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Abstract Changes in the spatiotemporal dynamics of the global water cycle will constitute some of
the greatest challenges to socioeconomic-environmental well-being in a warming world. Large
multimodel, multiscenario intercomparisons such as the Coupled Model Intercomparison Project Phase 5
(CMIP5) experiment support our best estimates of projected climate change and associated uncertainty
thereof. It is important to continually reevaluate how this information is synthesized and communicated
and at what point it becomes actionable. In this study, we demonstrate a systematic and holistic
framework for synthesizing multimodel ensemble projections of water availability at large river basin
scale—the scale at which water resources are both managed and monitored. We identify statistically
significant shifts in mean water availability at annual and monthly scales, its interannual variations, and
its relative seasonality, as computed from CMIP5 historical (1976–2005) and Representative
Concentration Pathway 8.5 (2070–2099) scenario multimodel ensemble output. Water availability is
addressed separately through the lens of meteorologists (precipitation), hydrologists (runoff), and
agriculturalists (precipitation minus evapotranspiration). We illustrate limitations in CMIP5 model
representativeness through comparisons of atmosphere-only model (Atmospheric Model
Intercomparison Project) output against observational best estimates. And we find that
warming-induced shifts in water availability projected by CMIP5 carbon-cycling Earth system models are
comparatively less substantial than those projected by traditional general circulation models. As we
show, knowing the seasonality of both projected changes and of the biased model background
climatology onto which they are imposed is paramount to ensuring proper interpretation and
ascribing confidence.

1. Introduction

The World Climate Research Programme has identified Water for the Food Baskets of the World as
one of seven Grand Challenges for the coming decade. Currently, more than 2 billion people are
affected by water stress, a number that will only increase with population growth and continued eco-
nomic development (United Nations, 2018). Feeding the world’s growing and more affluent population
will require a 25–70% increase in agricultural production by 2050 and a corresponding increase in
agricultural water withdrawals, which already account for 70% of global water demand (Hunter
et al., 2017). Climate change will exacerbate the impending water resources management challenge
in some regions by reducing total physical water availability and altering the river flow regime (Döll
& Schmied, 2012).

Climate models facilitate understanding of how a warming climate may affect the distribution of fresh-
water globally. The Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) consti-
tutes the most extensive database of climate simulations ever compiled and served as the model
projection backbone to the Intergovernmental Panel on Climate Change (IPCC, 2013) Fifth Assessment
Report. Soon, the CMIP5/AR5 effort will be dwarfed by the CMIP6/AR6 effort (Eyring, Bony, et al.,
2016). Given the tremendous level of international investment in these activities, it is meaningful to con-
sider whether in the context of Water for the Food Baskets of the World they are being fully leveraged,
or if additional value might be gleaned from them? An unfortunate reality for field campaigns and
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model intercomparison projects alike is that resources are disproportionately allocated to data collection
and generation as opposed to follow-on in-depth analysis and synthesis. The challenge is to efficiently
synthesize the data into a form that balances ease of communication and sufficient detail such that it
becomes actionable.

Numerous studies before ours have analyzed CMIP5’s simulations from a water resources perspective (e.g.,
Arnell & Gosling, 2013; Dai, 2013; Koirala et al., 2014; Maloney et al., 2014; Orlowsky & Seneviratne, 2013;
Sheffield, Camargo et al., 2013; Sheffield, Barrett et al., 2013). Most often, studies have focused on reporting
projected trends and/or long-term change in the annual means in the format of global maps. In the AR5, glo-
bal maps of projected seasonal mean precipitation (P) and annual mean runoff (Q) and evapotranspiration (E)
change were presented (Collins et al., 2013; their Figures 12.22 and 12.24–12.25). Alternatively, spatial
averages computed over large zonal, continental, or even global land and global ocean domains have been
reported (e.g., Lau et al., 2013; Wills et al., 2016). Such studies have in some cases contributed to broad gen-
eralizations about the future climate, such as “dry gets drier, wet gets wetter” (e.g., Chou et al., 2009; Held &
Soden, 2006; Liu & Allan, 2013) that are misleading and false (Greve et al., 2014). By contrast, detailed studies
have been conducted to assess climate response in a particular region or river basin, or small subset of basins
(e.g., Jimenez Cisneros et al., 2014; Masood et al., 2015; Vetter et al., 2015). These studies tend to focus on only
a single definition of water availability, namely, in terms of P for meteorologists, Q for hydrologists, and pre-
cipitationminus evaporation (P� E) for agriculturalists and ecologists, and apply unique statistical andmodel
selection procedures. Thus, all three terms—P, P � E, and Q—are generally not analyzed jointly and consis-
tently at a regional scale. Overall, studies of all forms typically fall short with regard to quantifying model
uncertainty and result significance.

