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Abstract

Comparison of graph structure is a ubiquitous task in data analysis and machine learning,

with diverse applications in fields such as neuroscience, cyber security, social network anal-

ysis, and bioinformatics, among others. Discovery and comparison of structures such as

modular communities, rich clubs, hubs, and trees yield insight into the generative mecha-

nisms and functional properties of the graph. Often, two graphs are compared via a pairwise

distance measure, with a small distance indicating structural similarity and vice versa. Com-

mon choices include spectral distances and distances based on node affinities. However,

there has of yet been no comparative study of the efficacy of these distance measures in

discerning between common graph topologies at different structural scales. In this work, we

compare commonly used graph metrics and distance measures, and demonstrate their abil-

ity to discern between common topological features found in both random graph models and

real world networks. We put forward a multi-scale picture of graph structure wherein we

study the effect of global and local structures on changes in distance measures. We make

recommendations on the applicability of different distance measures to the analysis of

empirical graph data based on this multi-scale view. Finally, we introduce the Python library

NetComp that implements the graph distances used in this work.

1 Introduction

In the era of big data, comparison and matching are ubiquitous tasks. A graph is a particular

type of data structure that records the interactions between some collection of agents. These

objects are sometimes referred to as “complex networks;” we use the mathematician’s term

“graph” throughout the paper. This type of data structure relates connections between objects,

rather than directly relating the properties of those objects. The interconnectedness of the

object in graph data disallows many common statistical techniques used to analyze tabular

datasets. The need for new analytical techniques for visualizing, comparing, and understand-

ing graph data has given rise to a rich field of study [1–3].

In this work, we focus on tools for pairwise comparison of graphs. Examples of applications

include the two-sample test problem and the change point detection problem. In the former,

we compare two populations of graphs using a distance statistic, and we experimentally test
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whether both populations could be generated by the same probability distribution. In the lat-

ter, we consider a dynamic network formed by a time series of graphs, and the goal is to detect

significant changes between adjacent time steps using a distance [4]. Both problems require

the ability to effectively compare two graphs. However, the utility of any given comparison

method varies with the type of information the user is looking for; one may care primarily

about large scale graph features such as community structure or the existence of highly con-

nected “hubs”; or, one may be focused on smaller scale structure such as local connectivity (i.e.

the degree of a vertex) or the ubiquity of substructures such as triangles.

Existing surveys of graph distances are limited to observational datasets (e.g., [5] and refer-

ences therein). While authors try to choose datasets that are exemplars of certain classes of net-

works (e.g., social, biological, or computer networks), it is difficult to generalize these studies

to other datasets.

In this paper, we take a different approach. We consider existing ensembles of random

graphs as prototypical examples of certain graph structures, which are the building blocks of

existing real world networks. We propose therefore to study the ability of various distances to

compare two samples randomly drawn from distinct ensembles of graphs. Our investigation is

concerned with the relationship between the families of graph ensembles, the structural fea-

tures characteristic of these ensembles, and the sensitivity of the distances to these characteris-

tic structural features.

The myriad of proposed techniques for graph comparison [6] are severely reduced in num-

ber when one requires the practical restriction that the algorithm run in a reasonable amount

of time on large graphs. Graph data frequently consists of 104 to 108 vertices, and so algorithms

whose complexity scales quadratically with the size of the graph quickly become unfeasible. In

this work, we restrict our attention to approaches where the calculation time scales linearly or

near-linearly with the number of vertices in the graph for sparse graphs. We recall that a graph

is sparse if the number of edges grows linearly (up to a logarithmic factor) with the number of

nodes.

In the past 40 years, many random graph models have been developed that emulate certain

features found in real-world graphs [7, 8]. A rigorous probabilistic study of the application of

graph distances to these random models is difficult because the models are often defined in

terms of a generative process rather than a distribution over the space of possible graphs. As

such, researchers often restrict their attention to very small, deterministic graphs (see e.g., [9])

or to very simple random models, such as that proposed by Erdős and Rényi [10]. Even in

these simple cases, rigorous probabilistic analysis can be prohibitively difficult. We propose

instead a numerical approach where we sample from random graph distributions and observe

the empirical performance of various distance measures.

Throughout the work, we examine the observed results through a lens of global versus local

graph structure. Examples of global structure include community structure and the existence

of well-connected vertices (often referred to as “hubs”). Examples of local structure include the

median degree in the graph, or the density of substructures such as triangles. Our results dem-

onstrate that some distances are particularly tuned towards observing global structure, while

others naturally observe multiple scales. In both empirical and numerical experiments, we use

this multi-scale interpretation to understand why the distances perform the way they do on a

given model, or on given empirical graph data.

The paper is structured as follows: in Section 2.2, we introduce the distances used, and

establish the state of knowledge regarding each. In Section 2.4, we describe the random graph

ensembles that are used to evaluate the various distances. We discuss their structural features,

and their respective values as prototypical models for real networks. In Section 2.5 we describe

three real networks that we use to further study the performance of the distances. The reader
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who is already familiar with the graph models and distances discussed can skip to Section 2.6

to find the description of the contrast statistic that we use to compare graph populations.

Experimental results are briefly described in sections 3.1 and 3.2. A detailed discussion is pro-

vided in Sections 4.1 and 4.2. Finally, Section Conclusion summarizes the work and our rec-

ommendations. In Section 7, we introduce and discuss NetComp, the Python package that

implements the distances used to compare the graphs throughout the paper.

2 Methods

2.1 Notation

We must first introduce the notation used throughout the paper. It is standard wherever

possible.

We denote by G = (V, E, W) a graph with vertex set V = {1, . . ., n} and edge set E � V × V.

The function W: E ! R+ assigns each edge (i, j) in E a positive weight that we denote wi,j. We

call n = |V| the size of the graph, and denote by m¼
def

jEj the number of edges. For i 2 V and j 2

V, we say i * j if (i, j) 2 E. The matrix A is called the adjacency matrix, and is defined as

Ai;j ¼
def

wi;j if i � j;

0 otherwise:

(

The degree di of a vertex is defined as di ¼
def
X

j�i
wi;j. The degree matrix D is the diagonal

matrix of degrees, so Di,i = di and Di,j = 0 for i 6¼ j. The combinatorial Laplacian matrix (or

just Laplacian) of G is given by L¼
def D � A. The normalized Laplacian is defined as

L¼
def D�1=2LD�1=2, where the diagonal matrix D−1/2 is given by

D�1=2

i;i ¼
def

(
1=

ffiffiffiffi
di

p
if di 6¼ 0;

0 otherwise:

We refer to A, L, and L as matrix representations of G. These are not the only useful

matrix representations of a graph, although they are some of the most common. For a more

diverse catalog of representations, see [11].

The spectrum of a matrix is the sorted sequence of eigenvalues. Whether the sequence is

ascending or descending depends on the matrix in question. We denote the kth eigenvalue of

the adjacency matrix by l
A
k , where we order the eigenvalues in descending order

l
A
1

� l
A
2

� . . . � l
A
n : ð1Þ

We denote by l
L
k the kth eigenvalue of the Laplacian matrix, and we order these eigenvalues in

ascending order, so that

0 ¼ l
L
1

� l
L
2

� . . . � l
L
n: ð2Þ

We similarly denote the kth eigenvalue of the normalized Laplacian by l
L
k , with

0 ¼ l
L
1

� l
L
2

� . . . � l
L
n ; ð3Þ

and we denote by ϕk the corresponding eigenvector.

The significance of this convention is that the index k of an eigenvalue λk always encodes

the frequency of the corresponding eigenvector. To wit, the eigenvector associated with either

l
A
k or l

L
k experiences about k oscillations on the graphs, with k + 1 nodal domains [12].

Metrics for graph comparison: A practitioner’s guide

PLOS ONE | https://doi.org/10.1371/journal.pone.0228728 February 12, 2020 3 / 54

https://doi.org/10.1371/journal.pone.0228728


Two graphs G and G0 are isomorphic if and only if there exists a map between their vertex

sets under which the two edge sets are equal; we write G ffi G0. If we denote by A and A0 the

adjacency matrices of G and G0 respectively, then G ffi G0 if and only if there exists a permuta-

tion matrix P such that A0 = PTAP.

We say that a distance d requires node correspondence when there exist graphs G, G0, and

H such that G ffi G0 but d(G, H) 6¼ d(G0, H). Intuitively, a distance requires node correspon-

dence when one must know some meaningful mapping between the vertex sets of the graphs

under comparison.

2.2 Graph distance measures

Let us begin by introducing the distances that we study in this paper, and discussing the state

of the knowledge for each. We have chosen both standard and cutting-edge distances, with the

requirement that the algorithms be computable in a reasonable amount of time on large, sparse

graphs. In practice, this means that the distances must scale linearly or near-linearly in the size

in the graph.

We refer to these tools as “distance measures,” as many of them do not satisfy the technical

requirements of a metric. Although all are symmetric, they may fail one or more of the other

requirements of a mathematical metric. This can be very problematic if one hopes to perform

rigorous analysis on these distances, but in practice it is not significant. Consider the require-

ment of identity of indiscernible, in which d(G, G0) = 0 if and only if G = G0. We rarely encoun-

ter two graphs where d(G, G0) = 0; we are more frequently concerned with an approximate

form of this statement, in which we wish to deduce that G is similar to G0 from the fact that d
(G, G0) is small.

The distance measures we study divide naturally into two categories, that we now describe.

These categories are not exhaustive; many distance measures (including one we employ in the

experiments) do not fit neatly into either category. Akoglu et al. [6], whose focus is anomaly

detection, provide an alternative taxonomy; our taxonomy refines a particular group of meth-

ods they refer to as “feature-based”.

2.2.1 Spectral distances. Let us first discuss spectral distances. We briefly review the nec-

essary background; see [11] for a good introduction to spectral methods used in graph

comparison.

We first define the adjacency spectral distance; the Laplacian and normalized Laplacian

spectral distances are defined similarly. Let G and G0 be graphs of size n, with adjacency spectra

λA and l
A0

, respectively. The adjacency spectral distance between the two graphs is defined as

dAðG;G0Þ ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðl
A
i � l

A0

i Þ
2

s

;

which is just the distance between the two spectra in the ℓ2 metric. We could use any ℓp metric

here, for p 2 [0, 1]. The choice of p is informed by how much one wishes to emphasize outli-

ers; in the limiting case of p = 0, the metric returns the measure of the set over that the two vec-

tors are different, and when p = 1 only the largest element-wise difference between the two

vectors is returned. Note that for p < 1 the ℓp distances are not true metrics (in particular, they

fail the triangle inequality) but they still may provide valuable information. For a more detailed

discussion on ℓp norms, see [13].

The Laplacian and normalized Laplacian spectral distances dL and dL are defined in the

exact same way. In general, one can define a spectral distance for any matrix representation of
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a graph; for results on more than just the three we analyze here, see [11]. We note that spectral

distances do not require node correspondence.

An important property of the normalized Laplacian spectral distance is that it can be used

to compare graphs of different sizes (see e.g., [14]).

In practice, it is often the case that only the first k eigenvalues are compared, where k � n.

We still refer to such truncated spectral distances as spectral distances. When using spectral

distances, it is important to keep in mind that the adjacency spectral distance compares the

largest k eigenvalues, whereas the Laplacian spectral distances compare the smallest k eigenval-

ues. Comparison using the first k eigenvalues l
A
k for small k allows one to focus on the commu-

nity structure of the graph, while ignoring the local structure of the graph [15]. Inclusion of

the highest-k eigenvalues l
A
k allows one to discern local features as well as global. This flexibil-

ity allows the user to target the particular scale at which she wishes to study the graph, and is a

significant advantage of the spectral distances.

The three spectral distances used here are not true metrics. This is because there exist

graphs G and G0 that are co-spectral but not isomorphic. That is to say, adjacency cospectrality

occurs when l
A
i ¼ l

A0

i for all i = 1, . . ., n, so dA(G, G0) = 0, but G≇ G0. Similar notions of

cospectrality exist for all matrix representations; graphs that are co-spectral with respect to one

matrix representation are not necessarily co-spectral with respect to other representations.

Little is known about cospectrality, save for some computational results on small graphs

[16] and trees [11]. Schwenk proved that a sufficiently large tree nearly always has a co-spectral

counterpart [17]. This result was extended recently to include a wide variety of random trees

[18]. However, results such as these are not of great import to us; the graphs examined are

large enough that we do not encounter cospectrality in our numerical experiments. A more

troubling failure mode of the spectral distances would be when the distance between two

graphs is very small, but the two graphs have important topological distinctions. In Section

Discussion, we provide further insight into the effect of topological changes on the spectra of

some of the random graph models we study.

The consideration above addresses the question of how local changes affect the overall spec-

tral properties of a graph. Some limited computational studies have been done in this direc-

tion. For example, Farkas et al. [19] study the transition of the adjacency spectrum of a small

world graph as the disorder parameter increases. As one might expect, the authors in [19]

observe the spectral density transition from a highly discontinuous density (which occurs

when the disorder is zero and the graph is a ring-like lattice) to Wigner’s famous semi-circular

shape [20] (which occurs when the disorder is maximized, so that the graph is roughly equiva-

lent to an uncorrelated random graph).

