
one of the two parts of the boundary. For fixed u ≤ y in Z2

+ and i ∈ {1,2}, summing

(3.35) over all paths entering B−
y at a point of B(−i)

y gives

(3.36) P πλ

u

{
Xτ−

y
∈ B(−i)

y

}
=

Eωλ

u [ρλ(Xτ−
y
, y),Xτ−

y
∈ B

(−i)
y ]

Eωλ

u [ρλ(Xτ−
y
, y)]

.

Analogously, we define the backwards Doob transform

(3.37)
̂
π

λ
x,x−ei

=

̂
ωx,x−ei

ρλ
x−ei ,x

, i ∈ {1,2}.

Then as above for fixed u ≤ y in Z2
+ and a down-left path x0,k started from y that

first enters B+
u at xk ,

P

̂
π

λ

y {X0,k = x0,k} =
P

̂
ω
y {X0,k = x0,k}ρλ

u,xk

ρλ
u,y

=
E

̂
ω
y [ρλ(u,X(τ+

u )),X0,k = x0,k]
E

̂
ω
y [ρλ(u,X(τ+

u ))]
.

(3.38)
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REMARK 3.4. Let us comment briefly on the version of the construction
above that produces (ω̃λ, ρ̃λ) based on case (b) of Lemma 3.1. Instead of (3.23),
begin with

(3.39)
ρ̃λ

(i−1,0),(i,0) =
1

F−1(�(i,0);λ,β)
for i ≥ 1 and

ρ̃λ
(0,j−1),(0,j) = F−1(�(0,j);β + λ,α) for j ≥ 1.

Equations (3.6)–(3.9) are iterated exactly as before. Proposition (3.3) is valid word
for word for (ω̃λ, ρ̃λ,

̂
ω), except that (3.27) is replaced with

(3.40)
1

ρ̃λ
x,x+e1

∼ Beta(λ,β) and ρ̃λ
x,x+e2

∼ Beta(β + λ,α).

The Doob-transformed transitions are defined again by

(3.41) π̃λ
x,x+ei

=
ω̃λ

x,x+ei

ρ̃λ
x,x+ei

, i ∈ {1,2},

with quenched path measure P π̃λ
. Equations (3.32) and (3.35) are then also valid

for (ω̃λ, ρ̃λ, π̃λ).

Now let λ(ξ) be given by Lemma 2.6(a) for ξ = (ξ1,1 − ξ1) ∈ (riU) \
{ξ∗}. Combine the two constructions (ωλ, ρλ, πλ) and (ω̃λ, ρ̃λ, π̃λ) by defining
(ω̄ξ , ρ̄ξ , π̄ ξ ) by (3.20) for all ξ ∈ (riU) \ {ξ∗}. The quenched path measure of the
RWRE that uses transition π̄ ξ is given by

(3.42) P π̄ξ

x =

⎧
⎨
⎩

P πλ(ξ)

x , ξ1 ∈
(
ξ∗

1 ,1
)
,

P π̃λ(ξ)

x , ξ1 ∈
(
0, ξ∗

1
)
.

THEOREM 3.5. We have this almost sure law of large numbers: for all ξ ∈
(riU) \ {ξ∗},

P π̄ξ

0
{
n−1Xn → ξ

}
= 1 P-almost surely.

PROOF. We give the details for the case ξ1 ∈ (ξ∗
1 ,1) = ( α

α+β
,1) with λ =

λ(ξ). By translation invariance (Proposition 3.3), we can extend logρλ to a pro-
cess {logρλ

x,y : x, y ∈ Z2} indexed by the entire lattice. This process has the
shift-invariance and additivity properties of (2.4); in other words, it is a station-
ary L1 cocycle. Such processes satisfy a uniform ergodic theorem under cer-
tain regularity assumptions as, for example, given in Theorem A.3 in the Ap-
pendix of [16]. Variable logρλ

0,ei
is integrable and (3.29) gives the lower bound

logρλ
x,x+ei

≥ logωλ
x,x+ei

in terms of an i.i.d. process with strictly more than two
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moments. This is sufficient for Theorem A.3 of [16] which gives the almost sure
limit

(3.43) lim
n→∞

n−1 max
|x|1≤n

∣∣logρλ
0,x − m(λ) · x

∣∣= 0,

with mean vector

m(λ) = E
[
logρλ

0,e1

]
e1 +E

[
logρλ

0,e2

]
e2

=
(
ψ0(α + λ) − ψ0(α + β + λ)

)
e1 +

(
ψ0(α + λ) − ψ0(λ)

)
e2.

Proposition 3.3 says that under P transitions ωλ have the same distribution as ω

does under P. Then, by (1.5) and (3.43) we have P-almost surely

lim
n→∞

n−1 logP πλ

0
{
Xn = [nζ ]

}

= lim
n→∞

(
n−1 logP ωλ

0
{
Xn = [nζ ]

}
− n−1 logρλ

0,[nζ ]
)

= −Iq(ζ ) + ζ1ψ0(α + β + λ) + ζ2ψ0(λ) − ψ0(α + λ).

In other words, the distribution of Xn/n under P πλ

0 satisfies a (quenched) large
deviation principle with rate function

Iλ
q (ζ ) = Iq(ζ ) − ζ1ψ0(α + β + λ) − ζ2ψ0(λ) + ψ0(α + λ).

By the strict convexity of Iq and its expression (2.13), Iλ
q (ζ ) has a unique zero at

ζ = ξ with ξ1 given by the right-hand side of (2.10). This proves Theorem 3.5. �

Lastly, we record continuity and monotonicity satisfied by the boundary vari-
ables defined in (3.23) and extended by the construction to all x, y ∈ Z2

+:

ργ
x,y −→

γ→λ
ρλ

x,y, ωγ
x −→

γ→λ
ωλ

x , and(3.44)

γ > λ > 0 =⇒ ρ
γ
x,x+e1

> ρλ
x,x+e1

and ρ
γ
x,x+e2

< ρλ
x,x+e2

.(3.45)

Limits (3.44) are valid also for (ω̃, ρ̃), but the monotonicity is reversed:

(3.46) γ > λ > 0 =⇒ ρ̃
γ
x,x+e1

< ρ̃λ
x,x+e1

and ρ̃
γ
x,x+e2

> ρ̃λ
x,x+e2

.

3.3. Global harmonic functions. In this section, we construct the process B
ξ
x,y

discussed in Section 2.1. We summarize the construction in Theorem 3.6, derive
the claims of Section 2.1, then prove Theorem 3.6 piece by piece.

The probability space (�,S,P) is the product space � = [0,1]Z2
of beta envi-

ronments ω = (ωx,x+e1 : x ∈ Z2) where the variables ωx,x+e1 are i.i.d. Beta(α,β)-
distributed. Shift mappings Tz act by (Tzω)x,x+ei

= ωx+z,x+z+ei
for x, z ∈ Z2. Ve-

locities ξ ∈ riU are denoted by ξ = (ξ1, ξ2) = (ξ1,1 − ξ1), and the distinguished
velocity is ξ∗ = ( α

α+β
,

β
α+β

). A down-right path {xi} ⊂ Z2 in part (c) below satis-
fies xi+1 −xi ∈ {e1,−e2}. The increment distributions in part (a.1) below are those
of case (a) of Lemma 3.1, while part (a.2) corresponds to case (b) of Lemma 3.1.
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THEOREM 3.6. Fix 0 < α,β < ∞. On the probability space (�,S,P) there

exists a stochastic process {Bξ
x,y(ω) : x, y ∈ Z2, ξ ∈ riU} with the following prop-

erties:

I. Distribution and expectations.

(a) For ξ = ξ∗ the process B
ξ∗
x,y is identically zero. For ξ ∈ (riU) \ {ξ∗}, the

marginal distributions and expectations are as follows, with λ(ξ) given by

(2.10)–(2.11).

