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Abstract—We propose a real-time algorithm that improves
the voltage stability of a power network by rearranging the
consumption level of loads participating in demand response
(DR). Towards this end, we revisit an optimization problem
that seeks to maximize the smallest singular value (SSV) of
the power flow Jacobian subject to nonconvex power flows and
limit constraints on voltages of PQ buses, real power generation
of the slack generator, and reactive power generation of the
slack and PV buses. Instead of linearizations or relaxations, we
penalize the limit constraints and rely on network measurements
to derive an online projected gradient update to determine DR
decisions. The updated DR decisions are applied to the power
network per iteration and latest measurements are fed back
to the algorithm. Simulations on several standard transmission
networks demonstrate that the proposed methodology improves
the value of the SSV of the power flow Jacobian per time step
while avoiding significant bound violations.

Index Terms—Voltage stability, smallest singular value, de-
mand response, feedback-based optimization

I. INTRODUCTION

After a major disturbance, such as loss of a transmission line
or a generation unit, power system loads attempt to restore
power consumption to their pre-disturbance values. If the
disturbance is not remedied, such a process potentially calls
for power transfers beyond the transmission capability of the
network and its generator units. At this stage, uncontrollable
voltage drops evince at various ends of the network. This
phenomenon is referred to as voltage instability, and if not
prevented, may result in a network-wide voltage collapse [1].
For instance, voltage instability appears to have been the pri-
mary technical cause of the 2003 North American blackout [2].

In order to detect and prevent voltage instability, various
voltage-stability indices (VSIs) have been proposed, which, in
one way or another, compute a notion of distance between
the power grid operating point and a point at which voltage
collapses [3]. A popular choice are VSIs based on the com-
putation of maximum power transfer limits [4], [5]. Given an
initial operating point, these indices are obtained by tracing
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the power flow solution through continuation power flow, by
e.g., scaling of loads or generations [6].

An equally popular choice are VSIs that measure the
distance to singularity of the power flow Jacobian [7]. Such
indices encompass arbitrary changes in loads or generations
and rely on the observation that during a voltage collapse, the
Jacobian becomes singular. In this group, the smallest singular
value (SSV) of the power flow Jacobian stands out [8].

Of course, efficient computation of the SSV remains a prac-
tical challenge [9]. Recently, more computationally tractable
Jacobian-based VSIs have been considered. For example, the
work of [10], for a VSI based on a sufficiency condition on
the Jacobian nonsingularity that appears as a conic inequality
for constant loads, or the VSI proposed in [11] that affords a
completely distributed computation in distribution networks.

Depending on the application, a carefully-selected VSI may
enter an optimal power flow (OPF) problem as an objective
so that a maximum distance to voltage collapse is ensured,
for example, [12] and [13, Eq. (10)], or as a constraint, so
that the optimal steady-state operating point is ensured to be a
threshold distance from voltage collapse [10], [14], [15]. These
works ultimately rely on actions of generators, capacitors,
and synchronous condensers to deliver their purpose. Load-
shedding may also be viable as a last resort [16].

Generator response time to disturbances are restricted by
ramp constraints. Therefore, recent research has looked at
demand response for voltage stability improvement, based on
the premise that flexible loads can react more quickly [17]-
[19]. While the total power consumption remains constant to
maintain system frequency, a different loading pattern can be
immediately coordinated that is more favorable for voltage sta-
bility. Based on AC power flow linearizations and computation
of SSV sensitivities, an iterative linear programming algorithm
is designed in [17]-[19], to this end.

In this paper, we consider a similar problem. Specifically,
we consider maximizing the SSV of the power flow Jacobian
subject to bound constraints on network voltages, real and re-
active power generation, as well as the nonconvex power flow
equations. The constant total-demand constraint of demand-
responsive loads are also included. Our solution methodology,
nevertheless, is markedly different from [17]-[19]. Instead of



power flow linearizations, we exploit the formulation to derive
an online gradient projection scheme to approximately solve
the original nonconvex problem. The proposed algorithm relies
on measurements to calculate the required updates, but it is
applied per-iteration to the power network and manages to
improve the SSV in real time.