From an analytical standpoint, certain results in random matrix theory inform our under-

standing of fluctuations of eigenvalues of the uncorrelated random graph (see Section Ran-

dom Graph Models for a definition). These results hold asymptotically as we consider the kth

eigenvalue of a graph of size n, where k = αn for α 2 (0, 1]. In this case, O’Rourke [21] has

shown that the the eigenvalue λk is asymptotically normal with asymptotic variance σ2(λk) = C
(α) log n/n. An expression for the constant C(α) is provided; see Remark 8 in [21] for the

detailed statement of the theorem. This result can provide a heuristic for spectral fluctuations

in some random graphs, but when the structure of these graphs diverges significantly from

that of the uncorrelated random graph, then results such as these become less informative.

Another common question is that of interpretation of the spectrum of a given matrix repre-

sentation of a graph. How are we to understand the shape of the empirical distribution of

eigenvalues? Specifically, one might study the overall shape of the spectral density, or the value

of individual eigenvalues separated from the bulk. Can we interpret the eigenvalues which
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separate from this bulk in a meaningful way? The answer to this question depends, of course,

on the matrix representation in question. Let us focus first on the Laplacian matrix L, the inter-

pretation of that is the clearest.

The first eigenvalue of L is always l
L
1

¼ 0, with the eigenvector being the vector of all ones,

1 2 Rn
. It is a well-known result that the multiplicity of the zero eigenvalue is the number of

connected components of the graph, i.e. if 0 ¼ l
L
k < l

L
kþ1

, then there are precisely k connected

components of the graph [22]. Furthermore, in such a case, the first k eigenvectors can be cho-

sen to be the indicator functions of the components. There exists a relaxed version of this

result: if the first k eigenvalues are very small (in a sense properly defined), then the graph can

be strongly partitioned into k clusters (see [15] for the rigorous formulation of the result). This

result justifies the use of the Laplacian in spectral clustering algorithms, and can help us under-

stand the interplay between the presence of small eigenvalues and the presence of communities

in the ensembles of random graphs studied in Section 3.1.1.

The eigenvalues of the Laplacian can be interpreted as vibrational frequencies in a manner

similar to the eigenvalues of the continuous Laplacian operator r2. To understand this anal-

ogy, consider the graph as embedded in a plane, with each vertex representing an oscillator of

mass one and each edge a spring with elasticity one. Then, for small oscillations perpendicular

to the plane, the Laplacian matrix is precisely the coupling matrix for this system, and the

eigenvalues give the square of the normal mode frequencies, oi ¼

ffiffiffiffiffi

l
L
i

q

. For a more thorough

discussion of this interpretation of the Laplacian, see [23].

Maas [24] suggests a similar interpretation of the spectrum of the adjacency matrix A. Con-

sider the graph as a network of oscillators, embedded in a plane as previously discussed. Addi-

tionally, suppose that each vertex is connected to so many external non-moving points (by

edges with elasticity one) so that the graph becomes regular with degree d. The frequencies of

the normal modes of this structure then connect to the eigenvalues of A via oi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � l
A
i

q

. If

the graph is already regular with degree d, then this interpretation is consistent with the previ-

ous, since the eigenvalues of L = dI − A are just l
L
i ¼ d � l

A
i .

2.2.2 Matrix distances. The second class of distances we discuss are called matrix dis-
tances, and consist of direct comparison of the structure of pairwise affinities between vertices

in a graph (see [9] for a detailed discussion on matrix distances). These affinities are frequently

organized into matrices, and the matrices can then be compared, often via an entry-wise ℓp
norm. Matrix distances all require node correspondence.

We have discussed spectral methods for measuring distances between two graphs; to intro-

duce the matrix distances, we begin by focusing on methods for measuring distances on a
graph; that is to say, the distance δ(v, w) between two vertices v, w 2 V. Just a few examples of

such distances include the shortest path distance [25], the effective graph resistance [26], and

variations on random-walk distances [27]. Of those listed above, the shortest path distance is

the oldest and the most thoroughly studied; in fact, it is so ubiquitous that “graph distance” is

frequently used synonymously with shortest path distance [28].

There are important differences between the distances δ that we might choose. The shortest

path distance considers only a single path between two vertices. In comparison, the effective

graph resistance takes into account all possible paths between the vertices, and so measures

not only the length, but the robustness of the communication between the vertices.

How do these distances on a graph help us compute distances between graphs? Let us denote

by d : V � V ! R a generic distance on a graph. We need assume very little about this func-

tion, besides it being real-valued; in particular, it need not be symmetric, and we can even

allow δ(v, v) 6¼ 0. When we say “distance” we implicitly assume that smaller values imply
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greater similarity; however, we can also carry out this approach with a “similarity score”, in

which larger values imply greater similarity. Recalling that the vertices v 2 V = {1, . . ., n} are

labelled with natural numbers, we can then construct a matrix of pairwise distances M via

Mi;j ¼
def

dði; jÞ. The idea behind what we refer to as matrix distances is that this matrix M carries

important structural information about the graph.

Consider two graphs G = (V, E) and G0 = (V, E0) defined on the same vertex set. Given a

graph distance δ(�, �), let M and M0 be the matrices of pairwise distances between vertices in

the graph G and G0 respectively. We define the distance d induced by δ between G and G0 as

follows,

dðG;G0Þ ¼
def

k M � M0 k; ð4Þ

where k � k is a norm we are free to choose. In principle, we could use metrics, or even similar-

ity functions here, at the risk of the function d losing some desirable properties.

Let us elucidate a specific example of such a distance; in particular, we show how the edit

distance conforms to this description. Let δ(v, w) be defined as

dðv;wÞ ¼

(
1 if v � w;

0 else:
ð5Þ

Then the matrix M is just the adjacency matrix A. If we use the norm

k M k¼
Xn

i;j¼1

jMi;jj; ð6Þ

then we call the resulting distance dðG;G0Þ ¼
def

k A � A0 k the edit distance.

Of course, the usefulness of such a distance is directly dependent on how well the matrix M
reflects the topological structure of the graph. The edit distance focuses by definition on local

structure; it can only see changes at the level of edge perturbations. If significant volume

changes are happening in the graph, then the edit distance detects these changes, as do other

matrix distances.

To compensate for such trivial first order changes (changes in volume) we match the

expected volume of the models under comparison (see Section 3.1). We can then study

whether distances can detect structural changes.

We also implement the resistance-perturbation distance, first discussed in [9]. This distance

takes the effective graph resistance R(u, v), defined in [26], as the measure of vertex affinity.

This results in a (symmetric) matrix of pairwise resistances R. The resistance-perturbation dis-

tance (or just resistance distance) is based on comparing these two matrices in the entry-wise

ℓ1 norm given in Eq (6).

Unlike the edit distance, the resistance distance is designed to detect changes in connectiv-

ity between graphs. A recent work [29] discusses the efficacy of the resistance distance in

detecting community changes.

Finally, we study DELTAECON, a distance based on the fast belief propagation method of

measuring node affinities [30]. To compare graphs, this method uses the fast belief propaga-

tion matrix

S¼
def

½I þ �2D � �A�
�1

; ð7Þ
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and compares the two representations S and S0 via the Matusita difference,

dðG;G0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i;j

ffiffiffiffiffi
Si;j

q
�

ffiffiffiffiffi
S0
i;j

q� �2
s

: ð8Þ

Note that the matrix S can be rewritten in a matrix power series as

S � I þ �A þ �2ðA2 � DÞ þ . . . ð9Þ

and so takes into account the influence of neighboring vertices in a weighted manner, where

neighbors separated by paths of length k have weight �k. Fast belief propagation is designed to

model the diffusion of information throughout a graph [31], and so should in theory be able to

perceive both global and local structures. Although empirical tests are performed in [30], no

direct comparison to other modern methods is presented.

2.2.3 Feature-based distances. These two categories do not cover all possible methods of

graph comparison. The computer science literature explores various other methods (e.g., see

[6], Section 3.2 for a comprehensive review), and other disciplines that apply graph-based

techniques often have their own idiosyncratic methods for comparing graphs extracted from

data.

One possible method for comparing graphs is to look at specific “features” of the graph,

such as the degree distribution, betweenness centrality distribution, diameter, number of trian-

gles, number of k-cliques, etc. For graph features that are vector-valued (such as degree distri-

bution) one might also consider the vector as an empirical distribution and take as graph

features the sample moments (or quantiles, or statistical properties). A feature-based distance
is a distance that uses comparison of such features to compare graphs.

Of course, in a general sense, all methods discussed so far are feature based; however, in the

special case where the features occur as values over the space V × V of possible node pairings,

we choose to refer to them more specifically as matrix distances. Similarly, if the feature in

question is the spectrum of a particular matrix realization of the graph, we call the method a

spectral distance.

In [32], a feature-based distance called NETSIMILE is proposed, which focuses on local and

egonet-based features (e.g., degree, volume of egonet as fraction of maximum possible volume,

etc.). If we are using k features, the method aggregates a feature-vertex matrix of size k × n.

This feature matrix is then reduced to a “signature vector” (a process the authors in [32] call

“aggregation”) that consists of the mean, median, standard deviation, skewness, and kurtosis

of each feature. These signature vectors are then compared in order to obtain a measure of dis-

tance between graphs.

In the neuroscience literature in particular, feature-based methods for comparing graphs

are popular [33, 34]. In [35], the authors use graph features such as modularity, shortest path

distance, clustering coefficient, and global efficiency to compare functional connectivity net-

works of patients with and without schizophrenia. Statistics of these features for the control

and experiment groups are aggregated and compared using standard statistical techniques.

We implement NETSIMILE as a prototypical feature-based method. It is worth noting that the

general approach could be extended in almost any direction; any number of features could be

used (which could take on scalar, vector, or matrix values) and the aggregation step can

include or omit any number of summary statistics on the features, or can be omitted entirely.

We implement the method as it is originally proposed, with the caveat that calculation of

many of these features is not appropriate for large graphs, as they cannot be computed in linear

or near-linear time. A scalable modification of NETSIMILE would utilize features that can be cal-

culated (at least approximately) in linear or near-linear time.
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2.2.4 Learning graph kernels. Given the diversity of structural features in graphs, and the

difficulty of designing by hand the set of features that optimizes the graph embedding, several

researchers have proposed recently to learn the embedding from massive datasets of existing

networks. Such algorithms learn an embedding [36] from a set of graphs into Euclidean space,

and then compute a notion of similarity between the embedded graphs (e.g., [37–39] and ref-

erences therein). The metric that is learnt can be tailored to a specific application (e.g., [39–

45]).

All these approaches rely on the extension of convolutional neural networks to non Euclid-

ean structures, such as manifolds and graphs (e.g., [46–49] and references therein). The core

scientific question becomes: how does one implement the convolution units that are in the net-

work? Two methods have been proposed. The first method performs the convolution in the

spectral domain [50], (defined by the eigenspace of the graph Laplacian). These data-depen-

dent convolutions can be performed directly in the spatial domain (using polynomials of the

Laplacian [51]) or in the spectral domain (in the eigenspace of the Laplacian). Purely “in-the-

graph” methods have also been proposed where the convolution is implemented using an

aggregation process (e.g., [42, 52, 53] and references therein).

Graph kernels [54] are typically not injective (two graphs can be perfectly similar without

being the same), and rarely satisfies the triangular inequality. There have been some recent

attempts at identifying the classes of kernels that are injective [55, 56]. The question can be

rephrased in terms of how expressive is the embedding from the space of graphs to Euclidean

space, i.e. how often do two distinct graphs are mapped to same point [57]. The authors in [55,

56] have proved that graph neural networks are as expressive as the Weisfeiler-Lehman graph

isomorphism test: if two graphs are mapped to distinct points by the embedding, then the

Weisfeiler-Lehman graph test would consider these graphs to be distinct (non isomorphic).

2.2.5 Comparing graphs of different sizes. The distance measures described in the previ-

ous paragraphs are defined for two graphs that have the same size. In practice, one often needs

to compare graphs of different sizes. Inspired by the rich connections between graph theory

and geometry, one can define a notion of distance between any two graphs by extending the

notion of distance between metric spaces [58]. The construction proceeds as follows: each

graph is represented as a metric space, wherein the metric is simply the shortest distance on

the graph. Two graphs are equivalent if there exists an isomorphism between the graph—rep-

resented as metric spaces. Finally, one can define a distance between two graphs G1 and G2 (or

rather between the two classes of graph isometric to G1 and G2 respectively) by considering

standard notions of distances between isometry classes of metric spaces [59]. Examples of such

distances include the Gromov-Hausdorff distance [59], the Kantorovich-Rubinstein distance

and the Wasserstein distance [60], which both require that the metric spaces be equiped with

probability measures. The Gromov-Hausdorff distance computes the infimum of the Haus-

dorff distance between the isometric embeddings of two metric spaces into a common one. In

plain English, this distance measures the residual error after trying to “optimally align” two

metric spaces using deformations of these spaces that preserve distances (isometries). Because

the search for the optimal alignment (embedding) is over such a vast space of functions, the

Gromov-Hausdorff does not lend itself to practical applications (but see [61]).

