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Abstract—Smart inverters have been advocated as a
fast-responding mechanism for voltage regulation in distribution
grids. Nevertheless, optimal inverter coordination can be compu-
tationally demanding, and preset local control rules are known to
be subpar. Leveraging tools from machine learning, the design
of customized inverter control rules is posed here as a multi-
task learning problem. Each inverter control rule is modeled
as a possibly nonlinear function of local and/or remote control
inputs. Given the electric coupling, the function outputs interact
to yield the feeder voltage profile. Using an approximate grid
model, inverter rules are designed jointly to minimize a voltage
deviation objective based on anticipated load and solar generation
scenarios. Each control rule is described by a set of coefficients,
one for each training scenario. To reduce the communication
overhead between the grid operator and the inverters, we devise
a voltage regulation objective that is shown to promote parsi-
monious descriptions for inverter control rules. Numerical tests
using real-world data on a benchmark feeder demonstrate the
advantages of the novel nonlinear rules and explore the trade-off
between voltage regulation and sparsity in rule descriptions.

Index Terms—Support vector machines, multi-kernel learning,
voltage regulation, linearized distribution flow model.

I. INTRODUCTION

EVERAL electric utilities in the U.S. currently experience

issues while integrating residential- and commercial-scale
solar generation. A solar farm connected at the end of a long
rural feeder can incur voltage excursions along the feeder,
while frequent power flow reversals strain the apparent power
capabilities of substation transformers [1]. Solar generation
from residential photovoltaics (PVs) can fluctuate by up to
15% of their rating within one-minute intervals [2]. Utility-
owned voltage control equipment, such as load-tap-changing
transformers, capacitor banks, and step-voltage regulators,
involves discrete control actions, and its lifespan is related
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to the number of switching operations [3]. Regulating volt-
age under increasing renewable generation may require more
frequent switching and further installations, thus critically
challenging reactive power control in distribution grids.

On the other hand, PVs are interfaced by inverters featuring
advanced communication, metering, and control functional-
ities. Using inverters for reactive power control has been
advocated as a fast-responding solution [1]. The amended
IEEE 1547 standard allows inverters to be operating at non-
unit power factors [4]. Nonetheless, coordinating in real-time
hundreds of inverters distributed over a feeder is a formidable
task. In a typical setup, the values of instantaneous loads and
solar generation are communicated to a utility controller; the
controller minimizes ohmic losses subject to voltage regula-
tion constraints; and the computed setpoints are sent back to
inverters. The problem of finding the optimal reactive injec-
tion setpoints for inverters is an instance of the optimal power
flow (OPF) task, which is non-convex in general. Different
convex relaxations have been proposed; see [5] for a survey.
The uncertainty in loads and solar generation over the next
control period is usually accounted for through stochastic and
robust formulations [6], [7]. To reduce complexity, approxi-
mate grid models have also been employed [8], [9]; though
heavy two-way utility-inverter communication is still needed.

Alternatively, decentralized solvers where inverters decide
their setpoints upon communicating with neighboring inverters
have been devised [10], [11], [12]. On the other extreme, local-
ized schemes suggest having inverters implementing Volt-VAR
and/or Watt-VAR curves given only local measurements [1].
Although such rules have been analytically shown to be sta-
ble and fast-converging, their equilibria unfortunately do not
coincide with the sought OPF minimizers [8], [13], [14], [15].
In fact, there exist cases where local rules perform worse than
the no-reactive support option [16].

The previous literature review indicates that centralized
schemes incur high computational complexity; decentralized
solvers require multiple communication exchanges among
inverters; and local schemes have no performance guaran-
tees. As a middle-ground solution, inverter setpoints can be
designed in a quasi-static fashion via control rules. A rule
expresses each setpoint as an affine function of given inputs,
such as generation, load, or voltage. Albeit the related weights
are optimized periodically in a centralized fashion, control
rules are applied in real time. Controlling inverters via affine
rules has been accomplished using chance-constrained [17];
robust [16], [18]; and closed-loop formulations [19]. Optimal
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rules however are not necessarily linear: If an apparent power
constraint becomes active, reactive injections can become
nonlinear functions of solar generation. To capture this non-
linearity, recent approaches engage learning models which are
trained to optimize: Given pairs of grid conditions (load and
solar generation) and their optimal inverter dispatches com-
puted, the aforesaid approaches learn dispatch rules using
linear or kernel-based regression [20], [21].

This work combines machine learning tools with physi-
cal grid models, and advocate a kernel-based approach for
designing inverter control rules. The contribution is on two
fronts: First, the design of inverter control rules is posed as a
multi-task learning problem. Each inverter rule is modeled as a
nonlinear function of control inputs. Rules are coupled through
the electric grid to yield a system voltage profile. Using an
approximate grid model, inverter rules are learned jointly so
that they minimize a voltage regulation cost using anticipated
load and solar generation scenarios. Each rule is described by
a set of coefficients, one for each scenario. As a second con-
tribution, we engineer the voltage regulation objective, so that
the optimal rules are described by a few scenario coefficients.
Such parsimonious representation of inverter rules saves com-
munications. Numerical tests on a benchmark feeder showcase
the advantages of nonlinear rules and explore the trade-off
between voltage regulation and sparse rules.

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices), while calligraphic symbols
are reserved for sets. Symbol T stands for transposition and
|Ix||2 denotes the £>-norm of x.