There has recently been a surging interest in feedback-based
optimization methods for OPF that all leverage network mea-
surements to calculate real-time control commands that must
be exerted back on to the network. The basis for algorithm
design in these methodologies seem to fall in three distinct
categories. The first category relies on the grid as an implicit
power flow solver [20]-[22], while using a model-based gra-
dient calculation via the implicit function theorem to update
controller setpoints. The second category [23]-[26] leverages
a linearized form of power flow equations—uvalid for distri-
bution networks—to derive real-time controller updates. The
design usually incorporates network measurements in place of
uncontrollable variables per iteration. Finally, a third category
applies the projected gradient-descent to a constrained opti-
mization problem on the power flow manifold [27], [28]. The
controller updates obtained are then applied to the nonlinear
physical network. While we acknowledge that there might
be theoretical connections between the three categories of
feedback-based optimization methods for OPF, we do not
explore this here. We highlight, however, that our construction
coalesces with the first category [20]-[22]. The projection
step, however, is modified to handle the constant total-demand
constraint of demand response.

The organization of this manuscript is as follows. Section II
describes the network model, lays out the objective and con-
straints of an optimization for voltage-stability enhancement
via demand response. Section III develops reformulates the
problem and proposes a gradient projection algorithm to solve
it in real-time. Numerical experiments on three standard power
networks are carried out in Section IV.

Notation: For a set A (denoted by the Caligraphic typeset
of A), its cardinality is denoted by the italic capital A. Column
vectors are denoted by lower-case letters. For vector x, index
set 4, and an index i € A, denote respectively by z; and x 4,
the element of = corresponding to the index ¢ and a vector
of size A comprised of z;’s for all 7+ € A. For a vector z,
[x] denotes a diagonal matrix with = on the diagonal. For a
matrix X, X’ and A\p(X) denote its transpose and smallest
eigenvalue, respectively.

II. NETWORK MODEL AND DESCRIPTION OF THE PROBLEM

A power transmission network is mathematically modeled
by an undirected, connected graph, denoted here by the two-
tuple (N, £) where A is the set of nodes (buses) and £ C N X
N is the set of edges (transmission lines and transformers). It
is typical to partition the set of nodes as N'= QU V U {s}
where the sets Q and V respectively collect PQ and PV buses
while s denotes the index of the slack bus. Furthermore, we
suppose that a set D C A\ {s} collects buses that participate
in demand response.

Let 6, v, p, and q respectively denote the vector of voltage
angles, voltage magnitudes, net real power injections, and net
reactive power injections, collected for all buses in V. Let G+
7B be the complex network admittance matrix. It is convenient
to define the following power balance functions:

p(0,v,p) := [v][cos O]G[v] cos O + [v][sin 8] B[v] cos §
+[v][sin ]G] sin 6 — [v] cos O B[v] sinh — p (la)
q(0,v,q) := [v][sin 8]G[v] cos § — [v] cos O B[v] cos §
—[v] cos OG[v] cos @ — [v][sinf]Blv] cos® —q.  (1b)

Let us further denote respectively by pg, gg, pd, and gq the
vectors of real and reactive power generations and demands
collected for all buses in . Then, the power flow equations
are given by [6], [29]:

) =0
) =0.

(2a)
(2b)

p(97v7pg — Pd
q(0,v,45 — qa

During a demand response operation, the power-flow operating

point y = (0,v,pg,qs, Pa,qa) must satisfy the following
constraints:
0i = 057 i=s (3a)
vi =" i€ VU {s} (3b)
ottt <y < ot icQ (o)
Pg; = Dy, i€ QuUVY (3d)
Prgnsm <pg <pg i=s (3e)
Gg; = dg; i€Q 3f)
" < g5, < g™ i€ Vu{s} (g
Pa, =Dy, i€ N\D (3h)
Zpdq, = ZPZE), pi, >0i€eD (31)
1€D 1€D
qd; = 13" Pd; ieN 3i)

