The Annals of Probability

2019, Vol. 47, No. 4, 2186-2229
https://doi.org/10.1214/18-AOP1306

© Institute of Mathematical Statistics, 2019

LARGE DEVIATIONS AND WANDERING EXPONENT FOR
RANDOM WALK IN A DYNAMIC BETA ENVIRONMENT!'

BY MARTON BALAZS?, FIRAS RASSOUL-AGHA? AND TIMO SEPPALAINEN?
University of Bristol, University of Utah and University of Wisconsin-Madison

Random walk in a dynamic i.i.d. beta random environment, conditioned
to escape at an atypical velocity, converges to a Doob transform of the orig-
inal walk. The Doob-transformed environment is correlated in time, i.i.d. in
space and its marginal density function is a product of a beta density and a hy-
pergeometric function. Under its averaged distribution, the transformed walk
obeys the wandering exponent 2/3 that agrees with Kardar—Parisi-Zhang
universality. The harmonic function in the Doob transform comes from a
Busemann-type limit and appears as an extremal in a variational problem
for the quenched large deviation rate function.

1. Introduction. We study an exactly solvable random walk in a random en-
vironment (RWRE) in one space dimension. The walk is nearest-neighbor and
the environment dynamical and product-form. Our main results (i) construct a
Doob transform of the RWRE that conditions the walk on an atypical velocity,
(ii) establish that the transformed walk has path fluctuation exponent 2/3 of the
Kardar—Parisi—Zhang (KPZ) class instead of the diffusive 1/2 and (iii) describe
the quenched large deviation rate function of the walk.

The three points above are tied together. The harmonic functions in the Doob
transform furnish extremals of a variational formula for the quenched large devi-
ation rate function. Explicit distributional properties of these harmonic functions
enable the derivation of the path exponent. The logarithm of the harmonic function
obeys the KPZ longitudinal exponent 1/3.

This work rests on the development of analogues of percolation and polymer
ideas for RWRE. The harmonic functions in the Doob transform arise through
limits that correspond to Busemann functions of percolation and polymers. The
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quenched large deviation rate function is strictly above the averaged one except at
their common minimum. For a deviation of small order 4, the difference of these
rate functions is of order 4*. These properties are exactly as for the quenched and
averaged free energy of 1 + 1 dimensional directed polymers [11, 18]. As for the
entire KPZ class, proofs of fluctuation exponents are restricted to models with
special features. A natural expectation is that the picture that emerges here should
be universal for 1 4 1 dimensional directed RWRE under some assumptions.

We turn to a detailed introduction of the model.

A dynamical environment is refreshed at each time step. On the two-dimen-
sional space-time lattice 72, we run time in the diagonal direction (%, %), and the
admissible steps of the walk are e; = (1, 0) and e; = (0, 1). The jump probabilities
are independent and identically distributed at each lattice point of Z>. When the
walk starts at the origin, after n time steps its location is among the points (i, j) in
the first quadrant (i.e., i, j > 0) withi 4+ j =n.

The environment @ = (Wx x4e; : X € Z2) is a collection of i.i.d. [0, 1]-valued
random variables wy y., indexed by lattice points x. Set Wy y4e, =1 — Wy x4e;-
(@x,x+e;» Wx,x+e,) are the jump probabilities from point x € 72 to one of the neigh-
bors {x +e1, x + e2}. Transitions w do not allow backward jumps. The distribution
of the environment w is P with expectation operator [E. Given a realization » and a
point x € 72, P2 denotes the quenched path measure of the Markov chain (X,),>0
on Z? that starts at x and uses transition probabilities w:

i P®(Xo=x)=1 and, foryeZ* n=>0,andi € (1,2},
‘ P;)(Xn—i-l =y+ei|Xn=)’)=a)y,y+ei-

P is a probability measure on the path space (Z*)%+ and X. is the coordinate pro-
cess. This is a special case of random walk in a space-time random environment.

This paper focuses on the beta RWRE where wy x4, 1s beta-distributed. Bar-
raquand and Corwin [6] discovered that this case is exactly solvable. This means
that fortuitous coincidences of combinatorics and probability permit derivation of
explicit formulas and precise results far deeper than anything presently available
for the general case. Some limit results uncovered in an exactly solvable case are
expected to be universal. These form natural conjectures for the general case.

An earlier case of exact calculations for RWRE in a static environment appeared
in a series of papers by Sabot and coauthors (see [27] and references therein). They
discovered and utilized special features of the multidimensional Dirichlet RWRE
to prove results currently not accessible for the general multidimensional RWRE.
Section 8 of [27] discusses one-dimensional RWRE in a static beta environment.

Before specializing to the dynamic beta environment, we review results for the
general 1 4 1 dimensional RWRE (1.1) in an i.i.d. environment.

1.1. Nearest-neighbor space-time RWRE. Under an i.i.d. environment for
the quenched model in (1.1), the averaged path measure given by Py(-) =
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i Py (-)P(dw) is a classical random walk with admissible steps {e;, e2} and tran-
sition kernel p(e;) = E(wo,¢,), i = 1,2. Hence there is a law of large numbers
Po{Xy/N — &*} =1 with limiting velocity £* = (¢, &5) = (p(e1), p(e2)). Fu-
bini’s theorem then gives the quenched law of large numbers

(1.2) PYINT'Xy - £*}=1  forP-ae. w.
By Donsker’s theorem, under Py the centered and diffusively rescaled walk

XNt — Nt&*

VEIEN

converges weakly to the process {(W(¢), —W (z)) : t > 0}, where W (-) is standard
one-dimensional Brownian motion.

The same functional central limit theorem (CLT) holds for the quenched RWRE
if and only if P(wo ¢, € {0, 1}) < 1. That is, for P-almost every w the distribution
of {Wy(¢) : t > 0} under P’ converges weakly to that of {(W(¢), =W (1)) : t > 0}
(Theorem 1 of [21]). A functional CLT holds also for the quenched mean E§'[X y]
with scaling N'/# (Corollary 3.5 of [4]). In summary, as N — oo, the quenched
mean of the walk has Gaussian fluctuations on a small scale of order N/4, while
under a typical environment the walk itself has Gaussian fluctuations on the larger
scale of order N'/2. The fluctuations of the quenched walk dominate, and hence
the averaged process has Gaussian fluctuations of order N'1/2,

LetU ={te1 + (1 —t)er : 0 <t < 1} denote the simplex of possible limiting
velocities. For £ e i/ and N € N, let [N&] denote a point closest to N& on the
antidiagonal {(x1, x2) € Z? : x; + xp = N}. The averaged large deviation principle
(LDP) is the standard Cramér theorem and tells us that for & € U

Jim N~"log Po{ Xy = [NE]} = —1,(&)

{WNa)z :tZO}

with rate function

(1.3) 1.(§) =& logg—L +$210g§—i for & = (§1,62) €U.
3 13
A quenched LDP holds under the assumption
(1.4) E[|logwo.e, 7] < 00 fori € {1,2} and some ¢ > 0.
By Theorems 2.2, 4.1, 2.6(b) and 3.2(a) of [22], for all £ e U,
(1.5) Jim N7log PY{Xy = [N&1} = 1, (€)

exists P-almost surely. The rate function /;, does not depend on w. It is a non-
negative convex continuous function on I/ with a unique zero at £*. By Fatou’s
lemma and Jensen’s inequality, I, (§) > 1,(§) for all § € U. It is shown in [31] that
1,(§) > 1,(§) for all £ e U \ {£*}. The proof in [31] utilizes uniform ellipticity,
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namely that P(§ < wg ., <1 —38) =1 for some § > 0, but their proof works more
generally. Theorem 2.7 below states the strict inequality in the beta case.

General closed formulas for /, have not been found. Variational representations
exist, for example, in [10, 17, 22, 26, 30]. We state below one particular formula for
the RWRE (1.1) on Z2. In the beta case, extremals for this formula are identified
in Section 2.3 below, in terms of harmonic functions.

Let K denote the space of integrable stationary cocycles defined on the proba-
bility space (2, &, P) of the environments. Elements of K are stochastic processes
{Byy(w):x,y € ZZ} such that, for all x,y,z € 7? and P-ae. o, E|By, y| < o0,
B, y(®) + By ;(w) = By ;(®), and By y(T;w) = By, y+,(w) where T is the shift
(T;®)x,x+e; = Wx4z,x+7+¢;- The rate function in (1.5) is then characterized as
I,(6)=— grelIfC{E[Bo,el]El +E[Bo.e, 152
(1.6) + P-esssuplog(wo,e, e Boey (@ 4 woyeze_Bo*ez (‘“))}

w

for & erild.

This formula for 7, is valid for an i.i.d. environment @ under the same moment
assumption (1.4) as the LDP.

For a nearest-neighbor RWRE on 74 for which all directions =e; satisfy (1.4)
formula (1.6) appeared in Theorem 2 on page 6 of [26]. In the directed case, (1.6)
is a special case of variational formula (4.7) in [14] for the point-to-point limiting
free energy of a directed polymer.

When the transition probabilities in (1.1) are a small perturbation of simple sym-
metric random walk, under suitable space-time scaling the transition probabilities
converge to the solution of the stochastic heat equation (SHE) with multiplicative
noise [12]. This is also a KPZ result, for the logarithm of the SHE is a solution
of the KPZ equation. The result is based on the convergence of chaos expansions,
following the work [2] in the so-called intermediate disorder regime of directed
polymers.

Averaged and quenched central limit theorems and large deviation estimates
have also been proved for random walk in correlated dynamic environments. See,
for example, [3, 7, 8, 25] and their references. However, these results do not ap-
ply to the RWRE with the correlated transition probabilities (2.5) we introduce in
Section 2.1. Indeed, Theorem 2.4 below shows that the fluctuation exponent of the
averaged RWRE is 2/3 instead of 1/2. See also (1.9).

1.2. Beta RWRE. Leta, B > 0 be positive real parameter values. The standard
gamma and beta functions are given by

o0
F(a):/ s le™5ds and
0

1.7
4D ['(e)I'(B)

1
_ a—1l _ \B-1 —
B(a,,B)_/O sl =) ds = Fatp)
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The c.d.f. of the Beta(«, 8) distribution is

t
(1.8) F(t;a,B) = B(a, B)~! / sl —s)f"lds  forO<t<1.
0
The case « = B8 = 1 is the uniform distribution on (0, 1).
For the remainder of this paper, the variables {wy x4¢, 1 X € 72} in the RWRE
(1.1) are i.i.d. Beta(a, B) distributed.
When o = 8 =1 and & — & > 4/5, Barraquand and Corwin [6] showed

IP){104%1[’5”{?@ (1 —e2) = N1 —6)} + N1y(§) < y}
c(§)N'/3

lim
(1'9) N—o00

= FGue(y),

where the limit is the Tracy—Widom GUE distribution. Later, in a less rigorous
paper, Thiery and Le Doussal [29] did the same for log Py’ {Xy = [N&]} + N1, (&)
and all , B > 0 and & # &*.

These results revealed that this RWRE possesses features of the 1 4+ 1 dimen-
sional Kardar—Parisi—Zhang (KPZ) universality class. Where do we find the KPZ
wandering exponent 2/3? Not in the walk (1.1), because the walk in an i.i.d. en-
vironment satisfies a standard CLT under both its quenched and averaged distribu-
tions.