(a.1) For ξ1 ∈ (ξ∗
1 ,1),

e
B

ξ
x,x+e1 ∼ Beta

(
α + λ(ξ), β

)
and e

−B
ξ
x,x+e2 ∼ Beta

(
λ(ξ),α

)
,

and so

E
[
B

ξ
x,x+e1

]
= ψ0

(
α + λ(ξ)

)
− ψ0

(
α + β + λ(ξ)

)
and

E
[
B

ξ
x,x+e2

]
= ψ0

(
α + λ(ξ)

)
− ψ0

(
λ(ξ)

)
.

(3.47)

(a.2) For ξ1 ∈ (0, ξ∗
1 ),

e
−B

ξ
x,x+e1 ∼ Beta

(
λ(ξ), β

)
and e

B
ξ
x,x+e2 ∼ Beta

(
β + λ(ξ),α

)
,

and so

E
[
B

ξ
x,x+e1

]
= ψ0

(
β + λ(ξ)

)
− ψ0

(
λ(ξ)

)
and

E
[
B

ξ
x,x+e2

]
= ψ0

(
β + λ(ξ)

)
− ψ0

(
α + β + λ(ξ)

)
.

(3.48)

(b) For any z ∈ Z2, the variables {Bξ
x,y(ω) : x, y 
≤ z, ξ ∈ riU} are independent of

the variables {ωx+e1 : x ≤ z}.
(c) For a fixed ξ ∈ (riU) \ {ξ∗}, the joint distribution of (ω,Bξ ) is the same as

that of (ω̄ξ , log ρ̄ξ ) defined in (3.20). This distribution is described in Proposi-

tion 3.3 and Remark 3.4. In particular, on any down-right path {xi}i∈Z on Z2

the variables {Bξ
xi ,xi+1}i∈Z are independent.

(d) The quenched large deviation rate function of (1.5) satisfies

Iq(ξ) = − inf
ζ∈riU

{
E
[
B

ζ
0,e1

]
ξ1 +E

[
B

ζ
0,e2

]
ξ2
}
for all ξ ∈ U .

The infimum is uniquely attained at ζ = ξ .

II. Pointwise properties. There exists an event �0 ⊂ � such that P(�0) = 1 and

the following statements hold for all ω ∈ �0, ξ, ζ ∈ riU , and x, y, z ∈ Z2:

(e) Cocycle properties: stationarity

(3.49) B
ξ
x+z,y+z(ω) = Bξ

x,y(Tzω)
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and additivity

(3.50) Bξ
x,y(ω) + Bξ

y,z(ω) = Bξ
x,z(ω).

In particular, B
ξ
x,x(ω) = 0 and B

ξ
x,y(ω) = −B

ξ
y,x(ω).

(f) Harmonic increments:

(3.51) ωx,x+e1e
−B

ξ
x,x+e1

(ω) + ωx,x+e2e
−B

ξ
x,x+e2

(ω) = 1.

(g) Monotonicity: If ξ · e1 < ζ · e1, then

B
ξ
x,x+e1

≥ B
ζ
x,x+e1

and B
ξ
x,x+e2

≤ B
ζ
x,x+e2

.

(h) B
ξ
x,y(ω) is a cadlag function of ξ1 ∈ (0,1).

III. Limits. For each fixed ξ ∈ riU , there exists an event �
(ξ)
0 ⊂ � that can vary

with ξ , has P(�
(ξ)
0 ) = 1, and is such that the following statements hold for each

ω ∈ �
(ξ)
0 and x, y ∈ Z2:

(i) For any sequence ξn ∈ riU with ξn → ξ , we have B
ξn

x,y(ω) → B
ξ
x,y(ω).

(j) For any sequence zN ∈ Z2 with |zN |1 → ∞ and zN/N → ξ we have

Bξ
x,y(ω) = lim

N→∞

(
logP ω

x {X|zN−x|1 = zN }

− logP ω
y {X|zN−y|1 = zN }

)
.

(3.52)

Comments about the theorem. The shift-invariant process (ω̄ξ , log ρ̄ξ ) in part
(c) was constructed in (3.20) in Section 3.2 on the quadrant Z2

+. For part (c) above
to make sense, extend (ω̄ξ , log ρ̄ξ ) to the full lattice Z2 by Kolmogorov’s extension
theorem. It is also important to distinguish when ξ is fixed and when it can vary.
The distributional equality of Bξ and log ρ̄ξ is not valid jointly across different
ξ because the joint distribution of {Bξ } is not the one constructed in Section 3.2
through a coupling with uniform random variables. Note the distinction between
(h) and (i): at fixed ξ there is continuity almost surely, but globally over ξ the path
is cadlag.

We prove the results of Section 2.1. As given in (2.5), the transformed transition

probability is defined by κ
ξ
x,x+ei

(ω) = ωx,x+ei
e
−B

ξ
x,x+ei

(ω).

PROOF OF THEOREM 2.1. Theorem 2.1 is a subset of Theorem 3.6. �

PROOF OF THEOREM 2.2. Express κ
ξ
x,x+e1

using (B
ξ
x,x+e1

,B
ξ
x,x+e2

):

(3.53) κ
ξ
x,x+e1

=
e
B

ξ
x,x+e2 − 1

e
B

ξ
x,x+e2 − e

B
ξ
x,x+e1

.
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To prove the formula, substitute in limits (3.52) and use the Markov property. Note
that this is the analogue of W ′/U = (V − 1)/(V − U) from (3.10).

Given n ∈ Z, define the down-right path {xj } by

x2k = (n + k,−k) and x2k+1 = (n + k + 1,−k) for k ∈ Z.

The antidiagonal {x : x1 + x2 = n} is the subsequence {x2k}, and
(
B

ξ

x2k,x2k+e1
,B

ξ

x2k,x2k+e2

)
=
(
B

ξ

x2k,x2k+1,−B
ξ

x2k−1,x2k

)
.

These pairs are i.i.d. by part (c) of Theorem 3.6.
For ξ ∈ U \ {ξ∗}, the law of large numbers part (2.6) of Theorem 2.2 follows

from Theorem 3.5 and the observation that (ω,Bξ ) has the same distribution as
(ω̄ξ , log ρ̄ξ ), as stated in part (c) of Theorem 3.6.

For ξ = ξ∗, P
κξ∗

(ω)
0 = P ω

0 , the original path measure in an i.i.d. environment,
and the LLN is the one in (1.2). �

PROOF OF THEOREM 2.3. Immediate from the limits (3.52). �

THEOREM 3.7. For ξ ∈ (riU) \ {ξ∗}, random variable κ
ξ
0,e1

is not beta dis-

tributed. Let λ(ξ) be given by (2.10)–(2.11) and let gλ and g̃λ be the functions

defined in (3.17)–(3.18). Then the density function f ξ (x) of κ
ξ
0,e1

for 0 < x < 1 is

given by

(3.54) f ξ (x) =

⎧
⎨
⎩

gλ(ξ)(x), ξ1 ∈
(
ξ∗

1 ,1
)
,

g̃λ(ξ)(x), ξ1 ∈
(
0, ξ∗

1
)
.

PROOF. This comes from Proposition 3.2. Formula (3.53), the independence
of B

ξ
0,e1

and B
ξ
0,e2

, and their distributions given in part (a) of Theorem 3.6 imply

that κ
ξ
0,e1

has the distribution of W ′/U in Proposition 3.2. �

We begin now with some preliminaries toward the proof of Theorem 3.6. In ad-
dition to the probability space (�,S,P) with its beta environment ω, we use the
coupled processes {ω̄ξ

x,x+e1
, ρ̄

ξ
x,y : x, y ∈ Z2

+} under distribution P, constructed in
Section 3.2 with properties given in Proposition 3.3 and the subsequent discussion.
Each environment ω̄ξ has the i.i.d. Beta(α,β) distribution of the original environ-
ment ω. The construction of B

ξ
x,y is based on the limits (3.52). These limits are

proved by bounding ratios of hitting probabilities with variables ρ̄ξ from (3.20)
whose distributions we control.