In this article, we present a rigorous and statistically sound assessment of the impact of projected climate
change on the Earth’s future water resources for multiple large-scale basins using CMIP5 data. The strength
of the approach derives from its comprehensiveness: the inclusion of all available CMIP5 models and their
realizations, simultaneous analysis of multiple water budget variables, error characterization, and the vetting
of all results by appropriate statistical significance tests. The approach fills gaps in standard studies and may
be easily automated for application in diagnostic toolkits such as the Earth system model (ESM) evaluation
tool (ESMValTool; Eyring, Righi, et al., 2016). Specifically, the approach covers annual and subseasonal means
and their variability, relative seasonality, and model uncertainty for P, E, P� E, and Q—all at the scale of large
river basins. Large basins, lie at a trade-off scale that is local enough to be actionable to decision makers and
water planners yet broad enough to be represented by coarse, 100- to 200-km resolution CMIP5 models.
Moreover, basins aggregate climate response across heterogeneous landscapes and enforce a water budget
that is monitored in many basins through streamflow and precipitation gauge networks, or remotely with the
aid of space-borne sensors (e.g., Gao et al., 2010; Lettenmaier et al., 2015; Pan et al., 2012; Pokhrel et al., 2013;
Rodell et al., 2009; Sheffield et al., 2009).

Knowing the seasonality of projected changes to water availability is critical (e.g., Chou & Lan, 2012; Tabari &
Willems, 2018). More important than knowing whether a basin will turn drier or wetter on annual mean time-
scales is knowing the timing of that drying and wetting. Will the dry season become drier and the wet season
wetter, or the dry season wetter and the wet season drier? Certainly, in the context of agriculture and the vir-
tual water trade, the value of water is not fixed over the course of the year (e.g., Dalin et al., 2012; Hanasaki
et al., 2010; Oki et al., 2017; Oki & Kanae, 2004).

Fitness of the model or model ensemble to the task is also an important consideration. Projected shifts in the
seasonality and interannual variability of water availability must be interpreted in the context of the under-
lying modeled seasonality upon which they are imposed. This concept ties-in to the modeler’s responsibility
to communicate relative confidence and/or statistical significance of any projected changes in water avail-
ability, even if such estimates are based on incomplete information. In our case, CMIP5 ensemble model skill
from the Atmospheric Model Intercomparison Project (AMIP; 1979–2008) experiment serves as a surrogate
for model fidelity in end-of-the-century (2070–2099) simulations.

We begin in section 2 by describing the CMIP5 model output, observational comparison data, and
statistical methods. The results are presented in section 3, and a summary is provided in section 4.
We note that there are an extensive number of figures in the supporting information for the
interested reader.
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2. Data and Methods
2.1. Study Area

Our study focuses on 20 major river basins distributed globally; three climate-sensitive, semiarid, midconti-
nental regions; and two additional regions of interest (Figure 1). Basins are natural spatial aggregators of het-
erogeneous landscape processes and their response to climate; they impose a natural water budget, which
facilitates human monitoring and management. If changes in terrestrial water storage are assumed negligi-
ble, basin streamflowwill equal basin total precipitationminus evapotranspiration on timescales greater than
1 year. This is important for verification of E because spatially distributed measurements of E (i.e., from flux
towers) are generally lacking, even when a sufficient network of P and Q gauges are available. The basins
span the full spectrum of water availability (Table 1) and size (DON: 440,000 km2; AMZ: 6,145,000 km2). See
Ferguson et al. (2012; their Table 3) for descriptive hydroclimate and vegetative characteristics. The three cli-
mate sensitive regions—the central United States, West Africa, and India—correspond with Global Land-
Atmosphere Coupling Experiment-1 AGCM-based land-atmosphere coupling hotspots (Guo et al., 2006;
Koster et al., 2004; Koster et al., 2006). The southern U.S. (SUS) and western Europe (WEU) domains were
selected to correspond to the areal extent of recent severe droughts in those regions. Namely, the 2006–
2008 southeastern U.S. drought and the 2011 European drought. Coincidentally, SUS corresponds with the
South Atlantic-Gulf Basin.

