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Abstract—During grid overload or upon occurrence of cer-
tain contingencies, a corrective action is required to eliminate
congestion and reduce transmission line thermal limit violations.
In this paper, we propose to use demand-responsive loads for
such a purpose. Cost considerations include power retrieved
from the slack reserves and the dis-utility of consumers for
providing demand-response actions. Violations of voltage and
generator reactive power limits are also accounted for. The idea
is to topologically re-arrange the consumption of flexible loads
to achieve grid de-congestion while maintaining the aggregate
network power consumption constant to avoid interference with
frequency control procedures. Our formulation is based on
nonlinear power flows and easily allows the inclusion of voltage-
dependent loads. An online gradient projection algorithm with
closed-form updates is developed to solve the non-convex grid
de-congestion problem. Approximate gradient calculations based
on fast-decoupled load flow are further provided to simplify the
algorithm and make it amenable to distributed implementation.

I. INTRODUCTION

During the occurrence of contingencies or in periods of grid

overload, a corrective action is required for grid de-congestion.

Three options are typically available to system operators for

this purpose. The first is corrective generator rescheduling [1],

an action which is bound by the corresponding ramp con-

straints. A second traditional option is to additionally resort to

load-shedding and admit loss of loads [2], [3]. A more recent

option, enabled by communication capabilities of the smart

grid, is demand-response (DR) [4]. The latter topologically re-

arranges the consumption of flexible loads so as to ameliorate

line flow and voltage violations.
In preventive frameworks, DR has proved to be a viable

option. Examples include security-constrained unit commit-
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ment problems [5] and security enhancement of operation

reserves [6]. In these works, essentially, a demand pattern

for a set of critical contingencies are decided. The result of

preventive calculations may be used as look-up tables once

similar contingencies occur in the network.

DR has also been applied in corrective frameworks. For in-

stance, the work in [7] alleviates transformer overloads during

contingencies by optimizing DR decisions. Transformer loss of

life is calculated based on IEEE thermal and aging standards.

Although multi-period, this work does not consider power

flow equations. Corrective voltage-stability enhancement is

achieved in [8] by leveraging DR of flexible loads. It is

demonstrated that flexible loads can quickly adopt a different

spatial pattern which in turn increases the distance to voltage

collapse—as measured by the smallest singular value (SSV)

of the power flow Jacobian. In such a setup, total network

consumption remains constant to maintain system frequency.

Based on power flow linearizations and computation of SSV

sensitivities, an iterative algorithm where each step is a linear

program is designed. An extension to a two-period setting is

given in [9], where the second period acts as payback to ensure

the energy consumed by each load returns to its nominal

value. Impact of voltage-dependent load models, namely, ZIP

loads and induction machines on a similar problem is further

analyzed in [10]. It is indeed highlighted that optimal loading

patterns may vary significantly for various load models.

In this paper, we utilize DR as a corrective tool to achieve

grid de-congestion. The term de-congestion refers to ame-

liorating line flow congestion as measured by line thermal

limit violations. Costs of dis-utility for providing DR services,

cost of purchasing power from slack reserves, and associated

penalties with voltage and generator reactive power limit

violations are further considered. The formulation requires

that the aggregate real power demand stay unchanged during978-1-5386-8099-5/19/$31.00 c©2019 IEEE
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the corrective period so as to not interfere with frequency

stability procedures. The developed algorithm features real-

time updates that can be directly applied to the network in

real-time. In comparison with our previous work [11] where

we developed an online DR algorithm for voltage stability en-

hancement, this work provides four distinct novelties: (a) The

new formulation easily handles any type of voltage-dependent

load, (b) the cost of DR actions is considered, (c) DR actions

are used for grid de-congestion, and (d) approximate gradient

calculations are provided that highly simplify the algorithm

and make it amenable to distributed implementation.

Our online algorithm is indeed inspired by recent devel-

opments in feedback-based optimization methods in optimal

power flow (OPF) applications. In these approaches, real-time

measurements are used to evaluate network conditions and cal-

culate the next control action. Three main categories of these

approaches can be identified. The first category, utilizes the

the physical grid as an implicit power flow solver [12]–[14].

