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Abstract— Modern distribution networks have a high integra-
tion level of distributed energy resources (DERs). Due to the
stochastic nature of renewable energy production and user load
consumption, it is challenging for distribution system operators
(DSOs) to maintain the voltages within safe bounds. Central-
ized, decentralized, and distributed operational schemes have
been used to tackle these challenges, however centralized and
distributed methods require extensive communication infras-
tructure. This paper utilizes an offline, centralized data-driven
conservative convex approximation of chance constrained op-
timal power flow to compute PV inverter reactive power set-
points with consideration of PV and load uncertainties. Then,
an artificial neural network (ANN) controller is developed for
each PV inverter in order to mimic the centralized PV inverter
control set-points, in a decentralized fashion. Numerical tests
using real-world data on a benchmark feeder demonstrate
that ANN controllers can attain near-optimal performance in
voltage regulation and loss improvements while satisfying the
probabilistic constraints.

Index Terms— Chance constraints; distributed energy re-
sources; distribution system; voltage regulation; artificial intel-
ligence; neural network; converter control; data-driven control
design.

I. INTRODUCTION

Voltage regulation in power distribution systems is usu-
ally accomplished by legacy switched-type devices such as
capacitors, load tap changers, and step voltage regulators,
which operate at slower pace [1], and more recently, by
fast-responding distributed energy resources (DERs). Due to
the increased penetration of DERs, distribution systems have
seen an increase in power flow and voltage variability, posing
new challenges to the DSO. Recent amendments of the IEEE
1547-2018 Standard [2], have now allowed PV inverters to
provide reactive power support for voltage regulation.

Earlier efforts to address the voltage regulation problem in
distribution networks aimed at developing PV inverter con-
trol which utilizes optimal power flow (OPF) in a centralized,
decentralized, or distributed communication framework to
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infer the optimal set-points of all the inverters; see e.g., [3]—
[12]. A centralized framework minimizes the operating cost,
although it requires extensive monitoring and communication
infrastructure for system-wide optimal operation. Decen-
tralized control strategies, on the other hand, require no
communication and only use local information to modify
the DERs behavior. Distributed approaches use limited com-
munication between neighboring DERs to achieve close-to-
optimal operation, however these method are susceptible to
communication delays and errors.

There is an abundance of readily available historic data
from utility smart meters that are being installed as a part
of the transition to the smart grid [13]. A newer approach,
which has been attaining more popularity in recent years,
is data-driven voltage regulation for DERs using machine
learning methods [14]-[21].

A. Approach and contributions

This paper utilizes a data-driven conservative approxi-
mation of chance constraints accounting for PV generation
and load uncertainty using the conditional value at risk
(CVaR) [22]-[25] which does not require any assumptions
on the distribution. It significantly extends the previous
work in [15], which achieves voltage regulation through
regression-based inverter control. Subsequently, this paper
develops an artificial neural network (ANN) based controller
that can be used for real-time control of PV inverters
in distribution networks to achieve network-wide optimal
operation while having no communication requirements (de-
centralized operation). The main advantage of the ANN-
based controller over a regression-based controller is that the
ANN-based controller are generally model free which can
account for any degree of non-linearity [26]. Also, ANNs
can easily model noisy data from smart energy meters as
they are fault-tolerant, noise immune and robust in nature.
This paper compares the performance of the proposed ANN-
based controller against the existing regression-based control
benchmark in [15] with respect to thermal loss minimization
and voltage regulation calculated by a non-linear power flow
method (Z-bus method) [27] using real-world data on the
IEEE 13-node distribution network.

The remainder of the paper is organized as follows. The
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network and resource models are introduced in Section II.
Section II also discusses the voltage regulation problem with
generic chance constraints and their data driven approxima-
tions. Section III includes the network setup and the process
of collecting training and test data. Section IV explains
the ANN structure. Section V compares the performance of
ANN based controllers with regression. Finally, conclusions
are drawn in section VI.

II. SYSTEM MODEL AND CENTRALIZED STOCHASTIC
OPTIMAL POWER FLOW (SOPF)

In this section, we provide the network and resource
model adopted in this work. Subsequently, we describe the
problem of accounting for the uncertainty in user load and
PV generation using a conservative convex approximation
of chance constraints. The overall optimization problem
consists of the objective function and constraints which are
essential in finding the globally optimal DER set-points and
will in turn influence the design of local controllers.