We answer the question by conditioning the walk on an atypical velocity. Then
the quenched process X, converges to a random walk in a correlated environment
which is a Doob transform of the original walk. When the environment is averaged
out, at time N this walk has fluctuations of the order N%/3, and thus has the KPZ
wandering exponent. This behavior deviates from that of classical random walk:
standard random walk conditioned on an atypical velocity converges to a random
walk with altered transitions.

Conditioning on an atypical velocity is intimately tied to large deviations. The
logarithm of the harmonic function in the Doob transform turns out to be an ex-
tremal in (1.6) and its expectation is the gradient of /.

Notation and conventions. 7 denotes the integers, QQ the rationals, R the reals
and C the complex numbers. Z = {0,1,2,3,...}, N={1,2,3,...}, and Ry =
[0, 00). For real a, |a] is the largest integer < a.

Vector notation on R? is x = (x1, x2) = x1€1 + xpep, with canonical basis e =
(1,0) and e3 = (0, 1). The scalar product is x - y and the ¢! norm |x|1 = |x1]+|x2].
Coordinatewise integer parts: | x| = (|x1], [x2]). For x - (e; + e2) € Z4, [x] is a
closest point to x in {y € Z? : y; + y» = x1 + x2}. Inequality y > x is interpreted
coordinatewise: y; > x1 and y; > x».

Shifts 7, act on environments w by (T;@)x x4¢; = Ox4z,x+z4¢; 10T X,y € 72.
When subscripts are bulky w, , becomes w(x, y), with the same convention for
Tx,y, Bx,y and py y. A finite or infinite sequence is denoted by x; ; = (x;, ..., x}),
for —oo <i < j < oo. The simplex of asymptotic velocities is U = {te; + (1 —
t)ep : 0 <t <1}, with relative interior ril/ = {te; + (1 — t)er : 0 <t < 1}.
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2. Results for beta RWRE. In Section 2.1, we construct the Doob-
transformed RWRE that is the limiting process of the quenched walk conditioned
on an atypical velocity. Section 2.2 states the KPZ fluctuation exponent of the
averaged Doob-transformed walk. In Section 2.3, we describe the quenched large
deviation rate function and its connection with the harmonic functions of the Doob
transform.

Parameters o, B > 0 are fixed, and the environment @ = (wx x+te,),cz2 has the
i.i.d. Beta(a, B) distribution. The probability space of the environment is (2, G, P)

where G is the Borel o -field on the product space 2 = [0, I]ZZ.

2.1. Doob transform of the quenched walk. The first main result is the exis-
tence of a family of increment-stationary harmonic functions, indexed by direc-
tionsinrid ={te; + (1 —t)ex: 0 <t < 1}.

THEOREM 2.1. On (2, G, P), there exists a stochastic process {Bf,y(a)) :
x,y € Z2, € e rild} with the following properties.

For each & erild, e Boxisa harmonic function: for all x € 7.2,

&
TBore, (@) e—Bf),X (@) P-a.s.

&
—B (@)
(2.1) Wx x+e € O.xtey + Wx x+ey€

For each & € 1ild, there is an event Q) such that P(Q®)) = 1 and for every
weQ®,

22) B ()= (log PO{X|zy—x|, = 2n} —10g PY{X |2y -y, = 2n})

lim
N—o0
for all x,y € Z*, and any sequence zy € 7* such that |zy|1 — 00 and zn/
lznli — &.

In the law of large numbers direction £* = (=<

a1B’ ﬁ), we have

(2.3) BY () =0.

By analogy with limits of increments in percolation and polymers, we could
call B¥ the Busemann function in direction £. For £ # £*, the variables Bf, x+te;
are marginally logarithms of beta-variables. From limit (2.2), we get

(2.4) ﬁﬂnm=£%ﬁﬁmam B (@) + B .(w) = B} ()

for all x, y, z € Z?* and P-a.e. w. In other words, B is a member of the space X of
integrable stationary cocycles defined above (1.6). Harmonicity (2.1) comes from
limit (2.2) and the Markov property

Po{X oy —xl) = 2N} = Ox xtey Piho (X jzy—x1—1 = 2N}

1)
+ wx,x+esz+gz{X|zN—x|1—l =2ZN}).
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Further continuity, monotonicity and explicit distributional properties of the pro-
cess B¢ are given in Theorem 3.6.

Theorem 2.1 is proved by constructing a family of harmonic functions on quad-
rants to control the convergence on the right of (2.2). This approach is the RWRE
counterpart of the arguments used for an exactly solvable polymer model in [16]
and for the corner growth model with general i.i.d. weights in [15].

By (2.1) and (2.4),

4
e_B(),x+eI~ ()

-B5 .
(2.5) K5 1, (©) = Ox xte, =y e B @ ie(1,2),

o B @)
defines a new transition probability on Z?, as a Doob-transform of the orig-
inal transition w. It is an RWRE transition as a function on 2 because, by
(2.4), it obeys shifts: K?Hei (T,w) = K§+z,x+z+e,~ (w). The environment k¢ (w) =
(K3 x+e, (@) xez2 1s In general correlated over locations x, except that its restric-
tion on antidiagonals is i.i.d. as stated in the next theorem.

Let P)’C‘E be the quenched path measure of the Markov chain with transition
£
y

probability x5 . In other words, P)fg satisfies (1.1) with « instead of wy, y ;.

,y+e;
Py f o Py @) s a function of w through its transition probability.

THEOREM 2.2. Fix & € rild. Then for any n € Z, the random variables
3

Yoxte; (@) 1 X1 +x2 =n} are i.i.d. We have the law of large numbers:

{k
2.6) PEOINTIXy > 6} =1 forP-ae. o.

In [16], a RWRE in a correlated environment arose as a limit of the quenched
log-gamma polymer. Its transition, probability is marginally beta-distributed. Tran-
sition k¢ above is different: the marginal distribution of KE’ xte; 18 not beta. Its
density function is given in Theorem 3.7.

The next theorem records the limits of conditioned quenched walks.

THEOREM 2.3. For each fixed & € rild, there is an event Q¥ such that
P(QE)) = 1 and the following holds for every w € Q©): if zy € Z? is any se-
quence such that |zy|1 = N and zy /N — &, then the conditioned quenched path
distribution Py’ (-|Xn = zn) converges weakly on the path space (ZH%+ to the

&
Doob transformed path measure Péc @),

The weak convergence claim in the theorem amounts to checking that

m—1
: » _ N £ )
Nh—r>noo Py (Xom = Xom| XN =2N) = /E) Koo, (@ foroeQ
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for any finite path x¢ , with xo = 0. This is an immediate consequence of limit
(2.2). Combining (2.3) with the theorem above tells us that if zy/N — &%, then
Py(-|Xny = zn) — Py’. In other words, conditioning on the typical velocity &*
introduces no new correlations in the limit and leads back to the original path
measure. This is cosnsistent with classical random walk.

Observe that P§ “ (Xo.m = xo.m|Xn = 28) = PC(Xo.m = Xo.m| Xy = zn) for
0 <m < N. Consequently, the family { Py é} is closed under taking limits of path
distributions conditioned on velocities.

Theorems 2.1, 2.2 and 2.3 are proved after the statement of Theorem 3.6.

2.2. Fluctuation bounds. In 1+ 1 dimensional KPZ models, exponent % ap-
pears in fluctuations of heights of growing interfaces and free energies of poly-
mer models, while % appears in spatial correlations and path fluctuations. The
Barraquand—Corwin limit (1.9) indicated that logarithms of quenched probabilities
have N!/3 fluctuations. The theorem below shows the same exponent for process
B¢, though only in the direction &, as quantified by (2.7) below. If the endpoint

(m, n) deviates from N& by NV for v > %, the fluctuations of Bg} (m.n) become
Gaussian. (This follows similar observations for directed polymers in [9], Corol-

lary 1.4, and [28], Corollary 2.2.)

THEOREM 2.4. Fixa, 8 > 0. Fix £ = (&1, &) € (rid) \ {£§*}. Given a constant
0 < y < o0, there exist positive finite constants c, C, and Ny, depending only on
o, B, y and &, such that

cN?3 < Var[Bg,(mﬁn)] < CN?3
forall N > Ng and (m,n) € N2 such that
2.7) Im — N&(|V [n — N&| < y N2

The same constants can be taken for (a, B, y, &) varying in a compact subset of

(0,00)% x (rild) \ {£*}.

Theorem 2.4 was proved independently and concurrently in the present work
and as part of a more general result for exactly solvable directed polymers by
Chaumont and Noack (Theorem 1.2 of [9]). A proof appears in Section 4.1 of the
first preprint version [5] of this paper. In the present version, we omit the proof
and cite [9] for details. The translation between the Doob-transformed walk and
the beta polymer is explained in Section 4.

The second fluctuation result quantifies the deviations of the walk from its lim-
iting velocity, under the averaged measure Pi() = i pri@ (1)P(dw) of the Doob-
transformed RWRE. This walk is superdiffusive with the KPZ wandering exponent
% instead of the diffusive % of classical random walk.
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THEOREM 2.5. Fix a, 8 > 0. Fix & € (rild) \ {£*}. There exist finite positive
constants C, c, ro and 8o, depending only on «, B and &, such that for r > ry,
8 € (0, 89), and any N > 1 we have

2.8) Pi{| Xy — NEl = rN*P) < Cr and
2.9) P {|Xy — NE|1 28N} > ¢

The same constants can be used for («, B, &) varying in a compact subset of

(0,00)% x (rild) \ {£*}.

Theorem 2.5 is proved in Section 6. The bounds come from using harmonic
functions to control the exit point of the walk from rectangles.

2.3. Large deviations. This section records large deviation rate functions and
their relation to the process B¢ of Theorem 2.1.

We begin with a point needed for the remainder of the paper. The next lemma
links three parameters: £ € U/ is an asymptotic velocity of the walk, ¢ € R is dual
to £ and 0 < A < oo parametrizes harmonic functions constructed in Section 3.2.
As & ranges across U from left to right (in the direction of £1), A goes from 0 to oo
and back, with A = oo at £ = &£* (see Figure 1).

The polygamma functions are ¥(s) = I'’(s)/'(s) and ¥, (s) = w,/l_l(s) for
s > 0 and n € N. Properties of these functions are given in Appendix A of the
first preprint [5] of this paper. Qualitatively speaking, v is strictly concave and
increasing from 9 (04) = —oo to Yo(co—) = 0o, while v is strictly convex and
decreasing from 1 (0+4) = oo to Y1 (co—) =0.

LEMMA 2.6. Fixa, > 0.

A A A
A | 100 A
1 101

0 = ; &1 0 = : &1 0 1o t

FIG. 1. Leftmost and middle plots are of A as a function of 1. The left plot stretches the A-axis to
reveal the behavior away from & i" . The rightmost plot is of A as a function of t. These graphs are for

(o, ) =(1,2).
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(a) Given &€ = (&1, 1 — &) € U there is a unique » = A(€) € [0, oo] such that
i) —yila+2) *
(2.10) & = ) — T @t BN for& € [§,1] and
Vi(A) —yi(B+2)

@I h=l- ey orfiel0g]

with A =0 <= & € {e1,e2} and r = 00 = § =" = (3%, %).
Furthermore, ) is strictly increasing on & € [0, &[") and strictly decreasing on

1€ (&, 11

(b) Given t € [0, 0o], there is a unique A = A(t) € [0, 00] such that

(2.12) t=vola+B+A)— o),
where \=0<=t=0c0cand A =00 <=t =0.

The proof of Lemma 2.6 is in Section 7. The formula for the quenched rate I,
in (1.5) in the beta environment can now be given; see Figure 2.