The controller setpoints rely on gradient calculation based on a

mathematical model using the implicit function theorem. The

real-time controller updates in the second category [15]–[18]

is heavily dependent on linearized power flow equations—

typically a valid option for distribution networks. Per iteration

of the algorithm, real-time measurements are used in place of

uncontrollable quantities. A third category directly develops a

projected gradient descent method for an OPF problem where

the variations in controls and system states are constrained

by the power flow manifold [19], [20]. At every iteration, the

controller updates are directly applied to the physical network.

Our present work is directly in line with the first group

[12]–[14] in that we use the implicit function theorem to

compute the gradients used for controller updates. A recent

work [21], computes generator actions to alleviate line and

voltage violations in real time. The algorithm in [21] uses the

fast decoupled load flow (FDLF) to linearize the relationship

between the power system states and control actions and

additionally utilizes piece-wise linear approximations of the

penalty functions to develop an efficient linear program at

every iteration. In our work, DR is used for corrective action.

We do not employ linearizations and instead leverage the

structure of the constraints to develop closed-form controller

updates. FDLF assumptions are only leveraged to approximate

gradient calculations and simplify algorithm implementation.

This paper is structured as follows. Section II entails the

proposed formulation. The solution methodology is detailed

in Section III and is organized into problem reformulation,

closed-form updates, gradient calculation, and algorithm im-

plementation. Numerical tests are provided in Section IV.1

1Notation: Vectors are denoted by lower-case letters. For vector x, index
set A, and an index i ∈ A, denote respectively by xi and xA, the element
of x corresponding to index i and a vector of size |A| comprised of xi’s for
i ∈ A. For a vector x, [x] denotes a diagonal matrix with x on the diagonal.
Transpose of (.) is denoted by (.)′.

II. NETWORK MODEL AND DESCRIPTION OF THE PROBLEM

Denote by (N , E) the graph of a power network where N is

the set of nodes and E := {(i, j) : i < j, i, j ∈ N} is the set

of branches. In power system lexicon, nodes represent buses

and branches represent transformers and transmission lines.

For nodes n ∈ N , denote by θn and vn the voltage phase

and magnitude. Denote further by ρn(θn, vn) and γn(θn, vn)
the voltage-dependent parametric load model. For instance,

the real power consumption of a ZIP load can explicitly be

modeled as ρn(θn, vn) = gℓnv
2
n+vni

ℓ
n cos θn+pℓn with gℓn, iℓn,

and pℓn denoting the specified nominal conductance, nominal

current, and nominal power consumption of load at node n.

Define the partition N = {s} ∪ V ∪ P , where s is the

slack bus, V is the set of voltage-controlled buses (henceforth

V-buses), and P is the remaining set of buses (henceforth, P-

buses). Let G ⊆ N be the set of generators and denote by pn
and qn the real and reactive power injection of the generator

connected at node n ∈ G. Define a matrix Cg ∈ R
|N |×|G|

where the (n, ng)-th element of Cg is equal to 1 if node n ∈ G
is the ng-th node in G for an arbitrarily chosen order. We define

following power balance functions:

p(θ, v, p, d) := [v][cos θ]G[v] cos θ + [v][sin θ]B[v] cos θ

+ [v][sin θ]G[v] sin θ − [v][cos θ]B[v] sin θ

− Cgp+ [ρ(θ, v)]d (1a)

q(θ, v, q, e) := [v][sin θ]G[v] cos θ − [v][cos θ]B[v] cos θ

− [v][cos θ]G[v] sin θ − [v][sin θ]B[v] sin θ

− Cgq + [γ(θ, v)]e. (1b)

In (1), G and B are the real and imaginary parts of the

bus admittance matrix. These power balance functions are

based on the standard power flow equations in [22], [23] with

additional modifications geared for this paper. The variables d
and e represent a DR factor for n ∈ N . For instance, varying

dn from 0 to 1 allows node n to go from zero to regular power

consumption. The power flow equations are

p(θ, v, p, d) = 0 (2a)

q(θ, v, q, e) = 0 (2b)