We now explain constraints in (3). Constraint (3a) implies that
the slack bus serves as an angle reference. Constraint (3b)
requires that the voltage magnitude of all the PV buses and the
slack bus must remain equal to the setpoint v;" for i € VU{s}.
Voltages of PQ buses are allowed to change as long as they
remain within acceptable bounds as determined by (3c). Con-
straint (3d) requires that the real power generated by PQ and
PV buses do not change while constraint (3e) requests that the
real power of the slack bus may change within an acceptable
bound. We highlight here that we implicitly assume that PV
and PQ generators are not generator reserves and cannot
change their real power outputs during a disturbance while
the slack bus has access to a frequency-response reserve if
needed (such an assumption is also implicitly used in [17, Eq.
(1m)]) . Constraints (3f) and (3g) similarly lay out the reactive
power requirements for PQ and non PQ buses, respectively.
Demand constraints are furnished by (3h)—(3j). Explicitly,
for buses not participating in demand response, the real power
demand must remain equal to its setpoint p}. For buses
participating in demand response, (3i) implies that while the



individual real power demands may vary, the total real power
consumption must remain constant (this is due to frequency
stability considerations, see e.g., [17]). Therefore, (3i) provides
some flexibility for ¢ € D. Finally, the value of reactive power
demand must be such that the power factor remains constant.
This requirement is dictated by constraint (3j), where ;" is a
constant that is determined by the load power factor.'
Consider the following non-convex optimization problem,

similar to that of [17]:

miniymize — Xo(J(0,v) J(6,v)) subject to (2) and (3), (4)
where the matrix J, referred to as the power flow Jacobian,
is given below as an element of R(2Q+V)x(2Q+V).

dpouv  9pouv
00 1e]

J(0,v) = | 9952Y  §q2 (5)
00guv Jvg

Problem (4) attempts to improve the voltage stability margin
of the transmission network by maximizing the squared value
of the smallest singular value (SSV) of J.

III. SOLUTION METHODOLOGY

In this Section, we propose a projected gradient-descent
algorithm to approximately solve (4). The proposed algorithm
features simple updates so that it can be applied to the
transmission network per-iteration in a real-time fashion. The
construction of the proposed gradient projection algorithm
is similar in principle to those used in the real-time OPF
literature [20]-[22]. The projection step, however, is modified
for demand response to handle the simplex constraint (3i).
To derive the proposed gradient projection algorithm, it is
first required to introduce an alternative formulation to (4)
that only depends on the real power consumption of demand-
responsive loads. This is pursued in the next subsection.
The description of the real-time projected gradient-descent
algorithm is postponed to Section III-B.

A. Reformulation of problem (4)

Consider the operating point y = (0, v, Dg, g, Pd, ¢a)- In the
context of problem (4), it turns out that the sole controllable
quantity during demand response is pq, for ¢ € D. This is
explained next. The voltage angle of the slack bus, the voltage
magnitude of the slack and PV buses, real power generation
of PV and PQ buses, reactive power generation of PQ buses,
real and reactive power demand of buses not participating in
demand response (3a), (3b), (3d), (3f), (3h), and (3j). Further-
more, as dictated by constraint (3j), reactive power demand of
buses participating in demand response are decided via scaling
the corresponding real power demand by the constant s".
Finally, voltages of PQ buses, real power generation of the
slack bus, as well as reactive power generation of the PV
buses and the slack bus are consequences of other network

'For brevity, we have refrained from introducing in (3) the thermal loss
limits for all lines (z, j) € £. We highlight, however, that the techniques used
in this paper still carry out even if thermal limits are accounted for.

decisions.? In other words, there is no actuator “knob” that
can fix these values to a desired command value. Therefore,
the only remaining quantity is the real power demand of
the buses participating in demand response. In essence, upon
deciding the value of pp := pq,, the physics of the system
automatically calculates the value of voltages of PQ buses vg,
real power generation of the slack bus p,_, as well as reactive
power generation of the PV buses and the slack bus gg,, ., -
This argument is formalized by using the implicit function
theorem next.

