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Abstract—Smart inverters have been advocated as a
fast-responding mechanism for voltage regulation in distribution
grids. Nevertheless, optimal inverter coordination can be compu-
tationally demanding, and preset local control rules are known to
be subpar. Leveraging tools from machine learning, the design
of customized inverter control rules is posed here as a multi-
task learning problem. Each inverter control rule is modeled
as a possibly nonlinear function of local and/or remote control
inputs. Given the electric coupling, the function outputs interact
to yield the feeder voltage profile. Using an approximate grid
model, inverter rules are designed jointly to minimize a voltage
deviation objective based on anticipated load and solar generation
scenarios. Each control rule is described by a set of coefficients,
one for each training scenario. To reduce the communication
overhead between the grid operator and the inverters, we devise
a voltage regulation objective that is shown to promote parsi-
monious descriptions for inverter control rules. Numerical tests
using real-world data on a benchmark feeder demonstrate the
advantages of the novel nonlinear rules and explore the trade-off
between voltage regulation and sparsity in rule descriptions.

Index Terms—Support vector machines, multi-kernel learning,
voltage regulation, linearized distribution flow model.

I. INTRODUCTION

S
EVERAL electric utilities in the U.S. currently experience

issues while integrating residential- and commercial-scale

solar generation. A solar farm connected at the end of a long

rural feeder can incur voltage excursions along the feeder,

while frequent power flow reversals strain the apparent power

capabilities of substation transformers [1]. Solar generation

from residential photovoltaics (PVs) can fluctuate by up to

15% of their rating within one-minute intervals [2]. Utility-

owned voltage control equipment, such as load-tap-changing

transformers, capacitor banks, and step-voltage regulators,

involves discrete control actions, and its lifespan is related
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to the number of switching operations [3]. Regulating volt-

age under increasing renewable generation may require more

frequent switching and further installations, thus critically

challenging reactive power control in distribution grids.

On the other hand, PVs are interfaced by inverters featuring

advanced communication, metering, and control functional-

ities. Using inverters for reactive power control has been

advocated as a fast-responding solution [1]. The amended

IEEE 1547 standard allows inverters to be operating at non-

unit power factors [4]. Nonetheless, coordinating in real-time

hundreds of inverters distributed over a feeder is a formidable

task. In a typical setup, the values of instantaneous loads and

solar generation are communicated to a utility controller; the

controller minimizes ohmic losses subject to voltage regula-

tion constraints; and the computed setpoints are sent back to

inverters. The problem of finding the optimal reactive injec-

tion setpoints for inverters is an instance of the optimal power

flow (OPF) task, which is non-convex in general. Different

convex relaxations have been proposed; see [5] for a survey.

The uncertainty in loads and solar generation over the next

control period is usually accounted for through stochastic and

robust formulations [6], [7]. To reduce complexity, approxi-

mate grid models have also been employed [8], [9]; though

heavy two-way utility-inverter communication is still needed.

Alternatively, decentralized solvers where inverters decide

their setpoints upon communicating with neighboring inverters

have been devised [10], [11], [12]. On the other extreme, local-

ized schemes suggest having inverters implementing Volt-VAR

and/or Watt-VAR curves given only local measurements [1].

Although such rules have been analytically shown to be sta-

ble and fast-converging, their equilibria unfortunately do not

coincide with the sought OPF minimizers [8], [13], [14], [15].

In fact, there exist cases where local rules perform worse than

the no-reactive support option [16].

The previous literature review indicates that centralized

schemes incur high computational complexity; decentralized

solvers require multiple communication exchanges among

inverters; and local schemes have no performance guaran-

tees. As a middle-ground solution, inverter setpoints can be

designed in a quasi-static fashion via control rules. A rule

expresses each setpoint as an affine function of given inputs,

such as generation, load, or voltage. Albeit the related weights

are optimized periodically in a centralized fashion, control

rules are applied in real time. Controlling inverters via affine

rules has been accomplished using chance-constrained [17];

robust [16], [18]; and closed-loop formulations [19]. Optimal
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rules however are not necessarily linear: If an apparent power

constraint becomes active, reactive injections can become

nonlinear functions of solar generation. To capture this non-

linearity, recent approaches engage learning models which are

trained to optimize: Given pairs of grid conditions (load and

solar generation) and their optimal inverter dispatches com-

puted, the aforesaid approaches learn dispatch rules using

linear or kernel-based regression [20], [21].

This work combines machine learning tools with physi-

cal grid models, and advocate a kernel-based approach for

designing inverter control rules. The contribution is on two

fronts: First, the design of inverter control rules is posed as a

multi-task learning problem. Each inverter rule is modeled as a

nonlinear function of control inputs. Rules are coupled through

the electric grid to yield a system voltage profile. Using an

approximate grid model, inverter rules are learned jointly so

that they minimize a voltage regulation cost using anticipated

load and solar generation scenarios. Each rule is described by

a set of coefficients, one for each scenario. As a second con-

tribution, we engineer the voltage regulation objective, so that

the optimal rules are described by a few scenario coefficients.

Such parsimonious representation of inverter rules saves com-

munications. Numerical tests on a benchmark feeder showcase

the advantages of nonlinear rules and explore the trade-off

between voltage regulation and sparse rules.

Regarding notation, lower- (upper-) case boldface letters

denote column vectors (matrices), while calligraphic symbols

are reserved for sets. Symbol ⊤ stands for transposition and

‖x‖2 denotes the ℓ2-norm of x.

II. REACTIVE POWER CONTROL

This section formulates the task of voltage regulation using

inverters. Consider a distribution grid having N + 1 buses

served by the substation indexed by n = 0. Let vn denote the

voltage magnitude, and pn+jqn the complex power injection at

bus n. The active injection pn is decomposed into pn = p
g
n−pc

n,

where p
g
n is the solar generation and pc

n the inelastic load

at bus n. Reactive injections can be similarly expressed as

qn = q
g
n − qc

n. Collect injections in N-length vectors:

p = pg − pc and q = qg − qc. (1)

The reactive power injected by inverter n is constrained as

∣

∣qg
n

∣

∣ ≤ q̄g
n :=

√

(

s̄
g
n

)2
−

(

p
g
n

)2
(2)

where s̄
g
n is the apparent power limit for inverter n; see [1].