THEOREM 2.7. Fixa, B > 0and let w have i.i.d. Beta(a, B) distribution. Then
for & = (&1, &) el we have 1,(§*) =0 and

E1o(a + B+ A(&)) +EYo(A(E))

o1y =] TPl &1 (87.1]
Exvo(e+ B +1(5) + 10 (1(9))
— Yo(B+ 1)), &1 €[0.80),

where in both cases ) and & determine each other uniquely via (2.10) and (2.11).
1, is a strictly convex function on [0, 1] and satisfies 1,(§) > 1,(§) for all § €

UN\{ET)

Yo(a+ B) = o(B)
—log &y

FI1G. 2. A plot showing 14 (higher, thicker graph) and 1, (lower, thinner graph) as functions of &;.
Here, (a, B) = (1, 2).
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REMARK 2.8 (Regularity of /;). One can show that /, is analytic away from
£*. We verified that I, has at least four continuous derivatives across £* by explic-
itly computing derivatives, and obtained the following expansion around &*:

2 _
1O = B g G D gy
(2.14) 20p p
(a + B)*2a? —2aB +2B%2+ 1)

w4 x4
240383 (&1 — &) +o(& &)
These details are in Appendix B of the first preprint [5] of this paper.
For the sake of comparison, here is the expansion around £* of the averaged rate
function I, from (1.3):

(a+ﬁ)2 (a+ﬁ) (@ —PB)

I(§) = —~ — &)
o) =34 (B - &)+ o257 (& — &)
' @+ )@+ 8% \ \

The expansions of I, and I, agree to third order. This explains the minute differ-
ence between the two graphs in Figure 2. One can check that

" (@+p)*
geslla@ 1 =80 Lo 1= 8] = = 75—

Thus the fourth-order terms differ in the two expansions.

> 0.

EXAMPLE 2.9 (Case « = 8 =1). In the i.i.d. uniform environment A and I,
can be found in closed form:

1 1 2n
2.16) I, () =1—2JE& = Z (Z)(—l)”“ﬂ (gl — 5) for £ e U.

The series illustrates that this rate function is analytic on the entire open segment
rild, a property which is open for general («, ).
We also record the convex conjugate
1;(h) =§25{h & —1,®)) = lim n~'log E¢["*],  heR%.
The second equality above is an instance of Varadhan’s theorem [23], page 28.

Since (X,, — Xg) - (e; + e2) = n, we have I(;"(tel +sep) =5+ I;((z —s)eq) and it
suffices to consider & = e for real ¢.
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THEOREM 2.10. Fix o, 8 > 0 and let w have i.i.d. Beta(a, B) distribution.
Fort >0,

(2.17) I7(ter) = Yol + A1) — Yo(A(1)) and
(2.18) I;j(—ter) =—t +Yo(B + A1) — Yo (A (D),

where A and t determine each other via (2.12).

Formula (2.13) for I, appeared earlier in equations (8)—(9) of [6] where it was
derived by nontrivial asymptotic analysis. We derive I, through / ;, which is cal-
culated with the help of harmonic functions we construct below.

Next, we state the connections between I, and the processes B%.

THEOREM 2.11. (a) Fix & € rild. Then the process BE is an extremal for vari-
ational formula (1.6). In particular, we have

1,6) = —E[B;,, J&1 — E[Bg, ]2

(2.19)
= infu{E[Bé’el]Sl +E[B;,, 1),

where the last infimum is uniquely attained at { =§.
(b) Extend I, homogeneously to all of R2, that is, by 1,(c§) =cly(§) forc >0
and & € U. Then the gradient of 1, satisfies

(2.20) VI,(¢)=—E[B;, Je1 —E[B;, Je2, & erill.

0,e; 0,e2

Corollary 4.5 and Remark 5.7 in [14] put equations (2.19)—(2.20) in the context
of a general theory for directed walks in random potentials. Theorems 2.7, 2.10
and 2.11 are proved in Section 7.

Lastly, we record the LDP for the Doob-transformed RWRE. Definition (2.5)
and the cocycle property in (2.4) imply that

& _gt
Py (Xy =x) = P{(Xy = x)e” Box(@,

B? has i.i.d. increments along horizontal and vertical lines [Theorem 3.6(c)], and
hence the law of large numbers applies: P-almost surely

lim N7'B§ v =E[Bs, |6 +E[Bg, Joo=—¢ V) ¥ eril.

N—oo

The quenched LDP (1.5) of the beta walk then gives this theorem.

THEOREM 2.12. For any fixed & € rild, the following holds P-almost surely,
simultaneously for all ¢ € rild:

Jim N og P (X = [NST} = =1, (0) +¢ - VI, ().

Rate function I, (¢) — ¢ - VI, (§) is uniquely minimized at { =&, by convexity
and homogeneity of /,. The main results have been stated and we turn to proofs.
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3. Increment-stationary harmonic functions. In this section, we construct
quenched harmonic functions whose probability distributions are suitably invariant
under lattice translations. This is done first on restricted subsets of the lattice by
solving a boundary value problem, then extended to the entire lattice by taking
limits. That this is possible with explicit distributions and useful independence
properties is a feature of exact solvability.

The boundaries of the positive and negative quadrants v + Z%r and v — Zi with

a corner at v € Z? are denoted by
; B ={v+(i,0),v+(0,j):i,j>0} and
3.1

B, ={v—(,0),v—(0,/):i,j >0}

Hitting times of the boundaries follow analogous notation:

(3.2) tf =inf{n >0: X, e BX}.

The separate axes of these boundaries are distinguished by the notation
(3.3) BED = {v£(,0):i >0} and B ={v4(0,):j >0}

In particular, B = B UBS?,

3.1. An involution for beta variables. This section is technical preparation for
the construction of harmonic functions. A distribution-preserving involution of
triples of beta variables is defined and its properties recorded. We motivate this
construction through a Dirichlet problem.

Consider backward nearest-neighbor transition probabilities @y x—,, i € {1, 2},
on the lattice Z2. These transition probabilities allow two steps —e; and —e, and
satisfy @y xy—e¢; + @®x x—e, = 1 ateach x € Z2. Suppose a function f is given on the
boundary JH%(J{ of the first quadrant Z%r. When the backward walk starts in the first
quadrant, the hitting time rg' is obviously finite. Then

(3.4) H(x) = EZ[f(X(z5))]
defines an @-harmonic function on the positive first quadrant. That is,
(3.5) HX) =8y Hx —e1) + @y 1oy H(x —e3)  forx e N,

We solve (3.5) inductively, by beginning from the boundary values and then
defining H (x) once H(x — e1) and H(x — e») have been defined. We formulate
this induction in terms of ratios

Px,y = H(y)/H (x).

The induction assumption is that the nearest-neighbor ratios px_e¢, x—e;—¢, and
Px—e,x—e;—e, have been defined on the south and west sides of a unit square with
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northeast corner at x. Then, by (3.5), the ratios on the north and east sides are
obtained from the equations

Wx,x—e1 Px—ej—ey,x—e; T (1- a)x,x—el)px—el—ez,x—ez
(3.6)  pPx—eyx = ,
Px—ej—er,x—e;

Wx,x—e1 Px—ej—er,x—e; T (1- wx,x—el)px—el—eg,x—eg

(3-7) Px—ep,x =

Px—ej—er,x—e;

It is useful to augment this pair of equations with a third equation

(38) _ px—el—ez,x—ez(px—el—ez,x—el - 1)

Wx—e)—ey,x—ey —

Px—ej—er,x—e; — Px—ej—er,x—ep

provided the denominator never vanishes. Together the three equations define an
involution. In the case we specialize to below, wy_¢, —¢, x—e¢, 15 a forward transition
probability from x — e; — e> to x — e>. The complementary transition probability
from x — e; — ey to x — ey is then

(3.9 Wx—e1—er,x—e; = 1 — Ox—ej—ey,x—es-

Equations (3.6)—(3.9) are illustrated by Figure 3, with x in the upper right corner
of the unit square and with

w,v,w)= (,Ox—el—ez,x—ega Px—ej—er,x—eq» Cvl)x,x—m) and
(U/, V/, W/) = (px—el,x, Px—er,x>» a)x—el—ez,x—ez)-

Now assume that the transition probabilities @ come from a beta RWRE; in
other words, that the variables {®@y ¢, },c72 areii.d. Beta(a, ). The next lemma
indicates how to choose the distributions of the ratios of the boundary values in
order to get tractable harmonic functions. We regard the parameters «, 8 of the en-
vironment fixed, while 0 < A < oo parametrizes two different boundary conditions
in cases (a) and (b) in the lemma.

U w’

F1G. 3. Involution (3.10): Respectively, weights U and V on the south and west edges and
west/south transition (W, 1 — W) become weights U’ and V' on the north and east edges and
east/north transition (W', 1 — W'), and vice versa.
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LEMMA 3.1. The equations
U,:WV+(1—W)U V/:WV+(1—W)U

v , 7 , and
(3.10)
W — uw-1
V-U

define an involution (U, V, W)+ (U', V', W) on (0, 1) x (1,00) x (0, 1).
LetO <o, B, < o0.

(a) Suppose that (U, V, W) are independent variables with distributions
(3.11) U ~Beta(a + A, B), V-l ~Beta(A,«), and W ~ Beta(a, B).

Then the triples (U', V', W') and (U, V, W) have the same distribution.
(b) Suppose that (U, V, W) are independent variables with distributions

(3.12) U~!~Beta(h, ), V ~Beta(B+Ar,a), and W ~ Beta(a, B).
Then again the triples (U', V', W') and (U, V, W) have the same distribution.

PROOF. Algebra checks the involution property. We prove part (a). Part (b)
follows by switching around « and 8 and by switching around the axes.

Let (W,Iy,T'g,T;) be jointly independent with W ~ Beta(ar, 8) and I'), ~
Gamma(v, 1). Set

'y +T e +T
(3.13) U=——eF g vt
Ig +Tg+ T Iy

Then (U, V, W) have the desired distribution because V is independent of Iy, + ;.

Compute

U=wr+ad-mL w1 —wy—
B Vo o+ Tp+T]
v I, +Ts+T
(3.14) Ve We b l—We=we BTy
U T,
UWv-1_ T,

W/

(V=U) Ta+Tg

W' is independent of the pair (U’, V') because it is independent of I'y, + I'g. It
also clearly has the same distribution as W.
It remains to show that (U’, V') has the same distribution as (U, V). Set

y—_  In
Lo +Tg+T,
Observethat U =W + (1 — W)Y and V' = WY +1— W. Also
Iy + 1T

W+1-W)Y=Y4+Wl-Y)=————2 =
( ) ( ) Fa+Fﬁ+FA
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and similarly, W'Y~! + 1 — W’/ = V. Furthermore, (Y, W’) are independent and
so are (Y, W). Consequently, the two pairs have the same distribution and (U, V')
has the same distribution as (U, V). The lemma is proved. [J

Observe from (3.10) that

K—FI_W/:l and E—FI_W
U Vv U’ v/
This is how the Doob transformed transition probabilities arise from a given for-
ward transition (W’, 1 — W’) or backward transition (W, 1 — W). We derive the
probability distribution of W’/ U (which is the same as that of W/U’). » F; below

is the standard Gauss hypergeometric function
>, (@ (b 2

(3.16) 2Fi(a,b,c;z2) :;) or &’

where (¢)y =c(c+1)---(c+k—1) is the ascending factorial. Other rational func-
tions of beta variables whose densities involve hypergeometric functions appear in
[13, 20].