The proposed DR formulation for grid de-congestion is

minimize
θ,v,p,q,d,e

cs(ps) +
∑

n∈D

κn(dn, ρn(θn, vn)) (3a)

subject to (2) and

dn ≤ dn, n ∈ D (3b)
∑

n∈D

dn =
∑

n∈D

d0n (3c)

en ≤ en ≤ ēn, n ∈ D (3d)

p
s
≤ ps ≤ p̄s (3e)

vn ≤ vn ≤ v̄n, n ∈ P (3f)

q
n
≤ qn ≤ q̄n, n ∈ V ∪ {s} (3g)

s
f
b (θ, v) ≤ s̄b, b ∈ E (3h)

s
t
b(θ, v) ≤ s̄b, b ∈ E (3i)
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θs = 0, vn = vspn , n ∈ V ∪ {s}, pn = pspn , n ∈ G \ {s} (3j)

qn = qspn , n ∈ G ∩ P, dn = d0n, en = e0n, n ∈ N \ D (3k)

In (3), cs(ps) is the cost of providing power from slack

reserves during the correction period. The set D collects the

set of nodes n ∈ N that participate in DR. The dis-utility

functions κn(dn, ρn(θn, vn)) measure the cost imposed on

consumer n ∈ D for providing DR services. These dis-utility

functions are designed so that if dn equals 1 the dis-utility is

zero and their values increase as dn varies away from 1.

Constraint (3b) requires that a minimum amount of load,

given by the factor dn must be supported at node n ∈ D.

Constraint (3c) requires that the aggregate network demand

remains constant during the corrective period. A similar

constraint is utilized in [8]–[10]. The quantities d0n and e0n
represent the initial real and reactive demand adjustment fac-

tors at the beginning of the corrective action. Constraint (3d)

provides lower and upper limits en and ēn for reactive power

compensation at node n ∈ D. The assumption here is that

reactive power can be independently controlled for nodes

participating in DR. If a fixed power factor is required by

the load, this constraint can be modified accordingly.

Constraints (3e), (3f), and (3g) enforce respectively the

limits on power drawn from the slack reserves, the voltage

bounds on P-buses, as well as reactive power limits of V-buses

and the slack bus. Quantities s
f
b (θ, v) and stb(θ, v) measure

the squared magnitude of the from and to power flows on

branch b ∈ E respectively. These quantities are upper bounded

by the squared magnitude of line rating s̄b in (3h) and (3i).

Constraints listed in (3j) and (3k) ensure the appropriate

setpoints for the slack bus, V-buses, and P-buses as well as

DR factors of buses not participating in DR.

The DR problem (3) is non-convex. Indeed, not only the

power flow equations (2) are nonlinear, the multiplication of

DR factors d and e respectively with the nonlinear voltage-

dependent load models ρ(θ, v) and γ(θ, v) are complicated.

Although convex relaxations of power flow equation could be

used [24], obtaining a feasible solution that satisfies the power

flows might not be guaranteed for this problem. We seek a

method that can interact with the grid to produce an online

feasible solution with small costs in the next section.

III. SOLUTION METHODOLOGY

A projected gradient-descent algorithm is proposed here to

approximately solve the non-convex problem (3). Our algo-

rithm relies on a reformulation of (3) presented next. Details

on closed-form projections, approximate gradient calculations,

and algorithm implementation are postponed to later sections.

A. Reformulation

Let us first collect the variables in (3) in the vector

z = (θ, v, p, q, d, e) where θ, v ∈ R
|N |, p, q ∈ R

|G| and

d, e ∈ R
|N |. Assigning as parameters the indices of the

corresponding variables given by the setpoints listed in con-

straints (3j) and (3k), verifies that the unknowns in (3) are

the quantities θV∪P , vP , ps, qV∪{s}, dD, and eD amounting

to 2|N | + 2|D| variables. One may recall at this point that

in a transmission power flow, the values x = (θV∪P , vP , ps,

qV∪{s}) are not directly controllable. Indeed, by controlling

the 2|D| variables d and e the quantities in x may all be

determined by the physics of the problem, i.e., the power

flows (2). We shall thus formally interpret (2) as

f(x, u) = 0, (4)

where the function f(.) : R2|N |+2|D| → R
2|N | is continuously

differentiable and we have u = (dD, eD). Suppose that ∂f/∂x
evaluated at an operating point (x0, u0) is invertible. By the

implicit function theorem [25, Theorem 9.28], x is a locally

one-to-one function of u0 in a neighborhood U of u0, that is,

x = x(u), u ∈ U (5)

Derivative of x at u0 is computed as follows:

∂x

∂u

∣

∣

u0 = −

(

∂f

∂x

∣

∣

(x0,u0)

)−1
∂f

∂u

∣

∣

(x0,u0)
. (6)

Equation (6) proves useful later in this paper for the compu-

tation of the gradient in our algorithm.