Given loads (pc, qc) and solar generation pg, voltage regu-

lation aims at optimally setting qg such that voltage deviations

are kept minimal. To formally describe this task, one has to

deal with the nonlinear power flow equations relating voltages

to power injections. Trading modeling accuracy for computa-

tional tractability, we resort to the linearized model [22]

v ≃ Rp + Xq + v01 (3)

where v := [v1 . . . vN]⊤ and matrices (R, X) depend on the

feeder. Model (3) can be derived by linearizing the power flow

equations around the flat voltage profile. In fact, the lineariza-

tion can be performed at any system state v0, yet matrices

R and X would then depend on the state v0; see [19]. From

(1) and (3), the vector of voltage deviations from its nominal

value can be approximated as

v − v01 = Xqg + y (4)

where y := R(pg − pc) − Xqc and 1 is a vector of all ones.

The goal here is to design the inverter injections qg so

that bus voltage magnitudes remain within regulation limits.

The ANSI-C.84.1 standard dictates that service (load) voltages

should remain within ±5% per unit (pu). However, our grid

model of (4) stops at the level of distribution transformers. A

distribution (pole or pad-mounted) transformer may be serving

several residential customers. Each customer is typically con-

nected to the distribution transformer through a triplex cable,

which incurs a voltage drop between the transformer and the

service voltage: Suppose a customer is connected to a 50 kVA,

7200-240/120 V center-tapped transformer via a 1/0 AA 100-ft

triplex cable. The customer runs a constant-current load of

10 kVA at the nominal voltage of 120 V with 0.9 lagging

power factor. If load currents are equally distributed among

the three supplies (two 120 V and one 240 V), the service

voltage drops by 1.5% pu. If the load is distributed among

supplies non-uniformly, the service voltage can drop by even

3.5% pu. Due to this, the current practice is to maintain volt-

ages at distribution transformers within ±3% pu, to ensure that

service voltages remain within ±5% pu; see exercises of [23].

Given loads, solar generation, and grid parameters, the goal

is to decide qg to regulate voltage while satisfying the appar-

ent power constraints of (2). The setpoints for reactive power

injections from inverters can be found as the minimizer

q̃g := arg min
qg∈Q

�
(

qg; y
)

. (5)

The set Q ⊆ R
N captures the constraints in (2) for all n; and

�(qg; y) is a voltage regulation objective. A typical choice for

� is the sum of squared voltage deviations [13], [16], [19]

�s

(

qg; y
)

:=

N
∑

n=1

(vn − v0)
2 =

∥

∥Xqg + y
∥

∥

2

2
. (6)

Alternatively, the utility may want to maintain voltages within

the range of (1 ± ǫ)v0 for say ǫ = 0.03. Then, a pertinent

objective is [14]

�ǫ

(

qg; y
)

:=

N
∑

n=1

[vn − v0]ǫ =

N
∑

n=1

[

e⊤
n

(

Xqg + y
)

]

ǫ
(7)

where en is the n-th canonical vector of length N, and the

operator [ · ]ǫ is defined as

[x]ǫ:=

{

0, |x| ≤ ǫ

|x| − ǫ, otherwise.
(8)

Function �ǫ returns zero when all voltages are within lim-

its. Otherwise, it increases linearly with voltage excursions;

see [14] for distributed solvers of (5) with � = �ǫ .

It is worth noticing that X depends only on the network and

the linearization point, whereas the set Q and vector y depend

on the variable loads and solar generation, collectively denoted

as χ := [(pc)⊤ (qc)⊤ (pg)⊤]⊤.
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Ideally, the reactive control process entails three steps:

S1) Each bus communicates its (p
g
n, pc

n, qc
n) to the operator.

S2) The operator solves (5) knowing the current χ .

S3) The operator sends the optimal setpoints q̃g to

inverters.

Under variable solar generation, the process has to be

repeated on a per-minute basis. Observe that S1) establishes

N inverter-to-utility communication links, and S3) requires

another N utility-to-inverter links. Running this process

for multiple feeders can become a computationally and

communication-wise challenging task.

To adaptively adjust inverter setpoints based on χ t, affine

control rules in the form of qg(χ t) have been suggested in

[16], [17], [18]. Based on these rules, the reactive injection of

inverter n is expressed as an affine function over a subvector

of χ t. The premise is to design the rule in a quasi-stationary

fashion, but apply it in real-time. We extend linear to nonlinear

control rules enjoying varying cyber requirements after briefly

reviewing the toolbox of kernel-based learning.

III. PRELIMINARIES ON KERNEL-BASED LEARNING

Given pairs {(zs, ys)}
S
s=1 of features zs belonging to a mea-

surable space Z and target values ys ∈ R, kernel-based

learning aims at finding a function or mapping f : Z → R.

From all possible options of arbitrarily complex functions, one

needs to select a specific family where f belongs. Kernel-based

learning postulates that f lies in the function space [24]

HK :=

{

f (z) =

∞
∑

s=1

K(z, zs)as, as ∈ R

}

. (9)

This is the space of functions that can be expressed as linear

combinations of a given kernel (basis) function K : Z×Z → R

evaluated at arbitrary points zs. When K(·, ·) is a symmetric

positive definite function, then HK becomes a reproducing

kernel Hilbert space (RKHS) whose members have finite norm

‖f ‖2
K

:=
∑∞

s=1

∑∞
s′=1 K(zs, zs′)asas′ ; see [25]. Some options

for the kernel function K are provided under Examples 1–2 in

Section IV-A.

Learning f from data {(zs, ys)}
S
s=1 can be formulated as the

regularization task [24], [26]

min
f ∈HK,b

1

S

S
∑

s=1

L(f (zs), b; ys) + µ‖f ‖K (10)

where b is an intercept term. When it comes to regression,

typical choices for the data-fitting loss L include the least-

squares (LS) fit (ys − f (zs) − b)2, or the ǫ-insensitive loss

[ys − f (zs) − b]ǫ . The second term in (10) ensures f ∈ HK

and facilitates generalization over unseen data [25]. Parameter

µ > 0 balances fitting versus generalization, and is tuned via

cross-validation: i) problem (10) is solved for a specific µ

using 4/5 of the data; ii) the learned function is validated on

the unused 1/5 of the data; iii) the process is repeated 5 times

to calculate the average fitting error for this µ; and iv) the µ

attaining the best fit is selected; see [24] for details.

