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Abstract. We study a change point detection scenario for a dynamic
community graph model, which is formed by adding new vertices and
randomly attaching them to the existing nodes. The goal of this work
is to design a test statistic to detect the merging of communities with-
out solving the problem of identifying the communities. We propose a
test that can ascertain when the connectivity between the balanced com-
munities is changing. In addition to the theoretical analysis of the test
statistic, we perform Monte Carlo simulations of the dynamic stochastic
blockmodel to demonstrate that our test can detect changes in graph
topology, and we study a dynamic social-contact graph.
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1 Introduction

Some of the most well-known empirical network datasets reflect social connective
structure between individuals, often in online social network platforms such as
Facebook and Twitter. These networks exhibit structural features such as com-
munities and highly connected vertices, and can undergo significant structural
changes as they evolve in time. Examples of such structural changes include the
merging of communities, or the emergence of a single user as a connective hub
between disparate regions of the graph.

The main contribution of this work is a rigorous analysis of a dynamic com-
munity graph model, which we call the dynamic stochastic blockmodel. Models of
dynamic community networks have recently been proposed. The simplest incar-
nation of such models, the dynamic stochastic blockmodel, is the subject of our
study.

This model is formed by adding new vertices, and randomly attaching them
to the existing nodes. We circumvent the problem of decomposing each graph
into communities, and propose instead a test that can ascertain when the con-
nectivity between the balanced communities is changing. Because the evolution
of the graph is stochastic, one expects random fluctuations of the graph topology.
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We propose an hypothesis test to detect the abnormal growth of the balanced
stochastic blockmodel.

The stochastic blockmodel represents the quintessential exemplar of a net-
work with community structure. In fact, it is shown in [28] that any sufficiently
large graph behaves approximately like a stochastic blockmodel. This model is
also amenable to a rigorous mathematical analysis, and is indeed at the cutting
edge of rigorous probabilistic analysis of random graphs [1].

2 Graph Models

We recall the definition of the two-community stochastic blockmodel [1].

Definition 1. Let n ∈ N, and let p, q ∈ [0, 1]. We denote by SBM(n, p, q)
the probability space formed by the graphs defined on the set of vertices [n],
constructed as follows. We split the vertices [n] into two communities C1 and
C2, formed by the odd and the even integers in [n] respectively. We denote by
n1 = �(n+1)/2� and n2 = �n/2� the size of C1 and C2 respectively. Edges within
each community are drawn randomly from independent Bernoulli random vari-
ables with probability p. Edges between communities are drawn randomly from
independent Bernoulli random variables with probability q.

2.1 The Dynamic Stochastic Blockmodel

Several dynamic stochastic blockmodels have been proposed in recent years
(e.g., [10,11,18,22,27,29,31], and references therein). Existing dynamic stochas-
tic block models assume that the number of nodes is fixed, and that community
membership is random. Some authors propose a Markovian model for the com-
munity membership [30,31], while others assume the sequence of graphs are
independent realizations in time [5]. Our work is more similar to that of [4],
where the authors study changes in the dynamics of a preferential attachment
model, the size of which grows as a function of time.

Similarly, we investigate a growing model of a stochastic block model, and we
are interested in the regime of large graphs (n → ∞), where the probabilities of
connection, within each community, pn, and across communities, qn, go to zero
as the size of the graph, n, goes to infinity.

In order to guarantee that at each time n we study the growth of a
graph ∼ SBM(n, pn, qn), we cannot simply assume that the graphs G1 =
(V1, V1), . . . , Gn = (Vn, En) form a sequence of nested subgraphs, where we
would have V1 ⊂ · · · ⊂ Vn and E1 ⊂ · · · ⊂ En. Instead. our study focuses
on the transition between a random realization (Vn, En) ∼ SBM(n, pn, qn) and
the graph formed by adding a new node n + 1 and random edges to (Vn, En).