II. REACTIVE POWER CONTROL

This section formulates the task of voltage regulation using
inverters. Consider a distribution grid having N + 1 buses
served by the substation indexed by n = 0. Let v, denote the
voltage magnitude, and p,+jg, the complex power injection at
bus 7. The active injection p, is decomposed into p, = p; —ps,
where p; is the solar generation and p;, the inelastic load
at bus n. Reactive injections can be similarly expressed as
Gn = q5 — g5 Collect injections in N-length vectors:

p=p°—p° and q=¢q° —q". (1)

The reactive power injected by inverter n is constrained as

g8 <38 = ()" - (08’ ®)

where 55 is the apparent power limit for inverter n; see [1].
Given loads (p¢, q¢) and solar generation pé$, voltage regu-
lation aims at optimally setting q8 such that voltage deviations
are kept minimal. To formally describe this task, one has to
deal with the nonlinear power flow equations relating voltages
to power injections. Trading modeling accuracy for computa-
tional tractability, we resort to the linearized model [22]

v~ Rp + Xq + vl €)]

where v :=[v; ... vy]" and matrices (R, X) depend on the
feeder. Model (3) can be derived by linearizing the power flow
equations around the flat voltage profile. In fact, the lineariza-
tion can be performed at any system state vp, yet matrices
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R and X would then depend on the state vo; see [19]. From
(1) and (3), the vector of voltage deviations from its nominal
value can be approximated as

v—vol = Xq¢¢ +y )

where y := R(p% — p°) — Xq“ and 1 is a vector of all ones.
The goal here is to design the inverter injections q so
that bus voltage magnitudes remain within regulation limits.
The ANSI-C.84.1 standard dictates that service (load) voltages
should remain within £5% per unit (pu). However, our grid
model of (4) stops at the level of distribution transformers. A
distribution (pole or pad-mounted) transformer may be serving
several residential customers. Each customer is typically con-
nected to the distribution transformer through a triplex cable,
which incurs a voltage drop between the transformer and the
service voltage: Suppose a customer is connected to a 50 kVA,
7200-240/120 V center-tapped transformer via a 1/0 AA 100-ft
triplex cable. The customer runs a constant-current load of
10 kVA at the nominal voltage of 120 V with 0.9 lagging
power factor. If load currents are equally distributed among
the three supplies (two 120 V and one 240 V), the service
voltage drops by 1.5% pu. If the load is distributed among
supplies non-uniformly, the service voltage can drop by even
3.5% pu. Due to this, the current practice is to maintain volt-
ages at distribution transformers within +3% pu, to ensure that
service voltages remain within +5% pu; see exercises of [23].
Given loads, solar generation, and grid parameters, the goal
is to decide ¢ to regulate voltage while satisfying the appar-
ent power constraints of (2). The setpoints for reactive power
injections from inverters can be found as the minimizer

¢’ := arg min A(q®;y). 5
G = arg min A(q*:y) S

The set Q € RV captures the constraints in (2) for all n; and
A(q8;y) is a voltage regulation objective. A typical choice for
A is the sum of squared voltage deviations [13], [16], [19]

N
2
As(q%sy) =) (o —v0)* = | X + |- (6)
n=1
Alternatively, the utility may want to maintain voltages within
the range of (1 &£ €)vg for say € = 0.03. Then, a pertinent
objective is [14]
N N
v - T
Ac(asy) =Y i —vole = Y [e] (Xaf +)| D)
n=1 n=1
where e, is the n-th canonical vector of length N, and the
operator [ - ]¢ is defined as

0, x| <€
[xle= .
|x|] — €, otherwise.

®)

Function A, returns zero when all voltages are within lim-
its. Otherwise, it increases linearly with voltage excursions;
see [14] for distributed solvers of (5) with A = A..

It is worth noticing that X depends only on the network and
the linearization point, whereas the set Q and vector y depend
on the variable loads and solar generation, collectively denoted
as x =[(P)" (@) PHT]".
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Ideally, the reactive control process entails three steps:

S1) Each bus communicates its (%, p$, ¢5) to the operator.

S2) The operator solves (5) knowing the current .

S3) The operator sends the optimal setpoints q& to

inverters.

Under variable solar generation, the process has to be
repeated on a per-minute basis. Observe that S7) establishes
N inverter-to-utility communication links, and S$3) requires
another N utility-to-inverter links. Running this process
for multiple feeders can become a computationally and
communication-wise challenging task.

To adaptively adjust inverter setpoints based on y,, affine
control rules in the form of q8(x,) have been suggested in
[16], [17], [18]. Based on these rules, the reactive injection of
inverter n is expressed as an affine function over a subvector
of x,. The premise is to design the rule in a quasi-stationary
fashion, but apply it in real-time. We extend linear to nonlinear
control rules enjoying varying cyber requirements after briefly
reviewing the toolbox of kernel-based learning.

III. PRELIMINARIES ON KERNEL-BASED LEARNING

Given pairs {(zg, ys)}f:1 of features z; belonging to a mea-
surable space Z and target values y; € R, kernel-based
learning aims at finding a function or mapping f : Z — R.
From all possible options of arbitrarily complex functions, one
needs to select a specific family where f belongs. Kernel-based
learning postulates that f lies in the function space [24]

Hi =@ =Y K@ z)as, as € Ry. ©)

s=1

This is the space of functions that can be expressed as linear
combinations of a given kernel (basis) function K : ZxZ — R
evaluated at arbitrary points z;. When K(-, -) is a symmetric
positive definite function, then Hx becomes a reproducing
kernel Hilbert space (RKHS) whose members have finite norm
1% = 52) Y92, K(zs. 2 )asay; see [25]. Some options
for the kernel function K are provided under Examples 1-2 in
Section IV-A.