Let us denote by z the uncontrollable quantities of an
operating point whilst subsuming as parameters any fixed
setpoints due to constraints (3a), (3b), (3d), (3f), (3h), and
(3)) and further substituting the value of qa, by p; pa, for
i € D. We then have

T = (HQUVaUQapgSanVU{S})' (6)

Notice that z € R2V and pp € RP where D < N. Therefore,
we shall interpret the power flows (2) as

where the function f(.) : R2V+P — R2N in (7) is continu-
ously differentiable [cf. (1)]. Suppose that Of /Ox evaluated at
the operating point (z°, p%) is invertible. Then, by the implicit
function theorem [30, Theorem 9.28], x is a locally one-to-one
function of pp in a neighborhood P of pY, that is

z:=z(pp),pp € P ()

whose Jacobian at p, is computed as follows:

87x - _ 87f‘ B 87f‘ 9)
apD P% - ax (xo’p%) apD (mo,p%)'

Equation (9) is used later in this paper for computation of the
gradient in our algorithm.

Leveraging (8), problem (4) is equivalent to the following
problem for pp € P:

minimize —Ao(J(pp)'J (pp)) (10a)
subjeth to (3i) and
vt < vi(pp) <P, i€ Q (10b)
P < pg. (pp) < i (10c)
" < qg, (pp) < @, i€V U{s},  (10d)

where we have slightly abused notation to denote by
J(pp) the implicit dependence of J(6(pp),v(pp)) on pp
via (8). Constraints (10b)-(10d) align with the feasibility
constraints encountered in a typical OPF problem. Since con-
straints (10b), (10c), and (10d) are not directly enforceable—
as vg, Pg,, and g, ., are not directly controllable by the

2Recall that in a power flow problem in transmission networks, the real
and reactive power generation of the slack bus as well as the reactive power
generation of PV buses are not specified and are eventually determined by
the power flow solution (0%, v5)-



operator—the following penalized problem is considered [31,
Section 6.2]:

minzg)nize @ (pp; 1) == Ao {J (x(pp))' J (a:(pp))}

+ > o {6 (Wilpp) — 0"™) + ¢ (0" — vi(pp)) }
1€Q

+ tp {6 (pe. (pD) = P2™) + & (PP — pe, (D)) }

+ 3 11g {6 (¢e (p0) — ™) + ¢ (2™ — 4, (D)) }

1€VU{s}

subject to (3i), (11)

where the penalty function

#(2) = max{z,0}? (12)

is used for each bound constraint along with the penalty
parameters in g := (f, fip, iq) for (10b), (10c), and (10d).
We acknowledge here that finding an exact solution to (10)
requires solving (11) for increasing values of parameter u.
However, even by a fixed moderate value of u, numerical
tests indicate satisfactory performance in maintaining the
constraints.

B. Real-time projected gradient-descent

We solve problem (11) by the following projected gradient-
descent algorithm:

li
(k1) _ ®) ) (92D )

where P is the set such that (3i) is satisfied:

P :={polpp > 0,1'pp = ZPZ‘?}
i€D

(14)

In (13), II is the projection operator and a(*) is a step-size
parameter. Equation (13) may be equivalently reformulated
as an Euclidean projection onto a probability simplex. Such
a problem is solved efficiently, either by a one-dimensional
bisection on the dual variable [32, Problem 1] or by a non-
iterative scheme which requires sorting [33], [34].

A high-level schematic of the proposed framework is given
in Fig. 1. At time step k, measurements :U(p%C )) are obtained
from the power network. Recall that these measurements
pertain to quantities in (6), namely, voltages of PQ buses,
real power of the slack bus, and reactive power of the slack
and PV buses. Upon receiving the measurements x (p(Dk )>,

the differentiation unit computes the values of the gradient

!
%| (m) , given the constant penalty parameters .
PD Pp

The projection unit can then broadcast the update (13) to
individual loads to encourage appropriate modification in their
consumption level at iteration k + 1.

