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Abstract—We propose a real-time algorithm that improves
the voltage stability of a power network by rearranging the
consumption level of loads participating in demand response
(DR). Towards this end, we revisit an optimization problem
that seeks to maximize the smallest singular value (SSV) of
the power flow Jacobian subject to nonconvex power flows and
limit constraints on voltages of PQ buses, real power generation
of the slack generator, and reactive power generation of the
slack and PV buses. Instead of linearizations or relaxations, we
penalize the limit constraints and rely on network measurements
to derive an online projected gradient update to determine DR
decisions. The updated DR decisions are applied to the power
network per iteration and latest measurements are fed back
to the algorithm. Simulations on several standard transmission
networks demonstrate that the proposed methodology improves
the value of the SSV of the power flow Jacobian per time step
while avoiding significant bound violations.

Index Terms—Voltage stability, smallest singular value, de-
mand response, feedback-based optimization

I. INTRODUCTION

After a major disturbance, such as loss of a transmission line

or a generation unit, power system loads attempt to restore

power consumption to their pre-disturbance values. If the

disturbance is not remedied, such a process potentially calls

for power transfers beyond the transmission capability of the

network and its generator units. At this stage, uncontrollable

voltage drops evince at various ends of the network. This

phenomenon is referred to as voltage instability, and if not

prevented, may result in a network-wide voltage collapse [1].

For instance, voltage instability appears to have been the pri-

mary technical cause of the 2003 North American blackout [2].

In order to detect and prevent voltage instability, various

voltage-stability indices (VSIs) have been proposed, which, in

one way or another, compute a notion of distance between

the power grid operating point and a point at which voltage

collapses [3]. A popular choice are VSIs based on the com-

putation of maximum power transfer limits [4], [5]. Given an

initial operating point, these indices are obtained by tracing

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS-1610732 and ECCS-1653706, and ECCS-
1847125.

the power flow solution through continuation power flow, by

e.g., scaling of loads or generations [6].

An equally popular choice are VSIs that measure the

distance to singularity of the power flow Jacobian [7]. Such

indices encompass arbitrary changes in loads or generations

and rely on the observation that during a voltage collapse, the

Jacobian becomes singular. In this group, the smallest singular

value (SSV) of the power flow Jacobian stands out [8].

Of course, efficient computation of the SSV remains a prac-

tical challenge [9]. Recently, more computationally tractable

Jacobian-based VSIs have been considered. For example, the

work of [10], for a VSI based on a sufficiency condition on

the Jacobian nonsingularity that appears as a conic inequality

for constant loads, or the VSI proposed in [11] that affords a

completely distributed computation in distribution networks.

Depending on the application, a carefully-selected VSI may

enter an optimal power flow (OPF) problem as an objective

so that a maximum distance to voltage collapse is ensured,

for example, [12] and [13, Eq. (10)], or as a constraint, so

that the optimal steady-state operating point is ensured to be a

threshold distance from voltage collapse [10], [14], [15]. These

works ultimately rely on actions of generators, capacitors,

and synchronous condensers to deliver their purpose. Load-

shedding may also be viable as a last resort [16].

Generator response time to disturbances are restricted by

ramp constraints. Therefore, recent research has looked at

demand response for voltage stability improvement, based on

the premise that flexible loads can react more quickly [17]–

[19]. While the total power consumption remains constant to

maintain system frequency, a different loading pattern can be

immediately coordinated that is more favorable for voltage sta-

bility. Based on AC power flow linearizations and computation

of SSV sensitivities, an iterative linear programming algorithm

is designed in [17]–[19], to this end.

In this paper, we consider a similar problem. Specifically,

we consider maximizing the SSV of the power flow Jacobian

subject to bound constraints on network voltages, real and re-

active power generation, as well as the nonconvex power flow

equations. The constant total-demand constraint of demand-

responsive loads are also included. Our solution methodology,

nevertheless, is markedly different from [17]–[19]. Instead of978-1-7281-0407-2/19/$31.00 c©2019 IEEE



power flow linearizations, we exploit the formulation to derive

an online gradient projection scheme to approximately solve

the original nonconvex problem. The proposed algorithm relies

on measurements to calculate the required updates, but it is

applied per-iteration to the power network and manages to

improve the SSV in real time.