The advantage of confining f to lie in the RKHS HK is that

the functional optimization of (10) can be equivalently posed

as an minimization problem over a finite-dimensional vector:

The celebrated Representer’s Theorem asserts that the solution

to (10) admits the form [24]

f (z) =

S
∑

s=1

K(z, zs)as. (11)

In other words, the minimizer of (10) is described only by

S rather than infinitely many as’s. Based on (11), evaluat-

ing f (z) at the given data provides f = Ka, where f :=

[f (z1) . . . f (zS)]
⊤; matrix K ∈ S

S
++ is the kernel matrix with

entries [K]s,s′ := K(zs, zs′); and a := [a1 . . . aS]⊤.

From properties of the RKHS’s, it holds that ‖f ‖2
K

= a⊤Ka;

see [25]. For regression under an LS loss, the functional

minimization in (10) becomes the vector optimization

min
a,b

1

S
‖y − Ka − b1‖2

2 + µ

∥

∥

∥
K1/2a

∥

∥

∥

2
(12)

where K1/2 is the square root of K and y := [y1 · · · yS]⊤.

It is worth stressing that (11) applies not only to the given

data {zs}
S
s=1, but any zs′ ∈ Z . Evaluating f (z) requires know-

ing the (a, b) minimizing (12), and being able to evaluate the

kernel K(z, zs) for s = 1, . . . , S. We next use kernel-based

learning to develop nonlinear inverter control rules.

IV. KERNEL-BASED CONTROL POLICIES

The reactive injection by inverter n is modeled by the rule

qg
n(zn) = fn(zn) + bn (13)

whose ingredients (fn, zn, bn) are explained next.

Control inputs: Vector zn ∈ Zn ⊆ R
Mn is the input to con-

trol rule for inverter n. This vector may include load, solar

generation, and/or line flow measurements collected locally or

remotely. For a purely local rule, this input can be selected as

zn :=
[

q̄g
n

(

pc
n − pg

n

)

qc
n

]⊤
(14)

where the first entry q̄
g
n relates to the apparent power constraint

and has been defined in (2). The voltage vn could also be

appended in zn; however the stability of the resultant control

loop is hard to analyze even when fn is linear; see, e.g., [14],

[15], [19], [20], [27].

Selecting the controller structure, i.e., the content for each

zn, can affect critically the performance of this control scheme.

Ideally, each inverter rule can be fed all uncertain quantities,

that is the three numbers in the right-hand side of (14) across

all buses. In that case, the input vectors zn become all equal

and of size 3N. However, this incurs the communication bur-

den of broadcasting 3N values in real time. Hybrid setups with

zn’s carrying a combination of local and remote data can be

envisioned. To eliminate the effect of this trade-off between

communications and performance, this work assumes that the

content of zn’s is prespecified. The task of input selection could

be possibly pursued along the lines of sparse linear or poly-

nomial regression [19], [20], [28]; and automatic relevance

determination [29, Sec. 6.4].

Control function: Selecting the form of fn is the second

design task. To leverage kernel-based learning, the inverter
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rule fn is postulated to lie in the RKHS

HKn
:=

{

fn(zn) =

∞
∑

s=1

Kn

(

zn, zn,s

)

an,s, an,s ∈ R

}

(15)

determined by the kernel function Kn:Zn × Zn → R.

Linear rules can be designed by selecting the linear kernel

Kn(zn,s, zn,s′) = z⊤
n,szn,s′ . Nonlinear rules can be designed by

selecting for example a polynomial kernel Kn(zn,s, zn,s′) =

(z⊤
n,szn,s′ + γ )β or a Gaussian kernel Kn(zn,s, zn,s′) =

exp(−‖zn,s − zn,s′‖
2
2/γ ) with design parameters β > 0 and

γ > 0; see [24].

Intercept bn ∈ R: Although it could be incorporated into fn
by augmenting zn with a constant entry of 1, it is kept separate

to avoid its penalization through ‖f ‖Kn
[24].

A. Learning Rules From Scenario Data

The rules of (13) can be learned from scenario data indexed

by s ∈ S with S := {1, . . . , S}. Scenario s consists of the

control inputs zn,s for n ∈ N , and the associated vector ys :=

R(p
g
s − pc

s) − Xqc
s defined in (4). Evaluating rule n of (13)

under scenario s yields the inverter response q
g
n,s := q

g
n(zn,s).

Let us collect the outputs q
g
n,s from all inverters into vector q

g
s .

Note that the goal is not to fit ys by q
g
s , but to minimize the

voltage deviations Xq
g
s +ys. The control functions {fn}

N
n=1 and

the intercepts {bn}
N
n=1 accomplishing this goal can be found

via the functional minimization

min
1

S

S
∑

s=1

�
(

qg
s ; ys

)

+ µ

N
∑

n=1

‖fn‖Kn

over qg
n,s = fn

(

zn,s

)

+ bn, ∀n, s
{

fn ∈ HKn

}

, b := [b1 · · · bN]⊤

s.to
∣

∣qg
n,s

∣

∣ ≤ q̄g
n,s, ∀n, s (16)

where � is a voltage regulation objective [see (6)–(7)].

Remark 1: The proposed approach is related to [20]–[21],

where inverter rules are also trained using machine learning.

However, the aforementioned works proceed in two steps:

They first solve a sequence of OPF problems similar to (5)

to find the optimal inverter setpoints q̃g under different sce-

narios. Secondly, they learn the mapping between controller

inputs {zn,s}s∈S and optimal setpoints {q̃
g
n,s} decided by the

OPF problems. During this process, they also select which

inputs are more effective to be communicated to inverters.

The mapping is learned via linear or kernel-based regression.