(3.15) =1.

PROPOSITION 3.2. The random variables W' /U and W/U' of Lemma 3.1
have the following density functions g, and g, on the interval (0, 1).
In case (a) under assumption (3.11),

Ba@+hia+p) x* (1 —x)*!
gn(x) = :
(3.17) B(a+ A, B) B}, a)
X2Fi(a+ X, o+ A, 204+ B+ A; x).
In case (b) under assumption (3.12),
- BB +ra+p) 1 —x)f!
gx) = :
(3.18) BB+ A, ) B, B)
XoF1(B+X,B+1a+28+A;1—x).

Neither g nor g, is the density function of any beta distribution.

PROOF. Consider case (a). Let Fy,—1 denote the Beta(A, ) c.d.f. of v~!. Fix
O<x<l.FromW/U=(1-V-YH/a-vuvh,

d w’ d 1—x
= —Pl—< = —P V_1> )
8.(x) dx <U _x) dx ( —1—xU

1 19 1—x
- B(a+k,ﬂ)/o ﬁ(l_F‘H(l—xu))

(3.19) x w1 — )P du
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xa—l 1—x A—1 1
= ( ) / (1 —xu) % *
B\, a)B(a+ A, B) Jo

x u 1 — )P gy,

The last integral equals B(o +A, ¢+ B)2 F1 (¢ + A, ¢ + A, 2a + B+ A; x) (equation
(9.09) on page 161 in [19]). This verifies (3.17).

In case (b), write W /U =1— (1 — U_l)/(l — U~'V) where the last fraction
has the distribution of case (a) but with o and g interchanged. Hence we have
(3.18).

Formulas (3.17) and (3.18) can be used to show that g; and g are not beta
densities. Details can be found in Proposition 3.2 in [5]. O

3.2. Harmonic functions on quadrants. Lemma 3.1 is applied to construct two
processes: (0, p*) using case (a) of the lemma and @, p*) using case (b). Pa-
rameters (c, B) are fixed while in both cases 0 < A < co. w” and & are new i.i.d.
Beta(a, B) environments. p* and p* are harmonic functions on Zi that give rise
to Doob transformed transition probabilities 77* and 7%, respectively.

The need for two cases (a) and (b) arises from the two-to-one connection be-
tween parameters £ € (rilf) \ {§*} and 0 < A < oo, given in Lemma 2.6(a). To
parametrize in terms of &, let A(§) be given by Lemma 2.6(a) and define

MO e L AE) (651 :(L,l),
(@, p ) EeE D=7

SHE) SAE) =h(E) %) o

o™, , 7T , e (0, = (O, )

( o ) £1 € (0,&) ot B

This way we establish in Theorem 3.5 that & € (riif) \ {£*} is the limiting velocity
of the Doob transformed RWRE with transition 7. The law of large numbers
* or #* for a finite A.

(3.20) (&°,p%,7%) =

velocity £* = (ﬁ, %) does not arise from any transition 7

We now perform construction (3.6)—(3.9) of harmonic functions p* and for-
ward transition probabilities @”. Their distributional properties come from part (a)
of Lemma 3.1. The inputs of the construction are boundary variables and backward
transition probabilities in the bulk. We create infinitely many coupled systems in-
dexed by the parameter 0 < A < co. Remark 3.4 below comments on the similar
construction of (&*, p*) based on case (b) of Lemma 3.1.

Let P be the joint distribution of mutually independent random variables

(3.21) {A(,"()), A(O,j), Cvl)x,x—el i, ] € N, X € Nz}
with marginals A; o), Ao, j) ~ Unif(0,1) and &y ., ~ Beta(a, B). Set
(3.22) 5x,x—eg =1- wx,x—el .

For fixed positive a and b, let F _1(~; a,b) :[0,1] — [0, 1] denote the inverse
function of the Beta(a, b) c.d.f. (1.8). For 0 < A < oo, define coupled boundary
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variables on the coordinate axes:
10?1—1,0),(1,0) - F_l(A(l’()), o + )\., ﬁ) fOI' l Z 1 and
(3.23) 1
Pko i—1),(0,/) =
0,7—1),(0,7) F_I(A(()’j);)\,a)

for j > 1.

{,o(ki_ljo)’(i’o) :i > 1} areii.d. Beta(x + A, B), {(p(ko,j—n,(o,j))_l :j > 1} areii.d.
Beta(A, ), and the two collections are independent of each other and of {&x x—, :
x € N2},
For each A > 0, apply (3.6)—(3.8) inductively to define random variables
A A A . 2
(3.24) {px,x—}—el’ Px x+ey> Px x+e; - X € Z—I—}

indexed by the full quadrant. For x € Z?2 , define additionally

by _ b
wx,x+e2 =1- wx,erel .
Conservation equations
A ) _ A A
(3.25) Px x+ei Px+er.x+ei+e; = Px.x+esPxter xter+e;

are satisfied around all unit squares. Extend the definition of p} ¢; from directed
nearest-neighbor edges to ,o)%’ yforallx, ye Z3 so that pﬁ, .= 1land

A A A 2
(3.26) Py yPy 2 = Py forallx,y,z€Z7.

In the sequel, we write p*(x, y) for pﬁ’ y When subscripts are not convenient.

A down-right lattice path {x;};cz is a nearest-neighbor path with incre-
ments x; — x;_1 € {e;, —ez}. Any bounded portion of a down-right path in
Zﬁ_ can be obtained by finitely many corner flips starting from the path x; =
(j*,j7) that lies on the coordinate axes. A single corner flip is the transforma-
tion (U, V, W) — (U’, V', W’) in Figure 3. Figure 4 illustrates successive corners
flips. By Lemma 3.1(a), each iteration of (3.6)—(3.8) preserves the properties in the
next proposition. Inequalities on Z? are interpreted coordinatewise.

21
19|20
17|18
5 1314|1516
304 7189 |10]11|12 L
1|2 1(2(3|4|5]s6 w?

FI1G. 4. lllustration of the corner-flipping procedure. Left and center: To obtain the o values on the
thick edges of the down-right path inside the quadrant start with the known values on the boundary
edges and consecutively flip the corners of the squares, for example, in the indicated order. Right:
ratios p* along the down-right path, transitions & out of sites northeast of the path, and transitions

w” southwest of it are jointly independent.
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PROPOSITION 3.3. Let random variables (3.21) and (3.23) be given, and de-
fine the process (3.24) inductively through (3.6)—(3.8). Then for each 0 < X < 00
we have the following distributional properties.

Random variables {‘U;,x+e| :x € Z2 } arei.i.d. Beta(a, B). For each x € 72, we
have the marginal distributions

(3.27) P} cye, ~Beta(w+ A, B) and ~ Beta(}, ).

A
IO)C,)C+€2

For any down-right path {x;} ez, in 72, the following random variables are all
mutually independent:

{03, 5y 1 €L}, U @zz—ey i22 x5+ A, D}, and
JEZ

U{wi,x+e1 :0<x<xj (191)}

JEZ

In particular, we have the translation invariance of the joint distribution: for
any a € 73,

A A >
(wx,x—i—q » Pup> Pz.z—e )x,u,veZi,zeNz

(3.28) i

4 A >
- (wa+x,a+x+e1 ’ Ioa+u,a+v’ wd-‘rZ,a-l—z—el)x,u,veZi,zeNZ‘

Translation invariance (3.28) is a consequence of the down-right path statement:
with a new origin at a, the edge variables p2‘+(i_l)ek’a+iek fori e Nand k € {1, 2}
and the bulk variables (@; ;—¢,),c, 2 have the same joint distribution as the orig-
inal ones given in (3.21) and (3.23).

Equations (3.15) give the identities

a))‘ a))‘
(3.29) AT 2 =] forxeZi and
'Ox,x—l—el px,x—l—ez

Wx x—ey Wx,x—ey

o - =1 for x € N2,
px—el,x lox—ez,x

(3.30)

Consider the RWRE P¢" that uses forward transitions o Combining (3.29)
with (3.26) gives the following for any fixed y € Zi:

A s A A _ A 2
(3.31) DY xte1 Prter,y T OX xterPxtery = Pr,y forx € Z7.

In other words, for any fixed y, ,oﬁ’ y 18 a harmonic function of x for transition

probabilities o on Z%r. In particular, for two points u <y in Z2

X,X+e;

A
(332) Py =Ei [p" Xy )]
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By (3.30), the same function p” works for backward transitions & and gives
(3.33) Py = EZ[p*(u, X )]

Perform a Doob transform on P®" by introducing transition probabilities

(z))L +
A X,X+e; .
(3.34) Ty te, = Sk, ief{l,2).
X,Xx+e;

The RWRE that uses transitions * is the p*-tilted RWRE and its quenched path
measure is denoted by P” A. Let xo x = (x0, ..., xx) be an up-right path from xo =
u that first enters the boundary IB%y_ [recall (3.1)] at the endpoint x;. Then

k—1 A

) Wy x
T sAi4-1
PT {Xox =xou} =[] 5= -
i=0 'Oxi,xz‘+1 Pu xi

A
_ Py AXok=xo0x)

s
P {Xok =x0.4}p%,
P y
A
EY [pA(X,y—, ¥), X0,k = x0,k]
ESPX -]

(3.35)

A useful consequence for later is the following identity for the probability of hitting
one of the two parts of the boundary. For fixed u <y in Zi andi € {1, 2}, summing

(3.35) over all paths entering B at a point of B§_i) gives

EY 10N (X o y), X o €By)
EY' [0 (X, y)] '

A —i
(3.36) PT{X,- B} =

Analogously, we define the backwards Doob transform

By x—e,
(3.37) Frvee =, ief{l,2h
X—e;,X

Then as above for fixed u < y in Zi and a down-left path xg x started from y that
first enters B at xz,

& )
PP{Xok = X030y x,
)

Puy

~X\
Py {Xok =xox}=

(3.38) .
_ E;”[Pk(u, X(t;)))), Xox = x0,k]

E3[p*(u, X (t))]
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REMARK 3.4. Let us comment briefly on the version of the construction
above that produces (@, p*) based on case (b) of Lemma 3.1. Instead of (3.23),
begin with

. I
p s . =
(3.39) LG F=1(A .03 1, B)

~)\ -1 . ;

fori >1 and

Equations (3.6)—(3.9) are iterated exactly as before. Proposition (3.3) is valid word
for word for (&, p*, @), except that (3.27) is replaced with

(3.40)

= ~ Beta(A, 8) and ﬁﬁ,wez ~ Beta(B + A, ).

X,X+eq
The Doob-transformed transitions are defined again by

a')k

~\ X,Xx+e; .
(3.41) Tl e = 5, ief{l,2),
X, X+e;

with quenched path measure P Equations (3.32) and (3.35) are then also valid
for (&, p*, 7).

Now let A(§) be given by Lemma 2.6(a) for £ = (§1,1 — &) € (rid) \
{€*}. Combine the two constructions (o*, p*, %) and (@, p*, #*) by defining
(@f, p%, %) by (3.20) for all & € (rilf) \ {£€*}. The quenched path measure of the
RWRE that uses transition 77¢ is given by

(&)
=& Py P ‘i:l € (51*’ 1)7
(342) prf=te

* PF . £ €(0,8).

THEOREM 3.5. We have this almost sure law of large numbers: for all & €

(ritd) \ {57},

Pgs (X, —> &) =1 P-almost surely.