On the other hand, the Wasserstein-Kantorovich-Rubinstein distance, also known as the

“Earth Mover’s distance” in the engineering literature, has been used extensively in probability

and pattern recognition (e.g., [62–64] and references therein). The Wasserstein distance can

be interpreted as the cost of transporting a measure from one metric space to a second measure

defined on a second metric space; the cost increases with the distance between the metric

spaces and the proportion of the measure that needs to be transported. These concepts have

just recently been applied to the case of measuring distances between graphs. Given a graph G,
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one can associate a measure on the graph (e.g., defined by a histogram of the degrees [65, 66],

a Gaussian measure with a covariance matrix given by the pseudo-inverse of the graph Lapla-

cian [67], or a uniform measure on the graph [68]), and a notion of cost between nodes (e.g.,

the Bures distance [67], the shortest distance between two nodes [68] assuming the node corre-

spondence between the graphs has been established).

The computational complexity of the estimation of the Wasserstein distance remains pro-

hibitively high for large graph: the cost is mn2 + m2n, where m is the number of edges, and n is

the number of nodes. A closed form expression of the Wasserstein distance can be derived

when the measure on each graph is a Gaussian measure [67]. In this case the Wasserstein dis-

tance is the Bures distance between their respective covariance matrices. This computation is

further simplified when the covariance matrices are diagonal, since the Bures distance

becomes then the Hellinger distance (e.g., [69, 70] and references therein). The rich connec-

tion between distances between metric spaces, optimal transport, and metrics on the cone of

positive semidefinite matrices is clearly beyond the scope of the current study; it will certainly

provide interesting avenues for future studies.

The relevance of the current study to this burgeoning research area stems from the explora-

tion of the relationship between the structural features characteristic of several graph ensem-

bles and the sensitivity of the distances to these features. The distributions associated with

these features can then be used to define a probability measure associated with a given graph

(e.g., [71] where the distribution of hitting times is used to characterize a functional brain con-

nectivity network).

2.3 Computational efficiency

2.3.1 Algorithmic complexity. In many interesting graph analysis scenarios, the sizes of

the graphs to be analyzed are on the order of millions or even billions of vertices. For example,

the social network defined by Facebook users has over 2.3 billion vertices as of 2018. In scenar-

ios such as these, any algorithm of complexity Oðn2Þ becomes unfeasible; although in principle

it is possible that the constant hidden in OðÞ would be so small it would make up for the n2

term in the complexity, in practice this is not the case. This motivates the requirement that

algorithms be of near-linear complexity. When the complexity of the distance depends on the

graph volume m, we assume that the graph is sparse and m is a linear function (up to a loga-

rithmic factor) of the size n.

This challenge motivates the previously stated requirement that all algorithms be of linear

or near-linear complexity. We say an algorithm is linear if it is OðnÞ; it is near-linear if it is

Oðn log anÞ where an is asymptotically bounded by a polynomial. We use the notation an ¼

OðbnÞ in the standard way; for a more thorough discussion of algorithmic complexity, includ-

ing definitions of the Landau notations, see [72].

Table 1 displays the algorithmic complexity of each distance measure we compare. We

assume that factors such as graph weights and quality of approximation are held constant,

leading to simpler expressions here than appear in cited references. Spectral distances have

equivalent complexity, since they all all amount to performing an eigendecomposition on a

symmetric real matrix. For DELTACON and the resistance distance, there are approximate algo-

rithms as well as exact algorithms; we list the complexity of both. Although we use the exact

versions in the experiments, in practice the approximate version would likely be used if the

graphs to be compared are large.

Of particular interest are the highly parallelizable randomized algorithms which can allow

for extremely efficient matrix decomposition. In [73], the authors review many such algo-

rithms, and discuss in particular their applicability to determining principal eigenvalues. The
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computation complexity in Table 1 for the spectral distances is based on their simplified analy-

sis of the Krylov subspace methods, that states that the approach is OðkTmult þ ðm þ nÞk2Þ,

where Tmult is the cost of matrix-vector multiplication for the input matrix. Since the input

matrices are sparse, Tmult ¼ OðnÞ, and m þ n ¼ OðnÞ. Although the eigensolver uses the

implicitly restarted Arnoldi method, if implementing such a decomposition on large matrices,

the use of a randomized algorithm could lead to a significant increase in efficiency.

2.3.2 Comparison of runtimes on graphs on small graphs. In Section 3.1, we perform

the experiments on small graphs, consisting of only 1,000 nodes.

In application, the graphs under comparison can vary from hundreds up to billions of

nodes. We focus on smaller graphs primarily so that the computation of the distances is tracta-

ble even on a small personal computer.

Of course, the time it takes to calculate a given distance depends highly on the implementa-

tion of that distance. The runtimes reported below use the implementations in NetComp [75].

These implementations are not highly optimized; spectral calculations depends on the stan-

dard spectral solvers that come with scipy, a standard computational package in Python.

These leverage sparse data structures when available.

For the resistance distance and DeltaCon, the distance has both an exact form which has

Oðn2Þ complexity, and an approximate form which has OðmÞ complexity. We use the exact

forms in our calculations, and these are the forms implemented in NetComp [75]. For Delta-

Con, the approximate form is implemented in MATLAB, and the code is available on the

author’s website, http://web.eecs.umich.edu/~dkoutra/. For the resistance distance, the authors

of [9] have released an implementation of the approximate resistance distance in MATLAB,

which can be found on GitHub at https://github.com/natemonnig/Resistance-Perturbation-

Distance. We hope to include Python implementations of these fast approximate distances in

NetComp in the near future.

Table 2 shows the results of our runtime experiments. We compare mean and standard

deviations of runtimes for the various distances.

These are computed on small graphs, of size n = 100, 300, and 1, 000.

As one might expect, the edit distance is by far the most efficient, as it is simply a difference

between and summation over two sparse matrices. NetSimile is notably slow in our experi-

ments. This is due to inefficient implementation—most of the work of calculating the various

metrics used by NetSimile is done by leveraging NetworkX, a common network analysis

library in Python. Although NetworkX is very simple and clear to work with, it is not designed

for maximal efficiency or scalability, as is evidenced by the above experiments.

We believe it is valuable for the user to get a rough estimate of the efficiency of the easily-

available implementations of the distances discussed in this work. However, much more

Table 1. Distance measures and complexity. The size (of the larger) graph is n; the number of edges is m. For the spec-

tral decomposition, k denotes the number of principal eigenvalues we wish to find.

Distance Measure Complexity Ref.

Edit Distance OðmÞ [74]

Resistance Distance (Exact) Oðn2Þ [9]

Resistance Distance (Approximate) OðmÞ [9]

DeltaCon (Exact) Oðn2Þ [30]

DeltaCon (Approximate) OðmÞ [30]

NetSimile Oðn log nÞ [32]

Spectral Distance Oðnk2Þ [73]

https://doi.org/10.1371/journal.pone.0228728.t001
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efficient implementations are possible for each given distance; these implementations must be

carefully designed to be optimal for the particular use-case. A thorough empirical comparison

of the runtimes of optimized implementations of each of these distances would be very illumi-

nating, but would require considerable care in order to be done equitably, and is well beyond

the scope of this work.

2.4 Random graph models

Random graph models have long been used as a method for understanding topological proper-

ties of graph data that occurs in the world. The uncorrelated random graph model of Erdős

and Rényi [10] is the simplest model, and provides a null model akin to white noise. This prob-

abilistic model has been analysed thoroughly [76]. Unfortunately, the uniform topology of the

model does not accurately model empirical graph data. The stochastic blockmodel is an exten-

sion of the uncorrelated random graph, but with explicit community structure reflected in the

distribution of edge density.

Models such as preferential attachment [7] and the Watts-Strogatz model [8] have been

designed to mimic properties of observed graphs. Very little can be said about these models

analytically, and thus much of what is understood about them is computational. The two-

dimensional square lattice is a quintessential example of a highly structured and regular graph.

Table 2. Runtimes for distance various distance measures, for graphs of size n = 100 and n = 300. Each distance is

calculated N = 500 times. Each sample generates two Erdős-Rényi random graphs with parameter p = 0.15, and times

the calculation of the distance between the two graphs. All distances are implemented in the NetComp library, which

can be found on GitHub at [75].

Distance Measure Computational Time (n = 100)

Edit Distance 8.2 × 10−5 ± 4.5 × 10−5

DeltaCon 3.1 × 10−3 ± 7.4 × 10−4

Resistance Dist. 7.5 × 10−3 ± 1.4 × 10−3

Spectral (Adjacency) 1.1 × 10−2 ± 1.1 × 10−3

Spectral (Laplacian) 1.2 × 10−2 ± 4.7 × 10−3

Spectral (Normalized Laplacian) 1.5 × 10−2 ± 9.4 × 10−4

NetSimile 2.3 × 10−1 ± 6.3 × 10−2

Distance Measure Computational Time (n = 300)

Edit Distance 5.7 × 10−4 ± 9.9 × 10−4

DeltaCon 1.4 × 10−2 ± 6.6 × 10−3

Resistance Dist. 8.8 × 10−2 ± 5.4 × 10−2

Spectral (Adjacency) 1.5 × 10−1 ± 8.9 × 10−3

Spectral (Laplacian) 1.5 × 10−1 ± 9.8 × 10−3

Spectral (Normalized Laplacian) 1.6 × 10−1 ± 6.6 × 10−3

NetSimile 5.5 × 10−1 ± 1.1 × 10−2

Distance Measure Computational Time (n = 1, 000)

Edit Distance 4.2 × 10−3 ± 1.5 × 10−3

DeltaCon 8.8 × 10−2 ± 6.4 × 10−3

Resistance Dist. 5.9 × 10−1 ± 4.3 × 10−2

Spectral (Adjacency) 1.3 ± 5.5 × 10−1

Spectral (Laplacian) 1.3 ± 1.6 × 10−1

Spectral (Normalized Laplacian) 1.4 ± 3.7 × 10−1

NetSimile 2.5 ± 1.8 × 10−1

https://doi.org/10.1371/journal.pone.0228728.t002
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Finally, we restrict the present study to unlabelled and undirected graphs, with no self-

loops. Although directed graphs are of great practical importance [77], the mathematical anal-

ysis of directed graphs is far more complex.

Most of the models in this work are sampled via the Python package NETWORKX [78]; details

of implementation can be found in the source code of the same. Some of the models we use

are most clearly defined via their associated probability distribution, while others are best

described by a generative mechanism. We introduce the models roughly in order of

complexity.

2.4.1 The uncorrelated random graph. The uncorrelated Erdős-Rényi random graph is

a random graph in which each edge exists with probability p, independent of the existence of

all others. We denote this distribution of graphs by G(n, p). The spectral density of the λA

forms a semi-circular shape, first described by Wigner [20], of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p
, albeit with

a single eigenvalue l
A
1

� np separate from the semicircular bulk [19].

We employ the uncorrelated random graph as the null model in many experiments. It is, in

some sense, a “structureless” model; more specifically, the statistical properties of each edge

and vertex in the graph are exactly the same. This model fails to produce many of properties

observed in empirical networks, that motivates the use of alternative graph models.

2.4.2 The stochastic blockmodel. One important property of real world networks is com-

munity structure. Vertices often form densely connected communities, with the connection

between communities being sparse, or non-existent. This motivates the use of the stochastic

blockmodel. In this model, the vertex set can be partitioned into two non-overlapping sets C1

and C2 referred to as “communities”,

V ¼ C1 [ C2: ð10Þ

Each edge e = (i, j) exists independently with probability p if i and j are in the same community,

and q if i and j are in distinct communities. In this work, we use “balanced” communities,

whose sizes are equal (up to one vertex in either direction).

The stochastic blockmodel is a prime example of a model that exhibits global structure

without any meaningful local structure. In this case, the global structure is the partitioned

nature of the graph as a whole. On a fine scale, the graph looks like an uncorrelated random

graph. We use the model to determine which distances are most effective at discerning global

(and in particular, community) structure.

The stochastic blockmodel is at the cutting edge of rigorous probabilistic analysis of ran-

dom graphs. Abbe et al. [79] have recently proven a strict bound on community recovery,

showing in exactly what regimes of p and q it is possible to detect the communities, and assign

the correct label to each node.

Generalizations of this model exist in which there are K communities of arbitrary size. Fur-

thermore, each community need not have the same parameter p, and each community pair
need not have the same parameter q.

2.4.3 Preferential attachment models. Another often-studied feature of real world net-

works is the degree distribution. In practice, the distribution is estimated using a histogram.