On the other hand, the approach proposed here consolidates

the OPF and the learning steps into a single step: The advan-

tage is that the OPF decisions of (16) are taken under the

explicit practical limitation that q
g
n can only be a function

of zn, since inverter n will not have access to the complete

grid conditions. To get some intuition, suppose ones designs

linear control rules of known input structure using the single-

step approach of (16) with µ = 0 and the two-step approach

of [20]–[21]. The single-step approach yields rules R1, and the

two-step approach yields rules R2. Let us evaluate R1 and R2

on the training scenarios. Rules R2 are not necessarily feasi-

ble per scenario s ∈ S, whereas rules R1 are. Moreover, rules

R2 do not necessarily coincide with the minimizers of (5).

For the sake of comparison, let us assume that rules R2 turn

out to be feasible per scenario, and hence feasible for (16).

Being the minimizers of (16), rules R1 attain equal or smaller

voltage deviation cost compared to R2 over the training data.

Numerical tests in Section VI corroborate the advantage of R1

over R2 for µ > 0 and during the operational phase as well.

Different from (10), the optimization in (16) entails learning

multiple functions (one per inverter). Since inverter injections

affect voltages feeder-wise, inverter rules are naturally coupled

through � in (16). Similar multi-function setups can be found

in collaborative filtering or multi-task learning [25], [30].

Fortunately, Representer’s Theorem can be applied succes-

sively over n in (16). Therefore, each rule n is written as

fn(zn) =

S
∑

s=1

Kn

(

zn, zn,s

)

an,s. (17)

Once the coefficients {an,s} have been found, rule {fn} can be

evaluated for any zn. Similar to (11), evaluating rule fn over

the scenario data {zn,s}
S
s=1 gives

fn = Knan, ∀n (18)

where [Kn]s,s′ = Kn(zn,s, zn,s′) for s, s′ = 1, . . . , S, and an :=

[an,1 · · · an,S]⊤. The RKHS norms can be written as

‖fn‖Kn
=

√

a⊤
n Knan, ∀n. (19)

In this way, the functional minimization in (16) is cast as a

vector minimization over {an}
N
n=1 and b. The exact form of

this minimization and its properties for different � are dis-

cussed later in Section V. For now, let us clarify how the

kernel functions Kn(·, ·) effect different rule forms.

Example 1 (Affine Rules): The linear kernel Kn(zn,s, zn,s′) =

z⊤
n,szn,s′ yields affine rules. The sought functions can be

written as

fn(zn) = z⊤
n wn, ∀n. (20)

Given scenario data zn,s and ys for n ∈ N and s ∈ S, we

would like to find {wn, bn}n through (16). Collect the input

data for inverter n in the Mn × S matrix Zn := [zn,1 · · · zn,S].

According to Representer’s Theorem, the optimal wn can be

expressed as wn = Znan for some an. Evaluating the control

rule for any input zn,s yields

qn

(

zn,s

)

= fn
(

zn,s

)

+ bn = z⊤
n,sZnan + bn.

Evaluating the rule at the input data yields (18) with Kn =

Z⊤
n Zn. The squared function norm is ‖fn‖

2
Kn

= ‖wn‖
2
2 =

a⊤
n Z⊤

n Znan = a⊤
n Knan.

Example 2: Non-linear rules. For non-linear rules, trans-

form the input zn,s to vector φn,s := φn(zn,s) via a non-linear

mapping φn : R
Mn → R

�n . The entries of φn,s could be for

example all the first- and second-order monomials formed by

the entries of zn,s. The dimension �n of φn,s can be finite

(e.g., polynomial kernels) or infinite (Gaussian kernels) [29].

Then, the control function

fn(zn) = φ⊤
n wn (21)
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Fig. 1. Implementing reactive power control rules. Left: Data are collected from buses. Center: utility designs rules and downloads rules to inverters. Right:

Inverters follow control rules fed by local and/or remote data.

with wn ∈ R
�n is non-linear in zn. The developments of

Example 1 carry over to Example 2 by using Kn = �⊤
n �n

and replacing Zn by �n := [φn,1 · · · φn,S]. Depending on

the mapping φn, the vectors φn,s may be of finite or infinite

length [24]. The critical point is that fn does not depend on

φn,s’s directly, but only on their inner products φ⊤
n,sφn,s′ for

any s and s′. These products can be easily calculated through

the kernel function as φ⊤
n,sφn,s′ = Kn(zn,s, zn,s′); see [24].

Since the constraints in (16) are enforced for the scenario

data, the learned rules do not necessarily satisfy these con-

straints for all zn,s with s /∈ {1, . . . , S}. This limitation appears

also in scenario-based and chance-constrained designs [17].

Once a control rule is learned, in real-time t, it can be

heuristically projected within [ − q̄
g
n,t,+q̄

g
n,t] as

Pq̄
g
n,t

[

q
g
n,t

]

:= max
{

min
{

q
g
n,t, q̄

g
n,t

}

,−q̄
g
n,t

}

.

B. Implementing Reactive Control Rules

Our control scheme involves four steps; see also Fig. 1:

T1) The utility collects scenario data zn,s for all n and s.

T2) The utility designs rules by solving (16); see Section V.

T3) Each inverter n receives S + 1 data (an, bn) from the

utility, which describe fn.

T4) Over the next 30 minutes and at real time t, each

inverter n will be collecting zn,t′ and applying the rule

Pq̄
g

n,t′

[

S
∑

s=1

Kn

(

zn,t′ , zn,s

)

an,s + bn

]

. (22)

The aforesaid process is explicated next. Regarding T1),

scenario data should be as representative as possible for the

grid conditions anticipated over the following 30-min control

period. One option would be to use load and solar generation

forecasts. A second option would be to use historical data

from the previous day and same time, if they representative

of today’s conditions. A third alternative would be to use the

most recent grid conditions known to the utility. For example,

if smart meter data are collected every 30 min anyway, they

can be used in lieu of forecasts for the next control period.

