
Cushioned Extended-Periphery Avoidance:

a Reactive Obstacle Avoidance Plugin

James Jackson1, David Wheeler2, Tim McLain3

Abstract— While collision avoidance and flight stability are
generally a micro air vehicle’s (MAVs) highest priority, many
map-based path planning algorithms focus on path optimality,
often assuming a static, known environment. For many MAV
applications a robust navigation solution requires responding
quickly to obstacles in dynamic, tight environments with non-
negligible disturbances. This article first outlines the Reac-
tive Obstacle Avoidance Plugin framework as a method for
leveraging map-based algorithms while providing low-latency,
high-bandwidth response to obstacles. Further, we propose
and demonstrate the effectiveness of the Cushioned Extended-
Periphery Avoidance (CEPA) algorithm. By representing recent
laser scans in the current body-fixed polar coordinate frame,
a 360○ lower-bound understanding of the environment is
available. With this extended field of view, motion assump-
tions common in other reactive planners can be relaxed and
emergency control effort can be applied in any direction. CEPA
is validated in simulation and on hardware in a GPS-denied
environment using strictly onboard computation and sensing.

I. INTRODUCTION

As technological advancements push to meet the size,

weight, and power (SWAP) constraints imposed by micro

air vehicles (MAVs), exciting applications become possible.

Unfortunately the sophistication of estimation and control

laws do not yet meet the safety, reliability, and robustness

required for full integration into society. One open field

of research is autonomous multirotor flight in unknown,

dynamic, tightly confined, and cluttered environments.

As illustrated in Figure 1, path planning and obstacle

avoidance algorithms generally address three objectives:

avoiding collisions, facilitating stable flight, and accomplish-

ing a mission or goal. This field of research is well devel-

oped, particularly in the context of ground robots. Because

a ground robot can generally pause as needed, often the

literature assumes a static, known environment. Further, due

to the slow, stable dynamics of ground vehicles, disturbances,

like wind will rarely induce collisions. These factors, in

conjunction with less restrictive weight and computational

power constraints, motivate the literature’s primary emphasis

on the optimal, or at times suboptimal, accomplishment of

goals with respect to some specific cost function (item 3 in

Figure 1).

Generally a global map, represented in a Cartesian coordi-

nate frame, is provided to the path planner. This map comes

1James Jackson is with the Department of Mechanical Engineering,
Brigham Young University jamesjackson@byu.edu

2David Wheeler is with the Department of Electrical Engineering,
Brigham Young University david.wheeler@byu.edu

3Tim McLain is with the faculty of Mechanical Engineering, Brigham
Young University mclain@byu.edu

Avoid Collisions

- Dynamic, cluttered, tight environments

Smooth, Stable Flight

- Mitigate unmodeled disturbances

Accomplish Mission

- Optimal with respect to cost function

1

2

3

Fig. 1. MAV priorities in general. Avoiding collisions, even when they
violate environment assumptions, is of paramount importance. Of secondary
importance is smooth, stable flight, mitigating destabilizing disturbances.
Accomplishing the desired mission should generally not come at the expense
of items 1 and 2.

from a priori data or from fusing sensor information using Si-

multaneous Localization and Mapping (SLAM) techniques.

For example a 2-D obstacle map can be created as a series of

body-fixed, polar laser scans are transformed into a global,

Cartesian coordinate frame and fused based on sensor and

state uncertainty estimates [1].

Given a map, obstacle-free paths are found through the

environment using one of several methods. Potential field

methods create artificial forces away from obstacles and

towards goals [2]. These methods are generally simple

and quick to calculate, but suffer from local minima and

cannot guarantee obstacle avoidance. The Probability Road

Map (PRM) can be used to randomly generate waypoints

connecting the agent with the goal in a manner to avoid

obstacles [3], but is designed for use by holonomic agents.

Rapidly-Exploring Random Trees (RRT), a modification of

PRM uses a similar obstacle-free waypoint path planning

technique, while taking into account kinematic constraints

of the vehicle. More robust algorithms such as D* Lite [4],

can be used to heuristically find the shortest path to the goal

through the environment.

While derivatives of these approaches have proven to be

effective at fusing sensor measurements and calculating safe

paths through the environment, they can incur significant

computational, memory, and sensing requirements, and often

assume the agent is unaffected by disturbances while safe

paths are calculated. While these assumptions may be valid

for ground robots and MAVs flying in spacious environ-

ments, this problem can become difficult to solve quickly

enough to effectively react to large disturbances and errors

in environment estimation during autonomous flight in tight

quarters.