We note that after the update x (p(Dk )), the value of the

objective function <I>(pgC ); w) can be immediately evaluated

by the objective of (11). However, the major hurdle of our
approach is the computations required in the differentiation

unit. Specifically, computing %ﬁ’“) is challenging. The

9P (pp;n)
9pp

Projeﬂ:

p(Dk+1)

Differentiate

Y

N

Nonlinear network

Meag‘gge
z(pp’)

Fig. 1. A high-level schematic of the proposed framework.

Algorithm 1 Projected gradient-descent for maximizing the
SSV of the power flow Jacobian

1: Select step-size parameter «, penalty parameters g
Select objective improvement threshold e

Set @(p(D_l);u) =+ooand k=0

Gather measurements x (p(DO ) )

Compute @(pg);ﬂ) and %‘pg)

. while @(pg_l);u) — @(p(Dk);u) > e do

6
7: Apply update (13)
8.
9

ke—k+1
: Gather measurements x (p%c ))
10:  Compute ®(p%¥; 1) and %‘pg)

11: end while

latter computation requires knowledge of two derivatives: g;\g
and 222 For the term 8/\0, we use the known results on
dpp 9pp

eigenvalue sensitivity [17]:

O 9 (J(z)'J(x)) 0x;(pp)
(r“)pdi o ZU)O 81']‘ apdi

ug,t € D. (15)
J
In (15), wy and wg are respectively the normalized left and

right eigenvectors of the matrix J(x)'J(x). Elements of the

vector x are indexed by j. The term @' I@) is computed

by differentiating the Jacobian in (5) with respect to the
element x;. The term M is computed using (9).
For the penalty functions, the gradient 68471)(2)

noting that 22&) — 2max{z,0} and then using (9). Notice

0z 5 3
that the values of % and 81;; in (9) are simply computed
by differentiating the expression in (1) correspondingly. Al-
gorithm 1 summarizes the steps of our proposed method to
maximize the SSV of the power flow Jacobian.

Algorithm 1 continues as long as the decrease at iteration
k is greater than a predetermined value of e. The next section
numerically corroborates on several standard transmission test
cases that demand response, per Algorithm 1, succeeds in
improving the SSV of the power flow Jacobian.

is computed by

IV. NUMERICAL EXPERIMENTS

The 9-bus, 57-bus, and 118-bus transmission networks from
MATPOWER [6] are considered here. Each test case is mod-
ified to contain a transmission line contingency. To this end,

3This derivation implicitly assumes that the considered eigenvalues of
matrix J’J are simple.



TABLE I
SUMMARY OF SSV IMPROVEMENT VIA REAL-TIME DEMAND RESPONSE
DURING A SUSTAINED DISTURBANCE

Network | SSV before DR | SSV after DR | Improvement (%) ]
9-bus 0.444546 0.480698 8.13

57-bus 0.177577 0.203806 14.77
118-bus 0.153033 0.158482 3.56

-0.03

—o--9--0--9--0

—e--0--9©-
—o-
0.032

o -0.034 -

1
-0.038 -

1
-0.04

-0.042 L L L L L L L L L L 0.175
0 1 2 3 1 5 6 7 8 9 10
Time step (k)

Fig. 2. Objective value and the SSV of the 57-bus network in each time step
until the stopping criterion is met. Each iteration of the algorithm occurs in
real-time and improves the SSV.

respectively for the 9-bus and 57-bus networks, we remove
from service transmission lines (9,4) and (11,13). For the
118-bus network, transmission lines (22,23) and (23,24) are
removed. Penalty parameters of p, = p, = 1 and pg = 0.1
are chosen so that during demand response violations of
reactive power limits are penalized less than those of voltage
magnitude and real power. For Algorithm 1, we select a
diminishing step-size of 10/ Vk and the stopping threshold
value of € = 0.001®(p{’; ).

