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Abstract—During grid overload or upon occurrence of cer-
tain contingencies, a corrective action is required to eliminate
congestion and reduce transmission line thermal limit violations.
In this paper, we propose to use demand-responsive loads for
such a purpose. Cost considerations include power retrieved
from the slack reserves and the dis-utility of consumers for
providing demand-response actions. Violations of voltage and
generator reactive power limits are also accounted for. The idea
is to topologically re-arrange the consumption of flexible loads
to achieve grid de-congestion while maintaining the aggregate
network power consumption constant to avoid interference with
frequency control procedures. Our formulation is based on
nonlinear power flows and easily allows the inclusion of voltage-
dependent loads. An online gradient projection algorithm with
closed-form updates is developed to solve the non-convex grid
de-congestion problem. Approximate gradient calculations based
on fast-decoupled load flow are further provided to simplify the
algorithm and make it amenable to distributed implementation.

I. INTRODUCTION

During the occurrence of contingencies or in periods of grid
overload, a corrective action is required for grid de-congestion.
Three options are typically available to system operators for
this purpose. The first is corrective generator rescheduling [1],
an action which is bound by the corresponding ramp con-
straints. A second traditional option is to additionally resort to
load-shedding and admit loss of loads [2], [3]. A more recent
option, enabled by communication capabilities of the smart
grid, is demand-response (DR) [4]. The latter topologically re-
arranges the consumption of flexible loads so as to ameliorate
line flow and voltage violations.

In preventive frameworks, DR has proved to be a viable
option. Examples include security-constrained unit commit-
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ment problems [5] and security enhancement of operation
reserves [6]. In these works, essentially, a demand pattern
for a set of critical contingencies are decided. The result of
preventive calculations may be used as look-up tables once
similar contingencies occur in the network.

DR has also been applied in corrective frameworks. For in-
stance, the work in [7] alleviates transformer overloads during
contingencies by optimizing DR decisions. Transformer loss of
life is calculated based on IEEE thermal and aging standards.
Although multi-period, this work does not consider power
flow equations. Corrective voltage-stability enhancement is
achieved in [8] by leveraging DR of flexible loads. It is
demonstrated that flexible loads can quickly adopt a different
spatial pattern which in turn increases the distance to voltage
collapse—as measured by the smallest singular value (SSV)
of the power flow Jacobian. In such a setup, total network
consumption remains constant to maintain system frequency.
Based on power flow linearizations and computation of SSV
sensitivities, an iterative algorithm where each step is a linear
program is designed. An extension to a two-period setting is
given in [9], where the second period acts as payback to ensure
the energy consumed by each load returns to its nominal
value. Impact of voltage-dependent load models, namely, ZIP
loads and induction machines on a similar problem is further
analyzed in [10]. It is indeed highlighted that optimal loading
patterns may vary significantly for various load models.

In this paper, we utilize DR as a corrective tool to achieve
grid de-congestion. The term de-congestion refers to ame-
liorating line flow congestion as measured by line thermal
limit violations. Costs of dis-utility for providing DR services,
cost of purchasing power from slack reserves, and associated
penalties with voltage and generator reactive power limit
violations are further considered. The formulation requires
that the aggregate real power demand stay unchanged during
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the corrective period so as to not interfere with frequency
stability procedures. The developed algorithm features real-
time updates that can be directly applied to the network in
real-time. In comparison with our previous work [11] where
we developed an online DR algorithm for voltage stability en-
hancement, this work provides four distinct novelties: (a) The
new formulation easily handles any type of voltage-dependent
load, (b) the cost of DR actions is considered, (c) DR actions
are used for grid de-congestion, and (d) approximate gradient
calculations are provided that highly simplify the algorithm
and make it amenable to distributed implementation.

Our online algorithm is indeed inspired by recent devel-
opments in feedback-based optimization methods in optimal
power flow (OPF) applications. In these approaches, real-time
measurements are used to evaluate network conditions and cal-
culate the next control action. Three main categories of these
approaches can be identified. The first category, utilizes the
the physical grid as an implicit power flow solver [12]-[14].
The controller setpoints rely on gradient calculation based on a
mathematical model using the implicit function theorem. The
real-time controller updates in the second category [15]-[18]
is heavily dependent on linearized power flow equations—
typically a valid option for distribution networks. Per iteration
of the algorithm, real-time measurements are used in place of
uncontrollable quantities. A third category directly develops a
projected gradient descent method for an OPF problem where
the variations in controls and system states are constrained
by the power flow manifold [19], [20]. At every iteration, the
controller updates are directly applied to the physical network.