The degree distribution of an uncorrelated random graph is binomial, and so it has tails

that decay exponentially for large graphs (as n ! 1). However, in real world graphs such as

computer networks, human neural nets, and social networks, the measured degree distribution

has a power-law tail [7], PðdÞ / d�g where γ 2 [2, 3]. Such distributions are often also referred

to as “scale-free”.
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The preferential attachment model is a scale-free random graph model. Although first

described by Yule in 1925 [80], the model did not achieve its current popularity until the work

of Barabási and Albert in 1999 [7].

The model has two parameters, l and n. The latter is the size of the graph, and the former

controls the density of the graph. We require that 1 � l < n. The generative procedure for sam-

pling from this distribution proceeds as follows. Begin by initializing a star graph with l + 1

vertices, with vertex l + 1 having degree l and all others having degree 1. Then, for each l + 1 <

i � n, add a vertex, and randomly attach it to l vertices already present in the graph, where the

probability of i attaching to v is proportional to to the degree of v. We stop once the graph con-

tains n vertices.

The constructive description of the algorithm does not yield itself to simple analysis, and so

less is known analytically about the preferential attachment model than the uncorrelated ran-

dom graph or the stochastic blockmodel (but see [81, 82] for some basic properties of this

model). There are few results about the spectrum of the various matrices. In [83], the authors

prove that if l
A
1

� . . . l
A
k are the k largest eigenvalues of the adjacency matrix, and if d1 � . . . �

dk are the k largest degrees, then

l
A
i ¼ ð1 þ Oð1ÞÞ

ffiffiffiffi
di

p
with high probability: ð11Þ

These results are proven on a model with a slightly different generative procedure; we do not

find that they yield a particularly good approximation for our experiments that are conducted

at the quite low n = 100. In [19], the authors demonstrate numerically that the adjacency spec-

trum exhibits a triangular peak with power-law tails.

Having a high degree makes a vertex more likely to attract more connections, so the graph

quickly develops strongly connected “hubs,” or vertices with very high degree, which cannot

be found in the Erdős-Rényi model. This impacts both the global and local structure of the

graph. Hubs are by definition global structures, as they touch a significant portion of the rest

of the graph, making path lengths shorter and increasing connectivity throughout the graph.

On the local scale, vertices in the graph tend to connect exclusively to the highest-degree verti-

ces in the graph, rather than to one another, generating a tree-like topology. This particular

topology yields a signature in the tail of the spectrum.

2.4.4 The Watts-Strogatz model. Many real-world graphs exhibit the so-called “small

world phenomenon,” where the expected shortest path length between two vertices chosen

uniformly at random grows logarithmically with the size of the graph. Watts and Strogatz [8]

constructed a random graph model that exhibits this behavior, along with a high clustering

coefficient not seen in an uncorrelated random graph. The clustering coefficient is defined as

the ratio of number of triangles to the number of connected triplets of vertices in the graph.

The Watts-Strogatz model [8] is designed to be the simplest random graph that has high local

clustering and small average shortest path distance between vertices.

Like the preferential attachment model, this graph is most easily described via a generative

mechanism. The algorithm proceeds as follows. Let n be the size of the desired graph, let 0 �

p � 1, and let k be an even integer, with k < n. We begin with a ring lattice, which is a graph

where each vertex is attached to its k nearest neighbors, k/2 on each side. We then randomly

rewire edges (effectively creating shortcuts) as follows. With probability p, each edge (i, j)
(where i < j) is replaced by the edge (i, l), where l is chosen uniformly at random. The target l
is chosen so that i 6¼ l and i is not connected to l at the time of rewiring. We stop once all edges

have been iterated through. We add an additional stipulation that the graph must be con-

nected. If the algorithm terminates with a disconnected graph, then we restart the algorithm

and generate a new graph.
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As mentioned before, the topological features that are significant in this graph are the high

local clustering and short expected distance between vertices. Of course, these quantities are

dependent on the parameter p; as p ! 1, the Watts-Strogatz model approaches an uncorre-

lated random graph. Similarly, as p ! 1 the adjacency spectral density transitions from the

tangle of sharp maxima typical of a ring-lattice graph to the smooth semi-circle of the uncorre-

lated random graph [19]. Unlike the models above, this model exhibits primarily local struc-

ture. Indeed, we observe that the most significant differences lie in the tail of the adjacency

spectrum, that can be directly linked to the number of triangles in the graph [19]. On the large

scale, however, this graph looks much like the uncorrelated random graph, in which it exhibits

no communities or high-degree vertices.

This model fails to produce the scale-free behavior observed in many real world networks.

Although the preferential attachment model reproduces this scale-free behavior, it fails to

reproduce the high local clustering that is frequently observed, and so we should think of nei-

ther model as fully replicating the properties of observed graphs.

2.4.5 The configuration model. The above three models are designed to mimic certain

properties of real world networks. In some cases, however, we may wish to create a random

graph with a prescribed degree sequence. That is to say, we seek a distribution that assigns

equal probability to each graph, conditioned upon the graph having a given degree sequence.

The simplest model that attains this result is the configuration model [84]. Recently, Zhang

et al. [85] have derived an asymptotic expression for the adjacency spectrum of a configuration

model, that is exact in the limit of large graph size and large mean degree.

Inconveniently, this model is not guaranteed to generate a simple graph; the resulting

graph can have self-edges, or multiple edges between two vertices. In 2010, Bayati et al. [86]

described an algorithm that samples (approximately) uniformly from the space of simple

graphs with a given degree distribution. In [86] the authors prove that the distribution is

asymptotically uniform, but they do not prove results for finite graph size (see [87] for a more

detailed analysis). We use this algorithm despite the fact that it does not sample the desired dis-

tribution in a truly uniform manner; the fact that the resulting graph is simple overcomes this

drawback.

We refer to graphs sampled in this way as configuration model graphs. The significance of

this class of graphs stems from the fact that we can use them to control for the degree sequence

when comparing graphs; they are used as a null model, similar to the uncorrelated random

graph, but they can be tuned to share some structure (notably, the power-law degree distribu-

tion of preferential attachment) with the graphs to which they are compared.

2.4.6 Lattice graphs. We use a 2-dimensional x by y rectangular lattice as a prototypical

example of a highly regular graph. This regularity is reflected by the discrete nature of the lat-

tice’s spectrum, which can be seen in Fig 1. The planar structure of the lattice allows for an

intuitive understanding of the eigenvalues, as they approximate the vibrational frequencies of

a two-dimensional surface.

This is a particularly strong flavor of local structure, as it is not subject to the noise present

in random graph models. This aspect allows us to probe the functioning of our distances when

they are exposed to graphs with a high amount of inherent structure and very low noise.

2.4.7 Exponential random graph models. A popular random graph model is the expo-

nential random graph model, or ERGM for short. Although they are popular and enjoy sim-

ple interpretability, we do not use ERGMs in our experiments. Unlike some of our other

models that are described by their generative mechanisms, these are described directly via the

probability of observing a given graph G.

Let gi(G) be some scalar graph properties (e.g., size, volume, or number of triangles) and let

θi be corresponding coefficients, for i = 1, . . ., K. Then, the ERGM assigns to each graph a
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probability [88]

PðGÞ / exp
XK

i¼1

yigiðGÞ

 !

:

This distribution can be sampled via a Gibbs sampling technique, a process that is outlined

in detail in [88]. ERGMs show great promise in terms of flexibility and interpretability; one

can seemingly tune the distribution towards or away from any given graph metric, including

mean clustering, average path length, or even decay of the degree distribution.

However, our experience attempting to utilize ERGMs led us away from this approach.

When sampling from ERGMs, we were unable to control properties individually to our satis-

faction. We found that attempts to increase the number of triangles in a graph increased the

graph volume; when we subsequently used the ERGM parameters to de-emphasize graph vol-

ume, the sampled graphs had an empirical distribution very similar to an uncorrelated random

graph.

2.4.8 Graph neural networks. Each one of the graph ensembles described in the previous

sections represents the quintessential exemplar of a certain graph structure (e.g, degree distri-

bution, clustering coefficients, shortest path distance, community structure, etc.) Each ensem-

ble can be thought as the atomic building block that can be used to understand complex

existing real world networks. For instance, it is shown in [89] that any sufficiently large graph

behaves approximately like a stochastic blockmodel. These networks are also amenable to a

rigorous mathematical analysis, and one can analyze the influence on the graph distances of

changes in the graph geometry and topology.

As explained in section 2.2.4, there has been some very recent attempts at generating ran-

dom realizations of graphs by learning the structure of massive datasets of existing networks

Fig 1. Spectral densities λA of the adjacency matrix for a lattice graph and a degree matched configuration model.

Densities are built from an ensemble of 1,000 graphs generated using parameters described in Subsection3.1.5.

https://doi.org/10.1371/journal.pone.0228728.g001
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(e.g, [90–92]). These algorithms offer an implicit representation of a set of graphs, by discover-

ing an optimal neural network that can generate new graphs with similar structures. In con-

trast to the prototypical random graph ensembles, the current understanding of the theoretical

properties of the graph neural networks is very limited: there are no results on the structural

properties of these models (but see [93] for an estimate of the complexity of a graph convolu-

tional network (number of nodes and number of hidden units) required to learn graph

moments).

A systematic study of the sensitivity of graph distances on graph neural networks is clearly

needed. Such a study would provide information that would complement theoretical results

that elucidate how expressive such graph models can be [55, 56]. Unfortunately, such experi-

ments clearly go beyond the scope of the current manuscript.

2.5 Real world networks

Random graph models are often designed to simulate a single important feature of real world

networks, such as clustering in the Watts-Strogatz model or the high-degree vertices of the

preferential attachment model. In real networks, these factors coexist in an often unpredictable

configuration, along with significant amounts of noise. Although the above analysis of the effi-

cacy of various distances on random graph scenarios can help inform and guide our intuition,

to truly understand their utility we must also look at how they perform when applied to empir-

ical graph data.

In this study, we evaluate the performance of the aforementioned distances using two sce-

narios. First, we study the change point detection scenario for two time-varying networks: a

dynamic social-contact graph, collected via RFID tags in an French primary school [94], and a

time series of emails exchanged between 986 members of a large European research institution

[95] over a period of 803 days.

Secondly, we investigate the two-sample test problem in neuroscience: given two popula-

tions of functional brain connectivity networks, we compute a statistic to test whether both

populations are generated by the same probability distribution of controls (null hypothesis), or

one population is significantly different from the other one. Specifically, we compare the func-

tional connectivity of subjects with a diagnosis of autism spectrum disorder [96] versus a pop-

ulation of controls.

2.5.1 Primary school face to face contact. Some of the most well-known empirical net-

work datasets reflect social connective structure between individuals, often in online social net-

work platforms such as Facebook and Twitter. These networks exhibit structural features such

as communities and highly connected vertices, and can undergo significant structural changes

as they evolve in time. Examples of such structural changes include the merging of communi-

ties, or the emergence of a single user as a connective hub between disparate regions of the

graph.

Description of the Experiment. The data are part of a study of face to face contact between

primary school students [94]. Briefly, RFID tags were used to record face-to-face contact

between students in a primary school in Lyon, France in October, 2009. Events punctuate the

school day of the children (see Table 3), and lead to fundamental topological changes in the

contact network (see Fig 2). The school is composed of ten classes: each of the five grades (1 to

5) is divided into two classes (see Fig 2).

The construction of a dynamic graph proceeds as follows: time series of edges that corre-

spond to face to face contact describe the dynamics of the pairwise interactions between stu-

dents. We divide the school day into N = 150 time intervals of Δt � 200 s. We denote by ti = 0,

Δt, . . ., (N − 1)Δt, the corresponding temporal grid. For each ti we construct an undirected
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unweighted graph Gti
, where the n = 232 nodes correspond to the 232 students in the 10 clas-

ses, and an edge is present between two students u and v if they were in contact (according to

the RFID tags) during the time interval [ti−1, ti).
For the purpose of this work, we think of each class as a community of connected students;

classes are weakly connected (e.g., see Fig 2 at times 9:00 a.m., and 2:03 p.m.). During the

school day, events such as lunchtime and recess, trigger significant increases in the the number

of links between the communities, and disrupt the community structure; see Fig 2 at times

11:57 a.m., and 1:46 p.m.

2.5.2 European Union Emails. Description of the Data. The data were obtained from

the Stanford Large Network Dataset Collection [97]. The network was generated using anon-

ymized emails exchanged between 986 members of a large European research institution [95].

There are 986 nodes that correspond to distinct individuals sending and receiving emails. To

Fig 2. Top to bottom, left to right: Snapshots of the face-to-face contact network at times (shown next to each graph) surrounding significant topological changes.

https://doi.org/10.1371/journal.pone.0228728.g002

Table 3. Events that punctuate the school day.

