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Abstract— Modern distribution networks have a high integra-
tion level of distributed energy resources (DERs). Due to the
stochastic nature of renewable energy production and user load
consumption, it is challenging for distribution system operators
(DSOs) to maintain the voltages within safe bounds. Central-
ized, decentralized, and distributed operational schemes have
been used to tackle these challenges, however centralized and
distributed methods require extensive communication infras-
tructure. This paper utilizes an offline, centralized data-driven
conservative convex approximation of chance constrained op-
timal power flow to compute PV inverter reactive power set-
points with consideration of PV and load uncertainties. Then,
an artificial neural network (ANN) controller is developed for
each PV inverter in order to mimic the centralized PV inverter
control set-points, in a decentralized fashion. Numerical tests
using real-world data on a benchmark feeder demonstrate
that ANN controllers can attain near-optimal performance in
voltage regulation and loss improvements while satisfying the
probabilistic constraints.

Index Terms— Chance constraints; distributed energy re-
sources; distribution system; voltage regulation; artificial intel-
ligence; neural network; converter control; data-driven control
design.

I. INTRODUCTION

Voltage regulation in power distribution systems is usu-

ally accomplished by legacy switched-type devices such as

capacitors, load tap changers, and step voltage regulators,

which operate at slower pace [1], and more recently, by

fast-responding distributed energy resources (DERs). Due to

the increased penetration of DERs, distribution systems have

seen an increase in power flow and voltage variability, posing

new challenges to the DSO. Recent amendments of the IEEE

1547-2018 Standard [2], have now allowed PV inverters to

provide reactive power support for voltage regulation.

Earlier efforts to address the voltage regulation problem in

distribution networks aimed at developing PV inverter con-

trol which utilizes optimal power flow (OPF) in a centralized,

decentralized, or distributed communication framework to
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infer the optimal set-points of all the inverters; see e.g., [3]–

[12]. A centralized framework minimizes the operating cost,

although it requires extensive monitoring and communication

infrastructure for system-wide optimal operation. Decen-

tralized control strategies, on the other hand, require no

communication and only use local information to modify

the DERs behavior. Distributed approaches use limited com-

munication between neighboring DERs to achieve close-to-

optimal operation, however these method are susceptible to

communication delays and errors.

There is an abundance of readily available historic data

from utility smart meters that are being installed as a part

of the transition to the smart grid [13]. A newer approach,

which has been attaining more popularity in recent years,

is data-driven voltage regulation for DERs using machine

learning methods [14]–[21].

A. Approach and contributions

This paper utilizes a data-driven conservative approxi-

mation of chance constraints accounting for PV generation

and load uncertainty using the conditional value at risk

(CVaR) [22]–[25] which does not require any assumptions

on the distribution. It significantly extends the previous

work in [15], which achieves voltage regulation through

regression-based inverter control. Subsequently, this paper

develops an artificial neural network (ANN) based controller

that can be used for real-time control of PV inverters

in distribution networks to achieve network-wide optimal

operation while having no communication requirements (de-

centralized operation). The main advantage of the ANN-

based controller over a regression-based controller is that the

ANN-based controller are generally model free which can

account for any degree of non-linearity [26]. Also, ANNs

can easily model noisy data from smart energy meters as

they are fault-tolerant, noise immune and robust in nature.

This paper compares the performance of the proposed ANN-

based controller against the existing regression-based control

benchmark in [15] with respect to thermal loss minimization

and voltage regulation calculated by a non-linear power flow

method (Z-bus method) [27] using real-world data on the

IEEE 13-node distribution network.

The remainder of the paper is organized as follows. The
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network and resource models are introduced in Section II.

Section II also discusses the voltage regulation problem with

generic chance constraints and their data driven approxima-

tions. Section III includes the network setup and the process

of collecting training and test data. Section IV explains

the ANN structure. Section V compares the performance of

ANN based controllers with regression. Finally, conclusions

are drawn in section VI.

II. SYSTEM MODEL AND CENTRALIZED STOCHASTIC

OPTIMAL POWER FLOW (SOPF)

In this section, we provide the network and resource

model adopted in this work. Subsequently, we describe the

problem of accounting for the uncertainty in user load and

PV generation using a conservative convex approximation

of chance constraints. The overall optimization problem

consists of the objective function and constraints which are

essential in finding the globally optimal DER set-points and

will in turn influence the design of local controllers.

A. Grid model

A single-feeder radial distribution grid consisting of N+1
buses and N lines is modeled by a tree graph1. Let N0 :=
{0, . . . , N} denote the set of all nodes, and L := {1, . . . , N}
the set of lines. The substation bus (root node) is indexed as

node 0 and connects the feeder to the transmission network.