Formally, the dynamic stochastic blockmodel is defined recursively (see Table
1). G1 is formed by a single vertex. We assume that we have constructed
G1, . . . , Gn and we proceed with the construction of Gn+1. First, we replace
Gn by a graph Hn ∼ SBM(n, pn, qn), and we consider the graph formed by
adding a new node n + 1 (assigned to either C1 or C2 according to the parity of
n), and we define
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Fig. 1. Left: the stochastic blockmodel Hn = (Vn, En) is comprised of two communities
C1 (red) and C2 (blue). A new vertex (green) is added to Vn, and random edges are
created between n + 1 and vertices in Vn. This leads to a new set of edges, En+1, and
the corresponding new graph Gn+1 defined by (2)

Vn+1 � Vn ∪ {n + 1} . (1)

Random edges are then assigned from n + 1 to each vertex in the same com-
munity with probability pn and to each vertex of the opposite community with
probability qn. This leads to a new set of edges, En+1, and the corresponding
graph (see Fig. 1),

Gn+1 � (Vn+1, En+1) . (2)

We note that Hn is different from Gn; indeed, Gn was created by adding a
node and some edges to the graph Hn−1 ∼ SBM(pn−1, qn−1), whereas Hn is a
realization of SBM(pn, qn). Table 1 summarizes the construction of the sequence
G1, G2, . . .

Table 1. Row n depicts the construction of Gn+1 as a function of the random seed
graph Hn. The distance (last column) is always defined with respect to the seed graph
Hn on the vertices 1, . . . , n that led to the construction of Gn+1.

Time
index n

Probabilities
of connection

Hn = seed
graph at time n

Growth sequence
to generate Gn+1

Definition of the
graph distance

0 ∅ ∅ → G1 0

1 {p1, q1} H1 ∼
SBM(1, p1, q1)

H1 → G2 drp(H1, G2)

2 {p2, q2} H2 ∼
SBM(2, p2, q2)

H2 → G3 drp(H2, G3)

...
...

...
...

...



214 P. Wills and F. G. Meyer

We conclude this section with the definition of the expected degrees and the
number of across-community edges, kn.

Definition 2 (Degrees and number of across-community edges). Let
G ∼ SBM(n, p, q). We denote by dn1 = pn1 the expected degree within commu-
nity C1, and by dn2 = pn2 the expected degree within community C2. We denote
by kn the binomial random variables that counts the number of cross-community
edges between C1 and C2.

Because asymptotically, n1 ∼ n2, we ignore the dependency of the expected
degree on the specific community when computing asymptotic behaviors for large
n. More precisely, we loosely write 1/dn when either 1/dn1 or 1/dn2 could be
used.

3 The Resistance Perturbation Distance

In order to study the dynamic evolution of the graph sequence, we focus on
changes between two successive time steps n and n + 1. These changes are for-
mulated in terms of changes in connectivity between Gn+1 and the seed graph
Hn (see Table 1).

To construct the statistic that can detect the merging of communities without
identifying the communities, we use the resistance perturbation distance [17].
This graph distance can be tuned to quantify configurational changes that occur
on a graph at different scales: from the local scale formed by the local neighbors of
each vertex, to the largest scale that quantifies the connections between clusters,
or communities [17] (see [2,6] for recent surveys on graph distances, and [19] for
a distance similar to the resistance perturbation distance).

The Effective Resistance. For the sake of completeness, we review the concept
of effective resistance (e.g., [7–9,12]). Given a graph G = (V,E), we transform G
into a resistor network by replacing each edge e by a resistor with conductance
we (i.e., with resistance 1/we). The effective resistance between two vertices
u and v in V is defined as the voltage applied between u and v that is required
to maintain a unit current through the terminals formed by u and v.

To simplify the discussion, we will only consider graphs that are connected
with high probability. All the results can be extended to disconnected graphs as
explained in [17].

Definition 3 (The resistance perturbation distance). Let G(1) = (V,E(1))
and G(2) = (V,E(2)) be two graphs defined on the same vertex sets V . Let R(1)

and R(2) denote the effective resistances of G(1) and G(2) respectively. We define
the resistance-perturbation distance to be

drp

(
G(1), G(2)

)
�

∑
u∈V

∑
v∈V,v �=u

∣∣∣R(1)
u v − R(2)

u v

∣∣∣ . (3)
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The resistance-perturbation distance cannot be used to compare graphs defined
on different vertex sets, V (1) and V (2). If V (1) and V (2) share many nodes, then
we can compute the restriction of the perturbation distance on the intersection
V (1) ∩ V (2). In the following we compare two graphs Hn and Gn+1 that share
all the nodes but one newly added node. We therefore extend the definition of
the perturbation distance as follows.