As an alternative to map-based planning, some simple

2016 International Conference on
Unmanned Aircraft Systems (ICUAS)
June 7-10, 2016. Arlington, VA USA

ThBTT1.2

978-1-4673-9333-1/16/$31.00 ©2016 IEEE 399

Map-Based
Path Planner

(MBPP)

Reactive Obstacle
Avoidance Plugin

(ROAP)
Controller MAV

Sensors &
Estimator

u ǔ

zrel

zrel

Fig. 2. Block diagram illustrating how ROAP supplements an existing
path planner by modifying commands. The inner control loop rate matches
the sensor rate with minimal latency, thereby improving robustness in
dynamic, cluttered, and tight environments with non-negligible unmodeled
disturbances.

and efficient algorithms use the concept of optical flow

to demonstrate effective corridor-centering [5] and obstacle

avoidance [6]. Other, more sophisticated methods use this

type of data combined with other monocular features to train

agents to avoid obstacles based on input data generated by an

expert pilot [7]. These methods have also been demonstrated

to be effective in avoiding obstacles during MAV operation

but require consistent forward motion to generate meaningful

features required by the controller.

In response, we outline the Reactive Obstacle Avoidance

Plugin (ROAP) framework in Section II and propose a new

reactive algorithm, Cushioned Extended-Periphery Avoid-

ance (CEPA) in Section III as a specific implementation of

this framework. We present simulation and hardware results

of CEPA and the ROAP architecture in Section IV and

conclude in Section V.

II. ROAP MOTIVATION

In the ROAP framework, a high-level planner uses any

map-based approach to plan smooth paths through a known

environment while a reactive obstacle avoidance algorithm

is implemented underneath to recover from disturbances or

estimation errors, as illustrated in Figure 2. In this way, an

efficient reactive obstacle avoidance algorithm can match the

rate of the sensor with minimal latency, improving robustness

in dynamic, cluttered, and tight environments with non-

negligible disturbances. This provides the high-level path

planner the time to account for changes in the environment,

such as a recently closed door or moved obstacle, and

plan an alternative feasible path. While a reactive obstacle

avoidance plugin may cause the path to become suboptimal

in a precarious environment, it requires much less in terms

of computational and sensor capabilities, and is effective in

real-life testing [8]–[11].

Clearly, in this configuration, a reactive obstacle avoidance

may take action that prevents the completion of a global

mission but ensures that the MAV does not damage itself or

the environment. This concept parallels the MAVs priorities,

illustrated in Figure 1, where in general, avoiding collisions

and maintaining stable flight is of paramount importance.

This is particularly relevant in environments when sensors

perform poorly, such as during GPS-degradation or in fea-

tureless scenes, and in the presence of disturbances, such as

wind or ground and wall effect.

For a ROAP implementation to be robust, the algorithm

must exhibit the following properties:

1) Fast response, i.e. low latency, high bandwidth.

2) Independent of a priori or outdated information.

3) Limited memory/computation requirements.

4) No motion assumptions (e.g., constant motion, only

forward motion).

5) Safe commands despite erroneous, outdated, or absent

high-level goals.

Scherer et al. were first to propose a ROAP algorithm in their

paper Flying Fast and Low Among Obstacles (FFLAO) [8]

and demonstrated impressive hardware results using a laser

scanner. While accounting for the first three properties by

responding quickly to the most recent obstacle information,

FFLAO constrains the MAV to move only in the direction of

the sensor, limiting the MAV to forward and yawing motion

alone. While this assumption works under ideal conditions,

we have found that this assumption makes safe navigation

difficult in tight environments or in the presence of infeasible

goals where hovering, reversing and lateral motion are often

necessary.

Since FFLAO, Oleynikova et al. has presented a com-

pelling ROAP implementation using stereo vision [9],

stressing the importance of low computation requirements.