PROOF. We give the details for the case & € (&, 1) = (ﬁ, 1) with A =
A(£). By translation invariance (Proposition 3.3), we can extend log p* to a pro-
cess {log p;y : x,y € Z*} indexed by the entire lattice. This process has the
shift-invariance and additivity properties of (2.4); in other words, it is a station-
ary L' cocycle. Such processes satisfy a uniform ergodic theorem under cer-
tain regularity assumptions as, for example, given in Theorem A.3 in the Ap-
pendix of [16]. Variable log ,03’ o is integrable and (3.29) gives the lower bound

log ,o?’ xte; = l0g wﬁ xte; I terms of an i.i.d. process with strictly more than two
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moments. This is sufficient for Theorem A.3 of [16] which gives the almost sure
limit
. -1 A =
(3.43) lim 7 |)rcrlllafxn|log P5. —m) - x| =0,
with mean vector
m(1) = E[log p(’},el Jer + E[log p&ez]eg
= (Yol + 1) — Yola + B+ 1))er + (Yole + 1) — Yo(A))ea.

Proposition 3.3 says that under P transitions a)*_ have the same distribution as @
does under P. Then, by (1.5) and (3.43) we have [P-almost surely

. —1 a* _
Jim n™" log Pj {X, =[nCl}

= lim (n~"log Py X, = g1} = n " log pf )
=—1,(0) + &ivola + B+ A) + po(A) — Yola +2).

o Ao
In other words, the distribution of X, /n under Py satisfies a (quenched) large
deviation principle with rate function

I2Q) =1,00) — &yl + B+ 1) — L2Y0() + Yole + 1),

By the strict convexity of [, and its expression (2.13), I qk (¢) has a unique zero at
¢ = & with &) given by the right-hand side of (2.10). This proves Theorem 3.5. [J

Lastly, we record continuity and monotonicity satisfied by the boundary vari-
ables defined in (3.23) and extended by the construction to all x, y € Zﬁ_:

(344 pl,— or ¥ ! — w*, and
o, P

y—A x

(345) ¥y >A>0=>p] 10 > Prrre, ad Pl i <Pl iie
Limits (3.44) are valid also for (@, p), but the monotonicity is reversed:

(3.46) Yy >a>0=0) 0y <Prrie, and PL oL >Pr e

3.3. Global harmonic functions. In this section, we construct the process Bf, y
discussed in Section 2.1. We summarize the construction in Theorem 3.6, derive
the claims of Section 2.1, then prove Theorem 3.6 piece by piece.

The probability space (€2, G, IP) is the product space 2 = [0, 1]Z2 of beta envi-
ronments @ = (Wy x4e, : X € Z?) where the variables Wy x+e, are i.i.d. Beta(a, B)-
distributed. Shift mappings T, act by (I;®)x x+e; = Wx+z.x474¢; 1Or X,z € 72 . Ve-
locities £ € rild are denoted by & = (§1, &) = (€1, 1 — &1), and the distinguished
velocity is £* = ﬁ, %). A down-right path {x;} C Z? in part (c) below satis-
fies x; 11 —x; € {e1, —e2}. The increment distributions in part (a.1) below are those
of case (a) of Lemma 3.1, while part (a.2) corresponds to case (b) of Lemma 3.1.
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THEOREM 3.6. Fix 0 < «a, B < 00. On the probability space (2, S, P) there
exists a stochastic process {BE, y():x,ye€ 72, & e rild} with the following prop-
erties:

1. Distribution and expectations.

(a) For & = &* the process Bﬁ,*y is identically zero. For & € (rild) \ {£*}, the
marginal distributions and expectations are as follows, with A(&§) given by
(2.10)—(2.11).

(a.1) For& e (§f,1),

B: Y
e xxte] ~ Beta(ot + )\,(5)’ IB) and e X, x+ey ~u Beta()\,(g)’ O{),
and so
(3.47) E[Bf,x—l-el] = I;//O(Ol + )»(?5")) — 1//0(0[ +B+ )u(éj)) and

E[B; 1 ye,] = Yol + 1(5)) — v (1(5)).
(2) For & € (0.&)),

o Brrra ~ Beta(A(£), 8) and oPrarter ~ Beta(8 + A(£), ),
and so
E[BS 1o, ] = W0(B + 1(6)) — Yo ((6)) and
E[BS . 1e,] = V0(B + 1)) — V(o + B +1(6)).

(b) For any z € 72, the variables {vay(a)) 1x,y £ z,& erill} are independent of
the variables {wy ¢, : x < z}.

(¢) For a fixed & € (rild) \ {£*}, the joint distribution of (w, B?%) is the same as
that of (@F, log %) defined in (3.20). This distribution is described in Proposi-
tion 3.3 and Remark 3.4. In particular, on any down-right path {x;};cz, on 7>
the variables { Bi., xi11 Jiez are independent.

(d) The quenched large deviation rate function of (1.5) satisfies

I,(6) =— gierrlifu{IE[Bé’el]&‘l +E[B 62 }forall & €U.

(3.48)

The infimum is uniquely attained at ¢ =§.

II. Pointwise properties. There exists an event Q29 C 2 such that P(Q20) = 1 and
the following statements hold for all w € Q, £,¢ €rild,and x,y,z € 72

(e) Cocycle properties: stationarity

(3.49) By .y (0) = BS (T.0)
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and additivity
(3.50) B ,(0) + B} (0) = B; (o).

In particular, B};’;,x (w) =0and B};’;,y(a)) = —Bg,x(a)).
(f) Harmonic increments:

_Bt _gé
(3.51) Oxype e B @ 4o e Brara @)
(g) Monotonicity: If & -e1 < ¢ - eq, then

¢
= Bx X+er:

and Bg

X, Xx+ey —

> B¢

X,x+eq

Bt

x,x+eq
(h) Bf y(w) is a cadlag function of &1 € (0, 1).

III. Limits. For each fixed & € rild, there exists an event Q(S) C 2 that can vary

with &, has }P’(Q(E)) =1, and is such that the following statements hold for each
Qés) andx,y € 72

(i) For any sequence £" € rild with E" — &, we have ijly (w) — Bﬁﬁy(w).

() For any sequence zy € 7> with |zy|1 — o0 and zy /N — & we have

B (@)= lim (log P{{X|ey x|, = 2N}
(3.52)
— log P;){X|ZN—}’|I =z })-

Comments about the theorem. The shift-invariant process (@, log 5%) in part
(c) was constructed in (3.20) in Section 3.2 on the quadrant Z%r. For part (c) above
to make sense, extend (@°, log 5%) to the full lattice Z> by Kolmogorov’s extension
theorem. It is also important to distinguish when £ is fixed and when it can vary.
The distributional equality of B¢ and log p¢ is not valid jointly across different
£ because the joint distribution of {B%} is not the one constructed in Section 3.2
through a coupling with uniform random variables. Note the distinction between
(h) and (i): at fixed £ there is continuity almost surely, but globally over £ the path
is cadlag.

We prove the results of Section 2.1. As given in (2.5), the transformed transition

§
probability is defined by &5 1, (©) = @y xree 2t @,

PROOF OF THEOREM 2.1. Theorem 2.1 is a subset of Theorem 3.6. [

PROOF OF THEOREM 2.2. Express Kf xte, USING (Bx Xtep BE Xter)t

§
eBx,erez 1

£
(3.53) Ks xre, =

& &
eBx x+ey __ eBx x+ep
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To prove the formula, substitute in limits (3.52) and use the Markov property. Note
that this is the analogue of W//U = (V — 1)/(V — U) from (3.10).
Given n € Z, define the down-right path {x/} by

*=(m+k —k) and x*t'=m+k+1,—-k)  forkeZ.

The antidiagonal {x : x| 4+ x» = n} is the subsequence {x?}, and

3 § _(p¢ 3
(szk,x2k+el’ Bx2k7x2k+€2) = (szk,x2k+l ) _Bx2k—17x2k)-

These pairs are i.i.d. by part (c) of Theorem 3.6.

For & e U \ {£*}, the law of large numbers part (2.6) of Theorem 2.2 follows
from Theorem 3.5 and the observation that (w, B¢) has the same distribution as
(@F, log ,5‘§ ), as stated in part (c) of Theorem 3.6.

For & = &%, Pg T @ = P(g” , the original path measure in an i.i.d. environment,
and the LLN is the one in (1.2). [

PROOF OF THEOREM 2.3. Immediate from the limits (3.52). O

THEOREM 3.7. For & € (rild) \ {€*}, random variable KO is not beta dis-
tributed. Let A(§) be given by (2.10)—(2.11) and let g, and g gk be the functions

defined in (3.17)—(3.18). Then the density function f&(x) OfKO,el forO<x<1lis
given by

e, &g,

(3.54) o =1% :
Sue@), & e(0,&).

PROOF. This comes from Proposition 3.2. Formula (3.53), the independence
of Bg’ ¢, and Bg’ ¢,» and their distributions given in part (a) of Theorem 3.6 imply

that Kg ¢, has the distribution of W'/ U in Proposition 3.2. [

We begin now with some preliminaries toward the proof of Theorem 3.6. In ad-
dition to the probability space (2, S, P) with its beta environment w, we use the
coupled processes {@; (s ,53 yiX,yE€ Zi} under distribution P, constructed in
Section 3.2 with properties given in Proposition 3.3 and the subsequent discussion.
Each environment ¢ has the i.i.d. Beta(e, B) distribution of the original environ-
ment w. The construction of B}%,y is based on the limits (3.52). These limits are
proved by bounding ratios of hitting probabilities with variables p¢ from (3.20)
whose distributions we control.

We begin with two lemmas that do not use the beta distributions. The setting for
Lemmas 3.8 and 3.9 is the following: a € Z? and on the quadrant S = a + Z%L we
have a Markov transition probability p such that

(3.55) 0<pxxter=1—Prxte, <1 for all x € S.
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Let P, with expectation E, denote the Markov chain with transition p starting at
x € S. Use the standard notation for hitting probabilities:

Fx,yY W =P,Fn=>0:X,=y).

LEMMA 3.8. The following inequalities hold for all y € S = a + Zi:
Flateyte) Flateny _Flaterny+en)
Fla,y+e) = Fla,y) — F(a,y+er)

The first two numerators can vanish but the denominators are all positive. The
same inequalities hold with e and ey switched around.

(3.56)

PROOF. The second statement follows by applying (3.56) to the transition
probability p obtained by reflecting p across the diagonal passing through a: for
x = (X1, X2) € Z% et Patx.atxter = Pat¥,ati+es ;» Where ¥ = (x2, x1).

We prove claim (3.56) by induction on y. It is convenient to use the ratios
F&e.y) 4 Ve, = Fx,y)
F(x,y—er) F(x,y—e2)
The numerator does not vanish but the denominator can vanish and then the ratio

has value co.

Equation (3.56) holds trivially for y = a + £e> with £ > 0 because the first two
numerators vanish while the other probabilities are positive. Hence we may assume
y > a + e;. By a shift of y, (3.56) is equivalent to having

Ux,y: forxfyinS.

Uiy < Upse,. fory>a+2e; and
(3.57) Gy = ey
Va,y = Vatey fory >a+e; +es.

We check the boundaries first. For y =a + key for k > 2, Uy y = Ugte,y =
DPy—e;,y- Fory=a+ej +lep for £ > 1,
_ F(a,y— 32)py—e2,y + F(a,y— el)py—el,y
F(a,y—e2)

It remains the check (3.57) for y = a + ke; + ey for k > 2 and £ > 1. For
y > x + e1 + e, the Markov property and assumption (3.55) give

> Dy—es,y = Vater.y-

Fx,y)=F(x,y— el)Py—el,y +F(x,y— 62)py—ez,y
from which we derive the identities

Ux,y—ez

Ux,y = DPy—er.y + Py—ery %
X,y—eq

alsofor y > x +e1 + e3.