Time Event

10:30 a.m.–11:00 a.m. Morning Recess

12:00 p.m.–1:00 p.m. First Lunch Period

1:00 p.m.–2:00 p.m. Second Lunch Period

3:30 p.m.–4:00 p.m. Afternoon Recess

https://doi.org/10.1371/journal.pone.0228728.t003
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reduce the variability in the data, we aggregate the emails exchanged every week, and perform

an analysis at the week level. An edge was created between nodes i and j if both i sent at least

one email to j and j sent at least one email to i during that week. The timeline starts on October

1, 2003 [95]. The graph distances were computed between the weekly graphs thus created.

2.5.3 Functional brain connectivity. Graph theoretical analysis of the connective struc-

ture of the human brain is a popular research topic, and has benefited from our growing ability

to analyze network topology [98–100]. In these graph representations of the brain, the vertices

are physical regions of the brain, and the edges indicate the connectivity between two regions.

The connective structure of the brain is examined either at the “structural” level, in which

edges represent anatomical connection between two regions, or at the “functional” level, in

which an edge connects regions whose activation patterns are in some sense similar. Develop-

mental and mental disorders such as autism spectrum disorder [101] and schizophrenia [102]

have been shown to have structural correlates in the graph representations of the brains of

those affected. In this study we focus on autism spectrum disorder, or ASD.

Description of the Data. The Autism Brain Imagine Data Exchange [96, 103], or ABIDE, is

an aggregation of brain-imaging data sets from laboratories around the world that study ASD

[96]. The data that we focus on are measurements of the activity level in various regions of the

brain, measured via functional magnetic resonance imaging (fMRI).

After preprocessing, the data is analyzed for quality. Of the original 1114 subjects (521 ASD

and 593 TD), only 871 pass this quality-assurance step. These subjects are then spatially aggre-

gated via the Automated Anatomical Labelling (AAL) atlas, that aggregates the spatial data

into 116 time series.

To construct a graph from these time series, the pairwise Pearson correlation is calculated

to measure similarity. If we let u and v denote two regions in the AAL atlas and let ρ(u, v)

denote the Pearson correlation between the corresponding time series, the simplest way to

build a graph is to assign weights w(u, v) = |ρ(u, v)|. We exclude low correlations, as these are

often spurious and not informative as to the structure of the underlying network, and define

the weights

wðu; vÞ ¼

(
jrðu; vÞj jrðu; vÞj � T

0 jrðu; vÞj < T:

Finally, we also construct an unweighted graph according to

wðu; vÞ ¼

(
1 jrðu; vÞj � T

0 jrðu; vÞj < T:

We will compare both binary and weighted connectomes, generated for multiple thresholds.

This will allow us to be confident that our results are not artifacts of poorly chosen parameters

in our definition of the connectome graph.

2.6 Evaluation protocol: The distance contrast

2.6.1 The distance contrast. The experiments are designed to mimic a scenario in which

a practitioner is attempting to determine whether a given graph belongs to a population or is

an outlier relative to that population.

Specifically, let us define by G0 and G1 two graph populations, which we refer to as the null

and alternative populations respectively. For each distance measure, let D0 be the distribution

of distances dðG0;G0
0
Þ where G0 and G0

0
are both drawn from the distribution G0. Similarly, let
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D1 be the distribution of distances d(G0, G1), where G0 is drawn from G0 and G1 is drawn from

G1.

The statistic D0 characterizes the natural variability of the graph population G0, as seen

through the lens formed by the distance d. Similarly, the statistic D1 reveals how distant—

according to the distance d—the two graph populations G0 and G1 are. If the distributions of

D0 and D1 are well separated, then d is effective at differentiating the null population from the

alternative population.

To that end, we normalize the statistics of D1 by those of D0 in order to compare. In partic-

ular, let μi be the sample mean of Di, and let σi be the sample standard deviation, for i 2 {0, 1}.

We define the following (normalized) contrast, D̂1, [104], between D0 and D1, whose samples

D̂1 are calculated via

D̂1 ¼
def D1 � m0

s0

: ð12Þ

This studentized distance contrast can also be related to the Wald test statistic [104]

D0 � m0

s0

: ð13Þ

If the empirical distribution of contrast D̂1 is well separated from zero, viz. the contrast

between D1 and the sample mean μ0 is significantly greater than the standard deviation, then

the distance is effectively separating the null and alternative populations.

2.6.2 Comparisons of the random graph ensembles. Table 4 describes the various exper-

iments. Each model is compared against a null model; the null model can be sampled either

from the Erdős-Rényi model, or from a configuration model. The latter makes it possible to

match the degree distribution of the model being tested against that of the null model. We

compare the distance contrast in (12) between each model and the null model using all the

distances. When appropriate, we also report the performance of the spectral distances for vari-

ous k. Table 4 also displays the structural feature that is being evaluated for a particular

experiment.

2.6.3 Comparisons of the real world networks. Primary School Face to Face Contact

and European Union Emails. Temporal changes in the graph topology over time are quanti-

fied using the various distance measures. For each distance measure d, we defined the follow-

ing temporal difference,

DRðtiÞ ¼
def dðGti�1

;Gti
Þ:

To help compare these distances with one another, we normalize each by its sample mean

Table 4. Table of comparisons performed, and the important structural features therein. G(n, p) indicates the Erdős-Rényi uncorrelated random graph, SBM is the sto-

chastic blockmodel, PA is the preferential attachment model, CM is the degree matched configuration model, and WS is the Watts-Strogatz model.

Section Null Alternative Structural Difference

Stochastic Block Model G(n, p) SBM Community structure

Preferential Attachment G(n, p) PA High-degree vertices

Preferential Attachment vs Configuration Model CM PA Structure not in the degree sequence

Watts-Strogatz G(n, p) WS Local structure

Lattice Graph G(n, p) Lattice Extreme local structure

https://doi.org/10.1371/journal.pone.0228728.t004
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�D ¼ N�1
P

iDðtiÞ, and we define the normalized temporal difference,

D̂ðtÞ ¼ DðtÞ= �D:

Functional Brain Connectivity. We define G1 to be the set of connectomes computed from

the ASD subjects, and G0 the set of connectomes from the control population (null model).

The evaluation proceeds as described in Section 2.6. The distance contrast between the two

populations is evaluated using the statistic defined in (12),

D̂1 ¼
def D1 � m0

s0

: ð14Þ

3 Results

3.1 Random graph ensembles

For each experiment described in Table 4, we generate 50 samples of D0 and D1, where each

sample compares two graphs of size n = 1, 000, unless otherwise specified.

The graphs are always connected; the sampler will discard a draw from a random graph dis-

tribution if the resulting graph is disconnected. Said another way, we draw from the distribu-

tion defined by the model, conditioning upon the fact that the graph is connected.

The small size of the graphs allows us to use larger sample sizes; although all of the matrix

distances used have fast approximate algorithms available, we use the slower, often Oðn2Þ,

exact algorithms for the experiments, and so larger graphs would be prohibitively slow to work

with. In all the experiments, we choose parameter values so that the expected volume of the

two models under comparison is equal.

We display the performance of the various distances on the same figure. Boxes extend from

lower to upper quartile, with center line at median. Whiskers extend from 5th to 95th percen-

tile (e.g., see Fig 3). We also display the performance of the spectral distances contrast D̂1—for

the three matrices: adjacency, combinatorial Laplacian, and normalized Laplacian as a func-

tion of the number of eigenvalues used to compute the distance (e.g., see Fig 4).

3.1.1 Stochastic blockmodel. Fig 3 displays the comparison between a stochastic block-

model and an uncorrelated random graph model (null model). The edge density p = 0.12 of

the uncorrelated random graph is chosen so that graphs are connected with high probability.

With this choice of parameters, we observe that the empirical probability of generating a dis-

connected uncorrelated random graph with these parameters is * 0.02%. The preferential

attachment section describes in more detail why this exact value is chosen.

The stochastic blockmodel is composed of two communities of equal size, n/2 = 500. Sto-

chastic blockmodel experiments are run with in-community parameter p = 1.9 × 0.02, and

cross-community parameter q = 0.1 × 0.02. Thus, the in-community connectivity is denser

than the cross-community connectivity by a factor of p/q = 19.

Since we have matched the volume of the graphs, the edit distance fails to distinguish the

two models. Among the matrix distances, DELTACON separates the two models most reliably.

The adjacency and normalized Laplacian distances perform well. The resistance perturbation

distance and the non-normalized Laplacian distance fail to distinguish the two models.

As confirmed in Fig 4, the performance of the adjacency distance is primarily driven by dif-

ferences in the second eigenvalue l
A
2
, and including further eigenvalues adds no benefit; the

normalized Laplacian also shows most of its benefit in the second eigenvalue l
L
2
, but unlike the

adjacency distance, including more eigenvalues decreases the performance of the metric.
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Fig 3. Distance contrast D̂1 between the stochastic blockmodel and the uncorrelated random graph model (null

model).

https://doi.org/10.1371/journal.pone.0228728.g003

Fig 4. Spectral distances contrast D̂1—For the three matrices: Adjacency, combinatorial Laplacian, and normalized Laplacian (from left to right)—

Between the stochastic blockmodel and the uncorrelated random graph model (null model).

https://doi.org/10.1371/journal.pone.0228728.g004
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3.1.2 Preferential attachment vs uncorrelated. Fig 5 shows the results of comparing a

preferential attachment graph to an uncorrelated random graph. The preferential attachment

graph is quite dense, with l = 6. Since the number of edges in this model is always |E| = l(n − l),
we determine the parameter p for the uncorrelated graph via

pðlÞ ¼ lðn � lÞ
n

2

 !�1

;

to guarantee that both graphs always have the same volume.

Again, because both graphs have the same number of edges (with high probability), the edit

distance fails to distinguish the two models. The resistance distance shows mediocre perfor-

mance, although 0 is outside the 95% confidence interval. DELTACON exhibits extremely high

variability, although it has the highest median of the matrix distances.

The combinatorial Laplacian distance outperforms all others, while the normalized Lapla-

cian does not separate the two models at all. Fig 6 shows that the very fine scale eigenvalues of

the combinatorial Laplacian (large index) are needed to differentiate the two models. Con-

versely, the discriminating eigenvalues of the adjacency matrix are the smallest eigenvalue; in

fact, the first eigenvalue captures much of the contrast: the distance contrast (12) stays more or

less constant as one increases k (see Fig 6).

3.1.3 Preferential attachment vs configuration model. To further explore the distinctive

features of the preferential attachment graphs, we change here the null model. Instead of using

a volume matched uncorrelated random graph model, we use a degree matched configuration

Fig 5. Distance contrast D̂1 between the preferential attachment and the uncorrelated random graph model (null

model).

https://doi.org/10.1371/journal.pone.0228728.g005
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model as the null model (the volume is automatically matched, since the number of edges is

half of the sum of the degrees). This experiment allows us to search for structure in the prefer-

ential attachment model that is not prescribed by the degree distribution.

An intriguing result happens: not a single distance can differentiate between a preferential

attachment graph and a randomized graph with the same degree distribution (see Fig 7).

The spectral distance based on the eigenvalues combinatorial Laplacian λL, which yields the

strongest contrast when comparing the preferential attachment model to the uncorrelated ran-

dom graph model is now unavailing. This thought-provoking experiment suggests that all sig-

nificant structural features of the preferential attachment model are prescribed by the degree

distribution.

3.1.4 Watts-Strogatz. The Watts-Strogatz experiments used k = 20, p = 0.020020. . . (cal-

culated so that the volumes match) and β = 0.1. The number of nodes was n = 1, 000.

The Watts-Strogatz model is sparse, and thus the uncorrelated random graph has a low

value of p—since we match the number of edges—and is very likely disconnected. This is only

a significant problem for the resistance distance, that is undefined for disconnected graphs. To

remedy this, we use an extension of the resistance distance called the renormalized resistance

distance, that is developed and analyzed in [29]. This is the only experiment in which the use

of this particular variant of the resistance distance is required.

Fig 8 shows that the spectral distances based on the adjacency and normalized Laplacian

are the strongest performers. Amongst the matrix distances, DELTACON strongly outperforms

the resistance distance. The resistance distance here shows a negative median, that indicates

smaller distances between populations than within the null population. This is likely due to the

existence of many (randomly partitioned) disconnected components within this particular

null model, that inflates the distances generated by the renormalized resistance distance. It is

notable that, contrary to the comparison in Section 3.1.2, the normalized Laplacian outper-

forms the combinatorial Laplacian.

Fig 6. Spectral distance contrast D̂1—For the three matrices: Adjacency, combinatorial Laplacian, and normalized Laplacian (from left to right)—

Between the preferential attachment and the uncorrelated random graph model (null model).

https://doi.org/10.1371/journal.pone.0228728.g006
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Fig 9 displays the results for spectral distances, for a wide variety of k. This figure is signifi-

cant because it illustrates the fact that both coarse scales (large k for l
A
k ) and fine scales (large k

for l
L
k ) are necessary to yield the optimal contrast between the two models.

3.1.5 Lattice graph. The final experiment, compares a lattice graph to a configuration

model graph with the same degree distribution.

The lattice graphs are 100 × 10, giving a total size of 1, 000.