The SSV computed for the networks with the previously-
mentioned transmission line contingencies prior to and after
applying the DR algorithm are respectively given in Columns
2 and 3 of Table I. Upon applying Algorithm 1, the SSV
is ultimately improved. The improvement percentages are
given in Column 4 of Table I. Notice that the improvement
percentage is as high as 14.77% for the 57-bus network.

The evolution of the real-time Algorithm, for the 57-bus
network, is shown in Figure 2. The z-axis represents time
and we assume that each iteration k£ of the Algorithm occurs
within one time unit. The left and right y-axes respectively
denote the objective value CI)(p(Dk ); ) and the SSV at iteration
k. We observe that per iteration &, the value of the objective
value decreases while the SSV of the power network increases.
The algorithm terminates after 10 iterations or time steps,
indicating that the desired stopping criterion is met.

Changes in demand response decisions, also for the 57-bus
network, are demonstrated by Fig. 3. For each bus ¢ € D, the
value of pgc ) pg) is plotted versus the time-step (k). For all
buses participating in demand response, individual real power
consumptions change over time. However, the total power
demand of buses ¢ € D remains unchanged, as indicated by
the blue crosses in Fig. 3.

Since our demand response program is implemented in
real-time, constraint violation is inevitable. Using the penalty
function (12), for the iteration set C = {1,...,k*} where k*

Changes in real power demand (pu)

Time step (k)

Fig. 3. Coordination of changes in real power demand from the initial pre-
disturbance value. The cross markings indicate the total real power demand
changes per time step. It is seen that at every time-step the total change in
real power demand is zero.
TABLE II
INFEASIBILITY OF UPPER BOUND CONSTRAINTS

Network [ vM2% (pu) [ pln®* (pu) | g (pu) |

inf. inf. inf.

9-bus 0.0022 0.0000 0.0000
57-bus 0.0103 0.0000 0.0379
118-bus 0.0001 0.0000 0.1417

denotes the iteration at which the stopping criterion is met,
the following infeasibility indices are computed:

max k max

Zinf. = WAX \/¢ (Zi(p(D)) — % ) (16a)
min min k

il = max ¢ o (arin—z(pp))  aeb)

In (16) the variable z and the index ¢ represent the correspond-
ing values outlined in constraints (10b), (10c), and (10d).

By analyzing the infeasibility indices provided in Tables II
and III we find that Algorithm 1 does not significantly
violate constraints (10b), (10c), and (10d). In fact, the real
power provided from the slack bus always remains within
its acceptable bounds at all times since pli" = phax = (
while the maximum voltage violation for the PQ buses is
insignificant (below 0.0103 pu for all networks). The only
major violation seems to pertain to the reactive power limits,
cf. the value of 0.1417 pu for the 118-bus network. We
investigate this constraint violation next.

In particular, In Fig. 4 we depict, for the 118-bus network,
the upper bound violation of those generators that have, in
any time step, violated their maximum limit. Immediately after
the contingency at time step 0, generator 19 violates its upper
reactive power limit as a consequence of network conditions.
During the evolution of the algorithm, other generators grad-
ually participate in providing reactive power and relieve the
burden from generator 19. At all time steps, out of the 54
generators of the 118-bus network only 8 generators were
required to increase their reactive power consumption.

V. CONCLUSION

Demand response is used in this paper to improve power
system voltage stability. As the total power demand stays con-
stant to maintain system frequency, individual buses coordinate
their consumption levels to maximize the SSV of the power



Fig.

TABLE III
INFEASIBILITY OF LOWER BOUND CONSTRAINTS

Network [ vifi* (pw) | pifi® (pw) [ affi” (w) |
9-bus 0.0000 0.0000 0.0000
57-bus 0.0000 0.0000 0.0000
118-bus 0.0000 0.0000 0.0446
Zo1s
—O— Gen. atbus 19
\ —C— Gen. atbus 56
N Gen. atbus 70
NS —O— Gen. atbus 74
S e —o— Gen. atbus 76
0.1F e Gen. atbus 77 | |
T —O— Gen. atbus 85
o o *ﬁ* Gen. atbus 92
~o o —0— Gen. at bus 104