All non-substation nodes comprising N := {1, . . . , N}
represent user buses. Let Cn denote the set of children buses

related to bus n, and πn the parent of bus n.

Let vn denote the squared voltage magnitude of bus n ∈
N0, and let sn = pn+jqn denote the complex power injected

into bus n. For each line n ∈ L, let zn = rn + jxn denote

its series impedance, and Sn = Pn+ jQn the power flowing

from the sending bus πn into node n. The squared voltage

magnitude at the substation v0 is known and fixed. We adopt

the linearized distribution flow (LDF) model [28]:

Pn =
∑

k∈Cn

Pk − pn (1)

Qn =
∑

k∈Cn

Qk − qn − bshn vn (2)

vn = vπn
− 2 Re[z∗nSn] (3)

where bshn is the susceptance between bus n and the ground

and models any shunt capacitor at bus n as well as the

shunt admittances of the π-model of the lines incident at

bus n. Also, let A be the reduced branch bus incidence

matrix (omitting the slack bus) and F := −A−1. We define

R := 2Fdiag(r)F⊤, X := 2Fdiag(x)F⊤, J := [IN − X̃]−1

and X̃ := Xdiag(bsh). Eq. (1), (2) and (3) can be written

more compactly as v = J(Rp+Xq+1Nv0) which linearly

1Upper-case (lower-case) boldface is used for matrices (column vectors);
(.)⊤ for transposition; (.)∗ for complex-conjugate, and (.)−1 for inverse;
Re denotes the real part of a complex number, and j :=

√
−1 is the

imaginary unit. For a given N × 1 vector x, diag(x) returns the N ×N

matrix with the elements of x in its diagonal, and E denotes the expectation
operator. Finally, IN denotes the N ×N identity matrix; 0N and 1N the
N dimensional vectors with all zeroes and ones respectively; and 0N×M

is the N ×M matrix with all zeroes.

relates power injections p and q to the squared voltage

magnitudes, and generalizes [29] to include shunt capacitors.

B. Generation and load model

The network includes Npv distributed PV generators

whose connection to the buses is described by the PV-to-node

incidence matrix Γ ∈ R
N×Npv . Due to solar intermittency,

the k-th solar generation p
pv
k can be modeled as a random

variable, while its reactive power injection q
pv
k is a control

variable. If S
pv
k,max is the apparent power capacity for inverter

k, its solar generation and reactive injection are constrained

by

(qpvk )2 + (ppvk )2 ≤ (Spv
k,max)

2. (4)

The network also includes Nc loads (points of consumption)

whose connection to the buses is given by the load-to-node

incidence matrix Ψ ∈ R
N×Nc . We model the active and

reactive power demand (denoted respectively by pc and qc)

and PV active power generation as random variables. Further,

define vector w = [pc,qc,ppv]⊤ ∈ R
N×(2Nc+Npv) as the

system disturbance which is uncontrollable and includes the

aforementioned random variables.

The active and reactive power injections p and q are

expressed in terms of controlled input u and disturbance w

as follows:

p = Bww q = Γu+Kww (5)

where Bw = [−Ψ,0N×Nc
,Γ] ∈ R

N×(2Nc+Npv), u =
[qpv1 , . . . , q

pv
Npv

] ∈ R
Npv , Kw = [0N×Nc

,−Ψ,0N×Nc
] ∈

R
N×(2Nc+Npv). Thus, the squared voltage magnitude v is

expressed as linear function of u and w as v = (Du+Ew+
ṽ0) with D = JXΓ ∈ R

N×Npv , E = J(RBw +XKw) ∈
R

N×(2Nc+Npv) and ṽ0 = J1Nv0 ∈ R
N .

C. Chance-constrained voltage regulation

The objective is to minimize the thermal losses on the

lines, which are approximated by
∑N

n=1 rn
P 2

n
+Q2

n

v0
[28].

Furthermore, it can be seen from (5) that p and q are linear

functions of u and w. Therefore, thermal losses can be

expressed quadratic functions of u and w and be given as

N
∑

n=1

rn
P 2
n +Q2

n

v0
=

1

2v0

[

u⊤Ruu+w⊤Rww

+w⊤Rwuu+ u⊤Ruww + s⊤u u

+ s⊤ww + h
]

(6)

for appropriate matrices Ru, Rw, Ruw, Rwu, su, sw and h.

Since the uncertainty in w affects the nodal voltages, it

is hard to ensure that voltages remain within the bounds

dictated by vmin ≤ (Du + Ew + ṽ0) ≤ vmax at all times.