We begin with two lemmas that do not use the beta distributions. The setting for
Lemmas 3.8 and 3.9 is the following: a ∈ Z2 and on the quadrant S = a + Z2

+ we
have a Markov transition probability p such that

(3.55) 0 < px,x+e1 = 1 − px,x+e2 < 1 for all x ∈ S.
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Let Px with expectation Ex denote the Markov chain with transition p starting at
x ∈ S. Use the standard notation for hitting probabilities:

F(x, y) = Px(∃n ≥ 0 : Xn = y).

LEMMA 3.8. The following inequalities hold for all y ∈ S = a +Z2
+:

(3.56)
F(a + e1, y + e2)

F (a, y + e2)
≤

F(a + e1, y)

F (a, y)
≤

F(a + e1, y + e1)

F (a, y + e1)
.

The first two numerators can vanish but the denominators are all positive. The

same inequalities hold with e1 and e2 switched around.

PROOF. The second statement follows by applying (3.56) to the transition
probability p̃ obtained by reflecting p across the diagonal passing through a: for
x = (x1, x2) ∈ Z2

+ set p̃a+x,a+x+ei
= pa+x̃,a+x̃+e3−i

, where x̃ = (x2, x1).
We prove claim (3.56) by induction on y. It is convenient to use the ratios

Ux,y =
F(x, y)

F (x, y − e1)
and Vx,y =

F(x, y)

F (x, y − e2)
for x ≤ y in S.

The numerator does not vanish but the denominator can vanish and then the ratio
has value ∞.

Equation (3.56) holds trivially for y = a + ℓe2 with ℓ ≥ 0 because the first two
numerators vanish while the other probabilities are positive. Hence we may assume
y ≥ a + e1. By a shift of y, (3.56) is equivalent to having

Ua,y ≤ Ua+e1,y for y ≥ a + 2e1 and

Va,y ≥ Va+e1,y for y ≥ a + e1 + e2.
(3.57)

We check the boundaries first. For y = a + ke1 for k ≥ 2, Ua,y = Ua+e1,y =
py−e1,y . For y = a + e1 + ℓe2 for ℓ ≥ 1,

Va,y =
F(a, y − e2)py−e2,y + F(a, y − e1)py−e1,y

F(a, y − e2)
> py−e2,y = Va+e1,y .

It remains the check (3.57) for y = a + ke1 + ℓe2 for k ≥ 2 and ℓ ≥ 1. For
y ≥ x + e1 + e2, the Markov property and assumption (3.55) give

F(x, y) = F(x, y − e1)py−e1,y + F(x, y − e2)py−e2,y

from which we derive the identities

Ux,y = py−e1,y + py−e2,y

Ux,y−e2

Vx,y−e1

and Vx,y = py−e1,y

Vx,y−e1

Ux,y−e2

+ py−e2,y

also for y ≥ x + e1 + e2.
Now proceed by induction on y ≥ a+2e1 +e2, beginning with y = a+2e1 +e2,

and then taking e1 and e2 steps. The boundary cases checked above together with
the induction assumption give Ua,y−e2 ≤ Ua+e1,y−e2 and Va,y−e1 ≥ Va+e1,y−e1 .
Then the identities above give Ua,y ≤ Ua+e1,y and Va,y ≥ Va+e1,y . �
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LEMMA 3.9. Let v ≥ a on Z2
+ and set y = v + e1 + e2. Suppose f (x) > 0 for

x on the boundary B−
y . We have the following inequalities.

For a + e1 ≤ v:

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−2)
y ]

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−2)
y ]

≤
F(a, v)

F (a + e1, v)

≤
Ea[f (Xτ−

y
),Xτ−

y
∈ B

(−1)
y ]

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−1)
y ]

.

(3.58)

For a + e2 ≤ v:

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−1)
y ]

Ea+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−1)
y ]

≤
F(a, v)

F (a + e2, v)

≤
Ea[f (Xτ−

y
),Xτ−

y
∈ B

(−2)
y ]

Ea+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−2)
y ]

.

(3.59)

PROOF. For the proof, fix v and do induction on |v − a|1 ≥ 1. Consider the
case a = v − ke1 for k ≥ 1. Then

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−2)
y ]

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−2)
y ]

= pa,a+e1 =
F(a, v)

F (a + e1, v)
.

On the other hand, when the walk is required to hit B(−1)
y , both steps e1 and e2 are

feasible from a, and so

Ea

[
f (Xτ−

y
),Xτ−

y
∈ B(−1)

y

]
≥ pa,a+e1Ea+e1

[
f (Xτ−

y
),Xτ−

y
∈ B(−1)

y

]
.

This establishes (3.58). Equation (3.59) for a = v − ke2 for k ≥ 1 follows in a
symmetric manner. In particular, we have the full conclusion for |v − a|1 = 1.

Suppose (3.58)–(3.59) hold for all pairs a ≤ v with |v − a|1 = ℓ ≥ 1. Consider
a ≤ v with |v − a|1 = ℓ + 1. We have the result when a ∈ {v − (ℓ + 1)e1, v − (ℓ +
1)e2}. Thus assume that a < v coordinatewise. For i ∈ {1,2}, take the identity

pa,a+e1

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

+ pa,a+e2

Ea+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

= 1
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and rearrange it to yield the two identities

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

= pa,a+e1 + pa,a+e2

Ea+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e1+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

×
( Ea+e1[f (Xτ−

y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e1+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

)−1
,

(3.60)

Ea[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

= pa,a+e2 + pa,a+e1

Ea+e1[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e1+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

×
( Ea+e2[f (Xτ−

y
),Xτ−

y
∈ B

(−i)
y ]

Ea+e1+e2[f (Xτ−
y
),Xτ−

y
∈ B

(−i)
y ]

)−1
.

(3.61)

Derive the analogous equations for ratios of hitting probabilities from

pa,a+e1

F(a + e1, v)

F (a, v)
+ pa,a+e2

F(a + e2, v)

F (a, v)
= 1.

Apply the induction assumption on the right-hand sides of (3.60) and (3.61) and
their counterparts for the ratios of hitting probabilities. This verifies (3.58) and
(3.59) for u. �

The remainder of the proof relies on the beta environment. The next proposition
gives control over limits of hitting probability ratios through the harmonic func-
tions constructed for Proposition 3.3. Quenched hitting probabilities are denoted
by

(3.62) Fω(x, y) = Fω
x,y = P ω

x (∃n ≥ 0 : Xn = y).

When x ≤ y, this is of course Fω
x,y = P ω

x (X|y−x|1 = y), which we also use occa-
sionally when the notation is not too heavy.

PROPOSITION 3.10. Fix ξ ∈ (riU) \ {ξ∗}. If η, ζ ∈ riU are such that

(3.63) η1 < ξ1 < ζ1
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then for all x ∈ Z2
+ and z ∈ Z2 we have almost surely

lim
N→∞

F ω̄ξ

x,[Nζ ]+z

F ω̄ξ

x+e1,[Nζ ]+z

≤ ρ̄
ξ
x,x+e1

≤ lim
N→∞

F ω̄ξ

x,[Nη]+z

F ω̄ξ

x+e1,[Nη]+z

and

lim
N→∞

F ω̄ξ

x,[Nζ ]+z

F ω̄ξ

x+e2,[Nζ ]+z

≥ ρ̄
ξ
x,x+e2

≥ lim
N→∞

F ω̄ξ

x,[Nη]+z

F ω̄ξ

x+e2,[Nη]+z

.