The lattice here is highly structured, while the configuration model graph is quite similar to

an uncorrelated random graph; both the deterministic degree distribution of the lattice and

the binomial distribution of the uncorrelated random graph are highly concentrated around

their respective means.

We see in Fig 10 that the scaled distances in this experiment are about an order of magni-

tude higher than they are in other experiments for some of the distances; because the lattice is

such an extreme example of regularity, it is quite easy for many of the distances to discern

between these two models. The resistance distance has the highest performance, while spectral

distances all perform equally well. Note that for a regular graph, the eigenvalues of A, L, and L
are all equivalent, up to an overall scaling and shift, so we would expect near-identical perfor-

mance for graphs that are nearly regular.

The spectral distances need all the scales (i.e. all the eigenvalues) to discern between the lat-

tice and the configuration models (see Fig 11). This phenomenon, which is similar to the

Watts-Strogatz model (see Section 3.1.4), points to the importance of the local structure in the

topology of the lattice graph.

Fig 7. Distance contrast D̂1 between the preferential attachment model and the degree matched configuration

model (null model).

https://doi.org/10.1371/journal.pone.0228728.g007
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Fig 8. Distance contrast D̂1 between a small-world graph and the the degree matched configuration model (null

model).

https://doi.org/10.1371/journal.pone.0228728.g008

Fig 9. Spectral diastances contrast D̂1—For the three matrices: Adjacency, combinatorial Laplacian, and normalized Laplacian (from left to right)

—Between the small-world graph and the degree matched configuration model (null model).

https://doi.org/10.1371/journal.pone.0228728.g009
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Fig 10. Distance contrast D̂1 between the 10 × 100 two-dimensional lattice graph and the the degree matched

configuration model (null model).

https://doi.org/10.1371/journal.pone.0228728.g010

Fig 11. Spectral distances contrast D̂1—For the three matrices: Adjacency, combinatorial Laplacian, and normalized Laplacian (from left to

right)—Between the 10 × 10 two-dimensional lattice graph and the degree matched configuration model (null model).

https://doi.org/10.1371/journal.pone.0228728.g011
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3.2 Real world networks

3.2.1 Primary school face to face contact. Fig 12 displays the normalized temporal differ-

ences for the resistance distance D̂R, edit distance D̂E, and DELTACON distance D̂DC. All the

matrix distances are capable of detecting significant changes in the hidden events that control

the topology of the contact network during the school day (see Fig 2). Indeed, the main struc-

tural changes that the graph undergoes are transitions into and out of a strong ten-community

structure that reflects the classrooms of the school. For example, the adjacency matrix begins

as (mostly) block-diagonal at 9 AM, but has significant off-diagonal elements by morning

recess at 10:20 AM, and is no longer (block) diagonally dominant come the lunch period at 12

PM.

There exists a persistent random variability of the very fine scale connectivity (e.g., edges

come and go within a community) that is superimposed on the large scale structural changes.

Unlike, the matrix distances (displayed in Fig 12), NETSIMILE is significantly affected by these

random fluctuations (see Fig 13).

The stochastic variability in the connectivity appreciably influence the high frequency (fine

scale) eigenvalues. Consequently, the spectral distances, which are computed using all the

eigenvalues, lead to very noisy normalized temporal differences (see Fig 14), making it difficult

to detect the significant changes in the graph topology triggered by the school schedule.

3.2.2 European Union Emails. Fig 15 displays the changes in the volume of subsequent

graphs (difference in the total number of symmetric emails between two weeks), along with

Fig 12. Primary school data set: Normalized temporal differences for the resistance distance D̂R, edit distance D̂E, and DELTACON distance D̂DC.

https://doi.org/10.1371/journal.pone.0228728.g012
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the edit distance, as a function of time. Inspired by the analysis of the dataset performed by

[105], we superimposed some events that are related to the activity of the European Parlia-

ment. These events were retrieved from [106], and are displayed in Table 5.

Fig 16 displays the normalized temporal differences for the NETSIMILE distance D̂NS and the

edit distance D̂E. Fig 17 displays the normalized temporal differences for three spectral dis-

tances: combinatorial Laplacian D̂L, normalized Laplacian D̂L, and adjacency D̂A. All the spec-

tral distances are correlated to the activity of the Parliament, including the hearings sessions

and the entry into office of the new 2004-2009 Commission, at the end of November 2004. Fig

18 displays the normalized temporal differences for the resistance distance D̂R, edit distance

D̂E, and DELTACON distance D̂DC. All the matrix distances are capable of detecting the election

of Jose Barroso as President of the Commission, as well as the investiture procedure of the

2004-2009 Commission: hearings in October 2004, and entry into office at the end of Novem-

ber 2004.

3.2.3 Functional brain connectivity. As explained in Section 2.5.3, the comparisons

between sets of connectomes lead to two types of analysis: the analysis of weighted (by the

Fig 13. Primary school data set: Normalized temporal differences for the NETSIMILE distance D̂NS and edit distance D̂E.

https://doi.org/10.1371/journal.pone.0228728.g013
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strength of the functional coupling between brain regions) connectomes, and the comparison

of unweighted (we only record if two regions are functionally coupled—irrespective of the

strength of that coupling) connectomes. Furthermore, for each type of connectome, we can

vary the density of edges (and therefore the volume) by varying the threshold used to define

functional connectivity. We used two values of the threshold for the Pearson correlation coeffi-

cient: 0.5 and 0.8.

Figs 19 and 20 display the distance contrast between the set of unweighted ASD connec-

tomes and the set of control connectomes for two values of the threshold: 0.5 and 0.8 respec-

tively. Figs 21 and 22 display the distance contrast between the weighted ASD and control

connectomes for two values of the threshold: 0.5 and 0.8 respectively.

Unfortunately, no distances can effectively separate the two ensembles of connectomes.

Indeed, the negative median of the distance contrast D̂1 indicates that the distance between

two connectomes in the ASD and control populations respectively, D1, is on average lower
than the average distances between two connectomes from the control population, μ0 (see

(12)).

Fig 14. Primary school data set: Normalized temporal differences for the three spectral distances: Combinatorial Laplacian D̂L, normalized Laplacian

D̂L, and adjacency D̂A.

https://doi.org/10.1371/journal.pone.0228728.g014
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This result indicates that the variability in the control population is greater than the contrast

between the two populations. A refined analysis, provided in Section 4.2.3, shows that the

structural differences between the two graph ensembles are localized within subsets of edges,

and cannot be detected when one compares both complete sets of edges. Furthermore, the

local changes in connectivity are of the same order of magnitude as the random local variations

present in these connectomes. For these two reasons, a global comparison using graph metrics

seems ineffective for this problem.

Fig 15. EU-emails: Normalized temporal difference, for the edit distance D̂E, and absolute value of the changes in the graph volume over time.

https://doi.org/10.1371/journal.pone.0228728.g015

Table 5. Events related to the activity of the European Parliament during 2004 [106].

Date Event

22 July Jose Barroso elected as President of the Commission

27 September–8 October Hearings of the Commissioners-designates, nominated by Jose Barroso

22–26 November New Commission takes up office

https://doi.org/10.1371/journal.pone.0228728.t005
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4 Discussion

This section provides an analysis of the numerical simulations and the results of experiments

conducted on real world graphs. Because the numerical simulations were performed using

random graph ensembles, we provide some theoretical justification to explain our findings.

The performance of the distances is studied using a “multiscale lens”: we organize distances

according to the scale at which they aptly detect changes within a graph. We consider three

classes of scales: (1) the fine scale of the local connectivity, formed by the ego-net; (3) the very

large scale associated with communities; and finally (2) a mesoscale that bridges the scales

from the local to the global scales. Interestingly, this multiscale paradigm has inspired methods

to synthesize networks with guaranteed structural properties at multiple different scales [107].

For all the graph ensembles studied in this work, we expect random fine scale changes trig-

gered by the stochastic nature of the models. At the other end of the scale, we expect that cer-

tain changes in connectivity may have dramatic large scale changes. Fig 23 provides a cartoon

of this concept: changes in edge connectivity of a stochastic blockmodel (left) result in the crea-

tion of a preferential attachment model with the prototypical presence of hubs with very high

degree.

Fig 16. EU-emails: Normalized temporal differences for the NETSIMILE distance D̂NS and edit distance D̂E.

https://doi.org/10.1371/journal.pone.0228728.g016
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Finally, the power-law degree distribution of the preferential attachment model suggests

that the graph connectivity involves multiple scales spanning from the finest scale up to the

coarsest scale. Distances adapted to these “mesoscales” should be optimal to detect these

graphs. Similarly, we expect that the small world model require the analysis of connectivity at

the mesoscale.

4.1 The multiscale detection of random graph ensembles

4.1.1 Detecting large scale changes. In this study, we focus on experiments where the

coarse-scale structure involves the presence (or absence) of communities. The prototypical

ensemble to study the ability of distances to detect communities is the stochastic blockmodel.

We study a stochastic blockmodel with two partitions of equal size, and we thus expect the

second eigenvalue λ2 (of either one of the three matrices) to be the primary distinguishing

spectral feature of the graph. Fig 4 confirms our analysis. We conjecture that k eigenvalues be

needed to detect k communities. Indeed, the authors in [85] have shown that the spectrum of

the adjacency matrix is composed of two distinct components. A continuous spectrum (the

bulk) that is centered around 0 is a modified version of the classic semicircle law. The discrete

Fig 17. EU-emails: Normalized temporal differences for the three spectral distances: Combinatorial Laplacian D̂L, normalized Laplacian D̂L, and adjacency D̂A.

https://doi.org/10.1371/journal.pone.0228728.g017
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spectrum is the second component; it is composed of discrete eigenvalues, distributed away

from the continuous spectrum. The number of discrete eigenvalues is equal in number to the

number of communities in the network. The separation between the continuous and the dis-

crete spectra is what allows our spectral distances to function effectively in detecting commu-

nity structure.

Fig 24 shows the empirical spectral densities of the adjacency matrices (λA) for the stochas-

tic blockmodel (blue) and the uncorrelated random graph (orange). The density are well sepa-

rated around the second largest eigenvalue l
A
2
. The bulk of the spectra for both models overlap

significantly, and provide no hope of separating the models from these eigenvalues. Conse-

quently, using additional eigenvalues decreases the contrast by including noise in the compari-

son (see Fig 4).

The use of the spectrum for community partitioning in graphs has a long history (e.g.,

[108] and references therein). Recently, Lee et al. [15] have proven a performance bound on

the effectiveness of using the first k eigenvectors to partition the graph into k clusters. In prac-

tice, if the graph includes more than two communities of different sizes, the optimal contrast

will require more than the first non trivial eigenvalue.

In summary, we find that when examining global structure, the adjacency spectral distance

and DELTACON distance both provide good performance. When examining community struc-

ture in particular, one need not employ the full spectrum when using a spectral distance.

Fig 18. EU-emails: Normalized temporal differences for the resistance distance D̂R, edit distance D̂E, and DELTACON distance D̂DC.

https://doi.org/10.1371/journal.pone.0228728.g018
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4.1.2 Detecting mesoscale changes. In this paper we studied two random graph ensem-

bles whose connectivity structures span several scales: (1) the preferential attachment model

with a non-negligible number of highly connected vertices (hubs) and a large number of verti-

ces with low degree; (2) the Watts-Strogatz model where high-degree vertices are extremely

unlikely, and where generative rewiring mechanism does not result in the presence of commu-

nities in the graph.

To differentiate graphs based on mesoscale connectivity structures, one should use a spec-

tral distance computed from either the combinatorial graph Laplacian or the adjacency matrix.

The Combinatorial Graph Laplacian Spectral Distance. We find that the best tool for

detecting graphs whose degree distribution exhibits polynomial decay [7] is the combinatorial

Laplacian spectral distance. The presence of the degree matrix D in the Laplacian L = D − A
means that comparison of Laplacians is very effective for discerning between models with radi-

cally different degree distributions. Since significant differences between the degree distribu-

tions of the preferential and attachment graphs occur in the tail (i.e. high-degree vertices), the

inclusion of the final few eigenvalues is essential if one wishes to use the Laplacian spectrum to

perform this comparison.

Fig 25 displays the empirical spectral densities of the normalized Laplacian (λL) for the pref-

erential attachment model (blue) and the uncorrelated random graph (orange). We observe

qualitatively, as demonstrated in [19], that the tails of the Laplacian spectrum of a preferential

attachment graph exhibits polynomial decay similar to the tail of the degree distribution. This

is a prime example of the way in which the spectrum of the Laplacian can be heavily influenced

by the degree distribution.

Fig 19. ABIDE data set: Distance contrast D̂1 between the unweighted ASD and control connectomes for a

threshold T = 0.5.

https://doi.org/10.1371/journal.pone.0228728.g019
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The Adjacency Spectral Distance. Our findings indicate that the adjacency spectral dis-

tance is the optimal distance for detecting graphs with short average distances, such as the

Watts-Strogatz. Farkas et al. [19] argue that the presence of a high number of triangles is the

distinguishing feature of a Watts-Strogatz model. The third moment of the spectral density of

A yields the expected number of triangles in a graph, and so one would expect inclusion of the

full spectrum important in detecting the topological signature of this model.