Definition 4 (Extension of the resistance perturbation distance). Let
Hn = (Vn, En) ∼ SBM(n, pn, qn), and let Gn+1 � (Vn+1, En+1), defined by (2).
We define the resistance-perturbation distance between Hn and Gn+1 as follows

drp (Hn, Gn+1) �
∑
u∈Vn

∑
v∈Vn,v �=u

∣∣∣R(1)
u v − R(2)

u v

∣∣∣ . (4)

Because n + 1 did not exist at time n, it is not meaningful to compute Rv(n+1),
for v ∈ Vn Therefore we only compute the effective resistances for u, v ∈ Vn

in (4). In the remainder of the paper, we use the notation drp to denote the
extended resistance perturbation distance defined by (4).

4 Main Result

Figure 1 illustrates the statement of the problem. As a new vertex (shown in
green) is added to the graph Hn the connectivity between the communities can
increase, if edges are added between C1 and C2, or the communities can remain
separated if no across-community edges are created. If the addition of the new
vertex promotes the merging of C1 and C2, then we consider the new graph
Gn+1 to be structurally different from Gn, otherwise Gn+1 remains structurally
the same as Gn (see Fig. 1).

As explained in Theorem 1, the resistance perturbation distance, between
time n and n + 1, (see Table 1) measured by drp(Hn, Gn+1) (defined by (4))
is able to distinguish between connectivity changes within a community and
changes across communities.

Theorem 1 (The statistic under the null and alternative hypotheses).
Let Hn = (Vn, En) ∼ SBM(n, pn, qn) with pn = ω (log n/n), and pn/n < qn <

(pn/n)3/4. Let Gn+1 be the graph generated according to the dynamic stochastic
blockmodel described by (2) and Table 1.

To test the hypothesis kn+1 = kn (null hypothesis) versus kn+1 > kn (alternative
hypothesis) we use the statistic Zn defined by

Zn � pn
4
E [drp (Hn, Gn+1)] − 1. (5)
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The expected value of the statistic E [Zn] is given by

E [Zn] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(

1√
dn

)
, conditioned on kn+1 = kn(null)

2pn
n2q2n

+ O
(

1√
dn

)
, conditioned on kn+1 > kn(alternative).

(6)

The theoretical analysis of the dynamic stochastic block model
SBM(n, pn, qn), provided by Theorem 1, reveals that if one could ignore the
within-community random connectivity changes, which have size O

(
1/

√
dn

)
,

then one should always be able to detect the addition of across-community
edges using the global metric provided by the test statistic Zn. The condi-
tion qn < (pn/n)3/4 therefore guarantees that within-community connectivity
changes do not obfuscate across-community connectivity changes triggered by
the increase in across-community edges.

Without loss of generality, we consider that the new node n + 1 is added to C2

(C1 and C2 play symmetric roles). The main result relies on the following two
ingredients.

1. the community C2 is approximately an Erdős-Rényi graph SBM(n2, pn),
wherein the effective resistance Ruv concentrates around 2/(n2pn) [23];

2. the effective resistance between u ∈ C1 and v ∈ C2 depends mostly on the
bottleneck formed by the kn across-community edges, Ruv ≈ 1/kn [14,15],
and the number of across-community edges, kn, concentrates around qnn1n2.

Under the null hypothesis, about n2pn nodes in C2 will become incident to the
new edges created by the addition of node n + 1. For each of these nodes, the
new degree d′

u becomes du + 1 w.h.p., and therefore R′
uv = Ruv − 1/d2u, for

all v ∈ C2. By symmetry, R′
uv = Ruv − 1/d2v, for all u ∈ C2, and the total

perturbation for u ∈ C2, v ∈ C2 is ≈ 2n2n2pn/dn
2

= 2/pn. We derive the same
estimate for the perturbation R′

uv − Ruv for u ∈ C1, v ∈ C2 or u ∈ C2, v ∈ C1.
We conclude that drp ≈ 4/pn under the null hypothesis.

Under the alternative hypothesis kn+1 = kn + 1 w.h.p., and thus ΔRuv ≈
−1/k2

n ≈ −1/(n1n2qn)2. This perturbation affects every pair of node (u, v) where
u ∈ C1 and v ∈ C2, therefore drp ≈ 2/(n1n2q

2
n) = 8/(nqn)2. There is an addi-

tional term of order O (
1/p2n

)
that accounts for the changes in effective resistance

within C2 (the community wherein node n + 1 is added).
In order to estimate the noise term, O

(
1/

√
dn

)
, we need to construct esti-

mates of the effective resistance that are more precise than those that can be
found elsewhere (e.g., [23], but see [21] for estimates similar to ours, obtained
with different techniques). The full detailed rigorous proof of Theorem 1 is pro-
vided in the supplementary material [25]; we give in the following the key steps.