2.2. CMIP5 Model Output and Evaluation Periods

We evaluate differences in 30-year climate normals of P, E, P � E, and Q for recent (1976–2005) and near-
future (2070–2099) periods, as calculated from CMIP5 historical (HIST) and Representative Concentration
Pathway 8.5 (RCP8.5) experiments, respectively. The RCP8.5 pathway corresponds to a business-as-usual
scenario that does not include any specific climate mitigation target (e.g., Riahi et al., 2011; Taylor
et al., 2012). The CMIP standard output variable names of interest are: pr (P), evspsbl (E), mrro (Q), and sftlf
(land area fraction). Outputs for all models are first bilinearly downscaled to a common 0.125° lat/lon grid.
Then the water budget variables are area averaged over the basin fraction for which the model-specific
downscaled land fraction is greater than 0.5. The multimodel ensemble mean is calculated by first aver-
aging available realizations for each individual model and then averaging those together (Knutti,
Abramowitz, et al., 2010). Realizations constitute model integrations initialized at different times but with
identical physics parameterizations.

Figure 1. Global distribution of the study basins/regions and CMIP5 RCP8.5 (2070–2099) projected changes to the HIST (1976–2005) annual mean precipitation
(P; first bar) and precipitation minus evaporation (P � E; second bar). Red and blue coloring indicates projected drying and wetting, respectively. The precise
bounding boxes for the three land-atmosphere coupling hotspots (LACH) and two regions of interest are CUS: 27–41°N, 106–97°W; SUS: 25–37°N, 91–75°W; WAF:
5–13°N, 3°W to 34°E; WEU: 42.5–50°N, 0–15°E; IND: 20–31°N, 68–85°E. See Table 1 for a listing of basin abbreviations and corresponding numerical values.
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Output from additional CMIP5 experiments is analyzed to lend greater context to the HIST-RCP8.5 results.
Specifically, we test whether coupled ESMs produce significantly different projections of water availability.
The CMIP5 ESMHIST and ESMRCP8.5 experiments include 15 ESMs with prognostic carbon-cycle capabilities.
Such capabilities were “switched off”when these same ESMswere run as part of theHIST experiment, and they
were forced by prescribed historical time series of atmospheric greenhouse-gas emissions, as distinct from
other CMIP5 models that were forced by the historical time series of greenhouse-gas concentrations (Taylor
et al., 2012).

For the mean shift analyses (section 3.1), ensemble members were limited to only those 29 models for which
P, E, and Qwere available from both HIST and RCP8.5 experiments. In this way, physical consistency as well as
proper interpretation of Figures 2–6 in the context of the water budget is assured. Furthermore, the bcc-
csm1-1 and bcc-csm1-1-m models were excluded from the mean shift analysis due to concerns arising from
large negative (unphysical) Q in MEK for all experiments.

For the ensuing analyses (sections 3.2–3.5), all available model estimates were included, regardless of
whether all fields—P, E, and Q—were simultaneously available. For example, EC-EARTH total runoff estimates
(mrro) are not available for HIST or RCP8.5 experiments (Table S1). Therefore, EC-EARTH output is not included
in the mean shift analysis (this section); however, EC-EARTH P and E estimates are used in the variability and
seasonality analyses (section 3.3–4).

In section 3.5, we evaluate CMIP5 participant model skill against global observational data sets using output
from the AMIP experiment spanning 1979–2008. AMIP model simulations are constrained by observed
monthly SST and sea ice concentration time series, so they correspond directly to the observational record
(e.g., Scaife et al., 2009). By contrast, free-running (from 1,850) HIST simulations, constrained only by a

Table 1
Summary of the Study Basins/Regions, Their Abbreviations, and Their Historical (1976–2005) Water Availability and RCP8.5
(2070–2099) Projected Anomalies According to the CMIP5 Multimodel Ensemble

Basin/Region Abbr.