Our present work is directly in line with the first group
[12]-[14] in that we use the implicit function theorem to
compute the gradients used for controller updates. A recent
work [21], computes generator actions to alleviate line and
voltage violations in real time. The algorithm in [21] uses the
fast decoupled load flow (FDLF) to linearize the relationship
between the power system states and control actions and
additionally utilizes piece-wise linear approximations of the
penalty functions to develop an efficient linear program at
every iteration. In our work, DR is used for corrective action.
We do not employ linearizations and instead leverage the
structure of the constraints to develop closed-form controller
updates. FDLF assumptions are only leveraged to approximate
gradient calculations and simplify algorithm implementation.

This paper is structured as follows. Section II entails the
proposed formulation. The solution methodology is detailed
in Section III and is organized into problem reformulation,
closed-form updates, gradient calculation, and algorithm im-
plementation. Numerical tests are provided in Section IV.!

I Notation: Vectors are denoted by lower-case letters. For vector z, index
set A, and an index ¢ € A, denote respectively by x; and z 4, the element
of = corresponding to index 4 and a vector of size |.A| comprised of x;’s for
i € A. For a vector z, [z] denotes a diagonal matrix with = on the diagonal.
Transpose of (.) is denoted by (.).

II. NETWORK MODEL AND DESCRIPTION OF THE PROBLEM

Denote by (N, ) the graph of a power network where A/ is
the set of nodes and € := {(i,j) : i < j, 1,5 € N} isthe set
of branches. In power system lexicon, nodes represent buses
and branches represent transformers and transmission lines.
For nodes n € N, denote by 6,, and wv,, the voltage phase
and magnitude. Denote further by p;,(0,,,v,,) and 7, (6, vy,)
the voltage-dependent parametric load model. For instance,
the real power consumption of a ZIP load can explicitly be
modeled as p,, (0, v5,) = g5 v2 4+v,i% cos b, +p’ with g¢, i’
and p’ denoting the specified nominal conductance, nominal
current, and nominal power consumption of load at node n.

Define the partition N* = {s} UV U P, where s is the
slack bus, V is the set of voltage-controlled buses (henceforth
V-buses), and P is the remaining set of buses (henceforth, P-
buses). Let G € N be the set of generators and denote by p,
and ¢, the real and reactive power injection of the generator
connected at node n € G. Define a matrix C, € RIVIXIG]
where the (n, ngy)-th element of Cy is equal to 1 if node n € G
is the ny-th node in G for an arbitrarily chosen order. We define
following power balance functions:

p(0,v,p,d) = [v][cos O] G[v] cos 8 + [v][sin O] B[v] cos
+ [v][sin O]G[v] sin @ — [v][cos 8] B[v] sin @
— Cyp +[p(0,v)]d (1a)
q(0,v,q,e) := [v][sin 0]G[v] cos § — [v][cos 8] B[v] cos O
— [v][cos 8]G[v] sin @ — [v][sin §] B[v] sin
= Coq+[y(0,v)]e. (1b)
In (1), G and B are the real and imaginary parts of the
bus admittance matrix. These power balance functions are
based on the standard power flow equations in [22], [23] with
additional modifications geared for this paper. The variables d
and e represent a DR factor for n € N. For instance, varying

d,, from 0 to 1 allows node n to go from zero to regular power
consumption. The power flow equations are

p(0,v,p,d) =0
q(07v7q’ e) = O

(2a)
(2b)