There has recently been a surging interest in feedback-based

optimization methods for OPF that all leverage network mea-

surements to calculate real-time control commands that must

be exerted back on to the network. The basis for algorithm

design in these methodologies seem to fall in three distinct

categories. The first category relies on the grid as an implicit

power flow solver [20]–[22], while using a model-based gra-

dient calculation via the implicit function theorem to update

controller setpoints. The second category [23]–[26] leverages

a linearized form of power flow equations—valid for distri-

bution networks—to derive real-time controller updates. The

design usually incorporates network measurements in place of

uncontrollable variables per iteration. Finally, a third category

applies the projected gradient-descent to a constrained opti-

mization problem on the power flow manifold [27], [28]. The

controller updates obtained are then applied to the nonlinear

physical network. While we acknowledge that there might

be theoretical connections between the three categories of

feedback-based optimization methods for OPF, we do not

explore this here. We highlight, however, that our construction

coalesces with the first category [20]–[22]. The projection

step, however, is modified to handle the constant total-demand

constraint of demand response.

The organization of this manuscript is as follows. Section II

describes the network model, lays out the objective and con-

straints of an optimization for voltage-stability enhancement

via demand response. Section III develops reformulates the

problem and proposes a gradient projection algorithm to solve

it in real-time. Numerical experiments on three standard power

networks are carried out in Section IV.

Notation: For a set A (denoted by the Caligraphic typeset

of A), its cardinality is denoted by the italic capital A. Column

vectors are denoted by lower-case letters. For vector x, index

set A, and an index i ∈ A, denote respectively by xi and xA,

the element of x corresponding to the index i and a vector

of size A comprised of xi’s for all i ∈ A. For a vector x,

[x] denotes a diagonal matrix with x on the diagonal. For a

matrix X , X ′ and λ0(X) denote its transpose and smallest

eigenvalue, respectively.

II. NETWORK MODEL AND DESCRIPTION OF THE PROBLEM

A power transmission network is mathematically modeled

by an undirected, connected graph, denoted here by the two-

tuple (N , E) where N is the set of nodes (buses) and E ⊆ N×
N is the set of edges (transmission lines and transformers). It

is typical to partition the set of nodes as N = Q ∪ V ∪ {s}
where the sets Q and V respectively collect PQ and PV buses

while s denotes the index of the slack bus. Furthermore, we

suppose that a set D ⊆ N \{s} collects buses that participate

in demand response.

Let θ, v, p, and q respectively denote the vector of voltage

angles, voltage magnitudes, net real power injections, and net

reactive power injections, collected for all buses in N . Let G+
jB be the complex network admittance matrix. It is convenient

to define the following power balance functions:

p(θ, v, p) := [v][cos θ]G[v] cos θ + [v][sin θ]B[v] cos θ

+[v][sin θ]G[v] sin θ − [v] cos θB[v] sin θ − p (1a)

q(θ, v, q) := [v][sin θ]G[v] cos θ − [v] cos θB[v] cos θ

−[v] cos θG[v] cos θ − [v][sin θ]B[v] cos θ − q. (1b)

Let us further denote respectively by pg, qg, pd, and qd the

vectors of real and reactive power generations and demands

collected for all buses in N . Then, the power flow equations

are given by [6], [29]:

p(θ, v, pg − pd) = 0 (2a)

q(θ, v, qg − qd) = 0. (2b)

During a demand response operation, the power-flow operating

point y = (θ, v, pg, qg, pd, qd) must satisfy the following

constraints:

θi = θsps i = s (3a)

vi = vspi i ∈ V ∪ {s} (3b)

vmin
i ≤ vi ≤ vmax

i i ∈ Q (3c)

pgi = pspgi i ∈ Q ∪ V (3d)

pmin
gs ≤ pgi ≤ pmax

gs i = s (3e)

qgi = qspgi i ∈ Q (3f)

qmin
gi ≤ qgi ≤ qmax

gi i ∈ V ∪ {s} (3g)

pdi
= pspdi

i ∈ N \ D (3h)
∑

i∈D

pdi
=
∑

i∈D

pspdi
, pdi

≥ 0 i ∈ D (3i)

qdi
= µsp

i pdi
i ∈ N (3j)

We now explain constraints in (3). Constraint (3a) implies that

the slack bus serves as an angle reference. Constraint (3b)

requires that the voltage magnitude of all the PV buses and the

slack bus must remain equal to the setpoint vspi for i ∈ V∪{s}.
Voltages of PQ buses are allowed to change as long as they

remain within acceptable bounds as determined by (3c). Con-

straint (3d) requires that the real power generated by PQ and

PV buses do not change while constraint (3e) requests that the

real power of the slack bus may change within an acceptable

bound. We highlight here that we implicitly assume that PV

and PQ generators are not generator reserves and cannot

change their real power outputs during a disturbance while

the slack bus has access to a frequency-response reserve if

needed (such an assumption is also implicitly used in [17, Eq.