Proof (Proof of Theorem 1). The proof proceeds in two steps: we first analyze
the null hypothesis, and then the alternative hypothesis. Due to space limitation
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we only present the alternative case, kn+1 > kn. We have

E (drp (Gn, Gn+1)) =
∑
u∈C1

∑
v∈C1

E (|Ruv − R′
uv|) +

∑
u∈C2

∑
v∈C2

E (|Ruv − R′
uv|)

+
∑
u∈C1

∑
v∈C2

E (|Ruv − R′
uv|) +

∑
u∈C2

∑
v∈C1

E (|Ruv − R′
uv|) (7)

The first sum in (7) is equal to

∑
u∈C1

∑
v∈C1

E (|Ruv − R′
uv|) =

2n1

dn
2

(
1 + O

(
1√
dn

))
. (8)

Similarly, we have

∑
u∈C2

∑
v∈C2

E (|Ruv − R′
uv|) = n2(n2 − 1)2pn

(
1

dn
2 + O

(
1

dn
5/2

))
. (9)

The estimates (8) and (9), which quantify the connectivity within both com-
munities, are oblivious to the increase in the across-community connectivity
(kn+1 > kn). We need the third and fourth terms in (7), which are significantly
affected by the increase in across-community edges, to detect a change in the
effective resistance. Indeed, we have

∑
u∈C1

∑
v∈C2

E

(
|Ruv − R′

uk+1v
|
)

=
1
pn

(
1 +

pn
n1n2q2n

+ O
(

1√
dn

))
. (10)

The symmetric case where u ∈ C2 and v ∈ C1 leads to the same exact expres-
sion. Finally, we can assemble the expected resistance perturbation distance by
combining the terms (8), (9), (10), and we obtain the advertised result.

We conclude the proof with the condition on qn that guarantees that Zn can
detect the alternative hypothesis. As soon as qn < (pn/n)3/4, the statistic Zn

under the alternative hypothesis is larger than the noise term O
(
1/

√
dn

)
. The

theoretical condition on qn will be confirmed experimentally in the next section.
The proofs of (8), (9), and (10) are rather technical and are provided in the

supplementary material [25]. �


5 Experiments

Synthetic Experiments. Figure 2 shows numerical evidence supporting Theo-
rem 1. The experiment involves Monte Carlo simulations of the dynamic stochas-
tic blockmodel for 64 random realizations for each qn. The empirical distribution
of Zn is computed under the null hypothesis (green line) and the alternative
hypothesis (red line). The theoretical estimate given by (7) under the alterna-
tive hypothesis is also displayed (blue line). The size of the graph is n = 2, 048,
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Fig. 2. Statistic Zn defined by (5) computed under the null hypothesis (green line) and
the alternative hypothesis (red line) for several values of the inverse across-community
edge density, 2pn/(n

2q2n). The theoretical estimate of Zn under the alternative hypoth-
esis, given by (6), is displayed as a blue line.

the density of edges is pn = log2(n)/n, and the across-community edge density
ranges from qmax =

√
2 (pn/n)3/4 down to qmin = qmax/100. For each value of qn,

we display the statistic Zn as a function of the inverse across-community edge
density, 2pn/(n2q2n). As the inverse density of across-community edges increases,
the statistic Zn can more easily detect the alternative hypothesis. The theoretical
analysis, provided by (6), is confirmed: as qn becomes larger than O

(
(pn/n)3/4

)
,

the statistic Zn computed under the null and alternative hypotheses merge. The
across-community edge density qn becomes too large for the global statistic Zn

to “sense” perturbations triggered by connectivity changes between the commu-
nities. The expected value E [Zn] = 2pn/(nqn)2 under the alternative hypothesis
becomes smaller than the noise term O

(
1/

√
dn

)
, and the test statistic Zn fails

to detect the alternative hypothesis.

Analysis of a Primary School Face to Face Contact. In this section we
provide an experimental extension of Theorem 1, wherein there are 10 commu-
nities, but the number of nodes, N , is fixed. The across-community and within-
community edge densities are rapidly fluctuating as a function of time n. Our
goal is to experimentally validate the ability of the resistance-perturbation dis-
tance to detect significant structural changes between the communities, while
remaining impervious to random changes within each community.