Informed by (5), in the set U , (3) is equivalent to

minimize
(dD,eD)∈U

cs(ps(dD, eD))

+
∑

n∈D

κn(dn, ρn(θn(dn, en), vn(dn, vn))) (7a)

subject to (3b), (3c), (3d), (5) and

p
s
≤ ps(dn, en) ≤ p̄s (7b)

vn ≤ vn(dn, en) ≤ v̄n, n ∈ P (7c)

q
n
≤ qn(dn, en) ≤ q̄n, n ∈ V ∪ {s} (7d)

s
f
b (θ(d, e), v(d, e)) ≤ s̄b, b ∈ E (7e)

s
t
b(θ(d, e), v(d, e)) ≤ s̄b, b ∈ E (7f)

Constraints (7b)–(7f) rely entirely on u and cannot be directly

enforced. An approximate problem that penalizes these con-

straints must be administered. Define the penalty function

φ(z) = max{z, 0}2. (8)

The approximate problem is

minimize
u

Φ(u;µ) (9a)

subject to (3b), (3c), (3d), and (5), (9b)

where µ = (µp
s , µ

v
n, µ

q
n, µ

s

b) is a vector penalty parameter and

Φ(u;µ) := cs(ps) + κn(dn, ρn(θn(dn, en), vn(dn, en)))

+µp
s

(

φ(ps(u)− p̄s) + φ(p
s
− ps(u))

)

+
∑

n∈P

µv
n (φ(vn(u)− v̄n) + φ(vn − vn(u)))

+
∑

n∈V∪{s}

µq
n

(

φ(qn(u)− q̄n) + φ(q
n
− qn(u))

)

+
∑

b∈E

µs

b

(

φ(sfb (u)− s̄b) + φ(stb(u)− s̄b)
)

(10)
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B. Projected gradient descent

Problem (9) is solved with projected gradient-descent:

d
(k+1)
D = ΠZ

(

d
(k)
D − α(k)

(

∂Φ(u;µ)

∂dD

∣

∣

u(k)

)′
)

(11)

e
(k+1)
D = ΠB

(

e
(k)
D − α(k)

(

∂Φ(u;µ)

∂eD

∣

∣

u(k)

)′
)

(12)

where Z concisely represents constraints (3b) and (3c) while

B is the box constraint (3d). In (11), Π is the projection

operator,superscript (k) denotes the iteration index, and α(k)

is a step-size parameter. Given the gradient
∂Φ(u;µ)
∂eD

∣

∣

u(k) ,

update (12) is an Euclidean projection on a box constraint

which has a closed-form solution. Update (11) seems slightly

more complicated but it also permits a closed-form solution as

we explain next. It can be shown that d
(k+1)
D can be obtained

by the following update:

d
(k+1)
D =

(

∑

n∈D

(d0n − dn)

)

y∗ + dD (13)

where y∗ is the optimal value of the quadratic program:

minimize
y≥0

‖y −
d
(k)
D − α∂Φ(u;µ)

∂dD

∣

∣

′

u(k) − dD
∑

n∈D
(d0n − dn)

‖2 (14a)

subject to ‖y‖1 = 1. (14b)

The quadratic program (14) is an Euclidean projection on the

probability simplex [26] whose solution may be obtained via

bisection on the one dimensional dual variable [27, Exercise

1], or via a sorting-based non-iterative method [28]. Gradient

computations are detailed in the next section.