The proposed DR formulation for grid de-congestion is

minimize c¢4(ps) + En(dyy pr(0n, v, 3a
minimize ¢, (p) 7;) (s (0> vn) (3a)
subject to (2) and
d, <d,,neD (3b)
S dp=)"df (3c)
neD neD
€, <ep,<eép, ne D (Sd)
P, <Ps < Ds (3e)
Qngvngﬁnanep (31)
4, <qn < qn, n€VU{s} (G2
sl (0,0) <5, be& (3h)
sp(0,0) <&, beE (3i)
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0s = 0,0, =P, n € VU{s}t,pn =pF,ne€G\{s} (3j)
qn:qflp,negﬂp,dn:d(,)L,en:e%,nEN\D (3k)

In (3), cs(ps) is the cost of providing power from slack
reserves during the correction period. The set D collects the
set of nodes n € A that participate in DR. The dis-utility
functions £, (dn, prn(0n,v,)) measure the cost imposed on
consumer n € D for providing DR services. These dis-utility
functions are designed so that if d,, equals 1 the dis-utility is
zero and their values increase as d,, varies away from 1.

Constraint (3b) requires that a minimum amount of load,
given by the factor d,, must be supported at node n € D.
Constraint (3c) requires that the aggregate network demand
remains constant during the corrective period. A similar
constraint is utilized in [8]-[10]. The quantities d° and e
represent the initial real and reactive demand adjustment fac-
tors at the beginning of the corrective action. Constraint (3d)
provides lower and upper limits ¢, and e,, for reactive power
compensation at node n € D. The assumption here is that
reactive power can be independently controlled for nodes
participating in DR. If a fixed power factor is required by
the load, this constraint can be modified accordingly.

Constraints (3e), (3f), and (3g) enforce respectively the
limits on power drawn from the slack reserves, the voltage
bounds on P-buses, as well as reactive power limits of }V-buses
and the slack bus. Quantities 5{: (6,v) and s}(6,v) measure
the squared magnitude of the from and to power flows on
branch b € & respectively. These quantities are upper bounded
by the squared magnitude of line rating 5, in (3h) and (3i).
Constraints listed in (3j) and (3k) ensure the appropriate
setpoints for the slack bus, V-buses, and P-buses as well as
DR factors of buses not participating in DR.

The DR problem (3) is non-convex. Indeed, not only the
power flow equations (2) are nonlinear, the multiplication of
DR factors d and e respectively with the nonlinear voltage-
dependent load models p(6,v) and ~(6,v) are complicated.
Although convex relaxations of power flow equation could be
used [24], obtaining a feasible solution that satisfies the power
flows might not be guaranteed for this problem. We seek a
method that can interact with the grid to produce an online
feasible solution with small costs in the next section.

III. SOLUTION METHODOLOGY

A projected gradient-descent algorithm is proposed here to
approximately solve the non-convex problem (3). Our algo-
rithm relies on a reformulation of (3) presented next. Details
on closed-form projections, approximate gradient calculations,
and algorithm implementation are postponed to later sections.

A. Reformulation

Let us first collect the variables in (3) in the vector
2z = (0,v,p,q,d,e) where §,v € RVl p ¢ ¢ RI9 and
d,e € RWI. Assigning as parameters the indices of the
corresponding variables given by the setpoints listed in con-
straints (3j) and (3k), verifies that the unknowns in (3) are
the quantities Oyup, vp, Ds, Qvu{s) dp, and ep amounting

to 2|A| 4 2|D| variables. One may recall at this point that
in a transmission power flow, the values x = (6yup, vp, Ds,
qyu{sy) are not directly controllable. Indeed, by controlling
the 2|D| variables d and e the quantities in = may all be
determined by the physics of the problem, i.e., the power
flows (2). We shall thus formally interpret (2) as

f(xv u) =0, “4)

where the function f(.) : RZWVI+2IPl _ R2V is continuously
differentiable and we have u = (dp, ep). Suppose that 0 f /0z
evaluated at an operating point (z°,u") is invertible. By the
implicit function theorem [25, Theorem 9.28], x is a locally
one-to-one function of 1 in a neighborhood I/ of u°, that is,

z=x(u),u €U (5)

Derivative of x at u° is computed as follows:

or,  [(of “tof
%|u0 - <8x’($0,u0)> %|(x0,u0)' ©)

Equation (6) proves useful later in this paper for the compu-
tation of the gradient in our algorithm.
Informed by (5), in the set U, (3) is equivalent to

cs(ps(dp,ep))