The numerical tests of Section VI adopt the third option

and use the minute-based grid conditions observed over the

last 30-minutes as S = 30 scenarios to train the inverter rules

for the upcoming 30-minute interval. Obviously, the number of

training scenarios S does not have to coincide with the length

of the control period measured in minutes. These two param-

eters relate to loading conditions; feeder details; availability

and quality of scenario data; communication and computa-

tional resources. Selecting their optimal values goes beyond

the scope of this work.

During T4), inverter n has already received (an, bn) and

{zn,s}
S
s=1 during T3). Each zn may consist of local data and

a few active flow readings collected from major lines or

transformers. If the entries of zn are all local, the rule can

be applied with no communication. Otherwise, the non-local

entries of zn have to be sent to inverter n. If non-local inputs

are shared among inverters, broadcasting protocols can reduce

the communication overhead.

Remark 2: Suppose each inverter n knows the training data

zn,s for s ∈ S. Function fn can be described in two ways:

Either through (17) using the data described under T3); or

through (20)–(21) via wn. For the second way, vector wn has

Mn entries in the linear case and �n entries in the nonlin-

ear case. For the linear case, if Mn < S + 1, representing fn
through (20) by wn is more parsimonious. Representation (17)

becomes advantageous only when �n ≫ S + 1 under the

nonlinear case.

V. SUPPORT VECTOR REACTIVE POWER CONTROL

This section converts (16) to a vector minimization and

explores different options for �. From (18), the output of

inverter n across all S scenarios is Knan + bn1. Then, the

apparent power constraints in (16) can be written as

− q̄g
n ≤ Knan + bn1 ≤ q̄g

n, ∀n (23)

where q̄
g
n := [q̄

g

n,1 · · · q̄
g

n,S]⊤. Moreover, the vector of voltage

deviations can be expressed as

Xqg
s + ys = X

(

N
∑

n=1

enqg
n,s

)

+ ys

=

N
∑

n=1

xne⊤
s Knan +

N
∑

n=1

bnxn + ys (24)
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where xn is the n-th column of X. Substituting (19)

and (23)–(24), the optimization in (16) can be posed as a

second-order cone program (SOCP) over {an}n∈N and b.

Nonetheless, solving (16) with � = �ǫ yields optimal an’s

with several non-zero entries. This means that to describe

rule n by (22), the utility needs to communicate the entire

vector an during T3). If scenarios {zn,t}
T
t=1 are not known by

the inverter, they have to be communicated along with an as

well. The number of scenarios T may be large when learn-

ing rules under complex feeder setups. A related approach for

minimizing a convex combination of �s and power losses has

been suggested in the conference precursor of this work [31],

but inherits the same difficulty of non-sparse an,t’s.

Inspired by support vector machines (SVM), we engineer �

to obtain inverter rules described by possibly fewer scenarios:

Promoting sparse an’s alleviates the communication overhead

during step T3). To this end, we put forth the cost

�τ

(

qg; y
)

:=
[
∥

∥Xqg + y
∥

∥

2

]

τ
(25)

for some τ > 0. If scenario s yields a vector of voltage devia-

tions Xq
g
s +ys with ℓ2-norm smaller than τ , this scenario incurs

no cost. If ‖Xq
g
s + ys‖2 > τ , the voltage regulation penalty

grows with ‖Xq
g
s + ys‖2. The cost in (25) can be expressed

as an SOCP over the slack variable d

�τ

(

qg; y
)

:= min
d≥0

{

d :
∥

∥Xqg + y
∥

∥

2
≤ d + τ

}

.

Applying the same epigraph trick for the function norms,

problem (16) can be solved as the SOCP

min
1

S
d⊤1 + µγ ⊤1 (26a)

over
{

qg
s

}

, {an}, b, d ≥ 0, γ (26b)

s.to (23), (24) (26c)
∥

∥

∥
K1/2

n an

∥

∥

∥

2
≤ γn, ∀n (26d)

∥

∥Xqg
s + ys

∥

∥

2
≤ ds + τ, ∀s (26e)

where d := [d1 · · · dS]⊤ and γ := [γ1 · · · γN]⊤. The vari-

ables q
g
s can be eliminated using the substitutions of (24).

Solving (26) takes O(N3.5T3) operations with interior point-

based solvers [32]. However, the advantage of inverter control

rules is that (26) is not solved in real time. If standard inte-

rior point-based solvers are not scalable to larger grids, one

may resort to (distributed) first-order algorithms; warm-start

initializations; and cutting-plane methods.

The coefficients an’s minimizing (26) enjoy two types of

sparsity, across inverters and across scenarios. To explain the

first type of sparsity, express the second summand in the cost

of (26) as µγ ⊤1 = µ
∑N

n=1 ‖K
1/2
n an‖2. Having these non-

squared ℓ2-norms in the objective promotes block sparsity

across n, in the sense that for larger µ, some vectors an may be

set to zero. This effect is a direct consequence of block-sparse

solutions encountered in group Lasso (G-Lasso)-formulations;

see [26], [30], [33]. All inverters receive a reactive power set-

point bn, but if the optimal an becomes zero, inverter n will

not be changing its reactive injection in real-time. One may

drop the intercept bn from the control rule of (13) and the

optimization of (26), and modify the feature vector as

z′
n =

[

1 z⊤
n

]⊤
. (27)

Thus, obtaining an = 0 from (26) enables inverter selection.

The next proposition studies the second type of sparsity; see

the Appendix for a proof.

Proposition 1: Consider (16) with � = �τ and its min-

imizer in (17). If ‖Xq
g
s + ys‖2 < τ for scenario s at the

optimum, then an,s = 0 for every inverter n with |q
g
n,s| < q

g
n,s.

Proposition 1 explains how �τ promotes block sparsity

across s: If scenario s does not experience severe voltage vio-

lations, the corresponding coefficients an,s will be zero for

all inverters n that have not reached their apparent power

limit. Block sparsity across time identifies non-critical sce-

narios. Phrased in the SVM context, the so-termed ‘support

vectors’ here correspond to scenarios with significant voltage

deviations. Larger values of τ effect fewer critical scenarios.