Learning f from data {(z;, ys)}f:l can be formulated as the
regularization task [24], [26]

min

10
feH,b ( )

1 N
S D L&) by + wlflic
s=1

where b is an intercept term. When it comes to regression,
typical choices for the data-fitting loss L include the least-
squares (LS) fit (ys — f(z5) — b)2, or the e-insensitive loss
[ys — f(zs) — ble. The second term in (10) ensures f € Hi
and facilitates generalization over unseen data [25]. Parameter
w > 0 balances fitting versus generalization, and is tuned via
cross-validation: i) problem (10) is solved for a specific
using 4/5 of the data; ii) the learned function is validated on
the unused 1/5 of the data; iii) the process is repeated 5 times
to calculate the average fitting error for this wu; and iv) the u
attaining the best fit is selected; see [24] for details.

The advantage of confining f to lie in the RKHS Hyc is that
the functional optimization of (10) can be equivalently posed
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as an minimization problem over a finite-dimensional vector:
The celebrated Representer’s Theorem asserts that the solution
to (10) admits the form [24]

S
f@ =) K z)as. (11)
s=1

In other words, the minimizer of (10) is described only by
S rather than infinitely many a’s. Based on (11), evaluat-
ing f(z) at the given data provides f = Ka, where f =
[f(z1) ... f(zs)]"; matrix K € Si+ is the kernel matrix with
entries [K]; ¢ = K(zs,2¢); and a :=[a;1 ... as]’.

From properties of the RKHS’s, it holds that ”f”12C =a'Ka;
see [25]. For regression under an LS loss, the functional
minimization in (10) becomes the vector optimization

: 1 _ _ 2 1/2
min —|ly — Ka—-bl|;+ p|K'/“a (12)
ab S 2

where K!/? is the square root of K and y := [y; --- ys]'.

It is worth stressing that (11) applies not only to the given
data {zs}le, but any zy € Z. Evaluating f(z) requires know-
ing the (a, b) minimizing (12), and being able to evaluate the
kernel K(z,zs) for s = 1,...,S. We next use kernel-based
learning to develop nonlinear inverter control rules.

IV. KERNEL-BASED CONTROL POLICIES

The reactive injection by inverter n is modeled by the rule

qﬁ(Zn) = fu(z,) + by

whose ingredients (f;, z,, b,) are explained next.

Control inputs: Vector z,, € Z, C RM» is the input to con-
trol rule for inverter n. This vector may include load, solar
generation, and/or line flow measurements collected locally or
remotely. For a purely local rule, this input can be selected as

13)

o= (5 -r5) 5] (14)
where the first entry g, relates to the apparent power constraint
and has been defined in (2). The voltage v, could also be
appended in z,; however the stability of the resultant control
loop is hard to analyze even when f; is linear; see, e.g., [14],
[15], [19], [20], [27].

Selecting the controller structure, i.e., the content for each
Z,, can affect critically the performance of this control scheme.
Ideally, each inverter rule can be fed all uncertain quantities,
that is the three numbers in the right-hand side of (14) across
all buses. In that case, the input vectors z, become all equal
and of size 3N. However, this incurs the communication bur-
den of broadcasting 3N values in real time. Hybrid setups with
Z,’s carrying a combination of local and remote data can be
envisioned. To eliminate the effect of this trade-off between
communications and performance, this work assumes that the
content of z,’s is prespecified. The task of input selection could
be possibly pursued along the lines of sparse linear or poly-
nomial regression [19], [20], [28]; and automatic relevance
determination [29, Sec. 6.4].

Control function: Selecting the form of f, is the second
design task. To leverage kernel-based learning, the inverter
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rule f, is postulated to lie in the RKHS

o

HIC,, = {fn(zn) = ZKn(va Zn,s)an,m Qp,s € R} (15)
s=1

determined by the kernel function K,:Z, x Z, — R.

Linear rules can be designed by selecting the linear kernel
Ku(Zy5,2,,9) = z;zszn, s'- Nonlinear rules can be designed by
selecting for example a polynomial kernel K (z, s, Z,y) =
(zlsz,,,sr + y)? or a Gaussian kernel Ki(Zyys,2,9) =
exp(—|zy,s — z,,,s/||%/y) with design parameters 8 > 0 and
y > 0; see [24].

Intercept b, € R: Although it could be incorporated into f,
by augmenting z, with a constant entry of 1, it is kept separate
to avoid its penalization through ||fIx, [24].

A. Learning Rules From Scenario Data

The rules of (13) can be learned from scenario data indexed
by s € § with § = {1,...,S}. Scenario s consists of the
control inputs z, ¢ for n € N, and the associated vector y, :=
R(p§ — p¢) — Xq¢ defined in (4). Evaluating rule n of (13)
under scenario s yields the inverter response qﬁ,s = qﬁ (Zn,s).
Let us collect the outputs qﬁ,s from all inverters into vector q§ .
Note that the goal is not to fit y; by qf, but to minimize the
voltage deviations Xq§ +y;. The control functions {f,,}f:;l and
the intercepts {b,,}i:’=1 accomplishing this goal can be found
via the functional minimization

1 N N
min <> A(afys) + 1) Il
s=1 n=1

over ¢ =f,,(z,,,s) +b,, Vn,s

e M, L b=1[b1 -+ by]"

sto |g8,] <48, Vns (16)

where A is a voltage regulation objective [see (6)—(7)].
Remark 1: The proposed approach is related to [20]-[21],
where inverter rules are also trained using machine learning.
However, the aforementioned works proceed in two steps:
They first solve a sequence of OPF problems similar to (5)
to find the optimal inverter setpoints 8 under different sce-
narios. Secondly, they learn the mapping between controller
inputs {2, }ses and optimal setpoints {75 s} decided by the
OPF problems. During this process, they also select which
inputs are more effective to be communicated to inverters.
The mapping is learned via linear or kernel-based regression.
On the other hand, the approach proposed here consolidates
the OPF and the learning steps into a single step: The advan-
tage is that the OPF decisions of (16) are taken under the
explicit practical limitation that g can only be a function
of z,, since inverter n will not have access to the complete
grid conditions. To get some intuition, suppose ones designs
linear control rules of known input structure using the single-
step approach of (16) with © = 0 and the two-step approach
of [20]-[21]. The single-step approach yields rules Ry, and the
two-step approach yields rules R;. Let us evaluate Ry and R,
on the training scenarios. Rules R, are not necessarily feasi-
ble per scenario s € S, whereas rules R; are. Moreover, rules
Ry do not necessarily coincide with the minimizers of (5).