(1m)]) . Constraints (3f) and (3g) similarly lay out the reactive

power requirements for PQ and non PQ buses, respectively.

Demand constraints are furnished by (3h)–(3j). Explicitly,

for buses not participating in demand response, the real power

demand must remain equal to its setpoint pspdi
. For buses

participating in demand response, (3i) implies that while the



individual real power demands may vary, the total real power

consumption must remain constant (this is due to frequency

stability considerations, see e.g., [17]). Therefore, (3i) provides

some flexibility for i ∈ D. Finally, the value of reactive power

demand must be such that the power factor remains constant.

This requirement is dictated by constraint (3j), where µsp
i is a

constant that is determined by the load power factor.1

Consider the following non-convex optimization problem,

similar to that of [17]:

minimize
y

− λ0(J(θ, v)
′J(θ, v)) subject to (2) and (3), (4)

where the matrix J , referred to as the power flow Jacobian,

is given below as an element of R(2Q+V )×(2Q+V ):

J(θ, v) =

[

∂pQ∪V

∂θQ∪V

∂pQ∪V

∂vQ
∂qQ

∂θQ∪V

∂qQ

∂vQ

]

. (5)

Problem (4) attempts to improve the voltage stability margin

of the transmission network by maximizing the squared value

of the smallest singular value (SSV) of J .

III. SOLUTION METHODOLOGY

In this Section, we propose a projected gradient-descent

algorithm to approximately solve (4). The proposed algorithm

features simple updates so that it can be applied to the

transmission network per-iteration in a real-time fashion. The

construction of the proposed gradient projection algorithm

is similar in principle to those used in the real-time OPF

literature [20]–[22]. The projection step, however, is modified

for demand response to handle the simplex constraint (3i).

To derive the proposed gradient projection algorithm, it is

first required to introduce an alternative formulation to (4)

that only depends on the real power consumption of demand-

responsive loads. This is pursued in the next subsection.

The description of the real-time projected gradient-descent

algorithm is postponed to Section III-B.

A. Reformulation of problem (4)

Consider the operating point y = (θ, v, pg, qg, pd, qd). In the

context of problem (4), it turns out that the sole controllable

quantity during demand response is pdi
for i ∈ D. This is

explained next. The voltage angle of the slack bus, the voltage

magnitude of the slack and PV buses, real power generation

of PV and PQ buses, reactive power generation of PQ buses,

real and reactive power demand of buses not participating in

demand response (3a), (3b), (3d), (3f), (3h), and (3j). Further-

more, as dictated by constraint (3j), reactive power demand of

buses participating in demand response are decided via scaling

the corresponding real power demand by the constant µsp
i .

Finally, voltages of PQ buses, real power generation of the

slack bus, as well as reactive power generation of the PV

buses and the slack bus are consequences of other network

1For brevity, we have refrained from introducing in (3) the thermal loss
limits for all lines (i, j) ∈ E . We highlight, however, that the techniques used
in this paper still carry out even if thermal limits are accounted for.

decisions.2 In other words, there is no actuator “knob” that

can fix these values to a desired command value. Therefore,

the only remaining quantity is the real power demand of

the buses participating in demand response. In essence, upon

deciding the value of pD := pdD
, the physics of the system

automatically calculates the value of voltages of PQ buses vQ,

real power generation of the slack bus pgs , as well as reactive

power generation of the PV buses and the slack bus qgV∪{s}
.

This argument is formalized by using the implicit function

theorem next.