The data are part of a study [20] where RFID tags were used to record
face-to-face contact between students in a primary school. Events punctuate the
school day of the children, and lead to fundamental topological changes in the
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Fig. 3. Left to right: snapshots of the face-to-face contact network at 9:00 a.m.,
10:20 a.m., 12:45 p.m., and 2:03 p.m.

contact network (see Fig. 3). The school is composed of ten classes: each of the
five grades (1 to 5) is divided into two classes (see Fig. 3). Each class forms a
community of connected students; classes are weakly connected.

During the school day, events such as lunch periods (12:00 p.m.– 1:00 p.m.
and 1:00 – 2:00 p.m.) and recess (10:30 – 11:00 a.m. and 3:30 – 4:00 p.m), trigger
significant increases in the number of links between the communities, and disrupt
the community structure (see Fig. 3). The construction of the dynamic graphs
proceeds as follows. We divide the school day into N = 150 time intervals of
Δt ≈ 200 s. We denote by ti = 0,Δt, . . . , (N −1)Δt, the corresponding temporal
grid. For each ti we construct an undirected unweighted graph Gti , where the
n = 232 nodes correspond to the 232 students in the 10 classes, and an edge
is present between two students and if they were in contact (according to the
RFID tags) during the time interval [ti−1, ti).

Fig. 4. Primary school data set: resistance perturbation distance drp, edit distance ̂DE ,
and DeltaCon distance ̂DDC
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Fig. 5. Primary school data set: NetSimile ̂DNS and edit distance ̂DE (left); combi-

natorial Laplacian ̂DL, normalized Laplacian ̂DL, and adjacency ̂DA (right).

The purpose of the analysis is to assess whether distances can detect changes
in the topology coupled with the hidden events that control the network con-
nectivity. We are also interested to verify if distances are robust against random
changes within each classroom that do not affect the communication between
the classes. We compare the resistance perturbation distance drp to the following
distances: (1) DeltaCon distance D̂DC [13], (2) NetSimile distance D̂NS [3],
(3) edit distance D̂E , (4) three spectral distances: combinatorial Laplacian D̂L,
normalized Laplacian D̂L, and adjacency D̂A. The spectral distance between
graph G and G′ is the �2 norm of the difference between the two spectra, {λi}
and {λ′

i} of the corresponding matrices [26]. For each distance measure d, we
define a normalized distance contrast

D̂(ti) = d(Gti−1 , Gti)/D,

where D = N−1
∑

i d(Gti−1 , Gti). All experiments were conducted using the
NetComp library, which can be found on GitHub at [24].

Figure 4 displays the normalized temporal differences for the resistance dis-
tance, edit distance, and DeltaCon distance. The stochastic variability in the
connectivity appreciably influence the high frequency (fine scale) eigenvalues;
spectral distances, which are computed using all the eigenvalues, lead to very
noisy estimates of the temporal differences (see Fig. 5). NetSimile is also sig-
nificantly affected by these random fluctuations.

The volume of the dynamic network changes rapidly, and the edit distance
can reliably monitor these large scale changes. However, it entirely misses the
significant events that disrupt the graph topology: onset and end of morning
recess, onset of first lunch, end of second lunch (see Fig. 4). The resistance dis-
tance can detect subtle topological changes that are coupled to latent events that
dynamically modify the networks, while remaining impervious to random local
changes, which do not affect the large scale connectivity structure (see Fig. 4).
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6 Discussion

We note that the condition on qn in Theorem 1 guarantees that the commu-
nities could be recovered using other techniques (e.g., spectral clustering). Our
global approach, which does not require the detection of the communities can
be computed efficiently (at a cost that is comparable to fast spectral cluster-
ing algorithms). Indeed, we have developed in [17] fast (linear in the number
of edges) randomized algorithms that can quickly compute an approximation
to the drp distance (see [16] for the publicly available codes). In the context of
streaming graphs, we described in [17] algorithms to compute fast updates of
the drp distance when a small number of edges are added, or deleted.

We are currently exploring several extensions of the current model. The sce-
nario of the primary school dataset, wherein the graph size is fixed and a latent
process controls the addition and deletion of edges is an important extension of
the current model.
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