Instead, we enforce the latter constraint in a probabilistic

fashion. Consider the following optimization problem:

(P1) min
u,v

1

2v0
E

[

u⊤Ruu+w⊤Rww +w⊤Rwuu

+ u⊤Ruww + s⊤u u+ s⊤ww + h
]

(7a)
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to accumulate generation data for creating the corresponding

PV generation profiles.

It should also be noted that data could be obtained from

alternate markets or data sets, and be aggregated similarly as

the manner above. The resulting network profile aggregations

would reflect the market conditions from which the data

were obtained. This could be useful for simulating the effects

of green markets. Additionally, the aggregation method will

work for different network topologies, by using an alternative

set of nominal loads. However, the network topology will

have to be taken into consideration during the optimization

stage.

Fig. 3. Illustration showing the aggregation of homes into a node

B. Training and test scenarios

The following training scenarios are used to train and test

the efficiency and accuracy of the artificial neural networks

and regression models.

• Scenario 1

– Train from July 3rd to July 27th, 2014

– Test for July 28th, 2014

• Scenario 2

– Train for 31 days of July 2015

– Test for 31 days of July 2016

• Scenario 3

– Train with 3 months worth of July data

(2013, 2014, and 2015)

– Test for all 31 days of July 2016

• Scenario 4

– Train with 69 days worth of July weekday data

(2013, 2014, and 2015)

– Test for the first weekdays of July 2016

(Mon. 4th - Fri. 8th)

• Scenario 5

– Train with 24 days worth of July weekend data

(2013, 2014, and 2015)

– Test for the first weekend of July 2016

(Sat. 2nd - Sun. 3rd)

The first scenario is meant to compare with the results

obtained in [22], which has the same number of days for

training and testing. This scenario shows the accuracy in

same year predictions. The second scenario shows accuracy

for year ahead predictions. The third to fifth scenarios use

an alternate optimization scheme, where three years worth

of July data are optimized in a combined manner, which

results in more accurate reactive power set-points. The third

scenario shows the results for year-ahead predictions. The

fourth scenario considers only weekday data and the fifth

scenario considers only weekend data, both again looking at

year ahead predictions.

Once the load and generation profiles for all the training

scenarios are created, the conservative convex relaxation of

stochastic optimization problem (P1) is solved using the

CVX toolbox [36] with the Gurobi solver, to yield the

optimal reactive power set-points for the training scenarios.

The voltage limits vmin and vmax are respectively set to 0.95

pu and 1.05 pu as specified by ANSI Standard C84.1. The

voltage constraint probability specification and the PV in-

verter constraint probability specification are set to α = 0.99
and β = 0.99, respectively. The maximum PV penetration

ppv
max is further assumed to be 80% of the nominal pc. The

maximum apparent power capacity of PV inverter Spv
max is

assumed to be 105% of ppv
max for all the PV inverters. This

is assumed for all the training scenarios in the optimization.

To ensure that the control actions respect the physical

device limits, the resultant control actions u obtained from

different training scenarios are projected onto their feasible

set (in this case, given by eq. (4)) and these projected control

actions u∗
proj are used as targets to train both the ANN and

the regression based controller.

IV. ARTIFICIAL NEURAL NETWORK AND REGRESSION

BENCHMARK

This section describes the ANN structure as well as the

inputs and outputs used for training. It will then explain

how the ANN would be implemented into a controller for

the inverters which are part of the distribution network.

Lastly, it describes the regression technique which was used

a benchmark for comparison.

A. ANN structure

An artificial neural network is created for each of the five

PV inverters. The ANN was created using the neural network

toolbox from MATLAB. The structure of the artificial neural

network is a two-layer feed-forward network which can be

seen in Fig. 4. The feed-forward network is one of the most

widely used neural network structures [37]. The first layer

is a hidden layer with sigmoid activation function and ten

hidden neurons. The second layer is a linear output layer.

This structure is suited for fitting problems, where a data set

of numeric inputs is mapped to a set of numeric targets. This

works well for this problem because the goal is to map the

output of u∗
proj to the three input features. The inputs into

the neural network of the k-th inverter are net consumption

pnetk = pck − p
pv
k , reactive power demand qck, and reactive

power capacity qccap,k =
√

(Spv
max,k)

2 − (ppvk )2 of the PV
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Fig. 4. Artificial Neural Network Structure

inverter. The output of the network is the optimal reactive

power set-point for any given combination of the inputs.