Recall from (3.20) that these inequalities split into two separate results: one for

(ωλ(ξ), ρλ(ξ)) when ξ1 ∈ (ξ∗
1 ,1) and one for (ω̃λ(ξ), ρ̃λ(ξ)) when ξ1 ∈ (0, ξ∗

1 ).

PROOF. The inequalities claimed are all proved the same way. We illustrate
with the first one. Let yN = [Nζ ] + z + e1 + e2. By (3.58), then (3.36), (3.32) and
(3.26),

F ω̄ξ

x,[Nζ ]+z

F ω̄ξ

x+e1,[Nζ ]+z

≤
Eω̄ξ

x [ρ̄ξ (Xτ−
yN

, yN ),Xτ−
yN

∈ B
(−1)
yN ]

Eω̄ξ

x+e1
[ρ̄ξ (Xτ−

yN
, yN ),Xτ−

yN
∈ B

(−1)
yN ]

=
P π̄ξ

x {Xτ−
yN

∈ B
(−1)
yN }Eω̄ξ

x [ρ̄ξ (Xτ−
yN

, yN )]

P π̄ξ

x+e1
{Xτ−

yN
∈ B

(−1)
yN }Eω̄ξ

x+e1
[ρ̄ξ (Xτ−

yN
, yN )]

=
P π̄ξ

x {Xτ−
yN

∈ B
(−1)
yN }

P π̄ξ

x+e1
{Xτ−

yN
∈ B

(−1)
yN }

· ρ̄ξ
x,x+e1

.

The probabilities in the last expression converge to one by the law of large numbers
of Theorem 3.5 because by (3.63) the ξ -ray passes ζ on the left. �

COROLLARY 3.11. Fix ξ ∈ riU . Let ω be an i.i.d. Beta(α,β) environment.
Then almost surely, for all z ∈ Z2, the limits

(3.64) lim
N→∞

Fω
0,[Nξ ]+z

Fω
e1,[Nξ ]+z

and lim
N→∞

Fω
e2,[Nξ ]+z

Fω
0,[Nξ ]+z

exist and are independent of z.

(a) When ξ = ξ∗, the limits equal 1.
(b) For ξ 
= ξ∗, let λ = λ(ξ) be determined by Lemma 2.6(a).

(b.i) If ξ1 ∈ (ξ∗
1 ,1) the two limits in (3.64) are, respectively, Beta(α +λ,β)

and Beta(λ,α) distributed.
(b.ii) If ξ1 ∈ (0, ξ∗

1 ), the reciprocals of the two limits in (3.64) are, respec-

tively, Beta(λ,β) and Beta(β + λ,α) distributed.
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PROOF. Consider the case ξ1 ∈ (ξ∗
1 ,1) and the first limit of (3.64). Let γ <

λ < δ. By Lemma 2.6(a), the velocities associated with these parameters in the
range (ξ∗

1 ,1) satisfy ξ1(γ ) > ξ1 = ξ1(λ) > ξ1(δ). By Proposition 3.10,

(3.65) ρ
γ
0,e1

≤ lim
N→∞

Fωγ

0,[Nξ ]+z

Fωγ

e1,[Nξ ]+z

and lim
N→∞

Fωδ

0,[Nξ ]+z

Fωδ

e1,[Nξ ]+z

≤ ρδ
0,e1

.

Since ργ , ρδ → ρλ as γ, δ → λ by (3.44), and since ρλ
0,e1

is Beta(α + λ,β)-
distributed, we have that

lim
N→∞

Fω
0,[Nξ ]+z

Fω
e1,[Nξ ]+z

and lim
N→∞

Fω
0,[Nξ ]+z

Fω
e1,[Nξ ]+z

are both Beta(α +λ,β) random variables. Since lim ≤ lim, their equality in distri-
bution implies their P-almost sure equality. Same reasoning works for the second
limit of (3.64). Existence of the limits and claim (b.i) are proved.

To argue that the limit with z = 0 equals the limit with an arbitrary z = (z1, z2),
pick integers kN so that [kNξ ]2 = [Nξ ]2 + z2. Then, depending on the relative
locations of [kNξ ]1 and [Nξ ]1 + z1, by (3.56) either

(3.66)
Fω

0,[kN ξ ]
Fω

e1,[kN ξ ]
≥

Fω
0,[Nξ ]+z

Fω
e1,[Nξ ]+z

or the opposite inequality is valid for infinitely many N . In the limit, we get again
an almost sure inequality between two Beta(α + λ,β) random variables, which
therefore must coincide almost surely.

For ξ1 ∈ (0, ξ∗
1 ), one can repeat the same steps but use instead the processes

(ω̃, ρ̃) that follow part (b) of Lemma 3.1.
For the case ξ = ξ∗, pick η, ζ ∈ riU such that η1 < ξ∗

1 < ζ1. By (3.56),

Fω
0,[Nζ ]+z

Fω
e1,[Nζ ]+z

≤
Fω

0,[Nξ∗]+z

Fω
e1,[Nξ∗]+z

≤
Fω

0,[Nη]+z

Fω
e1,[Nη]+z

.

By the cases already proved, the left and right ratios converge to random variables
with distributions Beta(α +λ(ζ ), β) and Beta(λ(η),β)−1, respectively. These ran-
dom variables converge to 1 as we let ζ, η → ξ∗ which sends λ(ζ ), λ(η) → ∞
(see Lemma 2.6(a) and the middle plot of Figure 1). The second ratio in (3.64) for
ξ = ξ∗ is handled similarly. �

PROOF OF THEOREM 3.6. We begin by constructing the process for a fixed
ξ ∈ riU , then do it simultaneously for a dense countable subset of riU , and finally
capture all of riU with limits.



2216 M. BALÁZS, F. RASSOUL-AGHA AND T. SEPPÄLÄINEN

Fix ξ ∈ riU . Using Corollary 3.11 and shifts P ω
x+a(Xn = v) = P

Txω
a (Xn = v −

x), we define

(3.67)
Bξ

x,y(ω) = lim
N→∞

{
logP ω

x (X|zN−x|1 = zN ) − logP ω
y (X|zN−y|1 = zN )

}

= lim
N→∞

(logFω
x,zN

− logFω
y,zN

),

as an almost sure limit, for all x, y ∈ Z2, and for any sequence zN = [Nξ ]+ z with
an arbitrary fixed z. (The second line is the same as the first, stated to illustrate
the alternative notation we use.) The limit is independent of the choice of z. The
marginal distributional properties (a), stationary cocycle properties (e), and har-
monicity (f) stated in Theorem 3.6 follow from Corollary 3.11 and the structure of
the limits.

Proof of part (b). The independence of the weights {ωx} and construction (3.67)
imply directly the first independence claim of part (b).