C. Gradient calculation and approximation

The derivative of Φ(u;µ) with respect to u is given by

∂Φ

∂u
=

∂cs
∂ps

∂ps
∂u

+
∑

n∈D

∂κn

∂u
+

∂κn

∂θn

∂θn
∂u

+
∂κn

∂vn

∂vn
∂u

+ µp
s

∂φ(ps)

∂ps

∂ps
∂u

+
∑

n∈P

µv
n

(

∂φ(vn − v̄n)

∂vn
+

∂φ(vn − vn)

∂vn

)

∂vn
∂u

+
∑

n∈V∪{s}

µq
n

(

∂φ(qn − q̄n)

∂qn
+

∂φ(q
n
− qn)

∂qn

)

∂qn
∂u

+
∑

b∈E

µs

b

(

∂φ(sfb − s̄b)

∂sfb

∂sfb
∂u

+
∂φ(stb − s̄b)

∂stb

∂stb
∂u

)

(15)

In (15), the expressions ∂cs
∂ps

, ∂κn

∂u
, ∂κn

∂θn
, ∂κn

∂vn
are obtained

by differentiating the cost functions cs(.) and κn(.). The

calculation of cost functions cs(.) and κn(.) and their deriva-

tives are decentralized per bus since these values solely rely

on local measurements—ps for the slack bus and θn, vn for

n ∈ D. The expressions
∂φ(.)
∂vn

,
∂φ(.)
∂qn

,
∂φ(.)

∂s
f

b

, and
∂φ(.)
∂st

b

are easily

computed by acknowledging that the derivative of φ(.) in (8)

is 2max{z, 0}. These calculations are also decentralized per

bus for
∂φ(.)
∂vn

,
∂φ(.)
∂qn

, and per branch for
∂φ(.)

∂s
f

b

and
∂φ(.)
∂st

b

.

The major challenge in computing the gradient is in ob-

taining the values for ∂ps

∂u
, ∂θn

∂u
, ∂vn

∂u
, and ∂qn

∂u
for n in the

appropriate sets. These values are entries of ∂x
∂u

from (6) where

we recall that x = (θV∪P , vP , ps, qV∪{s}). The quantity
∂f
∂u

is obtained by differentiating (1) and selecting appropriate

indices in the following:

∂p

∂d
= [ρ(θ, v)]

∂p

∂e
=O|N |×|N| (16a)

∂q

∂d
= O|N |×|N|

∂q

∂e
= [γ(θ, v)]. (16b)

These computations are decentralized per node as the load

models ρ(.) and γ(.) only depend on local variables per bus.

Computation of (∂f
∂x

∣

∣

(x0,u0)
)−1 in (6) is more challenging as

it first involves differentiating (1) with respect to θ, v, p, and q
and then performing matrix inversion. More taxing is that this

computation needs to be performed per iteration k as the value

of (x, u) evolves. Fortunately, the derivatives with respect to

p and q are fixed per iteration and given as follows:

∂p

∂p
= −Cg

∂p

∂q
=O|N |×|G| (17a)

∂q

∂p
= O|N |×|G|

∂q

∂q
= − Cg (17b)

Computing the derivatives of (1) with respect to θ and v vary

per iteration. Based on the decoupled power flow principles

[29], one can use the following approximations per iteration:

∂p

∂θ
= −B + [d][

∂ρ

∂θ
]

∂p

∂v
= [d][

∂ρ

∂v
] (18a)

∂q

∂d
= [d][

∂γ

∂θ
]

∂q

∂θ
=−B + [

∂γ

∂v
] (18b)

To further simplify matters, we suggest to compute the values

in (18) only at the initial point of the corrective action. In

this way, the inversion process of (∂f
∂x

∣

∣

(x0,u0)
)−1 in (6) can be

done only once at the start of the algorithm. Our numerical

simulations show that this approximate gradient calculation

does not significantly compromise the algorithm performance.

Detailed overview of the implementation is discussed next.

D. Algorithm Implementation

Algorithm 1 details the implementation of the proposed

algorithm. The stepsize parameter α, the stopping criteria ε,
and the penalty parameters µ are selected before the start of

the algorithm. Per step k, measurements x(u(k)) are collected

across buses and branches. The gradient value of ∂Φ
∂u

is

calculated following the details in Section III-C. Then, the

closed-form updates (11) and (12) are carried out by a central

operator. The new values of u(k) are broadcast to buses n ∈ D.

Further insight into the implementation is provided in Fig. 1.