Now proceed by induction on y > a+2e; +e3, beginning with y = a+2ej +e»,
and then taking e; and e, steps. The boundary cases checked above together with
the induction assumption give Uy y—¢, < Ugtye;,y—e, and Vay_e; = Vage| y—e;-
Then the identities above give Uy y < Ugye,y and Vi y > Vige, .



2212 M. BALAZS, F. RASSOUL-AGHA AND T. SEPPALAINEN

LEMMA 3.9. Letv>aon Z%r and set y =v + e1 + e3. Suppose f(x) > 0 for
x on the boundary B We have the following inequalities.
Fora—+ e <v:

-2
Ea[f(Xr;)’Xr; €B§ )] - F(a,v)
Ea+e1[f(Xr;),Xry, eB;_2>] - F(Cl +eq, U)

(3.58) o
- Eolf (X)), X, - €By 7]

= —1),
Ea+e1[f(Xr;)v Xr; €B§ )]

Fora+e; <v:

Ea[f(X-[V_)a XTV_ S B§;_l)] - F(a, U)
Eqre[ f(Xy2), X - eB D] T Fla+ev)

(3.59) 2
Edlf(Xy), X, €B{”

<
= —2), "
Eare[f(X ), X € B

PROOF. For the proof, fix v and do induction on |[v — a|; > 1. Consider the
case a = v — kej for k > 1. Then

Ealf (X:7), Xor- € By )] F(a,v)
; ’ —5_ — Pa,ater = 5, -
Eate [f (X)), X € IB%& ) F(a+e1,v)

On the other hand, when the walk is required to hit IBB§_1), both steps e; and e; are
feasible from a, and so

Ea [f(Xf;)’ Xf; € B§_l)] 2 Pa.a+ei Eate [f(Xr{)v Xr{ € B;_l)].

This establishes (3.58). Equation (3.59) for a = v — ke, for kK > 1 follows in a
symmetric manner. In particular, we have the full conclusion for |[v —a|; = 1.
Suppose (3.58)—(3.59) hold for all pairs @ < v with |v — a|; = £ > 1. Consider
a <v with |[v —a|; =€+ 1. We have the result whena € {v — (£ + Dej, v — (£ +
1)es}. Thus assume that a < v coordinatewise. For i € {1, 2}, take the identity

Eave[f (X)X € BT
Eolf(X,2), X, € By

Pa,a+e;

Ea—i—ez[f(Xry—), Xry_ € B§J_i)]
EJlf(X,), X, eBy ]

+ Pa,ate;
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and rearrange it to yield the two identities
Ealf(X;2). X - € By
Ea+e| [f(Xfy—)» Xfy— € B§_l)]

Eare[f(X) X € B
Eaverver | f(X ), X, € B

(3.60) = Pa,a+e; T Pa,a+e,

Eqve [f (X)), X €BYT -1
" (Ea+el+ez[f<xfy—>, X, e B;—f>]>
Elf(X;0), X, €By ]
Eqre)[f (X)), X € B

Eqre[f (X0, X € B

Eqrerverl f(Xy0), X € By

y

(3.61) = Pa,a+e; T Pa,a+te

( Eqre)[f (X)X € B >_1
X ;
Eaterverl f(X). Xy € B
Derive the analogous equations for ratios of hitting probabilities from
F(a+ep,v) F(a+ep,v)
T o N Paatey—F, < = 1
F(Cl, U) F(a9 U)

Apply the induction assumption on the right-hand sides of (3.60) and (3.61) and
their counterparts for the ratios of hitting probabilities. This verifies (3.58) and
(3.59) foru. O

pa,aJrel

The remainder of the proof relies on the beta environment. The next proposition
gives control over limits of hitting probability ratios through the harmonic func-
tions constructed for Proposition 3.3. Quenched hitting probabilities are denoted
by

(3.62) F®(x,y) = F;‘jy =P’@En>0:X,=y).

When x <y, this is of course F’; = P”(X|y—x|, = y), which we also use occa-
sionally when the notation is not too heavy.

PROPOSITION 3.10. Fix & € (rid) \ {§€*}. If n, ¢ € rild are such that
(3.63) n<é& <&



2214 M. BALAZS, F. RASSOUL-AGHA AND T. SEPPALAINEN

then for all x € Zi and z € 77 we have almost surely

F@E F@E
F e ver+z N=oo Fille (=
3 3
F® F¢
. X,[N¢]+z 3 T X, [Nnl+z
h_m F‘Lf)i = on,x+32 = ]thoo F‘w—si
N—oco x+ep,[NC]+z x+e3,[Nn]+z

Recall from (3.20) that these inequalities split into two separate results: one for
(@*®), p*&)) when & € (€F, 1) and one for (@), p*©)) when & € (0, &}").

PROOF. The inequalities claimed are all proved the same way. We illustrate
with the first one. Let yy = [N{]+ z + e1 + e2. By (3.58), then (3.36), (3.32) and
(3.20),

o5 o5 —£ (-1
Fevers - EY (P> (Xop s N), X € By ]
- -

3 — ~& _ q
Feiverre  Exhe 105 (X yn), X €Byy

N

7€ -1 D51 =
PE (X, e BRYEY (65 (X, yw)]

= it S ST —
Pf—l—el{Xr_ €B§’N )}E)(é)+e1[p$(X1_—y—N»yN)]

YN

& -1
PTX, €By) o
X, x+ejq*

= Rk
T
Px+el

(=1
{XI;N €By, "}

The probabilities in the last expression converge to one by the law of large numbers
of Theorem 3.5 because by (3.63) the &-ray passes ¢ on the left. [J

COROLLARY 3.11. Fix & erild. Let w be an i.i.d. Beta(a, 8) environment.
Then almost surely, for all z € 72, the limits

Fa) FC!)
(3.64) lim —2VEHe g fim Vel
N=—oo Fyl INg 4z N—oo Fylinels:

exist and are independent of 7.

(a) When & = &%, the limits equal 1.
(b) For & #&*, let . = M(§) be determined by Lemma 2.6(a).

(bi) If&r € (61, 1) the two limits in (3.64) are, respectively, Beta(a + A, B)
and Beta(A, ) distributed.

(b.ii) If & € (0,&]), the reciprocals of the two limits in (3.64) are, respec-
tively, Beta()\, B) and Beta(B + A, «) distributed.
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PROOF. Consider the case & € (¢, 1) and the first limit of (3.64). Let y <
A < 8. By Lemma 2.6(a), the velocities associated with these parameters in the
range (&, 1) satisty &1(y) > & = &1 (1) > &(6). By Proposition 3.10,

Fw)/ F'a)(S
(3.65) Pl < lim —FEand Tim NS <8
N—oo Fol [Ntz N=oo F Nel+z

Since p?, p® — p* as y,8 — A by (3.44), and since p&el is Beta(a + X, B)-
distributed, we have that

F? _ FZ
N—oo Fel [Ng1+2 N—oo F,l [ ngtsz

are both Beta(« + A, 8) random variables. Since lim < lim, their equality in distri-
bution implies their P-almost sure equality. Same reasoning works for the second
limit of (3.64). Existence of the limits and claim (b.i) are proved.

To argue that the limit with z = 0 equals the limit with an arbitrary z = (z1, 22),
pick integers ky so that [ky&]o = [N&]> + z2. Then, depending on the relative
locations of [ky&]; and [N&]{ + z1, by (3.56) either

Fouyer _ Fonvess
(3.66) o > —a
enkngl el gt

or the opposite inequality is valid for infinitely many N. In the limit, we get again
an almost sure inequality between two Beta(o 4+ A, ) random variables, which
therefore must coincide almost surely.

For &1 € (0, &), one can repeat the same steps but use instead the processes
(@, p) that follow part (b) of Lemma 3.1.

For the case &£ =&, pick n, ¢ e rild such that 1 < & < ¢1. By (3.56),

w w w
Fowverre _ Fovene _ Fovm+e

w — w — w *
Flivers  Fepvesve  Felinniz

By the cases already proved, the left and right ratios converge to random variables
with distributions Beta(a 4+ A(¢), 8) and Beta(A(n), ;8)_1, respectively. These ran-
dom variables converge to 1 as we let £, n — &£* which sends A(¢), A(n) — o0
(see Lemma 2.6(a) and the middle plot of Figure 1). The second ratio in (3.64) for
& = £* is handled similarly. [J

PROOF OF THEOREM 3.6. We begin by constructing the process for a fixed
& erild, then do it simultaneously for a dense countable subset of ril{, and finally
capture all of rif with limits.
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Fix & € rid. Using Corollary 3.11 and shifts P, , (X, =v) = PaT”w(Xn =v—
x), we define

vay(w) = {10g P;)(X|ZN—X|1 — ZN) — log P;)(X‘ZN_)J“ — ZN)}

lim

(3.67) N=eo
= Nli_tnoo(log F;?ZN — log F)(’?ZN ’
as an almost sure limit, for all x, y € Z2, and for any sequence zy = [N&]+ z with
an arbitrary fixed z. (The second line is the same as the first, stated to illustrate
the alternative notation we use.) The limit is independent of the choice of z. The
marginal distributional properties (a), stationary cocycle properties (e), and har-
monicity (f) stated in Theorem 3.6 follow from Corollary 3.11 and the structure of
the limits.

Proof of part (b). The independence of the weights {w,} and construction (3.67)
imply directly the first independence claim of part (b).

Proof of part (c) for fixed &. We write the details for the case &1 € (§]', 1). Con-
sider the joint distribution of m weights w;, for 1 <h <m and k 4 £ nearest-
neighbor increments Bi,xi +e, and Bi.’yj 4oy forl <i<kand1<j<{ Bya
shift, we may assume that z;,, x;, y; all lie in Z%r. Let y < A(§) < § as in the proof
of Corollary 3.11. Limit (3.67) works also in environments w” and «® since they
have the same i.i.d. beta distribution as w. Let ry, s;,¢; € R. Then inequalities
(3.65) and their counterparts for e; give us these bounds:

3 3
B ) BS ., o
Plw,, <rp, e it <s;, e %i7it2 >1; Yh,i, j}

— & §
=Plal, < m, P () 5,002 () 2 1 Vhii, j)

Pl 4 e . 7
SP{th S rh7 pxi’xiJrgl Sslv py]’yl+gz Zt] Vhala _]}

and from the other side

£ &
B .. By . .
Ploy, <ry, e vt <sp, e 072 > 15 Vh, i, j}

_ £ &
= P{wgh <1y, eBriiter (a)‘s) <si, eDivite (a)‘s) >t Vh,i, j}

™, .0 ) 8 T
2 ]P){a)Zh S rha 'Oxhxi""el S Si’ pyj,yj-l,-eZ 2 t} Vh9 la ,]}
Letting v, § — A(£) brings the bounds together by (3.44):
§ B
Plw §rh,eBXi-"i+L’1 <sj,e Vit > Vhi, j
(.68 o B A(la Aé) §
= ]P){a);)fé) S rhv pxi7xi+g1 S Sl’ py]7y]+gz 2 t] Vh, ia j}'

Thus the joint distribution of (w, B?%) is the same as that of (0*®), log pk(f )) de-
scribed in Proposition 3.3. The independence of nearest-neighbor B¢ -increments
along a down-right path follows.
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Let Q29 be the event of full P-probability on which the process Bf, y is defined
by (3.67) for all & in the countable set Uy = (rid) N Q2.