Proof of part (c) for fixed ξ . We write the details for the case ξ1 ∈ (ξ∗
1 ,1). Con-

sider the joint distribution of m weights ωzh
for 1 ≤ h ≤ m and k + ℓ nearest-

neighbor increments B
ξ
xi ,xi+e1

and B
ξ
yj ,yj+e2

for 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ. By a

shift, we may assume that zh, xi, yj all lie in Z2
+. Let γ < λ(ξ) < δ as in the proof

of Corollary 3.11. Limit (3.67) works also in environments ωγ and ωδ since they
have the same i.i.d. beta distribution as ω. Let rh, si, tj ∈ R. Then inequalities
(3.65) and their counterparts for e2 give us these bounds:

P
{
ωzh

≤ rh, e
B

ξ
xi ,xi+e1 ≤ si, e

B
ξ
yj ,yj +e2 ≥ tj ∀h, i, j

}

= P
{
ωγ

zh
≤ rh, e

B
ξ
xi ,xi+e1

(
ωγ )≤ si, e

B
ξ
yj ,yj +e2

(
ωγ )≥ tj ∀h, i, j

}

≤ P
{
ωγ

zh
≤ rh, ρ

γ
xi ,xi+e1

≤ si, ρ
γ
yj ,yj+e2

≥ tj ∀h, i, j
}

and from the other side

P
{
ωzh

≤ rh, e
B

ξ
xi ,xi+e1 ≤ si, e

B
ξ
yj ,yj +e2 ≥ tj ∀h, i, j

}

= P
{
ωδ

zh
≤ rh, e

B
ξ
xi ,xi+e1

(
ωδ)≤ si, e

B
ξ
yj ,yj +e2

(
ωδ)≥ tj ∀h, i, j

}

≥ P
{
ωδ

zh
≤ rh, ρ

δ
xi ,xi+e1

≤ si, ρ
δ
yj ,yj+e2

≥ tj ∀h, i, j
}
.

Letting γ, δ → λ(ξ) brings the bounds together by (3.44):

(3.68)
P
{
ωzh

≤ rh, e
B

ξ
xi ,xi+e1 ≤ si, e

B
ξ
yj ,yj +e2 ≥ tj ∀h, i, j

}

= P
{
ωλ(ξ)

zh
≤ rh, ρ

λ(ξ)
xi ,xi+e1

≤ si, ρ
λ(ξ)
yj ,yj+e2

≥ tj ∀h, i, j
}
.

Thus the joint distribution of (ω,Bξ ) is the same as that of (ωλ(ξ), logρλ(ξ)) de-
scribed in Proposition 3.3. The independence of nearest-neighbor Bξ -increments
along a down-right path follows.
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Let �0 be the event of full P-probability on which the process B
ξ
x,y is defined

by (3.67) for all ξ in the countable set U0 = (riU) ∩Q2.
Consider ξ ∈ riU and ζ, η ∈ U0 with η1 < ξ1 < ζ1. Take a (possibly random)

sequence zN with zN/N → ξ . Let M = |zN |1. For large enough N , we have [Mη] ·
e1 < zN · e1 < [Mζ ] · e1 and [Mη] · e2 > zN · e2 > [Mζ ] · e2. By Lemma 3.8, we
have for such N

Fω
x,[Mζ ]

Fω
x+e1,[Mζ ]

≤
Fω

x,zN

Fω
x+e1,zN

≤
Fω

x,[Mη]
Fω

x+e1,[Mη]
.

The already established limit (3.67) with sequences [Mζ ] and [Mη] gives

B
ζ
x,x+e1

≤ lim
N→∞

{
logP ω

x (X|zN−x|1 = zN ) − logP ω
x+e1

(X|zN−x|1−1 = zN )
}

≤ lim
N→∞

{
logP ω

x (X|zN−x|1 = zN ) − logP ω
x+e1

(X|zN−x|1−1 = zN )
}

≤ B
η
x,x+e1

.

(3.69)

The reverse inequalities hold when e1 is replaced by e2.
Equation (3.69) proves that the monotonicity in part (g) holds for ξ, ζ ∈ U0,

ω ∈ �0 and x ∈ Z2. Consequently, for any ξ ∈ (riU)\U0 we can define B
ξ
x,x+ei

(ω)

for ω ∈ �0 by the monotone limit

(3.70) B
ξ
x,x+ei

(ω) = lim
U0∋ζ→ξ,ζ1>ξ1

B
ζ
x,x+ei

(ω)

as ζ1 decreases to ξ1. By shrinking �0, we can assume that (3.70) holds also when
ξ ∈ U0. (This is because the monotonicity gives an inequality in (3.70), but the two
sides agree in distribution, and hence agree almost surely.) By additivity on the
right-hand side, we can extend (3.70) to define

Bξ
x,y(ω) = lim

U0∋ζ→ξ,ζ1>ξ1
Bζ

x,y(ω) for all x, y ∈ Z2 and ω ∈ �0.

This definition in terms of right limits extends the properties proved thus far to
all ξ . Furthermore, cadlag paths [part (h)] have also been established.

Fix ξ ∈ riU and i ∈ {1,2}. The almost sure continuity of ζ �→ B
ζ
0,ei

at ζ = ξ

follows from monotonicity (g) and from the continuity of ζ �→ E[Bζ
0,ei

], which
itself is a consequence of continuity of the polygamma functions in (3.47) and
(3.48). Claim (i) follows from the cocycle property in part (e).

Continue with a fixed ξ ∈ riU . Let ζ, η → ξ in (3.69) and use the almost sure
continuity we just proved. This shows that limit (3.52) holds P-almost surely,
simultaneously for all x ∈ Z2, y ∈ {x + e1, x + e2}, and any sequence zN with
zN/N → ξ . The case of a general y ∈ Z2 follows from additivity. Part (j) is done.

Part (d). When ξ1 ∈ [ξ∗
1 ,1], the variational formula for Iq comes from (3.47)

and the explicit calculations in (7.7) in Section 7. To minimize the formula differ-
entiate,

(
ψ0
(
α + λ(ζ )

)
− ψ0

(
α + β + λ(ζ )

))
ξ1 +

(
ψ0
(
α + λ(ζ )

)
− ψ0

(
λ(ζ )

))
ξ2
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in ζ1 and set it to 0. This gives the equation

ξ1 =
ψ1(λ(ζ )) − ψ1(α + λ(ζ ))

ψ1(λ(ζ )) − ψ1(α + β + λ(ζ ))

which by Lemma 2.6(a) has a unique solution at ζ = ξ , similarly for ξ1 ∈ [0, ξ∗
1 ].
�

4. Stationary beta polymer. By looking at the random walk paths under the
Doob-transformed RWRE in reverse direction, we can view this model as a station-
ary directed polymer model, called the beta polymer. We establish this connection
in the present section, and then use it in the next two sections to rely on recently
published estimates in [9] for the technical work behind our Theorems 2.4 and 2.5.
The polymer model described here is case (1.4) in [9], with their parameter triple
(μ,β, θ) corresponding to our (α,β,λ). The notation Zm,n and Qm,n used below
matches that of [9].

Recall the backward transition probabilities
̂
ω, introduced in (3.21) and (3.22),

and random variables (ρλ,ωλ) from (3.24). The quenched stationary beta polymer

is a polymer distribution on up-right paths on the nonnegative first quadrant Z2
+

that start at the origin. In our notation, this model uses potential V (x − ej , ej ) =
log

̂
ωx,x−ej

across edges (x − ej , x) for x ∈ N, and potential V (x − ej , ej ) =
logρλ

x−ej ,x across boundary edges (x − ej , x) for x ∈ B
(+j)
0 \ {0}, j ∈ {1,2}. Fix a

point v = (m,n) ∈ N2. The point-to-point partition function for paths from 0 to v

is

Zm,n =
∑

y0,m+n

e
∑m+n−1

i=0 V (yi ,yi+1−yi),

where the sum is over up-right paths y0,m+n = (y0, . . . , ym+n) from 0 to v =
(m,n).

If xi = ym+n−i denotes the reversed path and ℓ = min{i : xi ∈ B+
0 } is the time

of its first entry into the boundary B+
0 , then

e
∑m+n−1

i=0 V (yi ,yi+1−yi) = ρλ
0,xℓ

ℓ−1∏

i=0

̂
ωxi ,xi+1 = ρλ

0,xℓ
P

̂
ω
v {X0,ℓ = x0,ℓ}

= ρλ
0,xℓ

P

̂
ω
v {X0,τ+

0
= x0,ℓ}.

Summing up over the paths gives the first equality below, and the second one
comes from (3.33):

(4.1) Zm,n = E

̂
ω
v

[
ρλ(0,Xτ+

0
)
]
= ρλ

0,v for v = (m,n).