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 2, MARCH 2020

For the sake of comparison, let us assume that rules R, turn
out to be feasible per scenario, and hence feasible for (16).
Being the minimizers of (16), rules R; attain equal or smaller
voltage deviation cost compared to Ry over the training data.
Numerical tests in Section VI corroborate the advantage of R
over R, for u > 0 and during the operational phase as well.
Different from (10), the optimization in (16) entails learning
multiple functions (one per inverter). Since inverter injections
affect voltages feeder-wise, inverter rules are naturally coupled
through A in (16). Similar multi-function setups can be found
in collaborative filtering or multi-task learning [25], [30].
Fortunately, Representer’s Theorem can be applied succes-
sively over n in (16). Therefore, each rule n is written as

S
fn(zn) = ZKn (zna Zn,x)an,s~

s=1

a7

Once the coefficients {a, s} have been found, rule {f,} can be
evaluated for any z,. Similar to (11), evaluating rule f, over
the scenario data {znys}f:1 gives

f,=K,a,, Vn (18)
where [K,ls¢ = Kn(Zns, 2,.¢) for s, s’ =1,...,S, and a, :=
[an1 --- an,S]T. The RKHS norms can be written as

Walic, = v/a) Kpan, Vn. (19)

In this way, the functional minimization in (16) is cast as a
vector minimization over {a,,}f;’:l and b. The exact form of
this minimization and its properties for different A are dis-
cussed later in Section V. For now, let us clarify how the
kernel functions K, (-, -) effect different rule forms.

Example I (Affine Rules): The linear kernel K,,(z,, 5, 2, ¢) =
Z,ISZ,M/ yields affine rules. The sought functions can be
written as

fa(@n) =2, Wa, V. (20)

Given scenario data z, and y; for n € A and s € S, we
would like to find {w,, b,}, through (16). Collect the input
data for inverter n in the M,, x § matrix Z, := [Z,,1 -+ Zp5s].
According to Representer’s Theorem, the optimal w, can be
expressed as w,, = Z,a, for some a,. Evaluating the control
rule for any input z, ; yields

qn (zn,s) = fn (Zn,s) +bn = Z;ZI:SZnarz + by.

Evaluating the rule at the input data yields (18) with K, =
Z7Z,. The squared function norm is |lf"”12C,, = |wall} =
a,TZ,TZna,, = a,TK,,an.

Example 2: Non-linear rules. For non-linear rules, trans-
form the input z, s to vector @, ; = ¢,(2y,s) via a non-linear
mapping ¢, : RM" — R®:. The entries of ¢,.s could be for
example all the first- and second-order monomials formed by
the entries of z, . The dimension ®, of ¢, ; can be finite
(e.g., polynomial kernels) or infinite (Gaussian kernels) [29].
Then, the control function

fa(2n) = ¢, Wy Q1)
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utility fe,,

T1) data collection

Fig. 1.
Inverters follow control rules fed by local and/or remote data.

with w, € R® is non-linear in z,. The developments of
Example 1 carry over to Example 2 by using K, = CD,T D,
and replacing Z, by ®, = [¢, | --- ¢, ]. Depending on
the mapping ¢, the vectors ¢, ; may be of finite or infinite
length [24]. The critical point is that f;, does not depend on
¢, s directly, but only on their inner products ¢Is¢n, g for
any s and s". These products can be easily calculated through
the kernel function as ¢,Is¢n’ s = Kn(Zps, 2,5); see [24].

Since the constraints in (16) are enforced for the scenario
data, the learned rules do not necessarily satisfy these con-
straints for all z,, ; with s ¢ {1, ..., S}. This limitation appears
also in scenario-based and chance-constrained designs [17].
Once a control rule is learned, in real-time ¢, it can be
heuristically projected within [ — E]ﬁ,t, —l—c_]ﬁ,,] as

Pz}ﬁ,,[qit] = max{min{qﬁ)t, q;":,t}’ _‘?ﬁ,t}'

B. Implementing Reactive Control Rules

Our control scheme involves four steps; see also Fig. 1:
T1) The utility collects scenario data z, s for all n and s.
T2) The utility designs rules by solving (16); see Section V.
T3) Each inverter n receives S + 1 data (a,, b,) from the
utility, which describe f;,.

Over the next 30 minutes and at real time #, each
inverter n will be collecting z, » and applying the rule

T4)

S
Z K, (Zn,t’, zn,s)an,s + by

s=1

Py

(22)
nt'
The aforesaid process is explicated next. Regarding 77),
scenario data should be as representative as possible for the
grid conditions anticipated over the following 30-min control
period. One option would be to use load and solar generation
forecasts. A second option would be to use historical data
from the previous day and same time, if they representative
of today’s conditions. A third alternative would be to use the
most recent grid conditions known to the utility. For example,
if smart meter data are collected every 30 min anyway, they
can be used in lieu of forecasts for the next control period.
The numerical tests of Section VI adopt the third option
and use the minute-based grid conditions observed over the
last 30-minutes as S = 30 scenarios to train the inverter rules

T2), T3) rule design

T4) real-time operation

Implementing reactive power control rules. Left: Data are collected from buses. Center: utility designs rules and downloads rules to inverters. Right:

for the upcoming 30-minute interval. Obviously, the number of
training scenarios S does not have to coincide with the length
of the control period measured in minutes. These two param-
eters relate to loading conditions; feeder details; availability
and quality of scenario data; communication and computa-
tional resources. Selecting their optimal values goes beyond
the scope of this work.