This theoretical analysis is confirmed in our experiments. We see in Fig 9 that inclusion of

the large-k (high frequency) eigenvalues is essential to differentiate between the Watts-Strogatz

and the random graph models. Fig 26 confirms that the empirical spectral density of the

Watts-Strogatz model exhibits high skewness, requiring the inclusion of the bulk of the spec-

trum to be able to differentiate this model from the random uncorrelated graph (see Fig 26.

A more refined analysis confirms that the very fine scale connectivity, such as the degree

distribution, of the Watts-Strogatz is similar to that of the random graph model, and therefore

the inclusion of the high modes (high l
A
k ) decreases the contrast between the two models (see

Fig 9).

4.1.3 Impact of local structure

Is the local structure signal or noise? In this work we consider that the local scale is defined

by the local connectivity at the level of each vertex. Because our study relies on random graphs

ensembles, the local connectivity is intrinsically random. In some of the graph models, the

generative model that leads to the realization of the random graphs induce some coupling

Fig 20. ABIDE data set: Distance contrast D̂1 between the unweighted ASD and control connectomes for a

threshold T = 0.8.

https://doi.org/10.1371/journal.pone.0228728.g020
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across the scales. The fine scale statistics, such as the degree distribution, become a “window”

on larger scale patterns of connectivity that happen at multiple scales.

We provide two examples of such phenomena. We first revisit the preferential attachment

model (see Section 3.1.2). Fig 6 shows that the spectral distance based on the combinatorial

graph Laplacian needs the very fine scale, or high frequencies, provided by the eigenvalues l
L
k

for large k to detect the preferential attachment model. This is interesting, since this local scale

is determined by the degree distribution. Should the null model mimic the degree distribution

of the preferential attachment model (see Section 3.1.3) then the two graphs become indistin-

guishable (see Fig 7). In this example, the fine scale clearly provides a “signature” of the graph

connectivity.

The lattice graph is another extreme example of where the local connectivity structure can

be used to identify the graph. The lattice graph includes cycles of any size (starting with length

4). As a result, the spectral distances all benefit from increasing the number of eigenvalues

used to compare the graphs (see Fig 11).

On the other hand, random fluctuations can also be a source of uninformative noise when

comparing graphs. The results of Section 3.1.1 illustrate this fact. The Laplacian spectrum is

unable to distinguish between the stochastic blockmodel and the uncorrelated random graph,

while the normalized Laplacian distinguishes them well. The difference between these two

matrix representations is that normalization removes degree information, which is not infor-

mative in this particular model (see Fig 4).

A similar problem arise when we apply the resistance distance to the stochastic blockmodel;

as discussed in the previous section, the resistance distance is disproportionately influenced by

local structure, and is unable to discern the global structure of the graph over local fluctuations.

Fig 21. ABIDE data set: Distance contrast D̂1 between the weighted ASD and control connectomes for a threshold

T = 0.5.

https://doi.org/10.1371/journal.pone.0228728.g021
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Interestingly, DELTACON does not appear to suffer from local fluctuations as much as the resis-

tance distance. This could be due to the structure of the matrix S that DELTACON uses to repre-

sent the graph, or due to the use of the Matusita distance rather than the ℓ1 or ℓ2 norm to

compare the resulting matrices (for more discussion of this, see Sections 2.2 and 3.1 in [30]).

In summary, it is essential to determine whether local topological features are of interest in

the comparison problem at hand; inclusion of locally targeted distance measures can hinder

the performance of graph distances in cases where local structure is noisy and uninformative.

However, if local structure is ignored, one can often omit essential structural information

about the graphs under comparison.

Fig 22. ABIDE data set: Distance contrast D̂1 between the weighted ASD and control connectomes for a threshold

T = 0.8.

https://doi.org/10.1371/journal.pone.0228728.g022

Fig 23. Two significant global structures observed in our experiments. On the left is the community structure typical of the stochastic blockmodel.

On the right is the heavy-tailed degree distribution typical of the preferential attachment model.

https://doi.org/10.1371/journal.pone.0228728.g023
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Fig 24. Empirical spectral densities λA of the adjacency matrix for the stochastic blockmodel (blue) and the

uncorrelated random graph (orange). Densities are built from an ensemble of 1,000 graphs generated using

parameters described in section 3.1.1.

https://doi.org/10.1371/journal.pone.0228728.g024

Fig 25. Empirical spectral densities λL of the combinatorial Laplacian for the preferential attachment model

(blue) and the uncorrelated random graph (orange). Densities are built from an ensemble of 1,000 graphs generated

using parameters described in section 3.1.2.

https://doi.org/10.1371/journal.pone.0228728.g025
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4.2 Real world networks

Experiments performed on random graph ensembles provide a mechanism to gauge the ability

of each distance to detect changes in structural features that are prototypical of the correspond-

ing ensembles (e.g., communities, clustering coefficients, power law degree distribution, etc.).

Specifically, this analysis lends itself to a systematic exploration of an experimental version of

the two-sample test problem where we compare two populations of random graphs using a

distance statistic, and we experimentally test whether both populations could be generated by

the same probability distribution.

In this context, we explore the two-sample test problem in neuroscience, and compared

two populations of functional brain networks. Signal-to-noise is a ubiquitous problem in ana-

lyzing actual graph data, and is particularly notable in building connectivity networks of

human brain activity (see e.g., [109]). Accordingly, the results of our data experiments show

that in the presence of real-world noise levels, many of these distances fail to distinguish subtle

structural differences. In the face of this, we examine more targeted analysis techniques that

may be applied in such a situation.

A related question concerns the change point detection scenario for a dynamic graph,

where we detect significant changes between adjacent time steps using a distance [4]. The first

experiment suggests that the tools that perform the most consistently in the two-sample test

problem (the spectral distances) are unreliable in the change detection experiment. This exper-

iment is interesting because it allows us to evaluate distances in a context where graphs exhibit

significant volume fluctuations, a situation that we did not encounter in our numerical studies.

4.2.1 Primary school face to face contact. The primary school face to face contact dataset

(3.2.1) provides a real-world example to evaluate the performance of distances in the context

of a dynamic network.

Fig 26. Empirical spectral densities λA of the adjacency matrix for the Watts-Strogatz model (blue) and the

uncorrelated random graph (orange). Densities are built from an ensemble of 1,000 graphs generated using

parameters described in section 3.1.4. The uncorrelated random graph model has a value of p that is smaller than those

used in the previous models, creating a sharp peak at λA = 0.

https://doi.org/10.1371/journal.pone.0228728.g026
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The purpose of the analysis is to assess whether distances can detect changes in the topology

coupled with the hidden events that control the network topology and connectivity (such as

those that occur during the lunch period). We are also interested to verify if distances are

robust against random changes within each classroom that do not affect the communication

between the classes (e.g., see Fig 2 at times 10:50 a.m., 10:57 a.m.).

The most remarkable conclusion of this particular experiment is that although the spectral

distances are very efficient and stable for the purposes of comparing two random graphs sam-

pled from distinct probability models (see section 3.1), these distances perform poorly in the

context of change point detection (see Fig 14). In contrast, the resistance distance can detect

subtle topological changes that are coupled to latent events that dynamically modify the net-

works. The resistance distance remains impervious to random local changes, which do not

affect the large scale connectivity structure (see Fig 12).

Unlike the analysis of random graphs, where the volume of the two graphs were always the

same, the volume of the dynamic network changes rapidly, and therefore the edit distance

exhibits significant changes throughout the school day. While the edit distance can reliably

monitor large scale changes in the graph volume, it entirely misses the significant events that

disrupt the graph topology: onset and end of morning recess, onset of first lunch, end of sec-

ond lunch (see Fig 13).

With the help of Fig 2 (the snapshots are obtained from the movie available on [110]), we

analyze some of the most significant differences between the three distances.

At time 10:20 a.m., D̂R changes abruptly (see Fig 12) as a result of a massive increase in the

number of contacts between students in the second, third, and fourth grades (see Fig 2). While

D̂E and D̂DC also register this change, they are less sensitive to the merging of the communities

than the resistance-perturbation distance.

The significant difference between D̂R and the two other distances before 11:00 a.m. (see

Fig 12) is also very interesting. Because the recess period is winding down from 10:50 a.m. to

10:57 a.m., the number of contacts within each class decreases very significantly (especially in

the two second grade classes, see Fig 2). These within the classes changes are easily detected

by D̂DC and D̂E, which continue to grow during this time interval. However, there are only

very few changes in the contacts between the classes during that period (see Fig 2). Conse-

quently, D̂R becomes very small (see the significant dip of D̂R shortly before 11:00 a.m. in

Fig 12).

The resistance-perturbation distance D̂R is also able to detect the dissolution of the classes

at 11:57 a.m. just before the official lunch period, as the students are running outside of the

classrooms into the hallway. The random appearance of the connectivity (see Fig 2) reflects the

activity of the students. This is significant, because this event happens before the number of

contacts increases (the edit distance jumps right after 12:p.m., see Fig (see Fig 13).

The geometry of the graph at 12:13 p.m. (see Fig 2) is indicative of the fact that half of the

students take their lunch in the cafeteria, while the other half play in the courtyard. In spite of

the fact that the DeltaCon distance is still large, the contact network is in fact in a large scale

stable topological configuration, leading to a small D̂R.

In fact, D̂R can also detect the pattern of activity associated with the second lunch period at

12:54 p.m. (see Fig 12). Because this is only a reconfiguration of the network, the edit distance

is oblivious to these changes (see Fig 13).

Finally, we note that the resistance distance can detect the early regrouping of the students

around 1:46 p.m. (see Fig 12), according to their classroom (see Fig 2), before the end of the

lunch period.
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Interestingly, D̂R can also detect the small number of students who are late going back to

their class between 2:00 p.m. and 2:03 p.m. (see Fig 2). The edit and DeltaCon distances are

not affected by the removal of these cross-community edges (see Figs 13, 12 respectively), but

the resistance distance is greatly influenced by these changes, and thus D̂R is very large (see

Fig 12).

These structural changes are of a global nature. In Sections 3.1.1 and 4.1.1 we saw that the

spectral distances were more effective than the matrix distances to detect large-scale differ-

ences between the following two graph ensembles: the stochastic blockmodel and the uncorre-

lated random graph model. Because the dynamic network is comprised of communities, a

naive analysis would suggest that spectral distances should also outperform the resistance per-

turbation distance and DELTACON.

A refined analysis demonstrates that if a dynamic network is composed of communities,

the resistance perturbation provides the ideal solution to the change point detection problem,

by effectively ignoring the rapid random fluctuations at the node level, while remaining sensi-

tive to changes in connectivity between communities.

This analysis requires that we review the expression of the resistance-perturbation in terms

of the eigenvalues and eigenvectors of the normalized graph Laplacian [9]. The present authors

derived in [9], a closed-form expression of the resistance-perturbation distance between a

graph and a rank-one perturbation of that graph, wherein a single edge has changed. This the-

oretical analysis is useful indeed, because it provides the baseline scenario to compare various

changes in connectivity in the context of the change point detection scenario for a dynamic

graph.

We recall that ϕk denotes the kth eigenvector of the normalized graph Laplacian, with the

eigenvalues organized as 0 ¼ l
L
1

� . . . � l
L
n . We also denote by drp 1ðG;G þ Dwi0 j0

Þ the resis-

tance perturbation distances between a graph G, and the graph obtained from G by a perturba-

tion Dwi0 j0
to the edge (i0, j0), G þ Dwi0 j0

.

Theorem 1 (resistance-perturbation after edge modification [9]) If G þ Dwi0 j0
is the

graph obtained from G by a perturbation Dwi0 j0
to the edge (i0, j0), then

drp 1ðG;G þ Dwi0 j0
Þ ¼

2njDwi0 j0
j

1 þ Dwi0 j0
Ri0 j0

Xn

k¼2

1

ðl
L
k Þ

2
½�kði0Þ � �kðj0Þ�

2
: ð15Þ

As expected, the term

Dwi0 j0

1 þ Dwi0 j0
Ri0 j0

; ð16Þ

controls the size of the resistance-perturbation distance drp 1ðG;G þ Dwi0 j0
Þ.

More interestingly, the sum
Pn

k¼2
½�kði0Þ � �kðj0Þ�

2
=ðl

L
k Þ

2
in (15) provides the “frequency

response” of the graph to the perturbation. This response can be analyzed as follows. For small

k, the eigenvalues l
L
k are small, and the corresponding eigenvectors ϕk “oscillate” very slowly

on the graph, i.e. ϕk(i0) − ϕk(j0) � 0 unless i0 and j0 belong to different nodal regions. In this

latter case, the effect of the edge perturbation Dwi0 j0
will be maximal. An example of this phe-

nomenon corresponds to the primary school face-to-face contact network, where each class-

room forms a densely connected community. The classrooms are weakly connected to one

another. For the same Dwi0 j0
, drp 1ðG;G þ Dwi0 j0

Þ will be maximal if i0 and j0 are in different

classrooms, and will be very small if the two nodes belong to the same classroom.
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For large k, eigenvectors ϕk “oscillate” very quickly on the graph, making it difficult to esti-

mate the contribution of [ϕk(i0) − ϕk(j0)]2. This issue is mitigated by the fact that the weights

1=ðl
L
k Þ

2
are relatively small, since the eigenvalues l

L
k are large.