Consider & e rild and ¢, n € Uy with n; < &) < ¢;. Take a (possibly random)
sequence zy withzy /N — &.Let M = |zy|1. For large enough N, we have [Mn]-
el <zn-e1 <[M¢]-ej and [Mn]-ex > zy -e2 > [M(] - ex. By Lemma 3.8, we
have for such N

Foma  _ By Fe
F;o+el,[M§] B F;U+61,ZN B F,\(co—i-e],[Mn]
The already established limit (3.67) with sequences [M¢] and [M n] gives

By it < Nli_m {log P (X oy —x); = 2n) —log P, (X|zy—xp ;-1 = 2n)}
—00

(3.69) = Nm {log wa(Xlszxh =zn) —log P;)—f—el (XIZN*xllfl = ZN)}
— 0
= B))Z,x—i-el .

The reverse inequalities hold when e is replaced by e5.

Equation (3.69) proves that the monotonicity in part (g) holds for &, ¢ € Uy,
w € Qo and x € Z?. Consequently, for any £ € (rilf) \ Uy we can define Bf, xte; (@)
for w € Q¢ by the monotone limit
(3.70) Bﬁ’x+ei (@)= Z/{OECEISI,I§1>€1 Bﬁ’x—i_ei @)
as {1 decreases to &1. By shrinking €2¢, we can assume that (3.70) holds also when
& € Up. (This is because the monotonicity gives an inequality in (3.70), but the two
sides agree in distribution, and hence agree almost surely.) By additivity on the
right-hand side, we can extend (3.70) to define

B () =u09§2r§§1>£1 B! (@)  forallx,yeZ”and w € Q.

This definition in terms of right limits extends the properties proved thus far to
all £. Furthermore, cadlag paths [part (h)] have also been established.

Fix £ erild and i € {1, 2}. The almost sure continuity of { Bé’ o A =§

follows from monotonicity (g) and from the continuity of ¢ — E[Bgv ¢;1» which
itself is a consequence of continuity of the polygamma functions in (3.47) and
(3.48). Claim (i) follows from the cocycle property in part (e).

Continue with a fixed £ e rilf. Let ¢, n — & in (3.69) and use the almost sure
continuity we just proved. This shows that limit (3.52) holds P-almost surely,
simultaneously for all x € 72, vy € {x 4+ e1,x + ez}, and any sequence zy with
zn/N — £. The case of a general y € Z? follows from additivity. Part (j) is done.

Part (d). When & € [£], 1], the variational formula for /, comes from (3.47)
and the explicit calculations in (7.7) in Section 7. To minimize the formula differ-
entiate,

(Vo +1(2)) — Yol + B+ 1(0)))&1 + (Vo + 1(2)) — vo(A(0)))é2
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in 1 and set it to 0. This gives the equation

6 = _V0Q) — @+ 26)
T — i@ + B+ AQD)

which by Lemma 2.6(a) has a unique solution at { = &, similarly for & € [0, £['].
0

4. Stationary beta polymer. By looking at the random walk paths under the
Doob-transformed RWRE in reverse direction, we can view this model as a station-
ary directed polymer model, called the beta polymer. We establish this connection
in the present section, and then use it in the next two sections to rely on recently
published estimates in [9] for the technical work behind our Theorems 2.4 and 2.5.
The polymer model described here is case (1.4) in [9], with their parameter triple
(i, B, 6) corresponding to our («, B, A). The notation Z,, , and Q,, , used below
matches that of [9].

Recall the backward transition probabilities @, introduced in (3.21) and (3.22),
and random variables (p”, @*) from (3.24). The quenched stationary beta polymer
is a polymer distribution on up-right paths on the nonnegative first quadrant Zi
that start at the origin. In our notation, this model uses potential V(x —e;,e;) =
loga)xx —e;j ACross edges (x — e;,x) for x € N, and potential V(x — ¢ej,e;) =
log ,ox ¢j.x ACTOSS boundary edges (x —e;, x) forx € IBB(J”) \ {0}, j €{1,2}. Fixa
point v = (m, n) € N%. The point-to-point partition functlon for paths from O to v
is

m+n 1 v
Zm,n — Z Z V(yi,yit1 )’t),
Y0,m+n

where the sum is over up-right paths yo ,u4+n = (Yo, ..., Ym+n) from 0 to v =
(m, n).

If x; = ym4n—i denotes the reversed path and ¢ = min{i : x; € IBB(J{ } is the time
of its first entry into the boundary B, then

-1

m+n—1 ~
! 1% A
£2i=0 i Yig1=Yi) — /OOx | | B vier = Pl P3{Xo.0 = x0.¢}
i=0

N ~
= P0,x, PI?{XO,IJ :x(),f}’

Summing up over the paths gives the first equality below, and the second one
comes from (3.33):

4.1) Zmn = E?[p(0, X.]= pb,  forv=(m,n).

The quenched polymer measure on up-right paths yo m+n = (Y0, -+ -, Ym+n)
from 0 to v = (m, n) is

eZ'H" YV (i, yig —xi)

Zm,n

Qm,n (yO,m+n) =
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Letting again x; = y;,4+n—; and £ = min{i : x; € IB%(J{} and using (3.38),

A pd
00,5, Py {Xo0,0 = x0,¢}
Qm,n(yO,n) = e 2 3
“4.2) P,y

A
:P;T {X()j :xO’(} forv:(m,n).

Thus (the reverse of) the polymer path under Q,, , is obtained by running the

Doob-transformed RWRE under P;V’ " until it hits the boundary B, and then fol-
lowing the boundary to the origin.

5. The variance of the increment-stationary harmonic functions. The
method for bounding the fluctuations of the walk for Theorem 2.5 is to control the
exit point of the walk from rectangles. This is achieved with the help of the har-
monic functions p* and 5* constructed in Section 3.2. We work exclusively with
o’ and omit the analogous statements and proofs for 5*. Equivalently, we are treat-
ing explicitly only the case &1 € (&]", 1) and omitting the details for &; € (0, &}°).

This section gives the connection between the fluctuations of log p* and the
entry point on the boundary, and bounds on the variance of log p*. Theorem 2.4 is
proved at the end of the section.

Recall the beta integral B(a, b) and the c.d.f. F(s; a, b) of the Beta(a, b) distri-
bution from (1.7) and (1.8). Define

%F(s;a,b)

~ 1
L(s,a,b)y=—— 24—
( ) s ad—sF(s;a,b)

Note that %B(a, b) = (Yo(a) — Yo(a + b))B(a, b). A computation gives

L(s,a,b)=—s9(1 —s)l—b/s 411 = bt
(5.1) 0

x [logt — (Yo(a) — Yola + b))]dt.
Observe that

L(s,a,b)=s"(1 — s) ™" B(a, b) Cov(—log W, 1{W <s}),

where W ~ Beta(a, b). Since —logt and 1{¢ < s} are decreasing functions of 7,
we see that L(s,a,b) >0foralls € (0,1)and a, b > 0_
Recall hitting times 7, and ‘L'S_ defined in (3.2). Let Var denote the variance un-
_ ~A —
der the coupling P of Section 3.2. Let P, (-) = EP[] ’ (-) denote the averaged mea-
sure of the RWRE that utilizes the backward Doob-transformed transition proba-

~A — =
bility 7" of (3.37). Its expectation is E,[-] = EET [].
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THEOREM 5.1. The following holds for all o, B, A > 0 and all v= (m,n) €

N2:
Var(log p§ ) =n(¥1(A) — Y1l + 1) —m(Yi (e + 1) — Yi(a@+ B+ 1))
5.2) _ X () e1—1 ~
+2Ev[ Y Lo isnye @ +A,ﬁ)}
i=0
=mYi(a+1) —yYi(a+B+1) —n(Yi1(d) — ¥i(a+ 1))
(5.3) . X(t)-ea—1 N
+2Ev|: Z L(l/p?ezy(i+l)ez’)"a):|'
i=0

)
An empty sum (e.g., Zi_:lo) equals 0. Thus the E, expectation on the right-

hand side of (5.2) is in fact over the event {X (r0+ ) € IB%(()+1)}. When v is chosen
(approximately) in the direction £()) so that the first two terms on the right-hand
side of (5.2) (approximately) cancel, the equation expresses the KPZ relation that
in 1 + 1 dimension the wandering exponent is twice the free energy exponent.

Theorem 5.1 is the same as Proposition 1.1 in [9], via the connections (4.1)
and (4.2) between the RWRE and the polymer. Theorem 5.1 is also proved in
Section 4.1 of the first preprint version [5] of this paper.

Starting from the identity in Theorem 5.1, a series of coupling arguments and
estimates leads to upper and lower bounds on the fluctuations of log p*. Theo-
rem 5.2 below follows from Theorem 1.2 of [9]. It is also proved in Sections 4.2
and 4.3 of [5]. Here, £(X) is given by (2.10).

THEOREM 5.2. Fix o, > 0. Fix A > 0. Given a constant 0 < y < 00, there
exist positive finite constants ¢, C and Ny, depending only on «, B, y and A, such
that

(5.4) cN*? < Var[pf ey sne,] < CN?3
forall N > Ng and (m,n) € N2 such that
m = Nt v [n — N& ()| < y N?2.

The same constants c, C and Ny can be taken for (o, B, v, A) varying in a compact
subset of (0, 00)*.

PROOF OF THEOREM 2.4. By virtue of Theorem 3.6(c), Theorem 5.2 implies
Theorem 2.4 for the case & € (§f, 1). The remaining case &; € (0, &) follows
from the (omitted) version of Theorem 5.2 for p*. O
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1
Xl,min m Xl,max m
n

1,min

FI1G. 5. In both plots, the diagonal line points in direction &()). Left: the definition of X, and
X}%,max. Right: illustration of (6.1) and (6.4). The four arms of the cross centered at (m,n) = | N§ |
are of length rN2/3 each. The shaded box, also centered at (m, n), has sides of length 25N?/3. For
large r, the path has a high probability of entering and exiting through the cross and never touching
the dotted lines. For small §, there is a positive probability, uniformly in N, the path stays left of the
top edge of the shaded box, completely avoiding the box.

6. Path fluctuations. This section proves results about path fluctuations, from
which Theorem 2.5 follows. For an up-right path X o started at the origin and an
integer n > 0 let

X,i*mm =min{m >0: X4, -e2 =n} and

X,ll’max =max{m >0: X4, - €2 =n}.

Then X ,ll’mmel +nep and X ,i’maxe 1 + ney are, respectively, the leftmost and right-
most points of the path on the horizontal line ney + Z,.ej. See the left panel in
Figure 5. The vertical counterparts are given by

X,%;min =min{fn >0: X,,4,-e; =m} and
X,Z,;max =max{n>0: X1, -e] =m}.
Again, the next result is stated and proved for & € (£, 1) only. The other case

works similarly. Recall £(A) from (2.10). Let P) = EP(;T A, with expectation E: =
EE{)T " By Theorem 3.5, £(A) is the LLN direction for Pé.

THEOREM 6.1. Fixa, B, 1 > 0.