During 74), inverter n has already received (a,, b,) and
{z,w}f:l during 73). Each z, may consist of local data and
a few active flow readings collected from major lines or
transformers. If the entries of z, are all local, the rule can
be applied with no communication. Otherwise, the non-local
entries of z, have to be sent to inverter n. If non-local inputs
are shared among inverters, broadcasting protocols can reduce
the communication overhead.

Remark 2: Suppose each inverter n knows the training data
Zns for s € S. Function f,, can be described in two ways:
Either through (17) using the data described under T3); or
through (20)—(21) via w,,. For the second way, vector w, has
M,, entries in the linear case and &, entries in the nonlin-
ear case. For the linear case, if M,, < S + 1, representing f,
through (20) by w,, is more parsimonious. Representation (17)
becomes advantageous only when &, > S + 1 under the
nonlinear case.

V. SUPPORT VECTOR REACTIVE POWER CONTROL

This section converts (16) to a vector minimization and
explores different options for A. From (18), the output of
inverter n across all S scenarios is K,a, + b,1. Then, the
apparent power constraints in (16) can be written as

- (_1§ <K,a, +b,1< (_l§9 Vn (23)

where (‘1‘},’ = [E/i I Q§ S]T. Moreover, the vector of voltage
deviations can be expressed as

N
Xq§+YS =X ZenQis +¥s

n=1

N N
=D xe]Kuay + ) buXa+ys (24
n=1 n=1
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where x, is the n-th column of X. Substituting (19)
and (23)—(24), the optimization in (16) can be posed as a
second-order cone program (SOCP) over {a,},cn and b.

Nonetheless, solving (16) with A = A, yields optimal a,’s
with several non-zero entries. This means that to describe
rule n by (22), the utility needs to communicate the entire
vector a, during 73). If scenarios {zn,t}tT: | are not known by
the inverter, they have to be communicated along with a, as
well. The number of scenarios 7 may be large when learn-
ing rules under complex feeder setups. A related approach for
minimizing a convex combination of Ay and power losses has
been suggested in the conference precursor of this work [31],
but inherits the same difficulty of non-sparse a, ;’s.

Inspired by support vector machines (SVM), we engineer A
to obtain inverter rules described by possibly fewer scenarios:
Promoting sparse a,,’s alleviates the communication overhead
during step 73). To this end, we put forth the cost

Ac(g:y) = [[Xq® +y],],

for some 7 > 0. If scenario s yields a vector of voltage devia-
tions qu ~+ys with £,-norm smaller than t, this scenario incurs
no cost. If || Xq§ + ysll» > 7, the voltage regulation penalty
grows with ||Xq‘§ + ysll2. The cost in (25) can be expressed
as an SOCP over the slack variable d

Ac(af;y) =1

(25)

nfd : [Xqgf +y[, =d+7}.

i
=
Applying the same epigraph trick for the function norms,
problem (16) can be solved as the SOCP

min édTl—i-y,yTl (26a)
over {qf}.{a,}.b,d>0,y (26b)
s.to (23), (24) (26¢)
[k, <y v (26d)
|Xqé +ys|, <ds+7. Vs (26¢)

where d := [d; --- ds]" and y =y - yN]T. The vari-
ables 5 can be eliminated using the substitutions of (24).
Solving (26) takes ON33T3) operations with interior point-
based solvers [32]. However, the advantage of inverter control
rules is that (26) is not solved in real time. If standard inte-
rior point-based solvers are not scalable to larger grids, one
may resort to (distributed) first-order algorithms; warm-start
initializations; and cutting-plane methods.

The coefficients a,’s minimizing (26) enjoy two types of
sparsity, across inverters and across scenarios. To explain the
first type of sparsity, express the second summand in the cost
of (26) as uy'1 = /“LZnN=l ||K,1/2an||2. Having these non-
squared ¢>-norms in the objective promotes block sparsity
across n, in the sense that for larger u, some vectors a, may be
set to zero. This effect is a direct consequence of block-sparse
solutions encountered in group Lasso (G-Lasso)-formulations;
see [26], [30], [33]. All inverters receive a reactive power set-
point b,, but if the optimal a, becomes zero, inverter n will
not be changing its reactive injection in real-time. One may
drop the intercept b, from the control rule of (13) and the
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optimization of (26), and modify the feature vector as

-
z, = [1 ZI] .

27)

Thus, obtaining a,, = 0 from (26) enables inverter selection.

The next proposition studies the second type of sparsity; see
the Appendix for a proof.

Proposition 1: Consider (16) with A = A; and its min-
imizer in (17). If |XqS + ysll2 < © for scenario s at the
optimum, then a,, ; = 0 for every inverter n with |g5 ;| < G5 s

Proposition 1 explains how A; promotes block sparsity
across s: If scenario s does not experience severe voltage vio-
lations, the corresponding coefficients a, s will be zero for
all inverters n that have not reached their apparent power
limit. Block sparsity across time identifies non-critical sce-
narios. Phrased in the SVM context, the so-termed ‘support
vectors’ here correspond to scenarios with significant voltage
deviations. Larger values of t effect fewer critical scenarios.