+ ZHn(d'rupn(en(d?wen):Un(dnavn))) (73)
neD

subject to (3b), (3¢), (3d), (5) and

minimize
(dp,ep)eU

D, < ps (dm en) < Ps (7b)
v, < Un(dp,en) <Vp,n€P (7c)
q, < an(dn,en) < Gn, nEVU {s} (7d)
s7(0(d, e),v(d,e)) < 5, be & (7e)
sy(0(d,e),v(d,e)) <8, beE (70)

Constraints (7b)—(7f) rely entirely on v and cannot be directly
enforced. An approximate problem that penalizes these con-
straints must be administered. Define the penalty function

#(2) = max{z, 0} ®)
The approximate problem is
D (u; 1)
subject to (3b), (3¢c), (3d), and (5),

minimize
u

(%a)
(9b)

where 1 = (pf, pb, pd, p17) is a vector penalty parameter and
q’(“; /1/) = Cs(ps) + ’in(dna pn(en(dna en)7 vn(dn7 en)))
112 (6(ps(w) = ) + é(p, = ps())
+ Z ta, (@(vn(w) — Un) + (v, — vn(u)))

nep

+ 3 ut (6lan(w) — @) + la, — aa(w))

neVU{s}

+ 3wt (8lsf () = 50) + dlsh(w) — ) (10)

be&
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B. Projected gradient descent

Problem (9) is solved with projected gradient-descent:

0P (u; !
Iz (dg)_ k)< a(;DM)|u<k>>> (1)

y (0D (u; '
D

where Z concisely represents constraints (3b) and (3c) while
B is the box constraint (3d). In (11), II is the projection
operator,superscript (k) denotes the iteration index, and a(*)
is a step-size parameter. Given the gradient 6%(“;“) | 0
update (12) is an Euclidean projection on a box constraint
which has a closed-form solution. Update (11) seems slightly
more complicated but it also permits a closed-form solution as
we explain next. It can be shown that dgC 1 can be obtained

by the following update:

a5t =

dfTY = (Z(d2 - dn)> y* +dp (13)
neD
where y* is the optimal value of the quadratic program:
dk) 02w ) o —dp
mir;izr{]lizo ly — P 5 ?jéj 2;)) ll2 (14a)
neD
subject to  [|y|l1 = 1. (14b)

The quadratic program (14) is an Euclidean projection on the
probability simplex [26] whose solution may be obtained via
bisection on the one dimensional dual variable [27, Exercise
1], or via a sorting-based non-iterative method [28]. Gradient
computations are detailed in the next section.

C. Gradient calculation and approximation

The derivative of ®(u; u) with respect to u is given by

00 _ 00,0, | O | O 0, Oy O,
ou  Ops Ou = ou d0,, ou v, Ou
96(ps) Ops
P YPs
s Ops Ou
Un - 'Un) ¢(Qn - 'Un) %
+ Z < * Oy, > ou
nepP
8¢ Qn - q'n) a¢(gn - Qn) dqn
PR ( 0t 4. ) ou
neVU{s}
0¢( sl —35,)0sf 0 0s
S ( otel —5) os) ¢<85t >ab> s
be&
dcs  Okn Okn Okp

In (15), the expressions 5 G, g, G are obtained
. L. s’ U n Un

by differentiating the cost functions c,(.) and Kn(.). The

calculation of cost functions ¢,(.) and k,,(.) and their deriva-

tives are decentralized per bus since these values solely rely

on local measurements—p, for the slack bus and 6,,,v,, for

n € D. The expressions 85:,( ), aa(é;(n)’ aadi(b) and 8¢() are easily

computed by acknowledging that the derivative of ¢(.) in (8)
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is 2max{z, 0}. These calculations are also decentralized per

bus for %, dg;() and per branch for ¢( ) and a¢(.).