Let us denote by x the uncontrollable quantities of an

operating point whilst subsuming as parameters any fixed

setpoints due to constraints (3a), (3b), (3d), (3f), (3h), and

(3j) and further substituting the value of qdi
by µsp

i pdi
for

i ∈ D. We then have

x = (θQ∪V , vQ, pgs , qgV∪{s}
). (6)

Notice that x ∈ R
2N and pD ∈ R

D where D < N . Therefore,

we shall interpret the power flows (2) as

f(x, pD) = 0, (7)

where the function f(.) : R2N+D → R
2N in (7) is continu-

ously differentiable [cf. (1)]. Suppose that ∂f/∂x evaluated at

the operating point (x0, p0D) is invertible. Then, by the implicit

function theorem [30, Theorem 9.28], x is a locally one-to-one

function of pD in a neighborhood P of p0D, that is

x := x(pD), pD ∈ P (8)

whose Jacobian at p0D is computed as follows:

∂x

∂pD

∣

∣

p0
D

= −
(

∂f

∂x

∣

∣

(x0,p0
D)

)−1
∂f

∂pD

∣

∣

(x0,p0
D)
. (9)

Equation (9) is used later in this paper for computation of the

gradient in our algorithm.

Leveraging (8), problem (4) is equivalent to the following

problem for pD ∈ P:

minimize
pD

−λ0(J(pD)
′J(pD)) (10a)

subject to (3i) and

vmin
i ≤ vi(pD) ≤ vmax

i , i ∈ Q (10b)

pmin
gs ≤ pgs(pD) ≤ pmax

gs (10c)

qmin
gi ≤ qgi(pD) ≤ qmax

gi , i ∈ V ∪ {s}, (10d)

where we have slightly abused notation to denote by

J(pD) the implicit dependence of J(θ(pD), v(pD)) on pD
via (8). Constraints (10b)-(10d) align with the feasibility

constraints encountered in a typical OPF problem. Since con-

straints (10b), (10c), and (10d) are not directly enforceable—

as vQ, pgs , and qgV∪{s}
are not directly controllable by the

2Recall that in a power flow problem in transmission networks, the real
and reactive power generation of the slack bus as well as the reactive power
generation of PV buses are not specified and are eventually determined by
the power flow solution (θ∗

Q∪V
, v∗

Q
).



operator—the following penalized problem is considered [31,

Section 6.2]:

minimize
pD

Φ(pD;µ) := λ0

{

J (x(pD))
′
J (x(pD))

}

+
∑

i∈Q

µv

{

φ (vi(pD)− vmax
i ) + φ

(

vmin
i − vi(pD)

)}

+ µp

{

φ
(

pgs(pD)− pmax
gs

)

+ φ
(

pmin
gs − pgi(pD)

)}

+
∑

i∈V∪{s}

µq

{

φ
(

qgi(pD)− qmax
gi

)

+ φ
(

qmin
gi − qgi(pD)

)}

subject to (3i), (11)

where the penalty function

φ(z) = max{z, 0}2 (12)

is used for each bound constraint along with the penalty

parameters in µ := (µv, µp, µq) for (10b), (10c), and (10d).

We acknowledge here that finding an exact solution to (10)

requires solving (11) for increasing values of parameter µ.

However, even by a fixed moderate value of µ, numerical

tests indicate satisfactory performance in maintaining the

constraints.

B. Real-time projected gradient-descent

We solve problem (11) by the following projected gradient-

descent algorithm:

p
(k+1)
D = ΠP

(

p
(k)
D − α(k)

(

∂Φ(pD;µ)

∂pD

∣

∣

p
(k)
D

)′
)

(13)

where P is the set such that (3i) is satisfied:

P := {pD|pD ≥ 0,1′pD =
∑

i∈D

pspdi
} (14)

In (13), Π is the projection operator and α(k) is a step-size

parameter. Equation (13) may be equivalently reformulated

as an Euclidean projection onto a probability simplex. Such

a problem is solved efficiently, either by a one-dimensional

bisection on the dual variable [32, Problem 1] or by a non-

iterative scheme which requires sorting [33], [34].

A high-level schematic of the proposed framework is given

in Fig. 1. At time step k, measurements x(p
(k)
D ) are obtained

from the power network. Recall that these measurements

pertain to quantities in (6), namely, voltages of PQ buses,

real power of the slack bus, and reactive power of the slack

and PV buses. Upon receiving the measurements x
(

p
(k)
D

)

,

the differentiation unit computes the values of the gradient
(

∂Φ(pD;µ)
∂pD

∣

∣

p
(k)
D

)′

, given the constant penalty parameters µ.

The projection unit can then broadcast the update (13) to

individual loads to encourage appropriate modification in their

consumption level at iteration k + 1.