These two forms of sparsity offer communication savings
since the related (ay s, Zy,s) do not need to be communicated
to inverters. This enables training the rules for larger num-
ber of scenarios S at the same communication overhead. Note
that for fixed (u, 7), the sparsity of a,’s depends on the train-
ing data ys’s as well. If a particular sparsity goal is to be
met, the utility has to solve (26) repeatedly for various val-
ues of u and 7. Such computations can be significantly sped
up by initializing an optimization algorithm for one value of
7 to the minimizer obtained using the previous value of 7
[24, Sec. 18.4]; however, such techniques will not be pursued
here.

Different from A, cost A is not expected to yield as sparse
a,’s. The next claim (proved in the Appendix) explains that
even if a single bus experiences voltage deviation larger than
€ for scenario s, then a, # O for all n. In other words, a
voltage violation at a single bus for scenario s renders this
scenario critical for all inverter rules.

Proposition 2: Consider (16) with A = A, and its min-
imizer in (17). If |Xq§ + yslloc > € for scenario s at the
optimum, then a, ¢ # 0 for all n.

VI. NUMERICAL TESTS

The novel inverter rules were tested on the IEEE 123-bus
feeder [34], converted to a single-phase grid as described
in [35]. Residential load and solar data were extracted from
the Pecan Street dataset as delineated next [2]. Minute-sampled
active load and solar generation data were collected for June 1,
2013 between 8:00-16:00. We downloaded data from the first
123 Pecan Street nodes, after excluding nodes with empty data
records. Regarding solar generation, unless stated otherwise,
75% of the buses had solar generation by excluding nodes
with bus indexes that are multiples of 4.

Load data were scaled on a per bus basis so that their daily
peak values matched 150% of the benchmark load. Since the
Pecan Street data included only active power, we drew lagging
power factors uniformly at random within [0.9, 0.95] for each
bus and kept them fixed across time. The scaling factors for
active loads were also used for scaling solar data. To allow
for reactive power compensation even at peak solar irradiance,
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TABLE I
RUNNING TIME FOR SOLVING (16) WITH T = 30

| [CH [ C5 [ C6 [ CT |
0.21 [ 0.45 [ 0.96 | 1.99 |

[ Running time [min] |

inverters were over-sized by 10% providing an apparent power
capacity of 5= 1.1[7ﬁ for all n; see [1].

Our numerical tests included six control schemes:

C1) The optimal reactive injections computed by (5) on a
per-minute basis;

C2) The optimal reactive injections computed by (5) on a
per-minute basis assuming a 2-minute communication delay;
C3) The fixed Watt-VAR control rules of [1, (12)-(14)];

C4) The rules of (16) for linear kernels and A = A;;

C5) The rules of (16) for Gaussian kernels and A = Ay;

C6) The rules of (16) for linear kernels and A = A; and

C7) The rules of (16) for Gaussian kernels and A = A..

The input z, to inverter n consisted of local data as in (14).
Each entry of z, was centered by its daily mean and normal-
ized by its daily standard deviation. To avoid rank deficiency,
we added 1073 - Iy to all kernel matrices.

Schemes CI), C2) were solved using SDPT3 and YALMIP
with MATLAB [36], [37]. Schemes C4)-C7) were solved by
invoking the MOSEK solver directly through MATLAB [38].
Tests were run on a 2.4 GHz Intel Core i5 laptop with 8 GB
RAM. The average running time for solving (16) with 7 = 30
is given in Table I. It should be emphasized that although the
control rules were designed using the LDF grid model, the
voltage deviations experienced by all control rules were tested
using the full AC model.

During training, we used 77 = 30 scenarios to learn
the SVM-based control rules of C4)-C7). These scenarios
comprised the load and solar data observed during the last
30 minutes. During validation, the inverter control rules were
tested over the following 30 minutes. Parameters p and y were
selected via 5-fold cross-validation. The ranges of 7 and €
were empirically chosen to yield an average communication
overhead similar to the one needed by the affine rule of (20)
as discussed under Remark 2: An affine rule is described by
M, + 1 = 4 data per inverter. If only 10% of the entries of
a, are nonzero, then communicating (a,, b,) entails sending
0.1-S4+1=0.1-30+1 = 4 data as well. The sparsity of
a,’s depends on input data along with the values of (r, u)
or (e, u). These parameters were set so that a,’s had 10%
nonzero entries on the average across time and buses.

We next explored the trade-off between voltage devia-
tion and the sparsity of a,’s for C4)-C7). The expectations
from this test were two: i) voltage deviations are expected
to increase for sparser a,’s; ii) schemes C4) and C5) should
exhibit improved sparsity over C6) and C7). To validate these
hypotheses, we recorded the voltage deviations for 10 values
of 7 and € for C4)-C7). The average absolute voltage devia-
tion and the average percentage of non-zero coefficients were
calculated over the day and across buses, and are shown in
Figure 2. From Figure 2, the value of t yielding a sparsity
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Fig. 3. Maximum absolute voltage deviation over time for 75% penetration,
obtained by the Gaussian SVM-based rules trained for A = Ar.

of roughly 11% is t = 0.001. Figure 2 reveals three impor-
tant points. First, voltage deviations increase as a,’s become
sparser as expected. Second, for a given sparsity in a,’s, the
rules obtained by A; exhibit smaller voltage deviations com-
pared to the rules obtained by A.. Because of this, we focus
on the performance of C4)-C5) for the rest of this section.
Third, the Gaussian kernel-based rules attained lower voltage
deviations than the related linear kernel-based rules.