~o-

Max. limit violation of reactive power gen. (p

0 . 2 4 6 8 10 12 14 16
Time step (k)

4. Max. generator violation for the 118-bus network (only those

generators that have ever violated the maximum limit are shown).

flow Jacobian as an index for voltage stability. The optimiza-
tion problem is non-convex due to the power flow equations
and the dependence of SSV on the operating point. The novelty
of our work lies in exploiting the formulation to derive an
efficient online gradient projection scheme that approximately
solves the original non-convex problem. Numerical studies on
sample test networks are indicative that applying our algorithm
in real time leads to SSV improvement. Future work will
focus on expanding the formulation to include reactive power
consumption strategies for voltage stability improvement as
well as comparing our methodology with traditional brute-
force approaches.

[1]

[7]

[8]

[9]

(10]

REFERENCES

T. V. Cutsem and C. Vournas, Voltage stability of electric power systems.
New York: Springer, 2008.

U.S.-Canada Power System Outage Task Force, “Final Report on the
Blackout in the United States and Canada: Causes and Recommenda-
tions,” Tech. Rep., March 2004. [Online]. Available: https://www.energy.
gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal- Web.pdf
CIGRE Task Force 38-02-11, “Indices predicting voltage collapse in-
cluding dynamic phenomena,” CIGRE publication, 1994.

V. Ajjarapu and C. Christy, “The continuation power flow: a tool for
steady state voltage stability analysis,” IEEE Trans. Power Syst., vol. 7,
no. 1, pp. 416423, 1992.

S. Greene, 1. Dobson, and F. Alvarado, “Sensitivity of the loading margin
to voltage collapse with respect to arbitrary parameters,” IEEE Trans.
Power Syst., vol. 12, no. 1, pp. 262-272, 1997.

R. D. Zimmerman and C. E. Murillo-Sdnchez, ‘“Matpower 6.0
User’s Manual,” 2016. [Online]. Available: http://www.pserc.cornell.
edu/matpower/manual.pdf

V. Venikov, V. Stroev, V. Idelchick, and V. Tarasov, “Estimation of
electrical power system steady-state stability in load flow calculations,”
IEEE Trans. Power Appar. Syst., vol. 94, no. 3, pp. 1034-1041, May
1975.

A. Tiranuchit, L. Ewerbring, R. Duryea, R. Thomas, and F. Luk,
“Towards a computationally feasible on-line voltage instability index,”
IEEE Trans. Power Syst., vol. 3, no. 2, pp. 669-675, May 1988.

P-A. Lof, T. Smed, G. Andersson, and D. Hill, “Fast calculation of
a voltage stability index,” IEEE Trans. Power Syst., vol. 7, no. 1, pp.
54-64, 1992.

B. Cui and X. A. Sun, “A new voltage stability-constrained optimal
power-flow model: Sufficient condition, socp representation, and relax-
ation,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5092-5102, Sep.
2018.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

L. Aolaritei, S. Bolognani, and F. Dorfler, “A distributed voltage stability
margin for power distribution networks,” /FAC-PapersOnLine, vol. 50,
no. 1, pp. 13240 — 13245, 2017, 20th IFAC World Congress.

A. Tiranuchit and R. Thomas, “A posturing strategy against voltage
instabilities in electric power systems,” IEEE Trans. Power Syst., vol. 3,
no. 1, pp. 87-93, 2 1988.

W. Rosehart, C. Canizares, and V. Quintana, “Optimal power flow
incorporating voltage collapse constraints,” in Proc. IEEE Power Eng.
Soc. Summer Meet. Conf. Proc., vol. 2, 1990, pp. 820-825.

R. J. Avalos, C. A. Canizares, and M. F. Anjos, “A practical voltage-
stability-constrained optimal power flow,” in Proc. IEEE Power Energy
Soc. Gen. Meet. - Convers. Deliv. Electr. Energy 21st Century, July 2008,
pp. 1-6.