A. Grid model

A single-feeder radial distribution grid consisting of N +1
buses and N lines is modeled by a tree graph!. Let Nj :=
{0,..., N} denote the set of all nodes, and L := {1,...,N}
the set of lines. The substation bus (root node) is indexed as
node 0 and connects the feeder to the transmission network.
All non-substation nodes comprising N' = {1,...,N}
represent user buses. Let C,, denote the set of children buses
related to bus n, and 7, the parent of bus n.

Let v,, denote the squared voltage magnitude of bus n €
N, and let s,, = p,,+g, denote the complex power injected
into bus n. For each line n € L, let z, = r, + jx, denote
its series impedance, and S,, = P, + j@Q,, the power flowing
from the sending bus 7, into node n. The squared voltage
magnitude at the substation vy is known and fixed. We adopt
the linearized distribution flow (LDF) model [28]:

Pn: Zpk_p’n (1)
keCr

Qn = Z Qk —4n — b;hvn (2)
keCr

vp, = vr, — 2 Re[z)S,] 3)

where bS" is the susceptance between bus n and the ground
and models any shunt capacitor at bus n as well as the
shunt admittances of the m-model of the lines incident at
bus n. Also, let A be the reduced branch bus incidence
matrix (omitting the slack bus) and F := —A~!, We define
R := 2Fdiag(r)F ', X := 2Fdiag(x)F ", J := [Iy — X] !
and X := Xdiag(b*"). Eq. (1), (2) and (3) can be written
more compactly as v = J(Rp+Xq+1yvg) which linearly

1Upper-case (lower-case) boldface is used for matrices (column vectors);
()T for transposition; (.)* for complex-conjugate, and (.)~! for inverse;
Re denotes the real part of a complex number, and j := +/—1 is the
imaginary unit. For a given N X 1 vector x, diag(x) returns the N x N
matrix with the elements of x in its diagonal, and [E denotes the expectation
operator. Finally, Iy denotes the N X N identity matrix; Ox and 1 the
N dimensional vectors with all zeroes and ones respectively; and Oy x ar
is the N x M matrix with all zeroes.

relates power injections p and q to the squared voltage
magnitudes, and generalizes [29] to include shunt capacitors.

B. Generation and load model

The network includes Ny, distributed PV generators
whose connection to the buses is described by the PV-to-node
incidence matrix I' € RY*Nev, Due to solar intermittency,
the k-th solar generation p}’ can be modeled as a random
variable, while its reactive power injection g}~ is a control
variable. If S}Zinax is the apparent power capacity for inverter
k, its solar generation and reactive injection are constrained
by

(@) + (P))? < (SPhad)” 4)

The network also includes N loads (points of consumption)
whose connection to the buses is given by the load-to-node
incidence matrix ¥ € RY*Ne, We model the active and
reactive power demand (denoted respectively by p© and q°)
and PV active power generation as random variables. Further,
define vector w = [p°,q° pP¥]T € RVX(CNetNov) a5 the
system disturbance which is uncontrollable and includes the
aforementioned random variables.

The active and reactive power injections p and q are
expressed in terms of controlled input u and disturbance w
as follows:

p=B.ww q=Tu+ Kyw 5)

where By = [~W,0nxp,,T] € RVXCNeANo) g =
[q]lpv7 ce ,qu\;v] € RNPV, Ky = [ONXNN -, ONXNC] S
RN*(2Ne+Npv)  Thys, the squared voltage magnitude v is
expressed as linear function of u and w as v = (Du+Ew+
Vo) with D = JXT € RV*Nev | E = J(RBy, + XKy) €
RNV*X@Ne+Npv) and vy = J1yvg € RY.