We next tested the effect of pu on inverter selection and
voltages. Larger values of p are expected to set more a,’s to
zero. To eliminate the inverters with a, = 0, the parameter b,
was appended in a, as delineated in (27). For a fixed value
of T =0.001, for scheme C4), the values of u were obtained
using cross-validation across the day. The control rules were
designed again using 4 different values of w. As expected,
by increasing the value of p, the number of all-zero a,’s and
the corresponding voltage deviations were increased. Figure 3
depicts the absolute voltage deviation averaged over time for
each inverter. Notice that the values of  and u were kept fixed,
although the training data y,’s varied across the day. Due to
this, the reported sparsity in Figure 2 is the average sparsity
across time and inverters. Moreover, the number of inverters
in Figure 3 is the average number of activated inverters across
the day. Even though the values of © and 7 can be adjusted
on a 30-min basis to meet specific sparsity requirements, we
chose to keep them fixed to simplify the exposition. In fact, the
rest of this section reports the worst-case instead of average
voltage deviations across time and for each bus.

We next compared the proposed SVM-based control rules
against the alternative schemes of C/)-C3). To this end,
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voltage deviations were calculated between 8:00-16:00 for
schemes CI)-C5). Figures 4 and 5 demonstrate the average
and the maximum voltage deviations over the test period.
It can be observed from both figures that the Gaussian
SVM-based rule performs better than C1)-C3) due to its abil-
ity to capture non-linear behaviors. Although C3) needs no
communication, it violates the ANSI-C.84.1 standard volt-
age constraints. Furthermore, despite the high communication
needed, scheme C2) shows no superiority in performance over
C5) and corroborates the need for real-time response to system
inputs.

In all previous tests, the rules were fed with locally recorded
data. To evaluate the advantage of adding remote control
inputs, we appended the values of active power flows on the
lines feeding buses 1, 16, and 51, to all input vectors z,. The
daily maximum and the average voltage deviations attained
by CI)-C5) are depicted in Figures 6 and 7, respectively.
As expected, the results suggest that adding remote inputs to
the rules improves the grid voltage profile at the expense of
increased inter-network communication.

As mentioned in Section IV-B, the length of the control
period (in minutes) over which rules remain constant does
not have to agree with the number of scenarios S used for
training the rules. To evaluate how the control rules perform
for longer control periods, Figure 8 compares the voltage
deviations obtained by training rules using S = 30 scenar-
ios, but keeping them unaltered over 30, 45, and 60 minutes.
As expected, voltage regulation deteriorates as rules remain
unchanged for longer periods.
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All previous tests assumed solar penetration of 75%. We
also tested the performance of C/)-C5) under penetrations
of 50% and 25%. To simulate 50% penetration, solar genera-
tion and smart inverters were installed only in buses with even
indexes. Likewise, to simulate 25% penetration, we considered
buses whose indexes were multiples of 4. Figures 9 and 10
depict the attained maximum absolute voltage deviations,
which apparently decrease with decreasing solar penetration.
For lower penetrations, the Gaussian-based rule preserves its
superior voltage profile over the other schemes.

Schemes C4) and C5) were also tested under less commu-
nication by scaling down the sparsity in a,’s by a factor of
10: Voltage deviations were evaluated for r = 0.03 corre-
sponding to 1.4% non-zero entries for a,’s on the average.
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Figure 11 demonstrates the maximum absolute voltage devia-
tion for C1)-C5). Even with fewer coefficients communicated,
the voltage constraints of ANSI-C.84.1 were still satisfied.
The last set of numerical tests compares the developed
single-step approach with the two-step approach of [20]-[21];
see also Remark 1. We used both approaches to design local
linear control rules for the IEEE 13-bus feeder [23], under
the voltage deviation cost A = A, with € = 0.001. The top
and center panels of Fig. 12 show respectively the maximum
and average voltage deviation per bus computed across time.
The bottom panel shows the voltage deviation cost A, time-
averaged per control period. The bottom panel also shows
the voltage deviation cost A; with T = 0.01 attained upon
training both rules using A; instead of A.. Similar results
were obtained for other values of € and 7. According to these

1767

e
1=}
=3

@ Single-step approach
M Two-step approach

o

o

@
T

=)
K=
c
k]
k]
>
B 0.04 E
()
&
= 0.03f = = L
S = g n
[
5 0.02f .
o
@ [ | [ ] [ | [ ] [ |
8 oot} 4
% [ ] e o © o ©
o] e o © o [}
s ! | | | |

0 2 4 6. 10 12

Bus'index

3'4.5 |
2
c
Ke]
T35l | n |
S35 = n =
[}
he]
[
82 51 @ Single-step approach| |
?>) : B Two-step approach
° - ™ | u |
=) [ J
Q15f f
el
©
g'n ° [} ) [ J [} ° T
LosL—©@ @ © 7 L] s s
0 2 4 B 6 d 8 10 12
Inaex
0.25 US‘ e
o
® 0.2 * ¢ 'S B
Ii
u o t *te40
%)
8 0.15 ’ ’ ’ ‘ @ Two-step approach, using A
o ‘ ’ Two-step approach, using AQ
% W Single-step approach, using At
o o1 ] Single-step approach, using A |
@
? [} [}
30.0 ° o ©
o [ ] ' [] [ | M :
H g N
> > > > > > pp b
8:30 10:00 11:30 13:00 14:30 16:00 17:30 19:00
Time
Fig. 12.  Comparison between the proposed single-step learning approach

(rules Ry), and the two-step learning approach of [20]-[21] (rules Rj).

tests, the single-step approach achieved: /) lower maximum
per-bus voltage deviations; 2) lower average per-bus voltage
deviations; and 3) smaller voltage deviation costs during the
operational phase.