The major challenge in computing the gradlent 1s in ob-
taining the values for dps, %91;’ , aa”;, and dq” for n in the
appropriate sets. These Values are entries of 3 of from (6) where
we recall that z = (Oyup, vp, Ps, quugs }) The quantity
gf is obtained by differentiating (1) and selecting appropriate

indices in the following:

Ip

Ip
2d = [p(6, )] $:O|N|X|N| (16a)
9 9
0 = Owixn 5i=[v(6,v)] (16b)

These computations are decentralized per node as the load
models p(.) and ~(.) only depend on local variables per bus.
Computation of (%! (xo_UO))_l in (6) is more challenging as
it first involves differentiating (1) with respect to 6, v, p, and ¢
and then performing matrix inversion. More taxing is that this
computation needs to be performed per iteration k as the value
of (z,u) evolves. Fortunately, the derivatives with respect to
p and q are fixed per iteration and given as follows:

op op
op ~ " g O (T
dq dq
o = Ovix|g| . Cy (17b)

Computing the derivatives of (1) with respect to 6 and v vary
per iteration. Based on the decoupled power flow principles
[29], one can use the following approximations per iteration:

O _ 9p, Op_ 9p
9 _ Iy 8C| 37

To further simplify matters, we suggest to compute the values
in (18) only at the initial point of the corrective action. In
this way, the inversion process of (% | (@0 uo))_1 in (6) can be
done only once at the start of the algorfthm. Our numerical
simulations show that this approximate gradient calculation
does not significantly compromise the algorithm performance.
Detailed overview of the implementation is discussed next.

D. Algorithm Implementation

Algorithm 1 details the implementation of the proposed
algorithm. The stepsize parameter «, the stopping criteria e,
and the penalty parameters p are selected before the start of
the algorithm. Per step k, measurements z(u(*)) are collected
across buses and branches. The gradient value of ‘9—‘3 is
calculated following the details in Section III-C. Then, the
closed-form updates (11) and (12) are carried out by a central
operator. The new values of u(*) are broadcast to buses n € D.
Further insight into the implementation is provided in Fig. 1.
In the figure, oval shapes represent buses and branches while
boxes represent computational elements. Buses are divided
into the slack-bus, V-buses, and P-buses. Any bus n € D
can access its own particular load model and contribute to
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Algorithm 1 Grid De-congestion via Online DR

1: Select step-size parameter «, penalty parameters p
Select objective improvement threshold e
Set ®(u(~V; u) = +00 and k =0
Gather measurements z(u(?)
Compute ®(u(?; ;1) and M)(“’”) | 4
while ®(u*—1; ) — <I>(u(k) w) > e do
Apply updates (11) and (12)
E+—k+1
Gather measurements z(u(*))
Compute ®(u*); 1) and dcb(“’“) |k
: end while

R A A i

—_
—_ O

_______________,

Load model Slack-bm u; 3;1 :iJ: I
= |
— omaok, 0 | 11
Load model i ?W“%c?r_f |1
-bus
N Project
| BT
Load model _MTJF"'!_L
P-ly IL\;
|
dl
86 ap k=0
l oy l ek
du
a
g W)
Fig. 1. A high-level schematic of the proposed algorithm.
the calculation of 05 according to (16). To evaluate , all
buses calculate the value of gﬁ" S glg”, nd ‘%" accordlng

to the per-bus dis-utility function and part1cular Toad model.
The slack-bus computes g;* and ad’ . The V-buses and 73—

buses also respectively compute the values of 6[;/’ and 5=
These computations are all decentralized per bus. The branches
further contribute to g@ by calculating B‘z} and 64’ . These
computations are distributed between nelghl)ormg buses

Having computed the values of aﬁ in a decentralized
manner and the values of g—‘f in a distributed fashion, the
computation of dw + through (6) is straightforward. An approx-
imation of ( ) "1 can be computed from (18) at the start
of the correctwe DR procedure. This approximation highly
simplifies the implementation and allows for a distributed
update of ‘% per iteration. Finally, the central operator can
collect the calculated gradient g—f and perform the closed-
form updates (11) and (12). Ultimately, the new DR factors are
distributed across the corresponding buses to determine new
setpoints for the next iteration. This procedure is continued
until the measurements «(u(*)) indicate that the improvement
rate of ®(u®); 1) is satisfactorily small.