C. Chance-constrained voltage regulation

The objective is to minimize the thermal losses on the

. K . N P22

lines, which are approximated by > .~ r, e 28]
Furthermore, it can be seen from (5) that p and q are linear
functions of u and w. Therefore, thermal losses can be

expressed quadratic functions of u and w and be given as

N
P2 + Q7 1
Z rp——— + O = — [uTRuu +w Ryw
oyt Vo 2’[]0

+ WTRWHU + uTRuWW + SIu

+sTw+ h] ©6)

for appropriate matrices Ry, Ry, Ruw, Ryu, Su, Sw and h.
Since the uncertainty in w affects the nodal voltages, it
is hard to ensure that voltages remain within the bounds
dictated by viin < (Du+ Ew + V() < viay at all times.
Instead, we enforce the latter constraint in a probabilistic
fashion. Consider the following optimization problem:

1
(P1) min gIE u'Ryu+w Ryw +w' Ryyu
) 0

—Q—uTRuWw—i—sIu—i—svva—i—h (7a)

5841



. Solve \  Train Artificial \\\ Predict \ ~_Prediction \\ ~Nonlinear \ - Compute \
Gt » NN:;Vura]l( / 2 Optlm_a{[sSet- y ) Perl\%)m}ance > Powr.:,r Flow >~ Voltages and
etworks poin p etrics (Z-bus) Losses
Fig. 1. Flowchart for Obtaining Results
DG3 DG1 DG4 ally, it describes the various simulation scenarios used for
Z% comparing results. Each scenario has a different number of
650 7 training days and test days. A flowchart for obtaining the
results in this paper can be seen in Fig. 1.
646 645 632 633 634
A. Test feeder and data collection
@ DG2 To analyze the performance of proposed controller design,
we use the modified single-phase version of the IEEE 13-
node distribution test feeder [33], shown in Fig. 2. The
611 684 671 692 675 line impedances of the corresponding single-phase version
is obtained from [34]. The actual nominal loads per bus
DG5 % . from the IEEE 13-node test feeder were divided by three
652 680 to get the nominal loads for the single-phase version (this is
heuristical, since single-phase representation is for balanced
51)% )2. IEEE-13 Bus Distribution Network with 5 distributed generators  petworks only). The data used for simulating the network

subj. to v =Du+ Ew + vg (7b)
Prob[v; > v > q; (7¢)
Probfv; < v > a;, i =1,...,N (7d)

k| < /(S s)? = BF)% k=1, Ny
(7e)

It follows from (6) that the dependence of thermal losses
on w render the objective function random. Therefore, the
expected value of the losses is minimized. Eq. (7e¢) may be
enforced for all w (i.e., with probability 1) or probabilisti-
cally with a confidence level 3y [30], [31].

In the current formulation (P1), constraints (7¢) and (7d)
can be problematic for non-Gaussian distributions. In partic-
ular, the chance constraints are typically nonconvex [32]. To
account for the variety of possible distributions of uncertainty
w, a data-driven convex approximation of chance constraint
is utilized. Thus, we replace the generic chance constraints in
the voltage regulation problem (P1) with CVaR constraints.
In particular, the constraints (7b)-(7d) are replaced with
CVaRy, [-v; + vM7] < 0 and CVaRg,[v; — v] < 0.
Also, (7e) is converted to two constraints, and is enforced
through the CVaR at level ;. In addition, a set of scenarios
{wns}f:i;‘:1 (realizations of the random variable w) are
assumed to be available. The expected values in the objective
of (P1) and in the CVaR constraints are then replaced
by their sample average approximations. For the detailed
optimization problem refer to [22].

III. NETWORK SETUP

This section describes the network being simulated and
how the network data is generated for solving the optimiza-
tion and yielding the training inputs and targets. Addition-

were collected from Pecan Street in Austin, Texas [35].
The Pecan Street organization provides access to a database
that records real-world data from 1,115 active homes. Daily
consumption (load) and generation (PV) data were obtained
for the month of July spanning the years of 2013, 2014,
2015, and 2016. The resolution of data is hourly, giving 24
data points per day. After filtering the homes for complete
data for the month of July, a varying number of homes for
each year were available to use for load profile generation.
Since the dataset contains real power consumption for users,
reactive loads were generated by q° = p°© tan ¢ with lagging
power factor of 0.9.