These two forms of sparsity offer communication savings

since the related (an,s, zn,s) do not need to be communicated

to inverters. This enables training the rules for larger num-

ber of scenarios S at the same communication overhead. Note

that for fixed (µ, τ), the sparsity of an’s depends on the train-

ing data ys’s as well. If a particular sparsity goal is to be

met, the utility has to solve (26) repeatedly for various val-

ues of µ and τ . Such computations can be significantly sped

up by initializing an optimization algorithm for one value of

τ to the minimizer obtained using the previous value of τ

[24, Sec. 18.4]; however, such techniques will not be pursued

here.

Different from �τ , cost �ǫ is not expected to yield as sparse

an’s. The next claim (proved in the Appendix) explains that

even if a single bus experiences voltage deviation larger than

ǫ for scenario s, then an,s �= 0 for all n. In other words, a

voltage violation at a single bus for scenario s renders this

scenario critical for all inverter rules.

Proposition 2: Consider (16) with � = �ǫ and its min-

imizer in (17). If ‖Xq
g
s + ys‖∞ > ǫ for scenario s at the

optimum, then an,s �= 0 for all n.

VI. NUMERICAL TESTS

The novel inverter rules were tested on the IEEE 123-bus

feeder [34], converted to a single-phase grid as described

in [35]. Residential load and solar data were extracted from

the Pecan Street dataset as delineated next [2]. Minute-sampled

active load and solar generation data were collected for June 1,

2013 between 8:00–16:00. We downloaded data from the first

123 Pecan Street nodes, after excluding nodes with empty data

records. Regarding solar generation, unless stated otherwise,

75% of the buses had solar generation by excluding nodes

with bus indexes that are multiples of 4.

Load data were scaled on a per bus basis so that their daily

peak values matched 150% of the benchmark load. Since the

Pecan Street data included only active power, we drew lagging

power factors uniformly at random within [0.9, 0.95] for each

bus and kept them fixed across time. The scaling factors for

active loads were also used for scaling solar data. To allow

for reactive power compensation even at peak solar irradiance,
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TABLE I
RUNNING TIME FOR SOLVING (16) WITH T = 30

inverters were over-sized by 10% providing an apparent power

capacity of s̄
g
n = 1.1p̄

g
n for all n; see [1].

Our numerical tests included six control schemes:

C1) The optimal reactive injections computed by (5) on a

per-minute basis;

C2) The optimal reactive injections computed by (5) on a

per-minute basis assuming a 2-minute communication delay;

C3) The fixed Watt-VAR control rules of [1, (12)–(14)];

C4) The rules of (16) for linear kernels and � = �τ ;

C5) The rules of (16) for Gaussian kernels and � = �τ ;

C6) The rules of (16) for linear kernels and � = �ǫ ; and

C7) The rules of (16) for Gaussian kernels and � = �ǫ .

The input zn to inverter n consisted of local data as in (14).

Each entry of zn was centered by its daily mean and normal-

ized by its daily standard deviation. To avoid rank deficiency,

we added 10−3 · IS to all kernel matrices.

Schemes C1), C2) were solved using SDPT3 and YALMIP

with MATLAB [36], [37]. Schemes C4)–C7) were solved by

invoking the MOSEK solver directly through MATLAB [38].

Tests were run on a 2.4 GHz Intel Core i5 laptop with 8 GB

RAM. The average running time for solving (16) with T = 30

is given in Table I. It should be emphasized that although the

control rules were designed using the LDF grid model, the

voltage deviations experienced by all control rules were tested

using the full AC model.

During training, we used T = 30 scenarios to learn

the SVM-based control rules of C4)–C7). These scenarios

comprised the load and solar data observed during the last

30 minutes. During validation, the inverter control rules were

tested over the following 30 minutes. Parameters µ and γ were

selected via 5-fold cross-validation. The ranges of τ and ǫ

were empirically chosen to yield an average communication

overhead similar to the one needed by the affine rule of (20)

as discussed under Remark 2: An affine rule is described by

Mn + 1 = 4 data per inverter. If only 10% of the entries of

an are nonzero, then communicating (an, bn) entails sending

0.1 · S + 1 = 0.1 · 30 + 1 = 4 data as well. The sparsity of

an’s depends on input data along with the values of (τ, µ)

or (ǫ, µ). These parameters were set so that an’s had 10%

nonzero entries on the average across time and buses.

We next explored the trade-off between voltage devia-

tion and the sparsity of an’s for C4)–C7). The expectations

from this test were two: i) voltage deviations are expected

to increase for sparser an’s; ii) schemes C4) and C5) should

exhibit improved sparsity over C6) and C7). To validate these

hypotheses, we recorded the voltage deviations for 10 values

of τ and ǫ for C4)–C7). The average absolute voltage devia-

tion and the average percentage of non-zero coefficients were

calculated over the day and across buses, and are shown in

Figure 2. From Figure 2, the value of τ yielding a sparsity

Fig. 2. Average of absolute voltage deviation vs. sparsity for C3)–C6).

Fig. 3. Maximum absolute voltage deviation over time for 75% penetration,
obtained by the Gaussian SVM-based rules trained for � = �τ .

of roughly 11% is τ = 0.001. Figure 2 reveals three impor-

tant points. First, voltage deviations increase as an’s become

sparser as expected. Second, for a given sparsity in an’s, the

rules obtained by �τ exhibit smaller voltage deviations com-

pared to the rules obtained by �ǫ . Because of this, we focus

on the performance of C4)–C5) for the rest of this section.

Third, the Gaussian kernel-based rules attained lower voltage

deviations than the related linear kernel-based rules.

We next tested the effect of µ on inverter selection and

voltages. Larger values of µ are expected to set more an’s to

zero. To eliminate the inverters with an = 0, the parameter bn

was appended in an as delineated in (27). For a fixed value

of τ = 0.001, for scheme C4), the values of µ were obtained

using cross-validation across the day. The control rules were

designed again using 4 different values of µ. As expected,

by increasing the value of µ, the number of all-zero an’s and

the corresponding voltage deviations were increased. Figure 3

depicts the absolute voltage deviation averaged over time for

each inverter. Notice that the values of τ and µ were kept fixed,

although the training data ys’s varied across the day. Due to

this, the reported sparsity in Figure 2 is the average sparsity

across time and inverters. Moreover, the number of inverters

in Figure 3 is the average number of activated inverters across

the day. Even though the values of µ and τ can be adjusted

on a 30-min basis to meet specific sparsity requirements, we

chose to keep them fixed to simplify the exposition. In fact, the

rest of this section reports the worst-case instead of average

voltage deviations across time and for each bus.