The quenched polymer measure on up-right paths y0,m+n = (y0, . . . , ym+n)

from 0 to v = (m,n) is

Qm,n(y0,m+n) =
e
∑m+n−1

i=0 V (yi ,yi+1−xi)

Zm,n

.
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Letting again xi = ym+n−i and ℓ = min{i : xi ∈ B+
0 } and using (3.38),

Qm,n(y0,n) =
ρλ

0,xℓ
P

̂
ω
v {X0,ℓ = x0,ℓ}

ρλ
0,v

= P

̂
π

λ

v {X0,ℓ = x0,ℓ} for v = (m,n).

(4.2)

Thus (the reverse of) the polymer path under Qm,n is obtained by running the

Doob-transformed RWRE under P

̂
π

λ

v until it hits the boundary B+
0 , and then fol-

lowing the boundary to the origin.

5. The variance of the increment-stationary harmonic functions. The
method for bounding the fluctuations of the walk for Theorem 2.5 is to control the
exit point of the walk from rectangles. This is achieved with the help of the har-
monic functions ρλ and ρ̃λ constructed in Section 3.2. We work exclusively with
ρλ and omit the analogous statements and proofs for ρ̃λ. Equivalently, we are treat-
ing explicitly only the case ξ1 ∈ (ξ∗

1 ,1) and omitting the details for ξ1 ∈ (0, ξ∗
1 ).

This section gives the connection between the fluctuations of logρλ and the
entry point on the boundary, and bounds on the variance of logρλ. Theorem 2.4 is
proved at the end of the section.

Recall the beta integral B(a, b) and the c.d.f. F(s;a, b) of the Beta(a, b) distri-
bution from (1.7) and (1.8). Define

L̃(s, a, b) = −
1

s
·

∂
∂a

F(s;a, b)

∂
∂s

F(s;a, b)
.

Note that ∂
∂a

B(a, b) = (ψ0(a) − ψ0(a + b))B(a, b). A computation gives

L̃(s, a, b) = −s−a(1 − s)1−b
∫ s

0
ta−1(1 − t)b−1

×
[
log t −

(
ψ0(a) − ψ0(a + b)

)]
dt.

(5.1)

Observe that

L̃(s, a, b) = s−a(1 − s)1−bB(a, b)Cov
(
− logW,1{W ≤ s}

)
,

where W ∼ Beta(a, b). Since − log t and 1{t ≤ s} are decreasing functions of t ,
we see that L̃(s, a, b) > 0 for all s ∈ (0,1) and a, b > 0.

Recall hitting times τ−
v and τ+

0 defined in (3.2). Let Var denote the variance un-

der the coupling P of Section 3.2. Let

̂
P

λ

v(·) = EP

̂
π

λ

v (·) denote the averaged mea-
sure of the RWRE that utilizes the backward Doob-transformed transition proba-

bility
̂
π

λ of (3.37). Its expectation is

̂
E

λ

v[·] = EE

̂
π

λ

v [·].
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THEOREM 5.1. The following holds for all α,β,λ > 0 and all v = (m,n) ∈
N2:

Var
(
logρλ

0,v

)
= n

(
ψ1(λ) − ψ1(α + λ)

)
− m

(
ψ1(α + λ) − ψ1(α + β + λ)

)

+ 2

̂
E

λ

v

[X(τ+
0 )·e1−1∑

i=0

L̃
(
ρλ

ie1,(i+1)e1
, α + λ,β

)
](5.2)

= m
(
ψ1(α + λ) − ψ1(α + β + λ)

)
− n

(
ψ1(λ) − ψ1(α + λ)

)

+ 2

̂
E

λ

v

[X(τ+
0 )·e2−1∑

i=0

L̃
(
1/ρλ

ie2,(i+1)e2
, λ,α

)
]
.

(5.3)

An empty sum (e.g.,
∑−1

i=0) equals 0. Thus the

̂
E

λ

v expectation on the right-

hand side of (5.2) is in fact over the event {X(τ+
0 ) ∈ B

(+1)
0 }. When v is chosen

(approximately) in the direction ξ(λ) so that the first two terms on the right-hand
side of (5.2) (approximately) cancel, the equation expresses the KPZ relation that
in 1 + 1 dimension the wandering exponent is twice the free energy exponent.

Theorem 5.1 is the same as Proposition 1.1 in [9], via the connections (4.1)
and (4.2) between the RWRE and the polymer. Theorem 5.1 is also proved in
Section 4.1 of the first preprint version [5] of this paper.

Starting from the identity in Theorem 5.1, a series of coupling arguments and
estimates leads to upper and lower bounds on the fluctuations of logρλ. Theo-
rem 5.2 below follows from Theorem 1.2 of [9]. It is also proved in Sections 4.2
and 4.3 of [5]. Here, ξ(λ) is given by (2.10).

THEOREM 5.2. Fix α,β > 0. Fix λ > 0. Given a constant 0 < γ < ∞, there

exist positive finite constants c, C and N0, depending only on α, β , γ and λ, such

that

(5.4) cN2/3 ≤Var
[
ρλ

0,me1+ne2

]
≤ CN2/3

for all N ≥ N0 and (m,n) ∈ N2 such that

∣∣m − Nξ1(λ)
∣∣∨

∣∣n − Nξ2(λ)
∣∣≤ γN2/3.

The same constants c, C and N0 can be taken for (α,β, γ,λ) varying in a compact

subset of (0,∞)4.

PROOF OF THEOREM 2.4. By virtue of Theorem 3.6(c), Theorem 5.2 implies
Theorem 2.4 for the case ξ1 ∈ (ξ∗

1 ,1). The remaining case ξ1 ∈ (0, ξ∗
1 ) follows

from the (omitted) version of Theorem 5.2 for ρ̃λ. �
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FIG. 5. In both plots, the diagonal line points in direction ξ(λ). Left: the definition of X
1,min
n and

X
1,max
n . Right: illustration of (6.1) and (6.4). The four arms of the cross centered at (m,n) = ⌊Nξ⌋

are of length rN2/3 each. The shaded box, also centered at (m,n), has sides of length 2δN2/3. For

large r , the path has a high probability of entering and exiting through the cross and never touching

the dotted lines. For small δ, there is a positive probability, uniformly in N , the path stays left of the

top edge of the shaded box, completely avoiding the box.

6. Path fluctuations. This section proves results about path fluctuations, from
which Theorem 2.5 follows. For an up-right path X0,∞ started at the origin and an
integer n ≥ 0 let

X1,min
n = min{m ≥ 0 : Xm+n · e2 = n} and

X1,max
n = max{m ≥ 0 : Xm+n · e2 = n}.

Then X1,min
n e1 + ne2 and X1,max

n e1 + ne2 are, respectively, the leftmost and right-
most points of the path on the horizontal line ne2 + Z+e1. See the left panel in
Figure 5. The vertical counterparts are given by

X2,min
m = min{n ≥ 0 : Xm+n · e1 = m} and

X2,max
m = max{n ≥ 0 : Xm+n · e1 = m}.

Again, the next result is stated and proved for ξ1 ∈ (ξ∗
1 ,1) only. The other case

works similarly. Recall ξ(λ) from (2.10). Let Pλ
0 = EP πλ

0 , with expectation Eλ
0 =

EEπλ

0 . By Theorem 3.5, ξ(λ) is the LLN direction for Pλ
0 .

THEOREM 6.1. Fix α,β,λ > 0.