C. Wang, B. Cui, Z. Wang, and C. Gu, “Sdp-based optimal power flow
with steady-state voltage stability constraints,” IEEE Trans. Smart Grid,
vol. 10, no. 4, pp. 4637-4647, July 2019.

X. Fu and X. Wang, “Determination of load shedding to provide voltage
stability,” Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 515-521,
Mar. 2011.

M. Yao, J. L. Mathieu, and D. K. Molzahn, “Using demand response
to improve power system voltage stability margins,” in Proc. IEEE
Manchester PowerTech, June 2017, pp. 1-6.

M. Yao, D. K. Molzahn, and J. L. Mathieu, “The impact of load models
in an algorithm for improving voltage stability via demand response,”
in Proc. 55th Annu. Allert. Conf. Commun. Control. Comput., Oct 2017,
pp. 149-156.

“An Optimal Power Flow Approach to Improve Power
System Voltage Stability Using Demand Response,” [IEEE Trans.
Control. Netw. Syst., April 2019, to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8686211

L. Gan and S. H. Low, “An Online Gradient Algorithm for Optimal
Power Flow on Radial Networks,” IEEE J. Sel. Areas Commun., no. 3,
pp. 625-638, Mar. 2016.

Y. Tang, K. Dvijotham, and S. Low, “Real-Time Optimal Power Flow,”
IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2963-2973, Nov. 2017.

Y. Tang and S. Low, “Distributed algorithm for time-varying optimal
power flow,” in Proc. 56th Annu. Conf. Decis. Control, Dec., pp. 3264—
3270.

A. Bernstein and E. Dall’Anese, “Real-Time Feedback-Based
Optimization of Distribution Grids: A Unified Approach,” [EEE
Trans. Control. Netw. Syst., 2019, to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8767939

X. Zhou, E. Dall’Anese, L. Chen, and A. Simonetto, “An Incentive-
Based Online Optimization Framework for Distribution Grids,” IEEE
Trans. Autom. Control, vol. 63, no. 7, pp. 2019-2031, 2018.

K. Baker, A. Bernstein, E. Dall’Anese, and C. Zhao, ‘“Network-
cognizant voltage droop control for distribution grids,” IEEE Trans.
Power Syst., vol. 33, no. 2, pp. 2098-2108, Mar. 2018.

Y. Zhang, E. Dall’Anese, and M. Hong, “Dynamic ADMM for real-
time optimal power flow,” in Proc. Glob. Conf. Signal Inf. Process.,
Nov. 2017, pp. 1085-1089.

A. Hauswirth, S. Bolognani, G. Hug, and F. Dorfler, “Projected gradient
descent on Riemannian manifolds with applications to online power
system optimization,” in Proc. 54th Annu. Allert. Conf. Commun.
Control. Comput., Sept. 2016, pp. 225-232.

A. Hauswirth, A. Zanardi, S. Bolognani, F. Dorfler, and G. Hug, “Online
optimization in closed loop on the power flow manifold,” in Proc.
PowerTech Conf., Jun 2017, pp. 1-6.

G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. F.
Wollenberg, “Monitoring and Optimization for Power Grids: A Signal
Processing Perspective,” IEEE Signal Process. Mag., vol. 30, no. 5, pp.
107-128, Sept. 2013.

W. Rudin, Principles of Mathematical Analysis, 3rd ed.
McGraw-Hill, 1976.

A. Ruszczynski, Nonlinear Optimization.
ton University Press, 2006.

S. Boyd, “EE364b Homework 4,” Tech. Rep. [Online]. Available:
https://see.stanford.edu/materials/lsocoee364b/hw4sol.pdf

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the 11-ball for learning in high dimensions,” in Proc.
25th Int. Conf. on Machine Learning, ser. ICML *08. New York, NY,
USA: ACM, 2008, pp. 272-279.

Y. Chen and X. Ye, “Projection Onto A Simplex,” Tech. Rep., 2011.
[Online]. Available: http://www.math.ufl.edu/

New York:

Princeton, NJ, USA: Prince-