The data from each home were used to generate load
profiles for nine of the nodes in the distribution network. In
order to generate the load profiles, the data for each home
were aggregated such that the resulting profile would have
one hour out of every day that would equal to a nominal load.
Since the data is variable from day-to-day, the nominal load
occurs at a random hour for each day. Fig. 3 conceptually
illustrates the aggregation of homes into a node. To reduce
the correlation between node profiles, a random selection
vector was created for each node. Values from the selection
vector are used to select random homes from the pool of
available home data. Data for each day are added until at
least one hour of the day has a cumulative load value that is
equal to or greater than the nominal load. As a preliminary
step, the number of homes needed is computed for each day
in order to meet this requirement. Then, the number of homes
needed for each day are averaged and the average number of
homes needed for each node are used to generate the final
profiles. Thus, the resulting load profiles will on average hit
the nominal load value.

The following network nodes are assumed to have PV
generation: 646, 645, 634, 652, and 692 as shown in Fig. 2.
The same home IDs used to create the load profiles were used
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to accumulate generation data for creating the corresponding
PV generation profiles.

It should also be noted that data could be obtained from
alternate markets or data sets, and be aggregated similarly as
the manner above. The resulting network profile aggregations
would reflect the market conditions from which the data
were obtained. This could be useful for simulating the effects
of green markets. Additionally, the aggregation method will
work for different network topologies, by using an alternative
set of nominal loads. However, the network topology will
have to be taken into consideration during the optimization
stage.

Fig. 3.

Illustration showing the aggregation of homes into a node

B. Training and test scenarios

The following training scenarios are used to train and test
the efficiency and accuracy of the artificial neural networks
and regression models.

¢ Scenario 1

— Train from July 3™ to July 27", 2014
— Test for July 28", 2014
e Scenario 2
— Train for 31 days of July 2015
— Test for 31 days of July 2016
e Scenario 3
— Train with 3 months worth of July data
(2013, 2014, and 2015)
— Test for all 31 days of July 2016
o Scenario 4
— Train with 69 days worth of July weekday data
(2013, 2014, and 2015)
— Test for the first weekdays of July 2016
(Mon. 4™ - Fri. 8)
e Scenario 5
— Train with 24 days worth of July weekend data
(2013, 2014, and 2015)
— Test for the first weekend of July 2016
(Sat. 2" - Sun. 3%)

The first scenario is meant to compare with the results

obtained in [22], which has the same number of days for

training and testing. This scenario shows the accuracy in
same year predictions. The second scenario shows accuracy
for year ahead predictions. The third to fifth scenarios use
an alternate optimization scheme, where three years worth
of July data are optimized in a combined manner, which
results in more accurate reactive power set-points. The third
scenario shows the results for year-ahead predictions. The
fourth scenario considers only weekday data and the fifth
scenario considers only weekend data, both again looking at
year ahead predictions.

Once the load and generation profiles for all the training
scenarios are created, the conservative convex relaxation of
stochastic optimization problem (P1) is solved using the
CVX toolbox [36] with the Gurobi solver, to yield the
optimal reactive power set-points for the training scenarios.
The voltage limits v,i, and vy, .y are respectively set to 0.95
pu and 1.05 pu as specified by ANSI Standard C84.1. The
voltage constraint probability specification and the PV in-
verter constraint probability specification are set to o = 0.99
and 8 = 0.99, respectively. The maximum PV penetration
PhYax 1s further assumed to be 80% of the nominal p°. The
maximum apparent power capacity of PV inverter SPY _ is
assumed to be 105% of pky, . for all the PV inverters. This
is assumed for all the training scenarios in the optimization.

To ensure that the control actions respect the physical
device limits, the resultant control actions u obtained from
different training scenarios are projected onto their feasible
set (in this case, given by eq. (4)) and these projected control
actions u,,,; are used as targets to train both the ANN and
the regression based controller.

IV. ARTIFICIAL NEURAL NETWORK AND REGRESSION
BENCHMARK

This section describes the ANN structure as well as the
inputs and outputs used for training. It will then explain
how the ANN would be implemented into a controller for
the inverters which are part of the distribution network.
Lastly, it describes the regression technique which was used
a benchmark for comparison.