(a) Upper bound. There exist finite positive constants r0 and C depending on α,
β , and λ, such that for all r ≥ r0, N ≥ 1 and (m,n) = ⌊Nξ(λ)⌋,

Pλ
0
{
X1,min

n < m − rN2/3}≤ Cr−3 and

Pλ
0
{
X1,max

n > m + rN2/3}≤ Cr−3.
(6.1)
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From this, it follows that

Eλ
0
[∣∣(m − X1,min

n

)+∣∣p]1/p ≤
(

1 +
Cp

3 − p

)1/p

N2/3 and

Eλ
0
[∣∣(X1,max

n − m
)+∣∣p]1/p ≤

(
1 +

Cp

3 − p

)1/p

N2/3.

(6.2)

(b) Lower bound. There exist finite positive constants δ and c depending on α,
β , and λ, such that for any integer N ≥ 1 such that (m,n) = ⌊Nξ(λ)⌋ ∈ N2 we

have

Eλ
0
[(

m − X1,min
n

)+]≥ cN2/3 and(6.3)

Pλ
0
{
X1,min

n ≤ X1,max
n < m − δN2/3}≥ c.(6.4)

Similar bounds hold for the vertical counterparts X2,min
m and X2,max

m . The same

constants can be used for all (α,β,λ) in a compact subset of (0,∞)3.

PROOF. Abbreviate u = (m,n) = ⌊Nξ(λ)⌋. Inequality (6.1) is trivial if
rN1/3 ≥ m. We hence assume that rN2/3 < m.

Note that

(6.5)
(
m − X1,min

n

)+ = m − X
(
τ−
(m,n)

)
· e1.

Thus, the first probability in (6.1) equals

(6.6) Pλ
0
{
X
(
τ−
u

)
· e1 < m − rN2/3}=

̂
P

λ

u

{
X
(
τ+

0

)
· e1 > rN2/3}.

Applying Lemma 4.7 of [9] and the connection (4.2) giveŝ
P

λ

u

{
X
(
τ+

0

)
· e1 > rN2/3}≤ Cr−3.

(This is also (4.24) in [5].) This proves the first inequality in (6.1).

For the second inequality, set N0 = ⌊m+rN2/3

ξ1(λ)
⌋ and (m0, n0) = ⌊N0ξ(λ)⌋. Then

m0 ≤ m + rN2/3 and, therefore, if X1,max
n > m + rN2/3, then X2,min

m0
≤ n. But we

also have

n0 > N0ξ2(λ) − 1 ≥
mξ2(λ)

ξ1(λ)
+

ξ2(λ)

ξ1(λ)
rN2/3 − 1 − ξ2(λ)

≥ n +
ξ2(λ)

ξ1(λ)
rN2/3 − 1 − ξ2(λ) −

ξ2(λ)

ξ1(λ)

≥ n +
ξ2(λ)

2ξ1(λ)
rN2/3 ≥ n +

ξ2(λ1)

2ξ1(λ2)
rN2/3,

provided r ≥ 2(1+ξ1(λ1)+ ξ1(λ1)
ξ2(λ2)

). The upshot is that if X1,max
n > m+ rN2/3 then

X2,min
m0

< n0 − ξ2(λ1)
2ξ1(λ2)

rN
2/3
0 . The second inequality in (6.1) thus follows from the
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vertical version of the first inequality, but with N0 and r0 = ξ2(λ1)
2ξ1(λ2)

r playing the
roles of N and r , respectively.

Bounds (6.2) follow from (6.1). For example, for the first bound abbreviate
Y = (m − X1,min

n )+ and write

Eλ
0
[(

N−2/3Y
)p]=

∫ ∞

0
prp−1Pλ

0
(
Y > rN2/3)dr

≤
∫ 1

0
prp−1 dr + C

∫ ∞

1
prp−4 dp = 1 +

Cp

3 − p
.

Next, applying Lemma 4.2 of [9] we have

(6.7)

̂
E

λ

v

[X(τ+
0 )·e1−1∑

i=0

L̃
(
ρλ

ie1,(i+1)e1
, α + λ,β

)
]

≤ C
(
̂
E

λ

v

[
X
(
τ+

0

)
· e1

]
+ 1

)
.

(This is also (4.15) in [5].) Now, bound (6.3) follows from stringing together (6.7),
(5.2) and the lower bound in (5.4), then reversing the picture in (6.5). To get (6.4),
first write

cN2/3 ≤ Eλ
0[Y ] = Eλ

0
[
Y1

{
Y ≤ δN2/3}]+ Eλ

0
[
Y1

{
Y > δN2/3}]

≤ δN2/3 + Eλ
0
[
Y 2]1/2

Pλ
0
(
Y > δN2/3)1/2

.

Applying (6.2) with say p = 2 and taking δ ≤ c/2, we get

(6.8) Pλ
0
{
X1,min

n < m − δN2/3}≥
c

2
√

1 + 2C
.

Now take δ0 > 2δ, N0 = N + ⌊δN2/3⌋, and (m0, n0) = ⌊N0ξ(λ)⌋. Note that
m0 ≤ ⌊Nξ1(λ)⌋ + δN2/3 = m + δN2/3. This forces

m0 − δ0N
2/3
0 ≤ m + δN2/3 − 2δN2/3 = m − δN2/3.

Since n ≤ n0, we have that if X1,min
n0

< m0 − δ0N
2/3
0 , then

X1,max
n ≤ X1,min

n0
< m0 − δ0N

2/3
0 ≤ m − δN2/3.

Bound (6.4) follows from the above and (6.8) with N0 and δ0 playing the roles of
N and δ, respectively. �

PROOF OF THEOREM 2.5. We only argue for the case ξ1 ∈ (ξ∗
1 ,1), the other

case being similar. By Theorem 3.6(c), the distribution of P κξ

0 under P is the same
as that of P πλ

0 under P, provided λ and ξ are in duality via (2.10). Hence, P
ξ
0 = Pλ

0 .
The claims of the theorem follow from (6.1) and (6.4); see Figure 5. �
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7. Proofs of the large deviation results. PROOF OF LEMMA 2.6. Define
the function

f (λ) =
ψ1(λ) − ψ1(α + λ)

ψ1(λ) − ψ1(α + β + λ)
.

We prove that f is strictly decreasing in λ > 0. Its derivative is

f ′(λ) =
(ψ2(λ) − ψ2(α + λ))

(ψ1(λ) − ψ1(α + β + λ))

−
(ψ1(λ) − ψ1(α + λ))(ψ2(λ) − ψ2(α + β + λ))

(ψ1(λ) − ψ1(α + β + λ))2 .

Since ψ1 is strictly decreasing, f ′(λ) < 0 is equivalent to

(7.1)
ψ2(λ) − ψ2(α + λ)

ψ1(λ) − ψ1(α + λ)
<

ψ2(λ) − ψ2(α + β + λ)

ψ1(λ) − ψ1(α + β + λ)
.

This in turn follows from ψ2 ◦ ψ−1
1 being strictly concave (see Lemma 5.3 in [6]

or Lemma A.3 in [5]).
We have so far shown that f is strictly decreasing. Since ψ1(λ) → ∞ as λ ց 0

we have f (λ) → 1 as λ ց 0. A Taylor expansion of ψ1 (see [5], Lemma A.2)
gives λ2(ψ1(λ) − ψ1(a + λ)) → a as λ → ∞, and thus f (λ) → α

α+β
as λ → ∞.

The claims in part (a) for ξ1 ∈ [ξ∗
1 ,1] now follow. The case ξ1 ∈ [0, ξ∗

1 ] comes by
interchanging the roles of α and β and those of ξ1 and ξ2.

Define the function

g(λ) = ψ0(α + β + λ) − ψ0(λ).

Since ψ1 is strictly decreasing, we see that

g′(λ) = ψ1(α + β + λ) − ψ1(λ) < 0.