In summary, the resistance-perturbation provides a multiscale analysis that automatically

de-emphasize the random variability at the very fine scales, to wit the distance “denoises” the

graph dynamic (see also [111, 112] for similar analyses).

We note the existence of topological distance [113–115] that also provide “multiscale dis-

tances” through a filtration process. These topological distances go beyond the scope of the

current study that focuses on geometric distances.

4.2.2 European Union Emails. The analysis of the pattern of connectivity of email

exchanges between the members of a European research institute provides a second example

of dynamic network. The first observation is that the rate of changes in the number of emails

(volume of each graphs) appears to be influenced by the calendar of the European Parliament

(see Fig 15). As suspected by the authors in [105], the activity in this dataset appears to be

influenced by a series of events at the European Parliament in Brussels and Strasbourg. This

conjecture is confirmed by the analysis of the spectral distances (see Fig 17): the three distances

show large values whenever the session of the Parliament is resumed (e.g., 3 December, 2003;

19 April 2004, 13 October 2004, etc.) or adjourned (e.g., 18 December 2003, 1 April 2004, 28

October 2004, etc.) More interestingly, all the distances become suddenly very large during the

entry into office of the new 2004-2009 European Commission (22-26 November, 2004).

Unlike all the spectral distances, the resistance distance and the DELTACON distance are able

to detect the election of Jose Barroso as President of the European Commission (22 July 2004)

(see Fig 18). We had already observed and analysed the performance of these two distances in

the context of the face-to-face contact networks. This experiment confirms that the resistance

perturbation provides a very sensitive statistic to detect changes in dynamic networks.

4.2.3 Functional brain connectivity. The experiments in section 3.2.3 leave the choice of

the global distance open. In this section, we gain further insight into the analysis of this dataset,

and demonstrate that local changes in the connectivity of functional brain networks can

indeed be detected. These minute changes require assigning a more robust weight along the

edges, and designing a distance between graphs that can be tuned to respond to local changes

at specific scales (a weighted spectral distance). The implementation of these ideas is beyond

the scope of the paper.

In order to gain some understanding into the inability of the graph distance to differentiate

between the ASD patients and the controls, we revisit the original data, and compute the fol-

lowing contrast for each pair of nodes (i, j) in the network

D̂i;j ¼
def Ê½r1

i;j� � Ê½r0
i;j�

sðr0
i;jÞ

; ð17Þ

where Ê½r1
i;j� is the sample mean correlation between regions i and region j of the brain atlas,

computed over all ASD subjects (population 1). Similarly, Ê½r0
i;j� and sðr0

i;jÞ are the sample

mean and sampled variance, respectively, of the correlations between regions i and region j of

the brain atlas, computed over all controls (population 0). Fig 27 displays the contrast D̂i;j for

all pair of regions in the AAL atlas, i, j = 1, . . .116.

To ease the interpretation of this matrix, consider for instance a value of D̂i;j ¼ 0:25. This

value indicates that (on average) the functional correlation Ê½r1
i;j� between regions i and j of
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ASD subjects is above the (average) correlation of the controls, Ê½r1
i;j�, by 0.25× the standard

deviation of the correlation (of the controls), sðr0
i;jÞ.

A visual inspection of Fig 27 highlights the presence of localized high contrast between the

two populations. A closer examination reveals that ASD subjects are underconnected in

regions 73 through 77, and are overconnected in regions 79 and 84 through 89. Table 6 pro-

vides a list of regions that are show anomalous functional connectivity.

Fig 27. Contrast D̂i;j for each pair of regions (i, j) in the atlas AAL computed between the ASD subjects and the

controls (see (17)).

https://doi.org/10.1371/journal.pone.0228728.g027

Table 6. Regions with anomalous connectivity. Correspondence between labels and regions is established via the

Automated Anatomical Labelling atlas [116].

Label Region Connection

73 L. Putamen Underconnected

74 R. Putamen Underconnected

75 L. Globus Pallidus Underconnected

76 R. Globus Pallidus Underconnected

77 L. Thalamus Underconnected

79 R. Transverse Temporal Gyrus Overconnected

84 R. Superior Temporal Lobe Overconnected

85 L. Middle Temporal Gyrus Overconnected

86 R. Middle Temporal Gyrus Overconnected

87 L. Middle Temporal Pole Overconnected

88 R. Middle Temporal Pole Overconnected

89 L. Inferior Temporal Gyrus Overconnected

https://doi.org/10.1371/journal.pone.0228728.t006
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Fig 27 confirms that there exist structural differences between the connectomes of ASD

subjects and controls. Unfortunately, our analysis shows that these differences are smaller than

one standard deviation of the correlation of the controls sðr0
i;jÞ (see the color bar in Fig 27). To

further aggravate this situation, we note that the pattern of anomalous connectivity are iso-

lated, while the vast majority of correlations are very close to zero (green cells in Fig 27). We

conclude that the low amplitude of the contrast D̂i;j and its sparsity contribute to our inability

to use graph distances to detect significant changes between the connectomes of the two popu-

lations (see also [117] for a detailed analysis of regional connectivity). We note that others

have reported similar findings [118, 119].

5 Conclusion

The success of statistical machine learning relies on the construction of sophisticated spaces of

signals (functional spaces) wherein properties of algorithms can be rigorously evaluated. The

core of the analysis usually relies on the existence of bases that reveal the properties of the class

of functions of interest. There currently is no equivalent for the study of graph ensembles.

In this paper, we considered existing ensembles of random graphs as prototypical examples

of certain graph structures, which are the building blocks of existing real world networks.

These ensembles were used to rigorously analyze various graph distances in the context of the

two-sample test problem.

Specifically, we studied the ability of various distances to compare two samples randomly

drawn from distinct ensembles of graphs. We investigated the relationship between the fami-

lies of graph ensembles, the structural features characteristic of these ensembles, and the sensi-

tivity of the distances to these characteristic structural features. The performance of the

distances is studied using a “multiscale lens”: we organize distances according to the scale at

which they aptly detect changes within a graph. We consider three classes of scales: (1) the fine

scale of the local connectivity, formed by the ego-net; (3) the very large scale associated with

communities; and finally (2) a mesoscale that bridges the scales from the local to the global

scales.

We concluded our study with experiments conducted on real-world networks, where we

study the two-sample test problem for networks of functional brain connectivity, and we

detected change points in a dynamic network of face-to-face contacts.

5.1 Recommendations

Throughout this study, we observed that the adjacency spectral distance (see Sections 3.1 and

3.2) exhibits good performance across a variety of scenarios, making it a reliable choice for a

wide range of problems. Spectral distances also exhibit practical advantages over matrix dis-

tances, as they can inherently compare graphs of different sizes and can compare graphs with-

out known vertex correspondence. The adjacency spectrum in particular is well-understood,

and is perhaps the most frequently studied graph spectrum; see e.g., [19, 83]. Finally, fast, sta-

ble eigensolvers for symmetric matrices are ubiquitous in modern computing packages such as

ARPACK, NumPy, and Matlab, allowing for rapid deployment of models based on spectral

graph comparison. The Python library NetComp [75] further simplifies the application of

these tools to practical problems; see Section 7 for more details. Furthermore, randomized

algorithms for matrix decomposition allow for highly parallelizable calculation of the spectra

of large graphs [73].

However, the utility of the adjacency spectral distance is not general enough to simply

apply it to any given two-sample test or anomaly detection problem in a naive manner. A pru-

dent practitioner would combine exploratory structural analysis of the graphs in question with
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an ensemble approach in which multiple distance measures are considered simultaneously,

and the resulting information is combined to form a consensus. Such systems are common-

place in problems of classification in machine learning, where they are sometimes known as

“voting classifiers” (see e.g., [120]).

In this study, we have been comparing graphs of equal volume (in expectation). In situa-

tions where the graph volume varies drastically (e.g., see Section 2.5.1), the process of choosing

a graph comparison tool may differ significantly. The situation reverses when we look at the

problem of detecting change points in a dynamic graph (see Section 2.5.1). In this scenario,

the matrix distances proved most effective in detecting changes in the latent variables control-

ling the network dynamics. The spectral distances, on the other hand, were so noisy as to be

useless. When trying to detect change points in a dynamic graph, one computes the distance

between consecutive time steps. In this scenario the two graphs being compared share many

more edges than in the two-sample test. As demonstrated in section 4.2.1, the resistance per-

turbation distance, or DELTACON, yield exemplary performance. We note that we found that

raw fluctuations in graph volume did not yield useful information about the latent processes

that triggered changes in graph connectivity.

Based on the results of our experiments, we provide a suggested decision process in Fig 28.

If the graphs to be compared exhibit differences in volume or size, then these should be exam-

ined to see if they hold predictive power, as they are simple and efficient to compute. If they

prove ineffective, then one must consider the setting. In a dynamic setting, in which a dynamic

graph is being compared at subsequent time steps, then we recommend using matrix distances

based on the results of Section 2.5.1. If one is comparing graphs to determine whether a sample

belongs to a given population, then the adjacency spectral distance is the most reliable, as Sec-

tions 3.1 and 3.2 demonstrate. Finally, if none of these approaches give adequate performance,

then a more targeted analysis must be performed, such as the edge-wise statistical comparison

of weights in Fig 27. The particular design of this analysis is domain specific and highly depen-

dent upon the nature of the data.

6 Notation

For reference, in Table 7 we provide a table of notation used throughout the paper.

7 NetComp: Network comparison in python

NetComp is a Python library that implements the graph distances studied in this work.

Although many useful tools for network construction and analysis are available in the well-

known NetworkX [78], advanced algorithms such as spectral comparisons and DELTACON

are not present. NetComp is designed to bridge this gap.

7.1 Design consideration

The guiding principles behind the library are

1. Speed. The library implements algorithms that run in linear or near-linear time, and are

thus applicable to large graph data problems. See below regarding the implementation of

exact and approximate forms of DELTACON and the resistance distance.

2. Flexibility. The library uses as its fundamental object the adjacency matrix. This matrix can

be represented in either a dense (NumPy matrix) or sparse (SciPy sparse matrix) format.

Using such a ubiquitous format as fundamental allows easy input of graph data from a wide

variety of sources.
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Fig 28. Flow chart summarizing the suggested decision process for applying distance measures in empirical data.

https://doi.org/10.1371/journal.pone.0228728.g028

Metrics for graph comparison: A practitioner’s guide

PLOS ONE | https://doi.org/10.1371/journal.pone.0228728 February 12, 2020 47 / 54

https://doi.org/10.1371/journal.pone.0228728.g028
https://doi.org/10.1371/journal.pone.0228728


3. Extensibility. The library is written so as to be easily extended by anyone wishing to do so.

The included graph distances will hopefully be only the beginning of a full library of effi-

cient modern graph comparison tools that will be implemented within NetComp.

NetComp is available via the Python Package Index, that is most frequently accessed via

the command-line tool pip. The user can install it locally via the shell command

pip install netcomp:

As of writing, the library is in alpha. The approximate (near-linear) forms of DELTACON and

the resistance distance are not yet included in the package. Both algorithms have an quadratic-

time exact form that is implemented. Those interested can download the source code and con-

tribute (by adding the distance of their choice) at https://www.github.com/peterewills/

netcomp.
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Table 7. Table of commonly used notation.

G Graph

V Vertex set, taken to be {1, 2, . . ., n}

E Edge set, subset of V × V
W Weight function, W : E ! Rþ

n Size of the graph, n = |V|

m Number of edges, m = |E|

di Degree of vertex i
D Degree matrix (diagonal)

d(�, �) Distance function

A Adjacency matrix

L Laplacian matrix

L normalized Laplacian matrix (symmetric)

l
A
i

ith eigenvalue of the adjacency matrix

l
L
i

ith eigenvalue of the Laplacian matrix

l
L
i

ith eigenvalue of the normalized Laplacian matrix

Gf0;1g The {null,alternative} population of graphs

G{0,1} Sample graph from Gf0;1g

D0 Distribution of distances between graphs in null population

D0 Sample from D0

D1 Distribution of distances d(G0, G1)

D1 Sample from D1

D̂1
Distribution of the contrast D1 between D0 and D1, (see (12))

D̂1 Sample from D̂1

G(n, p) Uncorrelated random graph with parameters n and p
(n, p, q) Parameters for stochastic blockmodel

(n, l) Parameters for preferential attachment model, with 1 < l � n
(n, k) Parameters for Watts-Strogatz graph, with k < n even

https://doi.org/10.1371/journal.pone.0228728.t007
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