IV. NUMERICAL EXPERIMENTS

We test the proposed algorithm on the 39-bus transmission
system here. The network is overloaded by a ZIP model
whose constant-admittance, constant-current, and constant-
power portions are respectively set to 10%, 50%, and 70%

TABLE I
COST COMPARISON

l Objective l Before DR l True Gradient l Approx. Gradient

D (u;p) 16817.78 2838.09 3605.31
cs(ps) 19.49 18.00 18.14
> kn 0.0 1.25 1.36

neD

¢ (ps) 169.79 133.22 136.46
P (v) < le-4 < le-4 < le-4
&(q) 35.05 2078 21.85
P(s) 16593.45 2664.84 3427.50

—e— True gradient
-~ Approximate gradient

ltefation (k)
Fig. 2. Algorithm performance on the overloaded 39-bus system
of the constant-power consumption of the original network.
The cost of slack-bus reserves is considered equal to the per-
unit power supplied during the correction period, that is, we
set ¢s(ps) = ps. The dis-utility function is chosen as

"in(dnapn(envvn)) = pn(envvn)(dg - dn)27n €D. (19)

The function in (19) is zero if the DR factor d,, remains at
dY, and increases and scales by the per-unit load consumption
otherwise. The set D is selected as buses with a non-zero
nominal real power demand. We set d,, = 0.7 for n € D. We
only investigate real power DR by setting e¢,, = €,, = 1.

Table I summarizes the algorithm performance after 10
iterations with o = 0.00001 and g = 1. The first column of
the table are the breakdown of ®(u; ). The penalties for the
slack bus power injection p,, voltage violations v,, for n € P,
generator reactive powers g, for n € YU{s}, and line flows 5£
and s} for b € £ are abbreviated respectively by ¢(ps), ¢(v),
¢(g) and ¢(s). We observe in the table that before applying
DR the total cost is dominated by line congestion costs ¢(s).

By applying algorithm 1 using the true gradient all the
penalty parameters decrease. In particular, the congestion
cost ¢(s) decreases significantly yielding a very low total
cost after the corrective DR action. Applying the proposed
algorithm using the approximate gradient also reduces the
congestion cost significantly. Although the final cost using the
approximate gradient is slightly worse than that of the true
gradient, the implementation is highly simplified.

The iterations of the algorithm with both the true gradient
and the approximate gradient are demonstrated in Fig. 2. The
z-axis denotes the iteration values k and the y-axis denotes
the cost function value. It is observed that both algorithms
significantly decrease the objective function with the true
gradient ultimately settling at a lower cost value. The iterations
k of our proposed method can be interpreted as time steps k
as each update is applied to the network in real time.

Figure 3 demonstrates the real-time fluctuation of the real
power DR factors d,, for n € D using the approximate
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Demand response factor d,,

\‘\ ~®- Bus7 ~%- Bus18 —#- Bus26 —4- Bus39
0.8 . ~®- Bus§  —%- Bus20  ~4- Bus2l  _g  SqiSqo
N, -®- Bus9 —%- Bus2l
\»\
0.7 B e S s e

Iteration (k)

Fig. 3. Online coordination of DR factors.

gradient. A similar figure may be obtained for the true gra-
dient implementation. The set D is explicitly provided in the
legend. For each n € D, the profile of the real power DR
factors d%k) varies smoothly throughout the evolution of the
algorithm. It is observed that none of the DR factors violate
the lower limit of 0.7. The solid red line indicates the value

of > d%k) /> dg)). Indeed, this value is always guaranteed
neD neD
to be equal to 1 by the projection step (11).

V. CONCLUSION

This paper proposes demand response be used as a correc-
tive tool to reduce line thermal violations. While the aggregate
power demand stays unchanged to avoid triggering frequency
control actions, consumption of demand responsive loads may
be redistributed between buses to achieve de-congestion. The
presented network model accounts for nonlinear power flows
and voltage-dependent loads. The objective is to minimize
costs of providing DR services, purchasing power from slack
reserves, and penalties associated with voltage and generator
reactive power limit violations. The optimization model is
a non-convex program. Instead of convex approximations or
relaxations, the structure of the constraints are leveraged to
derive an online gradient projection algorithm that tackles
the non-convex program. While examining the theoretical
properties of the proposed algorithm is postponed to future
work, numerical experiments on an overloaded network with
ZIP loads evidence the applicability of the proposed algorithm
for online corrective grid de-congestion via demand response.
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