(a) Upper bound. There exist finite positive constants roy and C depending on «,
B, and X\, such that for all r > ro, N > 1 and (m,n) = [NE(L) ],

Pé{X,i’min <m— rN2/3} <Cr3 and
©.1) Ayl 2/3 3
Pi{XI™ > m +rN?PY < Cr .
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From this, it follows that

. C 1/p
Eé[[(m _ Xrll,mm)-i-}P]l/P < (1 4 3 p ) N2/3 and
-D

C 1/p
B (e =) 7] < (14550 ) T,
3-p
(b) Lower bound. There exist finite positive constants § and c¢ depending on «,

B, and A, such that for any integer N > 1 such that (m,n) = [NE(L)]| € N2 we
have

(6.3) Ej[(m — XM > N3 and
(6.4) Pi{X) ™" < XM <m — NP} > c.

(6.2)

Similar bounds hold for the vertical counterparts X%™" and X%™*, The same
constants can be used for all (o, B, \) in a compact subset of (0, 00)3.

PROOF. Abbreviate u = (m,n) = |[N&E(A)]. Inequality (6.1) is trivial if
rN1/3 > m. We hence assume that r N2/3 < m.
Note that

(6.5) (m — xbmim* =y X(Tn.m) - €1
Thus, the first probability in (6.1) equals
<A

(6.6) Pi{X(z))-e1 <m —rN*3) =P, [X (7)) -e1 > rN?3).
Applying Lemma 4.7 of [9] and the connection (4.2) gives

-

PM{X(r(;r) el > rN2/3} <cr3
(This is also (4.24) in [5].) This proves the first inequality in (6.1).

For the second inequality, set Ng = Lm;r (IX; /3J and (mg, ng) = | No&(1)]. Then

mo < m + rN?/3 and, therefore, if X,l’max >m +rN?%3, then X,%;(’)“i“ <n.But we
also have

mé&r(A) i “;‘_2(}\)er/3 _
- HOB) O W)
B0 s 50)
rN 1-—
=T T
>n 4 2222 52()\) N2/3Zn+ 520\1) rN2/3,
261(2) 281 (22)

provided r > 2(1+&(A) + 2&3 ). The upshot is that if X M8 > m 4 N?/3 then
5 (A1)

2% 00" Ny 2/3 . The second inequality in (6.1) thus follows from the

no > Nobo(A) — 1> 1—-&()

2,min
Xm()

<ngog-—
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vertical version of the first inequality, but with Ng and rg = 2?1%1 Z))r playing the

roles of N and r, respectively.
Bounds (6.2) follow from (6.1). For example, for the first bound abbreviate
Y = (m — X}'™m)* and write

o0
Ej[(N23Y)7] =f0 prP Py (Y > rN*3)dr

1 00 C
5/ prp_]dr+C/ prp_4dp=1+—p.
0 1 3—-p

Next, applying Lemma 4.2 of [9] we have

X (1) e1—1

~A ~ ~A
6 E[ 5 L(p%el,<,-+ml,a+x,ﬂ)}sc(Ev[xw)-elJH).
i=0

(This is also (4.15) in [5].) Now, bound (6.3) follows from stringing together (6.7),
(5.2) and the lower bound in (5.4), then reversing the picture in (6.5). To get (6.4),
first write

cN?P <ES[Y1=E§[Y1{Y <sN?3}]|+ Ei[v1{y > sN*/3}]
< SN*3 +Ej[Y?)PPy(Y > 5N,
Applying (6.2) with say p =2 and taking § < c/2, we get

(6.8) PA{XImin oy sN23) >

~2J/1+2C

Now take 89 > 28, No = N + [§N?/3], and (mg, ng) = | No£(1)]. Note that
mo < |[NE ()] + 8N?/3 =m + §N?/3. This forces

mo —8oNy> <m +8N?3 — 28N =m — sN?3.
Since n < ng, we have that if X,i(*)min <mgy— 80N02/3, then
xpmax < xhmin o no 50Ny <m — SN,

Bound (6.4) follows from the above and (6.8) with Ny and &g playing the roles of
N and 8, respectively. [

PROOF OF THEOREM 2.5. We only argue for the case & € (§{, 1), the other
case being similar. By Theorem 3.6(c), the distribution of Py * under P is the same

as that of Py * under P, provided X and £ are in duality via (2.10). Hence, P(S) = PS.
The claims of the theorem follow from (6.1) and (6.4); see Figure 5. [
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7. Proofs of the large deviation results. PROOF OF LEMMA 2.6. Define
the function

Vi(A) —Yi(a+2)
Y1) — i@+ B+1)
We prove that f is strictly decreasing in A > 0. Its derivative is
F10) = (Y2(A) — Yoo+ 1))
Y1) —Yi(a+ B+ 1))
W) = Yile+ )W (A) — (e + B+ k))
(W1 () — (a4 B+ 1))?

Since 1 is strictly decreasing, f'(1) < 0 is equivalent to
Vo) —ol@+ 1) Yo —Yol@++1)
i) =Y +r) Y1) —yi@+B+1)

This in turn follows from ¥, o ¥ ! being strictly concave (see Lemma 5.3 in [6]
or Lemma A.3 in [5]).

We have so far shown that f is strictly decreasing. Since 11 (A) — coas A \(0
we have f(A) — 1 as A \( 0. A Taylor expansion of v (see [5], Lemma A.2)
gives A2(Y1 (M) — aip
The claims in part (a) for & € [£]", 1] now follow. The case &| € [0, &{'] comes by
interchanging the roles of « and § and those of &; and &;.

Define the function

f)=

(7.1)

g =vola+ B+ 1) = Yod).
Since y is strictly decreasing, we see that
g0 =vi@+B+1)—y¥1(M) <O.

Hence, g is strictly decreasing. As A\ 0 we have ¥y(1) - —oo and g(1) — oo.
Combining 6.3.5 and 6.3.16 from [1] gives

S -
B = Ty B a+ﬂ+x+k T ark)

Hence g(A) — 0 as A — oo. Part (b) follows and Lemma 2.6 is proved. [

PROOFS OF THEOREMS 2.7 AND 2.10.  We utilize the ratios p* and transitions
o’ from Section 3.2. By Proposition 3.3, »”* under P (defined on page 2202) has
the same distribution as the original environment w under P.

By the ergodic theorem,

n—1

—1 A —1 A
n10g 0) e, =17 D 108y (14 1yes
(7.2) =

—> Eflog pf,,] = Vol + 1) — Yo (A).
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(Recall that the logarithm of a Gamma(v, 1) has expected value 9(v) and that a
Beta(a, b) is a ratio of a Gamma(a, 1) and a Gamma(a + b, 1). By Proposition 3.3,
plfez’(H])ez are 1.i.d. Beta(A, ).)

Harmonicity of p. ., implies, as for (3.32), that for x € Z%r with |x]|1 <n,

n
A '\ . . A
(7‘3) px,nez = Z P;u {X”—|x|1 =jer+ (n - ])ez}pj€]+(n—j)62,n62‘
j=0

A term above is nonzero exactly when j is between x - e; and n — x - e3. Abbreviate

A
Rin = Pli41)e,+(n—i—1)er.ie) +(n—iler-

For fixed n, under PP, variables R; ,, are i.i.d. and each distributed as ,02‘1 e, Rewrite
(7.3) for x =0 as

n )“ . . j_l
(7.4) Pbne, =D P {Xn=jer+(n—jea} [] Rin-
j=0 i=0

By standard asymptotics (detailed justification on page 52 of [5]),

j—1
1 N 1 ot . : 15
;log,oo,ne2 A Ollljaicn{;log Py {Xn=jei+(n— e} + - glog R,J,}

N [n&]-e1—1
= sup{n_1 log P (X = [n&]) +n~! Z log R,-,n}
Eeld i=0

=2 gug{—lq(%“) +&-e1(Yola+B+21) —Yo(1)}.

The above and (7.2) give the equation
(71.5) Yolee +4) = Yo(A) = SUB{& (Yola + B +2) —Yoh) — I (&)}

Fort e R, let

f)=1I;(ter) = sulg{ts — Iy(ser + (1 —s)ez)},

where of course I,(§) = oo for§ ¢ U (ie., s ¢ [0, 1]). For r > 0 and A(z) defined
by Lemma 2.6(b) equation (7.5) gives f () = ¥o(a +A(¢)) — Yo (A(2)). This proves
(2.17). Furthermore, we have

') = W1(e+r10) — Y1 (A0)A' (1)

_ We+i@®)—yi00) o«
Yi(a+ B+ A1) = Y1 (M) ™o a+p’




2226 M. BALAZS, F. RASSOUL-AGHA AND T. SEPPALAINEN

where the last limit has already been shown at the end of the proof of Lem-
ma 2.6(a). Consequently, f/(0+) = -%—. Since f is convex, we get that

(7.6) ) < a+,3 for ¢t <0.

We have 1,(§*) = 0 because the RWRE under the averaged measure
I Pg’k(-)@(d&)) is simple random walk, thus RWRE with transitions o satisfies
an almost-sure law of large numbers with velocity given by

_ o IB
Bluoer +oheer] = (g 257) =6

Let & € U with &1 > —=—. The second equality in the next computation comes
from (7.6):

1,(8) = Su]g{té'l - f}= Sug{t& - f}

(1.7) = iul()){fl(lﬁo((x +B+2) = Yo(h) — Yole +2) + Yo(A)}
(7.8) =&1o(a + B +21(ED) + (1 —EDYo(AED) — Yoo +A(ED)

because condition (2.10) picks out the maximizer above.

To derive 1, (&) for §; € [0, 5 T ﬂ] switch around o and g and the axes and then
apply the first formula of (2.13) already proved.

To compute [ ;‘ (ter) for t <0, write temporarily f, g(¢) and I, g(§) to make
the dependence on the parameters o, 8 explicit. Then

fap@®) =1+ sup {(—)(1 —s) — Iy g(ser + (1 — 5)ez)}

0<s<l1

=1+ sup {(—)(1 —s) — Igo((1 —s)e1 +se2)} =1+ fpa(—1).

0<s<1

Formula (2.18) follows. In particular, fa ﬂ(O )=1-—+ + aiB = fo/l’ /3(0+) and fu
is everywhere differentiable. Thus, I, = I, g is strictly convex on .

We have now verified formula (2.13) for /, and Theorem 2.10. By Lemma 8.1
of [24], the statement I, (§) > 1,(§) V& e U \ {§*} is equivalent to

I;(t) < I)(t) for all 7 # 0.

(The case t = 0 corresponds to & = £* and thus leads to an equality.)
Substituting the above functions, this becomes

Volo + A1) — Yo(r(t)) <log(&fe’ +&F) and
—t 4+ Yo(B + A1) — Yo(A(1)) <log(&fe™ + &)
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for all ¢ > 0. Using (2.12) and rearranging, the above is equivalent to
eVolati) fike%(a_l—ﬂ_l_)‘) + g_-Z*ellfo()n) and

VOB < greVo)  gxovo@thth) for all A > 0.

Since (@ + B+ M) +&r=a+Arand EA+E(@+ B+ 1) =8+ A4,
the above inequalities follow if e¥0™¥) is strictly convex. Its second derivative is
e‘/")(x)(wz(x) + Y1 (x)?). An exercise in calculus (see Lemma A.5 in [5]) shows
this is positive. We have shown that 1,(§) > 1,(§) for all £ € U with & # £*. The
proofs of Theorems 2.7 and 2.10 are complete. [J

PROOF OF THEOREM 2.11. Equation (2.19) was proved for part (d) of The-
orem 3.6, without appeal to the general variational formula (1.6). Substitution of
B¢ on the right-hand side of (1.6) verifies that the infimum is attained at B = BS.
Formula (2.19) remains valid for /, extended to all of Ri. This and calculus verify
(2.20). O
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