Schopferer et al. has presented a novel decoupled iterative

planning method [12] that achieves near-optimal reactive

avoidance under computational limitations by considering

the kinematic feasibility of planned trajectories. Hrabar

presented a method that blurs the line between reactive

and map-based obstacle avoidance [11] by keeping a local

memory of the environment in the form of a 3D voxel grid

and searching for a feasible path using PRM. While the

ability to hover is added in this method, it focuses primarily

on extending the field-of-view of the sensor, rather than

extending the possible maneuvers of the MAV to include

lateral and reverse motion. While these methods are all

accompanied by impressive results, they are subject to most

or all of the same motion constraints found in FFLAO. To

address this concern, we present the Cushioned Extended-

Periphery Avoidance (CEPA) algorithm, which extends these

previous methods to allow for safe operation of MAVs in

tightly constrained environments in the presence of infeasible

goals and non-negligible disturbances.

III. CEPA ALGORITHM DESCRIPTION

The algorithm addresses two main issues related to safe

autonomous MAV operation:

1) Guide the MAV around obstacles towards waypoints

chosen by the high-level planner.

2) Apply additional control in emergency situations if the

MAV comes too close to an obstacle.

Typical path planning approaches use a Cartesian coordinate

or graph-based system, either iterating through each coor-

dinate or node to form a cost map [13], [14]. CEPA, like

FFLAO, performs planning in the polar, body-fixed, sensor

frame of the laser scanner. Further, CEPA analytically inflates

400

the proposed path in polar coordinates. As a result, the path

can be verified for obstacles by a simple differencing in the

polar domain. These two features reduce computational load

and algorithm latency.

To remove limiting motion assumptions, CEPA efficiently

fuses recent laser scans to create a lower-bound, 360○ sensor

view. Like [11], this approach blurs the line between a purely

reactive avoidance method and a map-based method, which

could potentially reduce the reactive nature of the algorithm.

However, without a 360○ sensor or some level of local

memory, necessary lateral or reverse movement cannot be

executed safely. A small amount of local memory provides

some of the environmental awareness of a map-based planner

while maintaining the responsiveness of a reactive planner.

CEPA expects velocity commands from a high-level planner

and then outputs modified velocity commands, as needed,

given input from the most recent laser scans, as shown in

Figure 2. With this architecture, CEPA can be paired with any

high-level path planner which outputs body-fixed velocity

commands without modification.

CEPA is derived in two dimensions primarily due to

the sensing capabilities of traditional laser scanners. This

assumes relatively planar motion in a structured environment,

which is often the case for indoor operation of MAVs. To

extend CEPA to 3D operations, CEPA could either be layered

in cylindrical coordinates or performed entirely in spherical

coordinates. Because CEPA leverages the computational ben-

efit of operating directly in the sensor frame, the choice of

3D coordinates should likely mimic the coordinates of the

3D sensor.

A. Steering Algorithm

The steering algorithm is designed to choose commands

that are most like the commands provided by the high-level

path planner, but that also safely avoids obstacles. To accom-

plish this, CEPA computes a cost function which balances

modification of an incoming command with proximity to

observed obstacles.

First, a suitable path must be in approximately the same

direction and approximately the same size as the incoming

command when feasible. This can formulated by maximizing

the weighted sum of the inner product and the relative size

of the goal vector v and the outgoing command v̌, expressed

by

k1 (v⊺v̌)+k2
∥v̌∥∥v∥ . (1)

Secondly, the degree of interference for the proposed

command is calculated by projecting two elongated safety

cushions onto the polar map, with fixed look-ahead time T .

As illustrated in Figure 3, a lower-bound safety cushion of

radius rLB defines the minimum required separation distance

for a feasible path. An upper-bound safety cushion of radius

rUB defines where obstacles begin to influence commands. A

safety cushion for a given radius r at specified bearing angle

v

v̌

v

rUB
rLB

Fig. 3. An example steering configuration. v is the obstacle-laden goal
vector supplied by the path planner. CEPA identifies v̌ as the minimum-
cost, collision-free command and passes it to the controller. The heading
discrepancy and the obstacle intrusion into the outer safety cushion induce
costs shown in red. The proposed path is deemed feasible because the inner
safety cushion is not penetrated. While the figure illustrates a Cartesian
representation, CEPA works in the sensor’s polar coordinate frame.

φ is defined analytically as

SCr(φ , v̌) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rcscφ φ ∈ [γ, π
2
)

r φ ∈ [π
2
,

3π

2
]

−rcscφ φ ∈ (3π
2
,2π −γ)

d cosφ +√r2−d2 sin2 φ φ ∈ [2π −γ,γ)
,

(2)

where d = ∥v̌∥T is the look-ahead distance and γ =
atan2(d,r). Note that Equation 2 assumes v̌ is directed

towards φ = 0. Rotating the safety cushion is as simple

as shifting the indices of the polar array containing the N

returned range measurements.