B. ANN grid-feeding converter controller

The ANN is part of a proposed grid-feeding converter

control system that acts on the distribution network by

controlling the amount of reactive power the inverter injects

into the network. This type of control is very common for

distributed generation systems and is required for operating

micro-grids in islanded mode [38]. This higher level control

works by providing the reference of the reactive power Q∗

into the converter control system. Previous research has

shown the use of artificial neural networks implemented

into grid feeding controllers such as in [39] and [40]. The

ANN-based controller developed in [41] works for a grid-

feeding converter of a residential solar PV system and

controls the d-q reference into the control system. Fig. 5

shows a diagram of how the ANN developed for this paper

would be implemented into the converter control system.

The control diagram, adapted from [38], is for a three-phase

system, but can easily be implemented in single-phase. The

implementation of the controller is outside the scope of this

paper and is considered in future research.

C. Regression Benchmark

The regression model used as a benchmark is the regres-

sion tree from the MATLAB Statistics and Machine Learning

toolbox. The regression tree model is a type of decision

tree, which is one of the most widely used machine learning

techniques [37]. Depending on the inputs, a particular path

will be taken down the tree resulting in the predicted output.

Regression was used as a benchmark to compare with the

results in [16].

V. SIMULATION RESULTS

A. Performance metrics

The metrics used to compare the performance of ANNs to

regression are mean average percentage error (MAPE) and

R2, also called goodness-of-fit.

MAPE =
1

Ns

Ns
∑

i=1

yi − ŷi

yi
· 100 (8)

Fig. 5. ANN grid-feeding converter controller diagram

R2 = 1−

∑

(yi − ŷi)
2

∑

(yi − ȳ)2
(9)

where, Ns equals the number of scenarios, yi equals the

actual set-point on the test day, ŷi equals the predicted set-

point, and ȳi equals the mean of the actual set-point.

B. Prediction results

Prediction results are obtained for each of the five PV

inverter nodes for each of the five training scenarios. The

performance metrics are calculated on each set of results.

Each performance metric is averaged for all the five nodes

in the network. The summarized version of the results is

provided in Table I. Overall the ANN showed improvement

in terms of the averaged MAPE and R2 for all the scenarios

over the regression based controller.

C. Z-bus and voltage profile results

The u∗
pred from ANN and regression are projected back

again to their feasible set and are used to solve for the

voltages satisfying the nonlinear power flows using the Z-bus

method [27]. For each scenario, the average thermal loss with

reactive power support from the PV inverter is compared to

the case where inverters are not allowed to inject reactive

power (qpv = 0) and reported as percentage improvement.

These results are summarized in Table II. Scenario 1 showed

the greatest improvement in terms of grid losses for the ANN.

This is likely due to the fact that it is a same year prediction.

Scenario 4 showed good improvement as well in terms of

grid losses for the ANN, which could be explained by the

predictability of weekday data. Scenario 5, on the other hand,
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having a smaller amount of weekend data, which is more

variable in nature, lead to zero percent improvement in terms

of grid losses over regression.

D. Plots for scenarios 1 and 3

The prediction for scenario 1 of the control input at node

646 is depicted in Figure 6. It can be seen the predictions

are similar, but the MAPE and R2 values are 0.02 and 0.97,

respectively, for the ANN prediction, while the MAPE and

R2 values are 0.02 and 0.96, respectively, for the regression

prediction. The voltage profile for scenario 1 can be seen in

Fig. 7. The ANN is producing a tighter regulation on the

voltage, particularly when the under-voltage occurs with the

no-control case. The average losses for this scenario show a

1.24% improvement compared to regression.

The first week of predictions for scenario 3 can be seen

in Fig. 8. The MAPE and R2 values are 0.01 and 0.98,

respectively, for the ANN prediction, and the MAPE and

R2 values are 0.01 and 0.97, respectively, for the regression

prediction. The voltage profile can be seen in Fig. 9. The

average losses for this scenario show a 0.19% improvement

compared to regression.

VI. CONCLUSION AND FUTURE WORK

This paper presents an ANN based controller that has

proven to be more effective at prediction and voltage regu-

lation compared to a benchmark of regression-based control.

Overall, the ANN saw an improvement for the averaged

MAPE and R2 in all the training scenarios. Additionally,

the ANN resulted in improvement in terms of grid losses for

scenarios 1, 3 and 4. Future directions of research include

scaling up to larger networks, such as the IEEE-123 bus

feeder, and using a finer granularity of data, such as 15-

minute or 1-minute. Another direction is simulating the ANN

grid-feeding converter controller in a distribution network

in OPAL-RT real-time simulator. Lastly, due to the data-

driven nature of the problem, it is also worth investigating

the impact of cyber attacks, and how to respond to false data

injected into the system, which can cause disruption to the

distribution network.
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