We note that after the update x
(

p
(k)
D

)

, the value of the

objective function Φ(p
(k)
D ;µ) can be immediately evaluated

by the objective of (11). However, the major hurdle of our

approach is the computations required in the differentiation

unit. Specifically, computing
∂Φ(pD ;µ)

∂pD
is challenging. The

Project

Differentiate

Nonlinear network

p
(k+1)
D

Measure
x(p

(k)
D )

∂Φ(pD ;µ)

∂pD

Fig. 1. A high-level schematic of the proposed framework.

Algorithm 1 Projected gradient-descent for maximizing the

SSV of the power flow Jacobian

1: Select step-size parameter α, penalty parameters µ
2: Select objective improvement threshold ǫ

3: Set Φ(p
(−1)
D ;µ) = +∞ and k = 0

4: Gather measurements x(p
(0)
D )

5: Compute Φ(p
(0)
D ;µ) and

∂Φ(pD ;µ)
∂pD

∣

∣

p
(0)
D

6: while Φ(p
(k−1)
D ;µ)− Φ(p

(k)
D ;µ) > ǫ do

7: Apply update (13)

8: k ← k + 1
9: Gather measurements x(p

(k)
D )

10: Compute Φ(p
(k)
D ;µ) and

∂Φ(pD ;µ)
∂pD

∣

∣

p
(k)
D

11: end while

latter computation requires knowledge of two derivatives: ∂λ0

∂pD

and
∂φ(x)
∂pD

. For the term ∂λ0

∂pD
, we use the known results on

eigenvalue sensitivity [17]:3

∂λ0

∂pdi

=
∑

j

w0
∂ (J(x)′J(x))

∂xj

∂xj(pD)

∂pdi

u0, i ∈ D. (15)

In (15), w0 and u0 are respectively the normalized left and

right eigenvectors of the matrix J(x)′J(x). Elements of the

vector x are indexed by j. The term
∂(J(x)′J(x))

∂xj
is computed

by differentiating the Jacobian in (5) with respect to the

element xj . The term
∂xj(pD)
∂pdi

is computed using (9).

For the penalty functions, the gradient
∂φ(x)
∂pD

is computed by

noting that
∂φ(z)
∂z

= 2max{z, 0} and then using (9). Notice

that the values of ∂f
∂x

and ∂f
∂pD

in (9) are simply computed

by differentiating the expression in (1) correspondingly. Al-

gorithm 1 summarizes the steps of our proposed method to

maximize the SSV of the power flow Jacobian.

Algorithm 1 continues as long as the decrease at iteration

k is greater than a predetermined value of ǫ. The next section

numerically corroborates on several standard transmission test

cases that demand response, per Algorithm 1, succeeds in

improving the SSV of the power flow Jacobian.

IV. NUMERICAL EXPERIMENTS

The 9-bus, 57-bus, and 118-bus transmission networks from

MATPOWER [6] are considered here. Each test case is mod-

ified to contain a transmission line contingency. To this end,

3This derivation implicitly assumes that the considered eigenvalues of
matrix J ′J are simple.



TABLE I
SUMMARY OF SSV IMPROVEMENT VIA REAL-TIME DEMAND RESPONSE

DURING A SUSTAINED DISTURBANCE

Network SSV before DR SSV after DR Improvement (%)

9-bus 0.444546 0.480698 8.13

57-bus 0.177577 0.203806 14.77

118-bus 0.153033 0.158482 3.56

Fig. 2. Objective value and the SSV of the 57-bus network in each time step
until the stopping criterion is met. Each iteration of the algorithm occurs in
real-time and improves the SSV.

respectively for the 9-bus and 57-bus networks, we remove

from service transmission lines (9, 4) and (11, 13). For the

118-bus network, transmission lines (22, 23) and (23, 24) are

removed. Penalty parameters of µv = µp = 1 and µq = 0.1
are chosen so that during demand response violations of

reactive power limits are penalized less than those of voltage

magnitude and real power. For Algorithm 1, we select a

diminishing step-size of 10/
√
k and the stopping threshold

value of ǫ = 0.001Φ(p
(0)
D ;µ).

The SSV computed for the networks with the previously-

mentioned transmission line contingencies prior to and after

applying the DR algorithm are respectively given in Columns

2 and 3 of Table I. Upon applying Algorithm 1, the SSV

is ultimately improved. The improvement percentages are

given in Column 4 of Table I. Notice that the improvement

percentage is as high as 14.77% for the 57-bus network.