The lower-bound safety cushion, SCLB, is an estimate of

the space the MAV will occupy during the execution of

the command for the look-ahead time T . Any conflict with

this inner cushion renders the proposed command invalid.

The larger cushion, SCUB, acts as a buffer region that may

become occupied during the execution of a valid command,

but during general operation should remain free. Like a

deformable ball, the proposed path will respond to minimize

intrusions, guiding the MAV away from obstacles. The extent

of the intrusion is found by differencing the safety cushion

and laser scan at each angle LS(φi), after masking the array

to only regard potential conflicts. A discrete integral can then

be used to model the amount of intrusion into the safety

bubble for a potential command given a recent laser scan

Ω(v̌∣LS) = N∑
i

κ (φi∣v̌,LS) , (3)

401

where

κ (φi∣v̌,LS) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞ LS(φi) ∈ [0,SCLB(φi)]
f (SCUB (φi)−LS(φi)) LS(φi) ∈ (SCLB (φi) ,SCUB (φi))
0 LS(φi) ∈ [SCUB (φi) ,∞)

(4)

and f (x) is any positive definite function for x > 0. In our

implementation, f (x) = x2.

A weighted sum of Equations 1 and 3 forms a cost

function whose minimum is the command which is passed

to the controller. Using a polar coordinate frame simplifies

the cost function sufficiently that even a brute-force method

is capable of solving the optimization as fast as the incoming

laser scan measurements, typically 10 to 40 Hz:

v̌∗ = argmin
v̌
[k3Ω(v̌)−k1 (v⊺v̌)−k2

∥v̌∥∥v∥] . (5)

The relative size of gains k1, k2, and k3 can be adjusted

for required performance. If k3 is chosen to be larger than

k1 and k2, CEPA will prefer to deviate from the planned

path to ensure safety. A large k3 makes the safety cushion

inelastic, responding rigidly to approaching obstacles, while

a smaller value will provide a softer response. The relative

size of k1 and k2 will determine how CEPA responds to path

deviations. If k1 is larger than k2, then CEPA will prefer

changing direction to slowing down and vice-versa.

B. Map Memory

Applying a command in a direction that is not currently

observed is inherently presumptuous. Previous ROAP algo-

rithms [8]–[10] assume that it is always possible to find

a viable path while maintaining forward motion. It is not

uncommon, however, that a MAV needs to move in a

direction in which it is not receiving measurements, such as

overshooting a position goal or counteracting a disturbance

propelling the vehicle forward. While it is possible to per-

form large yawing motions to always look in the direction

of motion, the control delay makes rejecting disturbances in

tight environments impossible.

As an alternative to colliding, some measure of memory

must be integrated to ensure that the MAV does not move

into objects that it has seen previously, but cannot currently

observe with its sensor. This can be done by extending

the vehicle’s peripheral vision. The reactive planner should

not, however, provide a full-resolution map of the explored

environment due to computational constraints, but enough to

ensure safe navigation.

To do this, some number of previous laser scans and the

estimates of the relative transform between each, are saved

as a queue in the reactive avoidance memory. In the event

that backward motion is necessary, previous laser scans are

transformed to be with respect to the current body frame,

augmenting the current sensor measurement. If the MAV has

moved forward recently, then the concatenation of even two

180 degree laser scans provide some 360○ understanding of

the environment, as illustrated in Figure 4. With this infor-

mation, the MAV can more confidently execute commands

which are not directly in the field of view.

Fig. 4. A visual description of the way memory is kept in the reactive
planner. Although the MAV can only observe obstacles in the direction
of the current 180○ laser scan (blue-solid), appending previous laser scans
gives the MAV a limited 360○ understanding about the entire shaded area
and allows the MAV to safely move backwards

This approach does not extend the field of view of the

sensor, but rather assumes, (1) an object has not recently ap-

proached the MAV from the rear, and (2) accurate transform

estimates are available. For a more conservative memory

estimate, the covariance of the transforms can be used to

provide the nσ worst-case transform. Further, these covari-

ances can be set to grow with time, shrinking the assumed

distances to obstacles in the rear 180 degrees. This results

in more conservative navigation, but also is more taxing on

the processor during memory updates.