In the figure, oval shapes represent buses and branches while

boxes represent computational elements. Buses are divided

into the slack-bus, V-buses, and P-buses. Any bus n ∈ D
can access its own particular load model and contribute to
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Algorithm 1 Grid De-congestion via Online DR

1: Select step-size parameter α, penalty parameters µ
2: Select objective improvement threshold ε
3: Set Φ(u(−1);µ) = +∞ and k = 0
4: Gather measurements x(u(0))

5: Compute Φ(u(0);µ) and
∂Φ(u;µ)

∂u

∣

∣

u(0)

6: while Φ(u(k−1);µ)− Φ(u(k);µ) > ε do

7: Apply updates (11) and (12)

8: k ← k + 1
9: Gather measurements x(u(k))

10: Compute Φ(u(k);µ) and
∂Φ(u;µ)

∂u

∣

∣

u(k)

11: end while

Fig. 1. A high-level schematic of the proposed algorithm.

the calculation of ∂f
∂u

according to (16). To evaluate ∂Φ
∂x

, all

buses calculate the value of ∂kn

∂un
, ∂kn

∂θn
, and ∂kn

∂vn
according

to the per-bus dis-utility function and particular load model.

The slack-bus computes ∂cs
∂ps

and ∂φ
∂ps

. The V-buses and P-

buses also respectively compute the values of ∂φ
∂qn

and ∂φ
∂vn

.

These computations are all decentralized per bus. The branches

further contribute to ∂Φ
∂x

by calculating ∂φ

∂s
f

b

and ∂φ
∂st

b

. These

computations are distributed between neighboring buses.

Having computed the values of ∂f
∂u

in a decentralized

manner and the values of ∂Φ
∂x

in a distributed fashion, the

computation of ∂x
∂u

through (6) is straightforward. An approx-

imation of (∂f
∂x

)−1 can be computed from (18) at the start

of the corrective DR procedure. This approximation highly

simplifies the implementation and allows for a distributed

update of ∂x
∂u

per iteration. Finally, the central operator can

collect the calculated gradient ∂Φ
∂u

and perform the closed-

form updates (11) and (12). Ultimately, the new DR factors are

distributed across the corresponding buses to determine new

setpoints for the next iteration. This procedure is continued

until the measurements x(u(k)) indicate that the improvement

rate of Φ(u(k);µ) is satisfactorily small.

IV. NUMERICAL EXPERIMENTS

We test the proposed algorithm on the 39-bus transmission

system here. The network is overloaded by a ZIP model

whose constant-admittance, constant-current, and constant-

power portions are respectively set to 10%, 50%, and 70%

TABLE I
COST COMPARISON

Objective Before DR True Gradient Approx. Gradient

Φ(u;µ) 16817.78 2838.09 3605.31

cs(ps) 19.49 18.00 18.14
∑

n∈D

κn 0.0 1.25 1.36

φ(ps) 169.79 133.22 136.46

φ(v) < 1e-4 < 1e-4 < 1e-4

φ(q) 35.05 20.78 21.85

φ(s) 16593.45 2664.84 3427.50

Fig. 2. Algorithm performance on the overloaded 39-bus system

of the constant-power consumption of the original network.

The cost of slack-bus reserves is considered equal to the per-

unit power supplied during the correction period, that is, we

set cs(ps) = ps. The dis-utility function is chosen as

κn(dn, ρn(θn, vn)) = ρn(θn, vn)(d
0
n − dn)

2, n ∈ D. (19)

The function in (19) is zero if the DR factor dn remains at

d0n, and increases and scales by the per-unit load consumption

otherwise. The set D is selected as buses with a non-zero

nominal real power demand. We set dn = 0.7 for n ∈ D. We

only investigate real power DR by setting en = ēn = 1.

Table I summarizes the algorithm performance after 10
iterations with α = 0.00001 and µ = 1. The first column of

the table are the breakdown of Φ(u;µ). The penalties for the

slack bus power injection ps, voltage violations vn for n ∈ P ,

generator reactive powers qn for n ∈ V∪{s}, and line flows s
f
b

and stb for b ∈ E are abbreviated respectively by φ(ps), φ(v),
φ(q) and φ(s). We observe in the table that before applying

DR the total cost is dominated by line congestion costs φ(s).
By applying algorithm 1 using the true gradient all the

penalty parameters decrease. In particular, the congestion

cost φ(s) decreases significantly yielding a very low total

cost after the corrective DR action. Applying the proposed

algorithm using the approximate gradient also reduces the

congestion cost significantly. Although the final cost using the

approximate gradient is slightly worse than that of the true

gradient, the implementation is highly simplified.