The evolution of the real-time Algorithm, for the 57-bus

network, is shown in Figure 2. The x-axis represents time

and we assume that each iteration k of the Algorithm occurs

within one time unit. The left and right y-axes respectively

denote the objective value Φ(p
(k)
D ;µ) and the SSV at iteration

k. We observe that per iteration k, the value of the objective

value decreases while the SSV of the power network increases.

The algorithm terminates after 10 iterations or time steps,

indicating that the desired stopping criterion is met.

Changes in demand response decisions, also for the 57-bus

network, are demonstrated by Fig. 3. For each bus i ∈ D, the

value of p
(k)
D −p

(0)
D is plotted versus the time-step (k). For all

buses participating in demand response, individual real power

consumptions change over time. However, the total power

demand of buses i ∈ D remains unchanged, as indicated by

the blue crosses in Fig. 3.

Since our demand response program is implemented in

real-time, constraint violation is inevitable. Using the penalty

function (12), for the iteration set K = {1, . . . , k∗} where k∗

Fig. 3. Coordination of changes in real power demand from the initial pre-
disturbance value. The cross markings indicate the total real power demand
changes per time step. It is seen that at every time-step the total change in
real power demand is zero.

TABLE II
INFEASIBILITY OF UPPER BOUND CONSTRAINTS

Network vmax

inf.
(pu) pmax

inf.
(pu) qmax

inf.
(pu)

9-bus 0.0022 0.0000 0.0000

57-bus 0.0103 0.0000 0.0379

118-bus 0.0001 0.0000 0.1417

denotes the iteration at which the stopping criterion is met,

the following infeasibility indices are computed:

zmax
inf. = max

i,k

√

φ
(

zi(p
(k)
D )− zmax

i

)

(16a)

zmin
inf. = max

i,k

√

φ
(

zmin
i − zi(p

(k)
D )
)

(16b)

In (16) the variable z and the index i represent the correspond-

ing values outlined in constraints (10b), (10c), and (10d).

By analyzing the infeasibility indices provided in Tables II

and III we find that Algorithm 1 does not significantly

violate constraints (10b), (10c), and (10d). In fact, the real

power provided from the slack bus always remains within

its acceptable bounds at all times since pmin
inf = pmax

inf = 0
while the maximum voltage violation for the PQ buses is

insignificant (below 0.0103 pu for all networks). The only

major violation seems to pertain to the reactive power limits,

cf. the value of 0.1417 pu for the 118-bus network. We

investigate this constraint violation next.

In particular, In Fig. 4 we depict, for the 118-bus network,

the upper bound violation of those generators that have, in

any time step, violated their maximum limit. Immediately after

the contingency at time step 0, generator 19 violates its upper

reactive power limit as a consequence of network conditions.

During the evolution of the algorithm, other generators grad-

ually participate in providing reactive power and relieve the

burden from generator 19. At all time steps, out of the 54

generators of the 118-bus network only 8 generators were

required to increase their reactive power consumption.

V. CONCLUSION

Demand response is used in this paper to improve power

system voltage stability. As the total power demand stays con-

stant to maintain system frequency, individual buses coordinate

their consumption levels to maximize the SSV of the power



TABLE III
INFEASIBILITY OF LOWER BOUND CONSTRAINTS

Network vmin

inf.
(pu) pmin

inf.
(pu) qmin

inf.
(pu)

9-bus 0.0000 0.0000 0.0000

57-bus 0.0000 0.0000 0.0000

118-bus 0.0000 0.0000 0.0446

Gen. at bus  19

Gen. at bus  56

Gen. at bus  70

Gen. at bus  74

Gen. at bus  76

Gen. at bus  77

Gen. at bus  85

Gen. at bus  92

Gen. at bus 104

Fig. 4. Max. generator violation for the 118-bus network (only those
generators that have ever violated the maximum limit are shown).

flow Jacobian as an index for voltage stability. The optimiza-

tion problem is non-convex due to the power flow equations

and the dependence of SSV on the operating point. The novelty

of our work lies in exploiting the formulation to derive an

efficient online gradient projection scheme that approximately

solves the original non-convex problem. Numerical studies on

sample test networks are indicative that applying our algorithm

in real time leads to SSV improvement. Future work will

focus on expanding the formulation to include reactive power

consumption strategies for voltage stability improvement as

well as comparing our methodology with traditional brute-

force approaches.
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