C. Emergency Avoidance

In some cases, a disturbance may cause an obstacle to

penetrate the MAVs lower-bound safety threshold rLB. In

keeping with the proposed priorities presented in Figure 1,

the command provided by the map-based path planner is

temporarily ignored as emergency action is taken.

As illustrated in Figure 5, the periphery-enhanced 360-

degree obstacle map is filtered such that

dρ

dφ
≤K

where K represents the maximum-allowable slope in polar

coordinates. For each obstacle detected within rLB a small

avoidance vector is formed pointing towards the MAV, pro-

portional to the extent of the intrusion. The summation of

these small vectors forms the final command v̌. Filtering is

critical to ensure that small obstacles are not overpowered

by large obstacles in the map. Both small and large ob-

stacles produce commands on similar orders of magnitude

given they intrude the same amount into the cushion. In

this way, the cushion models the physical response of a

deformable ball. With a 360○ understanding provided by the

map memory, this command can be executed with some level

of confidence in any direction.

IV. EXPERIMENTATION AND RESULTS

CEPA was implemented in ROS [15] and tested in a

Gazebo simulator, adapted from [16], and on a hexacopter

platform. The simulation parameters paralleled the hardware

402

v̌

rLB

Fig. 5. Illustration of emergency avoidance. The red line represents the
360○ filtered obstacle map when K = 0.01. The summation of the individual
red avoidance vectors forms the final command v̌.

(3.81 kg, 1.0 m outer diameter). A 40 Hz Hokuyo UTM-

30LX laser range finder with a 30 meter range and 180

degree field of view was used for obstacle detection and

modeled in the simulator.

A PID velocity controller, using the multirotor model-

inversion technique presented in [17] was used to control

the system. Yaw was controlled with an under-damped

proportional controller, causing the laser scanner to generally

be oriented in the direction of commanded motion. The

following CEPA gains were used: k1 = 1, k2 = 1, k3 = 4,

T = 4 s, K = 0.01, rLB = 0.55 m, rUB = 1.0 m, and f (x) = x2.

During each simulation experiment, wind was modeled

as a succession of applied forces with a normally dis-

tributed magnitude,N(1N,0.5N2), and uniformly distributed

direction. Wind magnitude and direction were recalculated

according to a Poisson process with 1
λ
= 10 seconds. These

wind model parameters were selected to mimic the signif-

icant wall effect that large multirotors experience in tight

environments.

FFLAO, defined in [8] was also implemented in 2D for

comparison. It was implemented with gains kg = 10.5, ko =
0.8, c1 = 1.0, c2 = 0.25, c3 = 1.0 and c4 = 1.0. It should be

noted that this algorithm has demonstrated success in more

than 700 flight tests and at speeds exceeding 10 m/s, but

due to motion assumptions and constraints it is not designed

for operation in tightly confined environments with non-

negligible disturbances. It was implemented as a comparison

to motivate the relaxation of motion constraints necessary in

these types of environments.

A. Simulation Results

Two tightly-constrained environments were used to val-

idate the algorithm. The first environment, shown in Fig-

ure 6 consists of a dense grid of cylinders requiring tight

maneuvering. While the high-level path planner commands

the MAV directly towards the goal, each respective ROAP

algorithm modifies the commands to autonomously navigate

through the environment. Each algorithm was tested 1500

times. The supplied high-level command had a magnitude

between 1.0 m/s and 5.0 m/s and was directed towards the

goal. However, regardless of the commanded magnitude,

as the multirotor entered the cluttered environment, both

CEPA and FFLOA reduced the outgoing command to close

to 0.8 m/s to maintain safe flight throughout the course.

TABLE I

TABLE OF SIMULATION RESULTS FOR SIMULATION SCENARIO 1

FFLAO CEPA

Completion Rate 0.2188 0.9863

Average Duration (s) 71.61 63.54

The collision-free success rate and average flight duration

of successful flights taken for the MAV to autonomously

navigate safely through the several environments and reach

its goal are recorded in Table I.

As can be seen from Table I, placing a constraint on

lateral velocity causes performance to suffer in our tightly-

confined environment with non-negligible disturbances. This

is largely because when moving through such a tightly-

confined environment, forward velocity, u, must be kept

low. This gives opportunity for disturbances to induce non-

negligible lateral velocity which must be corrected in order

to avoid collisions. With a constraint on lateral velocity, the

MAV is much slower at correcting these errors because it

must induce large yawing motions, and therefore is unable

to fly safely. CEPA, on the other hand, is able to handle these

disturbances because of its ability to move the MAV in any

direction to avoid collisions.