The iterations of the algorithm with both the true gradient

and the approximate gradient are demonstrated in Fig. 2. The

x-axis denotes the iteration values k and the y-axis denotes

the cost function value. It is observed that both algorithms

significantly decrease the objective function with the true

gradient ultimately settling at a lower cost value. The iterations

k of our proposed method can be interpreted as time steps k
as each update is applied to the network in real time.

Figure 3 demonstrates the real-time fluctuation of the real

power DR factors dn for n ∈ D using the approximate
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Fig. 3. Online coordination of DR factors.

gradient. A similar figure may be obtained for the true gra-

dient implementation. The set D is explicitly provided in the

legend. For each n ∈ D, the profile of the real power DR

factors d
(k)
n varies smoothly throughout the evolution of the

algorithm. It is observed that none of the DR factors violate

the lower limit of 0.7. The solid red line indicates the value

of
∑

n∈D
d
(k)
n /

∑

n∈D
d
(0)
n . Indeed, this value is always guaranteed

to be equal to 1 by the projection step (11).

V. CONCLUSION

This paper proposes demand response be used as a correc-

tive tool to reduce line thermal violations. While the aggregate

power demand stays unchanged to avoid triggering frequency

control actions, consumption of demand responsive loads may

be redistributed between buses to achieve de-congestion. The

presented network model accounts for nonlinear power flows

and voltage-dependent loads. The objective is to minimize

costs of providing DR services, purchasing power from slack

reserves, and penalties associated with voltage and generator

reactive power limit violations. The optimization model is

a non-convex program. Instead of convex approximations or

relaxations, the structure of the constraints are leveraged to

derive an online gradient projection algorithm that tackles

the non-convex program. While examining the theoretical

properties of the proposed algorithm is postponed to future

work, numerical experiments on an overloaded network with

ZIP loads evidence the applicability of the proposed algorithm

for online corrective grid de-congestion via demand response.

REFERENCES

[1] A. Monticelli, M. V. F. Pereira, and S. Granville, “Security-Constrained
Optimal Power Flow with Post-Contingency Corrective Rescheduling,”
IEEE Trans. Power Syst., vol. 2, no. 1, pp. 175–180, 1987.

[2] A. Shandilya, H. Gupta, and J. Sharma, “Method for generation
rescheduling and load shedding to alleviate line overloads using local
optimisation,” IEE Proc. C Gener. Transm. Distrib., vol. 140, no. 5, p.
337, 1993.

[3] D. Hazarika and A. Sinha, “Method for optimal load shedding in case of
generation deficiency in a power system,” Int. J. Electr. Power Energy

Syst., vol. 20, no. 6, pp. 411–420, Aug. 1998.
[4] US Department of Energy, “Benefits of Demand Response in Electricity

Markets and Recommendations for Achieving Them,” Tech. Rep., 2005.
[Online]. Available: https://eetd.lbl.gov/sites/all/files/publications/report-
lbnl-1252d.pdf

[5] A. Khodaei, M. Shahidehpour, and S. Bahramirad, “SCUC With Hourly
Demand Response Considering Intertemporal Load Characteristics,”
IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 564–571, Sept. 2011.

[6] Y. Wang, I. R. Pordanjani, and W. Xu, “An Event-Driven Demand
Response Scheme for Power System Security Enhancement,” IEEE

Trans. Smart Grid, vol. 2, no. 1, pp. 23–29, Mar. 2011.
[7] M. Humayun, A. Safdarian, M. Z. Degefa, and M. Lehtonen, “Demand

Response for Operational Life Extension and Efficient Capacity Utiliza-
tion of Power Transformers During Contingencies,” IEEE Trans. Power

Syst., vol. 30, no. 4, pp. 2160–2169, July 2015.
[8] M. Yao, J. L. Mathieu, and D. K. Molzahn, “Using demand response

to improve power system voltage stability margins,” in Proc. IEEE

Manchester PowerTech, June 2017, pp. 1–6.
[9] M. Yao, D. K. Molzahn, and J. L. Mathieu, “An Optimal

Power Flow Approach to Improve Power System Voltage
Stability Using Demand Response,” IEEE Trans. Control.