We next compared the proposed SVM-based control rules

against the alternative schemes of C1)–C3). To this end,
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Fig. 4. Absolute voltage deviation averaged over time for 75% penetration,
obtained by the SVM-based rules trained for � = �τ .

Fig. 5. Maximum of absolute voltage deviation over time for 75%
penetration, obtained by the SVM-based rules trained for � = �τ .

voltage deviations were calculated between 8:00–16:00 for

schemes C1)–C5). Figures 4 and 5 demonstrate the average

and the maximum voltage deviations over the test period.

It can be observed from both figures that the Gaussian

SVM-based rule performs better than C1)–C3) due to its abil-

ity to capture non-linear behaviors. Although C3) needs no

communication, it violates the ANSI-C.84.1 standard volt-

age constraints. Furthermore, despite the high communication

needed, scheme C2) shows no superiority in performance over

C5) and corroborates the need for real-time response to system

inputs.

In all previous tests, the rules were fed with locally recorded

data. To evaluate the advantage of adding remote control

inputs, we appended the values of active power flows on the

lines feeding buses 1, 16, and 51, to all input vectors zn. The

daily maximum and the average voltage deviations attained

by C1)–C5) are depicted in Figures 6 and 7, respectively.

As expected, the results suggest that adding remote inputs to

the rules improves the grid voltage profile at the expense of

increased inter-network communication.

As mentioned in Section IV-B, the length of the control

period (in minutes) over which rules remain constant does

not have to agree with the number of scenarios S used for

training the rules. To evaluate how the control rules perform

for longer control periods, Figure 8 compares the voltage

deviations obtained by training rules using S = 30 scenar-

ios, but keeping them unaltered over 30, 45, and 60 minutes.

As expected, voltage regulation deteriorates as rules remain

unchanged for longer periods.

Fig. 6. Absolute voltage deviation averaged over time for 75% penetration
with remote inputs, and the SVM-based rules trained for �τ .

Fig. 7. Maximum absolute voltage deviation over time for 75% penetration
obtained with remote inputs and the SVM-based rules trained for � = �τ .

Fig. 8. Maximum absolute voltage deviation over time for 75% penetration
obtained using the SVM-based rules applied over 30, 45, and 60 minutes.

All previous tests assumed solar penetration of 75%. We

also tested the performance of C1)–C5) under penetrations

of 50% and 25%. To simulate 50% penetration, solar genera-

tion and smart inverters were installed only in buses with even

indexes. Likewise, to simulate 25% penetration, we considered

buses whose indexes were multiples of 4. Figures 9 and 10

depict the attained maximum absolute voltage deviations,

which apparently decrease with decreasing solar penetration.

For lower penetrations, the Gaussian-based rule preserves its

superior voltage profile over the other schemes.

Schemes C4) and C5) were also tested under less commu-

nication by scaling down the sparsity in an’s by a factor of

10: Voltage deviations were evaluated for τ = 0.03 corre-

sponding to 1.4% non-zero entries for an’s on the average.
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Fig. 9. Maximum absolute voltage deviation over time for 50% penetration
obtained using the SVM-based rules trained for � = �τ .

Fig. 10. Maximum absolute voltage deviation over time for 25% penetration
obtained using the SVM-based rules trained for � = �τ .

Fig. 11. Max. absolute voltage deviation over time for 75% penetration
obtained using SVM-based rules trained for � = �τ with τ = 0.03.

Figure 11 demonstrates the maximum absolute voltage devia-

tion for C1)–C5). Even with fewer coefficients communicated,

the voltage constraints of ANSI-C.84.1 were still satisfied.

The last set of numerical tests compares the developed

single-step approach with the two-step approach of [20]–[21];

see also Remark 1. We used both approaches to design local

linear control rules for the IEEE 13-bus feeder [23], under

the voltage deviation cost � = �ǫ with ǫ = 0.001. The top

and center panels of Fig. 12 show respectively the maximum

and average voltage deviation per bus computed across time.

The bottom panel shows the voltage deviation cost �ǫ , time-

averaged per control period. The bottom panel also shows

the voltage deviation cost �τ with τ = 0.01 attained upon

training both rules using �τ instead of �ǫ . Similar results

were obtained for other values of ǫ and τ . According to these

Fig. 12. Comparison between the proposed single-step learning approach
(rules R1), and the two-step learning approach of [20]–[21] (rules R2).

tests, the single-step approach achieved: 1) lower maximum

per-bus voltage deviations; 2) lower average per-bus voltage

deviations; and 3) smaller voltage deviation costs during the

operational phase.

VII. CONCLUSION

A novel approach for designing inverter control rules has

been put forth. It relies on both data-based learning and physi-

cal grid modeling. Inverter rules are not learned independently

using input/output pairs of the OPF problem. Instead, they

are learned jointly by posing the related OPF problem as a

multi-function learning task. Because of the way voltage devi-

ations couple inverter outputs, the conventional support vector

machine approach fails to yield sparse rule descriptions. We

have engineered a voltage deviation cost to identify ‘support

scenarios,’ that is a few scenarios with non-zero coefficients

for most of inverter rules. The devised control rules were tested

using on a benchmark feeder using the exact AC model. The

novel scheme attained superior voltage regulation performance

compared to preset local rules, and oftentimes comparable

performance to an optimal inverter dispatch delayed by 2 min-

utes. The numerical tests have further corroborated the benefits

of nonlinear rules with non-local inputs, and explored the
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trade-off between voltage regulation performance and sparsity.

Finally, this work motivates several questions. On the imple-

mentation side, testing the novel formulations on multiphase

grids along with capacitor banks, voltage regulators, and ZIP

loads, is of practical interest. On the analytical side, chance-

constrained formulations; studying the stability of nonlinear

rules with voltages as inputs; using kernels to learn functions

with constraints; and selecting non-local control inputs; are

some open and interesting questions.