A. ANN structure

An artificial neural network is created for each of the five
PV inverters. The ANN was created using the neural network
toolbox from MATLAB. The structure of the artificial neural
network is a two-layer feed-forward network which can be
seen in Fig. 4. The feed-forward network is one of the most
widely used neural network structures [37]. The first layer
is a hidden layer with sigmoid activation function and ten
hidden neurons. The second layer is a linear output layer.
This structure is suited for fitting problems, where a data set
of numeric inputs is mapped to a set of numeric targets. This
works well for this problem because the goal is to map the
output of wy, . to the three input features. The inputs into
the neural network of the k-th inverter are net consumption

net

pret = p§ — py’, reactive power demand ¢f, and reactive
power capacity gg,,; = \/(Sf;;’ax w)2 — (pR7)? of the PV
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Hidden Layer

Input

Output Layer

Fig. 4. Artificial Neural Network Structure

inverter. The output of the network is the optimal reactive
power set-point for any given combination of the inputs.

B. ANN grid-feeding converter controller

The ANN is part of a proposed grid-feeding converter
control system that acts on the distribution network by
controlling the amount of reactive power the inverter injects
into the network. This type of control is very common for
distributed generation systems and is required for operating
micro-grids in islanded mode [38]. This higher level control
works by providing the reference of the reactive power Q*
into the converter control system. Previous research has
shown the use of artificial neural networks implemented
into grid feeding controllers such as in [39] and [40]. The
ANN-based controller developed in [41] works for a grid-
feeding converter of a residential solar PV system and
controls the d-g reference into the control system. Fig. 5
shows a diagram of how the ANN developed for this paper
would be implemented into the converter control system.
The control diagram, adapted from [38], is for a three-phase
system, but can easily be implemented in single-phase. The
implementation of the controller is outside the scope of this
paper and is considered in future research.

C. Regression Benchmark

The regression model used as a benchmark is the regres-
sion tree from the MATLAB Statistics and Machine Learning
toolbox. The regression tree model is a type of decision
tree, which is one of the most widely used machine learning
techniques [37]. Depending on the inputs, a particular path
will be taken down the tree resulting in the predicted output.
Regression was used as a benchmark to compare with the
results in [16].

V. SIMULATION RESULTS
A. Performance metrics

The metrics used to compare the performance of ANNs to
regression are mean average percentage error (MAPE) and
R?, also called goodness-of-fit.

N
1 ¥~
MAPE = — -1 8
N2y ®

DG
7, ‘ L i
® JKK ’TT\ v . . {
[ r lae Y AC micro-grid &,
rven b
PWM '
| ) v+ [\abc] y ‘
1 i . m v| \ o]
abg/ ——— o, [ L9\
Clurd
/dq ¢
Vg 4 .,
QIO
—_ %
u,
" gLk~
" | & Q
“O-[P1 &
,.
Current Control Loop  Power Control Loop
u x
pnetg, )’ *
LA upred
qc__ i .Ii )
QCap ¢ \_
Fig. 5. ANN grid-feeding converter controller diagram

oo =W vi)® )
> (yi—9)?
where, N, equals the number of scenarios, y; equals the
actual set-point on the test day, y; equals the predicted set-
point, and g; equals the mean of the actual set-point.

B. Prediction results

Prediction results are obtained for each of the five PV
inverter nodes for each of the five training scenarios. The
performance metrics are calculated on each set of results.
Each performance metric is averaged for all the five nodes
in the network. The summarized version of the results is
provided in Table 1. Overall the ANN showed improvement
in terms of the averaged MAPE and R? for all the scenarios
over the regression based controller.

C. Z-bus and voltage profile results

The u,,., from ANN and regression are projected back
again to their feasible set and are used to solve for the
voltages satisfying the nonlinear power flows using the Z-bus
method [27]. For each scenario, the average thermal loss with
reactive power support from the PV inverter is compared to
the case where inverters are not allowed to inject reactive
power (qPV = 0) and reported as percentage improvement.
These results are summarized in Table II. Scenario 1 showed
the greatest improvement in terms of grid losses for the ANN.
This is likely due to the fact that it is a same year prediction.
Scenario 4 showed good improvement as well in terms of
grid losses for the ANN, which could be explained by the
predictability of weekday data. Scenario 5, on the other hand,