The second environment simulates the scenario where a

high-level path planner commands an infeasible goal and

the obstacle avoidance must prevent the MAV from crashing

until a proper goal is received. Specifically, we explored the

scenario when a goal is placed on the far side of recently

closed door, as shown in Figure 7. After recognizing the

obstruction, the avoidance algorithm was required to correct

the commands for 30 seconds until an alternative route was

provided. This second scenario was tested 50 times. In each

trial, the CEPA algorithm enabled the MAV to successfully

pause at the door, accounting for all disturbances while wait-

ing for an updated plan. FFLAO, however, was never able

to complete the task because its imposed motion constraints

disallowed backward motion. As the MAV approached the

closed door, it correctly stopped forward motion, but was

unable to correct for any disturbance.

The average latency of CEPA was 2.9 ms with a standard

deviation of 1.6 ms. Calculations were easily available at the

laser scanner’s bandwidth of 40 Hz even using a brute-force

optimization method.

B. Hardware Results

To definitively understand its effectiveness, CEPA was ex-

ercised in hardware. Flight test computation was performed

using an onboard Intel i7 computer with a 2.4 GHz quad

core processor and 16 GB of RAM. To emphasize the

light-weight nature of CEPA, avoidance was restricted to

use less than 1/16 of the available processing time. State

estimation was performed using the Relative Multiplicative

Extended Kalman Filter described in [18] provided with

position measurements from an RGB-D visual odometry

algorithm described in [19]. No external positioning system

or off-board processing was required.

403

2m

0.5m

1m

Fig. 6. Scenario 1: A grid of densely positioned cylinders obstruct the MAV’s path between the start and goal positions represented as blue pillars. The
high-level path planner commanded a 1m/s velocity directly towards the goal at all times during the test. The blue line is the original infeasible path
planned by the high level path planner, while the yellow line is the path ultimately taken by the MAV as a result of CEPA intervention. The red arrow is
the current high-level command. The green arrow is the modified CEPA command with the magenta safety cushion shown.

GoalStart Closed Door

Fig. 7. Scenario 2: The high-level path planner commands an infeasible
path due to a recent environment change. The ROAP block must maintain
safety while a new path is planned.

The MAV was placed in scenarios which isolated three

particular challenges:

1) Selecting an appropriate path around several obstacles.

2) Taking action to avoid a previously observed obstacle

when is no longer in the field of view.

3) Preventing collision when provided and infeasible goal.

Challenges 1 and 2 were addressed in the first scenario,

where the MAV was placed in a wide hallway with two

large obstacles in the middle, as shown in Figure 8. The

high-level path planner continuously provided commands at

0.8 m/s directly towards to the goal, while CEPA correctly

chose a safe path around the obstacles and arrived at the

goal. During this flight, after navigating around the first

obstacle, estimation errors and disturbances caused the MAV

to be pushed backwards towards the first obstacle. Although

the MAV was oriented towards the goal, and could no

longer directly see the first obstacle, it responded correctly

by commanding additional control away from the unseen

obstacle behind it. After avoiding the first obstacle, the MAV

then navigated around the second obstacle and to the goal

without further issues. During the test, the MAV maintained

a distance of at least 0.1 m from any obstacle, successfully

MAV

Goal

Fig. 8. Hardware validation of CEPA in a GPS-denied environment using
strictly onboard computation and sensing.

completing the task with no user input.

In the second scenario, the high-level path planner com-

manded the MAV directly through a flat wall for 5 seconds,

very much like the closed-door simulations performed previ-

ously. In this demonstration, however, there was no feasible

way to reach the goal. During this test, the MAV reached a

minimum distance of 0.1 m from the wall, and after some

damped oscillatory movement, hovered stably 0.5 m from the

wall. Videos of the simulation and hardware demonstrations

are available at https://youtu.be/35Og9PYwXOI.