VII. CONCLUSION

A novel approach for designing inverter control rules has
been put forth. It relies on both data-based learning and physi-
cal grid modeling. Inverter rules are not learned independently
using input/output pairs of the OPF problem. Instead, they
are learned jointly by posing the related OPF problem as a
multi-function learning task. Because of the way voltage devi-
ations couple inverter outputs, the conventional support vector
machine approach fails to yield sparse rule descriptions. We
have engineered a voltage deviation cost to identify ‘support
scenarios,” that is a few scenarios with non-zero coefficients
for most of inverter rules. The devised control rules were tested
using on a benchmark feeder using the exact AC model. The
novel scheme attained superior voltage regulation performance
compared to preset local rules, and oftentimes comparable
performance to an optimal inverter dispatch delayed by 2 min-
utes. The numerical tests have further corroborated the benefits
of nonlinear rules with non-local inputs, and explored the
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trade-off between voltage regulation performance and sparsity.
Finally, this work motivates several questions. On the imple-
mentation side, testing the novel formulations on multiphase
grids along with capacitor banks, voltage regulators, and ZIP
loads, is of practical interest. On the analytical side, chance-
constrained formulations; studying the stability of nonlinear
rules with voltages as inputs; using kernels to learn functions
with constraints; and selecting non-local control inputs; are
some open and interesting questions.

APPENDIX

Proof of Proposition 1: Consider first the linear rules of (20),
for which ¢5(z,) = z;wn + b, for all n. Problem (16) with
A = A; can be reformulated as

1
min ngl +uy'1 (28a)
over {w,}_ . b, d>0,yp (28b)
sto —q8 <Z,w, +b,1 < g, ¥n (28¢)
||Wn||2 <V, Vn (28d)
|XqS +y|, <ds+ 7. Vs. (28e)

Express voltage deviations at s in terms of w,’s and b

N N
T
= Z XnZ, Wn + Z buXy +Ys.
n=1 n=1

Let us next introduce the Lagrange multipliers [32]:

e}, > 0 and X, > 0 corresponding to the linear

inequalities in (28c) for all n;

e (uy, p,) related to constraint (28d) for all n; and

o (mg, oy) related to constraint (28e) for all s.
Collect multipliers in M := [p; --- pg] € RV*S, and vec-
tors p == [p; --- pnl' and o = [o7 --- o5]'. After some
algebra, the Lagrangian of (28) can be written as

Xq§ +ys

L= dT<11—a) +y " (ul—p)
+ Z WI [Zn (Xn -, — MTxn) — un]
n;l §
+ Z bn[(xn ~1,-MTx,) 1}

—Zx +1,) Z[LY ys—t0 1. (29)
Minimizing L over the primal variables provides
o<1 (30a)
p = pul (30b)
w, = 7, (}Tn —A, - MTxn), Vi (30c)
(Re—1,)'1 = xIMl1, Vn (30d)
From (30), the dual of (28) becomes the SOCP problem
N
max —Z(X +k Z’LV ys—t0'1 (3la)
n=1 s=1
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S
over (A Kalh i {msos)S (31b)
sto A, >0, X, >0, (30d), Vn (31c)
w(Tn =2y =MTx,)| =, Va6l
”[LS”2 <o,<1, Vs (3le)

It is not hard to check that (28) and (31) are strictly feasi-
ble, so strong duality holds and both problems are solvable.
The optimal primal and dual variables satisfy complementary
slackness SOCPs; see [32, Sec. 4.1]. For constraints (28d)
and (31d), these conditions identify three cases:

cl) If [[wall2 < v, then [u,ll2 = pp = 0;

c2) If lupllz < pn, then [[Wyll2 = y» = 0; or

c3) If [[Wyll2 = yn and [Juyll2 = pp, then yyu, = —puWy.

Recall that p, = 1 > 0 from (30b). Moreover, it is not hard
to see that ||w,||2 = y, at the optimum of (28). Then, case c/)
cannot occur. The other two cases entail that w,, = «,u, for
some o, < 0. Substituting u,, from (30c), and evaluating rule
n at the tested scenarios gives

$ = 7w, +b,1
= 02, 2%y = X, — MTx,) + b1
= K,a, + b,1.

Here we identify K,, = Z,TZ,, and the coefficients in (22) as

ay =L, — 4, ~MTx, ). (32)

Focus now on the complementary slackness for (28e)
and (31e). The equivalent to condition c¢/) reads now as: cI’)
If [Xq§ + ysll2 < dy + 7, then ||pyll2 = o5 = 0.

Suppose the optimal primal variables satisfy || Xq§+y;|l2<t.
Then d; = 0 follows from (28), and cI’) gives ||p,ll2 = 05=0.
The s-th entry of a, in (32) is
(33)

3 T
ap,s = Oy (An,s - &n,s - Ky X")'

Complementary slackness for (28c) implies that A, s = Ay =0
if |g5 5| < 5. at the optimal, thus proving the claim for linear
rules. The result in (33) holds for nonlinear rules too. The

analysis carries over upon matching the length of w, with the

length of ¢(z,), and substituting Z;Z,, by K. |
Proof of Proposition 2: Rewrite (16) for A = A, as
1S
min. ledjl +uy'1 (34a)
S
over {wn}n b, d>0,y (34b)
sto —q <Z w,+b,1 <@, Vn (34c)
Wall2 < ¥n, Vn (34d)
—dy—el <Xq@¥ +y,<d;+¢€l, Vs. (34e)

The Lagrangian multipliers of (34) are similar to shose of (28),
except for (u,, o5) being replaced by ([LY, Is) and collected

in M= [u _S] and M = [y --- sl Minimizing the
Lagrangian of (34) over the primal varlables yields

u, =Zn[in A+ (M—M) xn], V.
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Similar to Prop. 1, the s-th entry of a, becomes

_ o T
ap,s = )‘n,s - &n,s + (I'Ls - ES> X

If the optimal primal variables satisfy || Xqs + ¥sllco > €, then
d; # 0 and accordingly, complementary slackness for (34e)
implies that i, # 0 or "o 0. |
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