APPENDIX

Proof of Proposition 1: Consider first the linear rules of (20),

for which q
g
n(zn) = z⊤

n wn + bn for all n. Problem (16) with

� = �τ can be reformulated as

min
1

S
d⊤1 + µγ ⊤1 (28a)

over {wn}
N
n=1, b, d ≥ 0, γ (28b)

s.to −q̄g
n ≤ Z⊤

n wn + bn1 ≤ q̄g
n, ∀n (28c)

‖wn‖2 ≤ γn, ∀n (28d)
∥

∥Xqg
s + ys

∥

∥

2
≤ ds + τ, ∀s. (28e)

Express voltage deviations at s in terms of wn’s and b

Xqg
s + ys =

N
∑

n=1

xnz⊤
n,swn +

N
∑

n=1

bnxn + ys.

Let us next introduce the Lagrange multipliers [32]:

• λn ≥ 0 and λn ≥ 0 corresponding to the linear

inequalities in (28c) for all n;

• (un, ρn) related to constraint (28d) for all n; and

• (µs, σs) related to constraint (28e) for all s.

Collect multipliers in M := [µ1 · · · µS] ∈ R
N×S, and vec-

tors ρ := [ρ1 · · · ρN]⊤ and σ := [σ1 · · · σS]⊤. After some

algebra, the Lagrangian of (28) can be written as

L = d⊤

(

1

S
1 − σ

)

+ γ ⊤(µ1 − ρ)

+

N
∑

n=1

w⊤
n

[

Zn

(

λn − λn − M⊤xn

)

− un

]

+

N
∑

n=1

bn

[

(

λn − λn − M⊤xn

)⊤
1

]

−

N
∑

n=1

(

λn + λn

)⊤
q̄g

n −

S
∑

s=1

µ⊤
s ys − τσ⊤1. (29)

Minimizing L over the primal variables provides

σ ≤ 1 (30a)

ρ = µ1 (30b)

un = Zn

(

λn − λn − M⊤xn

)

, ∀n (30c)

(

λn − λn

)⊤
1 = x⊤

n M1, ∀n. (30d)

From (30), the dual of (28) becomes the SOCP problem

max −

N
∑

n=1

(

λn + λn

)⊤
q̄g

n −

S
∑

s=1

µ⊤
s ys − τσ⊤1 (31a)

over
{

λn,λn

}N

n=1
,
{

µs, σs

}S

s=1
(31b)

s.to λn ≥ 0, λn ≥ 0, (30d), ∀n (31c)
∥

∥

∥
Zn

(

λn − λn − M⊤xn

)
∥

∥

∥

2
≤ µ, ∀n (31d)

∥

∥µs

∥

∥

2
≤ σs ≤ 1, ∀s. (31e)

It is not hard to check that (28) and (31) are strictly feasi-

ble, so strong duality holds and both problems are solvable.

The optimal primal and dual variables satisfy complementary

slackness SOCPs; see [32, Sec. 4.1]. For constraints (28d)

and (31d), these conditions identify three cases:

c1) If ‖wn‖2 < γn, then ‖un‖2 = ρn = 0;

c2) If ‖un‖2 < ρn, then ‖wn‖2 = γn = 0; or

c3) If ‖wn‖2 = γn and ‖un‖2 = ρn, then γnun = −ρnwn.

Recall that ρn = µ > 0 from (30b). Moreover, it is not hard

to see that ‖wn‖2 = γn at the optimum of (28). Then, case c1)

cannot occur. The other two cases entail that wn = αnun for

some αn ≤ 0. Substituting un from (30c), and evaluating rule

n at the tested scenarios gives

qg
n = Z⊤

n wn + bn1

= αnZ⊤
n Zn

(

λn − λn − M⊤xn

)

+ bn1

= Knan + bn1.

Here we identify Kn = Z⊤
n Zn and the coefficients in (22) as

an := αn

(

λn − λn − M⊤xn

)

. (32)

Focus now on the complementary slackness for (28e)

and (31e). The equivalent to condition c1) reads now as: c1’)

If ‖Xq
g
s + ys‖2 < ds + τ , then ‖µs‖2 = σs = 0.

Suppose the optimal primal variables satisfy ‖Xq
g
s +ys‖2<τ .

Then ds = 0 follows from (28), and c1’) gives ‖µs‖2 = σs=0.

The s-th entry of an in (32) is

an,s = αn

(

λn,s − λn,s − µ⊤
s xn

)

. (33)

Complementary slackness for (28c) implies that λn,s = λn,s=0

if |q
g
n,s| < q̄

g
n,s at the optimal, thus proving the claim for linear

rules. The result in (33) holds for nonlinear rules too. The

analysis carries over upon matching the length of wn with the

length of φ(zn), and substituting Z⊤
n Zn by Kn.

Proof of Proposition 2: Rewrite (16) for � = �ǫ as

min
1

S

S
∑

s=1

d⊤
s 1 + µγ ⊤1 (34a)

over {wn}
N
n=1, b, d ≥ 0, γ (34b)

s.to −q̄g
n ≤ Z⊤

n wn + bn1 ≤ q̄g
n, ∀n (34c)

‖wn‖2 ≤ γn, ∀n (34d)

− ds − ǫ1 ≤ Xqg
s + ys ≤ ds + ǫ1, ∀s. (34e)

The Lagrangian multipliers of (34) are similar to shose of (28),

except for (µs, σs) being replaced by (µ
s
,µs) and collected

in M := [µ
1

· · · µ
S
] and M := [µ1 · · · µS]. Minimizing the

Lagrangian of (34) over the primal variables yields

un = Zn

[

λn − λn +
(

M − M
)⊤

xn

]

, ∀n.
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Similar to Prop. 1, the s-th entry of an becomes

an,s = λn,s − λn,s +
(

µs − µ
s

)⊤
xn.

If the optimal primal variables satisfy ‖Xqs + ys‖∞ > ǫ, then

ds �= 0 and accordingly, complementary slackness for (34e)

implies that µs �= 0 or µ
s
�= 0.
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