5844



0.014 T T T T T 1.01 - - - - -
— Actual ‘l:lNo control [_JRegression [ JANN ---vi
----- Regression
0.012 L ANN 1 I
099}
0.01 =
&
0 0.98
3 0.008 E
= g
i %00.97 r
“5%0.006 g
go.% r
°
0.004 |
- 095
0.002 0.94
0 : : : : : 0.94 : : : : :
00:00 04:00 08:00 12:00 16:00 20:00 00:00  04:00  08:00 12:00 16:00  20:00
Time Jul 28,2014 Time
Fig. 6. Prediction Comparison - Scenario 1 - Node 646 Fig. 7. Voltage Profile - Scenario 1
3
12 & 10
—Actual
10 H
=
R .
B
* 2 6
=}
4 _
2
Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07
Time 2016
Fig. 8. Prediction Comparison - Scenario 3 - Node 646
I I
101+ [INo control [JRegression [ JANN - - -0y

Time

Fig. 9. Voltage Profile - Scenario 3

TABLE I
COMPARISON FOR AVERAGED PERFORMANCE METRICS

Scenario - 1 Scenario - 2 Scenario - 3 Scenario - 4 Scenario - 5

MAPE | R-sqr | Time | MAPE | R-sqr | Time | MAPE | R-sqr | Time | MAPE | R-sqr | Time | MAPE | R-sqr | Time

Reg. 0.370 0.922 | 0.04 2.506 0918 | 0.04 | 2.560 0912 | 0.06 0.57 0.883 | 0.05 0.496 0.896 | 0.04

ANN | 0.282 0942 | 0.14 1.809 0.934 | 0.14 1.277 0.931 | 0.16 0.522 0.904 | 0.14 0.459 0913 | 0.13

TABLE II
COMPARISON FOR PERCENTAGE IMPROVEMENT IN AVERAGE LOSSES

Scenario - 1 Scenario - 2 Scenario - 3 Scenario - 4 Scenario - 5
Reg. | ANN | % Imp. | Reg. | ANN | % Imp. | Reg. | ANN | % Imp. | Reg. | ANN | % Imp. | Reg. | ANN | % Imp.
6.44 | 6.52 1.24% 535 | 5.35 0.00% 5.38 | 5.39 0.19% 526 | 5.29 0.57% 5.11 | 5.11 0.00%
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having a smaller amount of weekend data, which is more
variable in nature, lead to zero percent improvement in terms
of grid losses over regression.

D. Plots for scenarios 1 and 3

The prediction for scenario 1 of the control input at node
646 is depicted in Figure 6. It can be seen the predictions
are similar, but the MAPE and R? values are 0.02 and 0.97,
respectively, for the ANN prediction, while the MAPE and
R? values are 0.02 and 0.96, respectively, for the regression
prediction. The voltage profile for scenario 1 can be seen in
Fig. 7. The ANN is producing a tighter regulation on the
voltage, particularly when the under-voltage occurs with the
no-control case. The average losses for this scenario show a
1.24% improvement compared to regression.

The first week of predictions for scenario 3 can be seen
in Fig. 8. The MAPE and R? values are 0.01 and 0.98,
respectively, for the ANN prediction, and the MAPE and
R? values are 0.01 and 0.97, respectively, for the regression
prediction. The voltage profile can be seen in Fig. 9. The
average losses for this scenario show a 0.19% improvement
compared to regression.

VI. CONCLUSION AND FUTURE WORK

This paper presents an ANN based controller that has
proven to be more effective at prediction and voltage regu-
lation compared to a benchmark of regression-based control.
Overall, the ANN saw an improvement for the averaged
MAPE and R? in all the training scenarios. Additionally,
the ANN resulted in improvement in terms of grid losses for
scenarios 1, 3 and 4. Future directions of research include
scaling up to larger networks, such as the IEEE-123 bus
feeder, and using a finer granularity of data, such as 15-
minute or 1-minute. Another direction is simulating the ANN
grid-feeding converter controller in a distribution network
in OPAL-RT real-time simulator. Lastly, due to the data-
driven nature of the problem, it is also worth investigating
the impact of cyber attacks, and how to respond to false data
injected into the system, which can cause disruption to the
distribution network.
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