404

V. CONCLUSIONS

We have outlined the Reactive Obstacle Avoidance Plugin

framework, which allows for high-bandwidth, low-latency

control corrections to improve MAV robustness. This method

allows SWAP constrained MAVs to robustly leverage map-

based path planners, generally designed for ground robots

in static, known environments, while mitigating disturbances

and avoiding collisions. To demonstrate the effectiveness of

this framework, we have presented the Cushioned Extended-

Periphery Avoidance algorithm. CEPA relaxes motion as-

sumptions common in other reactive path planners, allowing

for more confident control in tight environments with non-

negligible disturbances. By working in the laser scanner’s

polar coordinate frame, and by incorporating previous laser

scans, safe controls can be efficiently computed despite

erroneous, outdated, or even absent high-level goals.

Future work includes improving the safety cushion looka-

head window by incorporating the MAV’s dynamics (e.g.,

momentum) and allowing trajectory based inputs as well

as extending CEPA to three dimensions. Developing a

fast, camera-based ROAP algorithm without limiting motion

assumption remains an open problem. Current work also

includes more extensive hardware testing, especially in the

presence of moving obstacles.

ACKNOWLEDGEMENTS

This research was supported by the NSF Center for

Unmanned Aircraft Systems (C-UAS), and Brigham Young

University.

REFERENCES

[1] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-

tions on Robotics, vol. 23, pp. 34–46, Feb 2007.
[2] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential

field techniques for robot path planning,” 1991.
[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensionalconfiguration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4,
pp. 566 – 580, 1996.

[4] S. Koenig and M. Likhachev, “D* Lite,” Proceedings of the Eighteenth

National Conference on Artificial Intelligence, pp. 476–483, 2002.
[5] C. McCarthy and N. Barnes, “Performance of optical flow techniques

for indoor navigation with a mobile robot,” IEEE International Con-

ference on Robotics and Automation, vol. 2, no. April, pp. 5093–5098,
2004.

[6] J. R. Deming and S. Bruder, “Obstacle avoidance using image flow in
an RT-Linux environment in a PC-104 platform,” Machine Learning

and Applications, 2004. Proceedings. 2004 International Conference

on, pp. 215–219, 2004.
[7] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,

J. A. Bagnell, and M. Hebert, “Learning monocular reactive UAV
control in cluttered natural environments,” Proceedings - IEEE In-

ternational Conference on Robotics and Automation, pp. 1765–1772,
2013.

[8] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast and
low among obstacles,” Proceedings - IEEE International Conference

on Robotics and Automation, pp. 2023–2029, 2007.
[9] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive Avoidance

Using Embedded Stereo Vision for MAV Flight,” 2015.
[10] J. Saunders, R. Beard, and J. Byrne, “Vision-based Reactive Multiple

Obstacle Avoidance for Micro Air Vehicles,” 2009 American Control

Conference, Vols 1-9, pp. 5253–5258, 2009.
[11] S. Hrabar, “Reactive obstacle avoidance for rotorcraft UAVs,” IEEE

International Conference on Intelligent Robots and Systems, pp. 4967–
4974, 2011.

[12] S. Schopferer and F. M. Adolf, “Rapid trajectory time reduction
for unmanned rotorcraft navigating in unknown terrain,” in 2014

International Conference on Unmanned Aircraft Systems, ICUAS 2014

- Conference Proceedings, pp. 305–316, 2014.
[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in

unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 354–363, 2005.

[14] S. Scherer, D. Ferguson, and S. Singh, “Efficient C-space and cost
function updates in 3D for unmanned aerial vehicles,” 2009 IEEE

International Conference on Robotics and Automation, pp. 2049–2054,
2009.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” ICRA, vol. 3, no. Figure 1, p. 5, 2009.

[16] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating

System (ROS): The Complete Reference (Volume 1), ch. RotorS—A
Modular Gazebo MAV Simulator Framework, pp. 595–625. Cham:
Springer International Publishing, 2016.

[17] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flatness
based control of a rotorcraft for aggressive maneuvers,” in Intelligent

Robots and Systems (IROS), 2011 IEEE/RSJ International Conference

on, pp. 2688–2693, Sept 2011.
[18] R. C. Leishman and T. W. McLain, “Multiplicative Extended Kalman

Filter for Relative Rotorcraft Navigation,” Journal of Aerospace Infor-

mation Systems, pp. 1–17, 2014.
[19] J. Zhang, M. Kaess, and S. Singh, “Real-time depth enhanced monoc-

ular odometry,” IEEE International Conference on Intelligent Robots

and Systems, pp. 4973–4980, 2014.

405