Netw. Syst., April 2019, to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8686211

[10] ——, “The impact of load models in an algorithm for improving
voltage stability via demand response,” in Proc. 55th Annu. Allert. Conf.

Commun. Control. Comput., Oct. 2017, pp. 149–156.
[11] M. Bazrafshan, N. Gatsis, and H. Zhu, “Real-Time Voltage Stability

Enhancement via Demand Response,” submitted.
[12] L. Gan and S. H. Low, “An Online Gradient Algorithm for Optimal

Power Flow on Radial Networks,” IEEE J. Sel. Areas Commun., no. 3,
pp. 625–638, Mar. 2016.

[13] Y. Tang, K. Dvijotham, and S. Low, “Real-Time Optimal Power Flow,”
IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2963–2973, Nov. 2017.

[14] Y. Tang and S. Low, “Distributed algorithm for time-varying optimal
power flow,” in Proc. 56th Annu. Conf. Decis. Control, Dec. 2017, pp.
3264–3270.

[15] A. Bernstein and E. Dall’Anese, “Real-Time Feedback-Based
Optimization of Distribution Grids: A Unified Approach,” IEEE

Trans. Control. Netw. Syst., 2019, to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8767939

[16] X. Zhou, E. Dall’Anese, L. Chen, and A. Simonetto, “An Incentive-
Based Online Optimization Framework for Distribution Grids,” IEEE

Trans. Autom. Control, vol. 63, no. 7, pp. 2019–2031, 2018.
[17] K. Baker, A. Bernstein, E. Dall’Anese, and C. Zhao, “Network-

cognizant voltage droop control for distribution grids,” IEEE Trans.

Power Syst., vol. 33, no. 2, pp. 2098–2108, Mar. 2018.
[18] Y. Zhang, E. Dall’Anese, and M. Hong, “Dynamic ADMM for real-

time optimal power flow,” in Proc. Glob. Conf. Signal Inf. Process.,
Nov. 2017, pp. 1085–1089.

[19] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Projected gradient
descent on Riemannian manifolds with applications to online power
system optimization,” in Proc. 54th Annu. Allert. Conf. Commun.

Control. Comput., Sept. 2016, pp. 225–232.
[20] A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, and G. Hug, “Online

optimization in closed loop on the power flow manifold,” in Proc.

PowerTech Conf., Jun 2017, pp. 1–6.
[21] N. Mazzi, B. Zhang, and D. S. Kirschen, “An Online Optimization

Algorithm for Alleviating Contingencies in Transmission Networks,”
IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5572–5582, Sept. 2018.

[22] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower 6.0 User’s
Manual,” 2016.

[23] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. F.
Wollenberg, “Monitoring and Optimization for Power Grids: A Signal
Processing Perspective,” IEEE Signal Process. Mag., vol. 30, no. 5, pp.
107–128, Sept. 2013.

[24] J. A. Taylor, Convex Optimization of Power Systems. Cambridge
University Press, 2015.

[25] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

[26] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the l1-ball for learning in high dimensions,” in
Proc. 25th Int. Conf. on Machine Learning, ser. ICML ’08. New
York, NY, USA: ACM, 2008, pp. 272–279. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390191

[27] S. Boyd, “EE364b Homework 4,” Tech. Rep. [Online]. Available:
https://see.stanford.edu/materials/lsocoee364b/hw4sol.pdf

[28] Y. Chen and X. Ye, “Projection Onto A Simplex,” Tech. Rep., 2011.
[Online]. Available: http://www.math.ufl.edu/

[29] B. Stott and O. Alsac, “Fast Decoupled Load Flow,” IEEE Trans. Power

Appar. Syst., vol. PAS-93, no. 3, pp. 859–869, May 1974.

�����������	
��	

��	
����	����	����	������	��

��	�����	
�����
	�������
�	������	��������������
�
����������
�
�������� 