Hence, g is strictly decreasing. As λ ց 0 we have ψ0(λ) → −∞ and g(λ) → ∞.
Combining 6.3.5 and 6.3.16 from [1] gives

g(λ) = −
1

α + β + λ
+

1

λ
−

∞∑

k=1

(
1

α + β + λ + k
−

1

λ + k

)
.

Hence g(λ) → 0 as λ → ∞. Part (b) follows and Lemma 2.6 is proved. �

PROOFS OF THEOREMS 2.7 AND 2.10. We utilize the ratios ρλ and transitions
ωλ from Section 3.2. By Proposition 3.3, ωλ under P (defined on page 2202) has
the same distribution as the original environment ω under P.

By the ergodic theorem,

n−1 logρλ
0,ne2

= n−1
n−1∑

i=0

logρλ
ie2,(i+1)e2

−→
n→∞

E
[
logρλ

0,e2

]
= ψ0(α + λ) − ψ0(λ).

(7.2)
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(Recall that the logarithm of a Gamma(ν,1) has expected value ψ0(ν) and that a
Beta(a, b) is a ratio of a Gamma(a,1) and a Gamma(a +b,1). By Proposition 3.3,
ρ−1

ie2,(i+1)e2
are i.i.d. Beta(λ,α).)

Harmonicity of ρ•,ne2 implies, as for (3.32), that for x ∈ Z2
+ with |x|1 ≤ n,

(7.3) ρλ
x,ne2

=
n∑

j=0

P ωλ

x

{
Xn−|x|1 = je1 + (n − j)e2

}
ρλ

je1+(n−j)e2,ne2
.

A term above is nonzero exactly when j is between x ·e1 and n−x ·e2. Abbreviate

Ri,n = ρλ
(i+1)e1+(n−i−1)e2,ie1+(n−i)e2

.

For fixed n, under P, variables Ri,n are i.i.d. and each distributed as ρλ
e1,e2

. Rewrite
(7.3) for x = 0 as

(7.4) ρλ
0,ne2

=
n∑

j=0

P ωλ

0
{
Xn = je1 + (n − j)e2

} j−1∏

i=0

Ri,n.

By standard asymptotics (detailed justification on page 52 of [5]),

1

n
logρλ

0,ne2
≈ max

0≤j≤n

{
1

n
logP ωλ

0
{
Xn = je1 + (n − j)e2

}
+

1

n

j−1∑

i=0

logRi,n

}

= sup
ξ∈U

{
n−1 logP ωλ

0
{
Xn = [nξ ]

}
+ n−1

[nξ ]·e1−1∑

i=0

logRi,n

}

−→
n→∞

sup
ξ∈U

{
−Iq(ξ) + ξ · e1

(
ψ0(α + β + λ) − ψ0(λ)

)}
.

The above and (7.2) give the equation

(7.5) ψ0(α + λ) − ψ0(λ) = sup
ξ∈U

{
ξ1
(
ψ0(α + β + λ) − ψ0(λ)

)
− Iq(ξ)

}
.

For t ∈ R, let

f (t) = I ∗
q (te1) = sup

s∈R

{
ts − Iq

(
se1 + (1 − s)e2

)}
,

where of course Iq(ξ) = ∞ for ξ /∈ U (i.e., s /∈ [0,1]). For t ≥ 0 and λ(t) defined
by Lemma 2.6(b) equation (7.5) gives f (t) = ψ0(α+λ(t))−ψ0(λ(t)). This proves
(2.17). Furthermore, we have

f ′(t) =
(
ψ1
(
α + λ(t)

)
− ψ1

(
λ(t)

))
λ′(t)

=
ψ1(α + λ(t)) − ψ1(λ(t))

ψ1(α + β + λ(t)) − ψ1(λ(t))
−→
tց0

α

α + β
,
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where the last limit has already been shown at the end of the proof of Lem-
ma 2.6(a). Consequently, f ′(0+) = α

α+β
. Since f is convex, we get that

(7.6) f ′(t±) ≤
α

α + β
for t ≤ 0.

We have Iq(ξ
∗) = 0 because the RWRE under the averaged measure∫

P ωλ

0 (·)P(dω̄) is simple random walk, thus RWRE with transitions ωλ satisfies
an almost-sure law of large numbers with velocity given by

E
[
ωλ

0,e1
e1 + ωλ

0,e2
e2
]
=
(

α

α + β
,

β

α + β

)
= ξ∗.

Let ξ ∈ U with ξ1 ≥ α
α+β

. The second equality in the next computation comes
from (7.6):

Iq(ξ) = sup
t∈R

{
tξ1 − f (t)

}
= sup

t>0

{
tξ1 − f (t)

}

= sup
λ>0

{
ξ1
(
ψ0(α + β + λ) − ψ0(λ)

)
− ψ0(α + λ) + ψ0(λ)

}
(7.7)

= ξ1ψ0
(
α + β + λ(ξ1)

)
+ (1 − ξ1)ψ0

(
λ(ξ1)

)
− ψ0

(
α + λ(ξ1)

)
(7.8)

because condition (2.10) picks out the maximizer above.
To derive Iq(ξ) for ξ1 ∈ [0, α

α+β
], switch around α and β and the axes and then

apply the first formula of (2.13) already proved.
To compute I ∗

q (te1) for t < 0, write temporarily fα,β(t) and Iα,β(ξ) to make
the dependence on the parameters α,β explicit. Then

fα,β(t) = t + sup
0≤s≤1

{
(−t)(1 − s) − Iα,β

(
se1 + (1 − s)e2

)}

= t + sup
0≤s≤1

{
(−t)(1 − s) − Iβ,α

(
(1 − s)e1 + se2

)}
= t + fβ,α(−t).

Formula (2.18) follows. In particular, f ′
α,β(0−) = 1 − β

α+β
= f ′

α,β(0+) and fα,β

is everywhere differentiable. Thus, Iq = Iα,β is strictly convex on U .
We have now verified formula (2.13) for Iq and Theorem 2.10. By Lemma 8.1

of [24], the statement Iq(ξ) > Ia(ξ) ∀ξ ∈ U \ {ξ∗} is equivalent to

I ∗
q (t) < I ∗

a (t) for all t 
= 0.

(The case t = 0 corresponds to ξ = ξ∗ and thus leads to an equality.)
Substituting the above functions, this becomes

ψ0
(
α + λ(t)

)
− ψ0

(
λ(t)

)
< log

(
ξ∗

1 et + ξ∗
2
)

and

−t + ψ0
(
β + λ(t)

)
− ψ0

(
λ(t)

)
< log

(
ξ∗

1 e−t + ξ∗
2
)
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for all t > 0. Using (2.12) and rearranging, the above is equivalent to

eψ0(α+λ) < ξ∗
1 eψ0(α+β+λ) + ξ∗

2 eψ0(λ) and

eψ0(β+λ) < ξ∗
1 eψ0(λ) + ξ∗

2 eψ0(α+β+λ) for all λ ≥ 0.

Since ξ∗
1 (α + β + λ) + ξ∗

2 λ = α + λ and ξ∗
1 λ + ξ∗

2 (α + β + λ) = β + λ,
the above inequalities follow if eψ0(x) is strictly convex. Its second derivative is
eψ0(x)(ψ2(x) + ψ1(x)2). An exercise in calculus (see Lemma A.5 in [5]) shows
this is positive. We have shown that Iq(ξ) > Ia(ξ) for all ξ ∈ U with ξ 
= ξ∗. The
proofs of Theorems 2.7 and 2.10 are complete. �

PROOF OF THEOREM 2.11. Equation (2.19) was proved for part (d) of The-
orem 3.6, without appeal to the general variational formula (1.6). Substitution of
Bξ on the right-hand side of (1.6) verifies that the infimum is attained at B = Bξ .
Formula (2.19) remains valid for Iq extended to all of R2

+. This and calculus verify
(2.20). �
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