P P � E Q

HIST
(mm/year)

RCP8.5
Anomaly

(%)
HIST

(mm/year)

RCP8.5
Anomaly

(%)
HIST

(mm/year)

RCP8.5
Anomaly

(%)

Senegal SEN 264 -6 26 40 3 9
Aral ARA 332 8 62 �26 5 �21
Lena LEN 499 25 215 34 16 34
Mackenzie MAC 536 18 206 18 15 21
Ob OB 559 19 194 15 14 15
Don DON 567 5 113 �19 8 �16
Nile NIL 582 14 117 11 8 38
Amur AMU 586 17 192 6 12 22
Murray-Darling M-D 587 �1 52 �27 2 30
Niger NIG 627 7 127 20 11 8
India LACH IND 649 12 155 28 15 22
Volga VOL 668 15 252 1 17 14
Dnieper DNI 702 6 211 �18 14 �5
Central U.S. LACH CUS 771 �4 83 �21 6 �30
Danube DAN 799 �3 199 �20 15 �22
Yellow YEL 832 14 326 �2 22 11
Mississippi MIS 916 6 199 3 14 �1
Western Europe WEU 1030 �3 380 �15 32 �13
Parana PAR 1130 2 255 �21 15 7
West Africa LACH WAF 1187 7 305 1 20 18
Southeastern U.S. SUS 1286 7 341 �16 25 8
Yangtze YAN 1420 8 694 �3 50 5
Mekong MEK 1438 11 463 7 30 34
Amazon AMZ 1766 �1 518 �1 41 �4
Congo CON 1821 6 645 �1 45 13

Note. See Table S1 for participating model details. The acronym LACH stands for Land-Atmosphere Coupling Hotspot.
CMIP5 = Coupled Model Intercomparison Project Phase 5; RCP8.5 = Representative Concentration Pathway 8.5.
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prescribed historical CO2 concentration time series, constitute only one
possible integration of the historical period among many in the context
of internal atmospheric variability (e.g., Deser et al., 2012; Deser et al.,
2016; Williams et al., 2017). A table of all available models and realizations
considered in this study is available in Table S1.

2.3. Observational Comparison Data

For each of thewater budget variables, we selected a single observationally
based data set to establish baseline model performance during the AMIP
period. It is common practice in statistical downscaling (e.g., Ho et al.,
2012; Watanabe et al., 2012) to assume that historical model biases inmag-
nitude and seasonality will remain constant in near future projections. Such
an assumption is imperfect given that it presumes stationarity but nonethe-
less reasonable in the context of monthly large basin-scale terms and the
uncertainties of accounting for nonstationarity (e.g., Hurst, 1957; Luke
et al., 2017; Serinaldi & Kilsby, 2015).

For P, we use the Multi-Source Weighted-Ensemble Precipitation version 1
data set (MSWEPv1.0; Beck, van Dijk, et al., 2017), which is produced
through an optimal merging of available gauge, satellite, and reanalysis
data. Satellite and reanalysis data tend to be more heavily weighted in
the tropics and mid-to-high latitudes, respectively (Beck, van Dijk, et al.,
2017; their Figure 6). For example, reanalysis data are almost exclusively
used in MAC and LEN. Relative weighting of gauge-based P is highest for
the CUS, SUS, MIS, WEU, DAN, ARA, and M-D. In comparisons against other
state-of-the-art global P products, MSWEP has been shown to be of com-
paratively good skill for all climate types and considering a basket of per-
formance metrics (Beck, Vergopolan, et al., 2017).

For E, we use the Global Land Evaporation Amsterdam Model version 3.1a
data set (GLEAMv3.1a; Martens et al., 2017; Miralles et al., 2011), which has
been well validated against eddy covariance flux tower and long-term
catchment water balance-inferred estimates (McCabe et al., 2016;
Miralles et al., 2016). GLEAM is a simplified land surface model with four
surface tiles: bare soil, low vegetation, tall vegetation, and surface water,
and three soil layers (0–10, 10–100, and 100–250 cm). Intercepted canopy
evaporation is estimated using the analytical model of Gash (1979) as
refined by Valente et al. (1997). Remaining evaporation components—
snow sublimation, open-water evaporation, bare soil evaporation, and
transpiration—are solved according to the Priestley and Taylor (1972) for-
mulation for potential evaporation (PET). For transpiration estimates, PET is
scaled by a stress factor that is a function of both soil moisture and
satellite-based vegetation optical depth (Liu et al., 2011; Liu et al., 2013).
For soil evaporation, the stress factor is a function of soil moisture alone.
Notably, satellite-based soil moisture (Dorigo et al., 2017; Liu et al., 2012)
is used to update the surface layer soil moisture using a Newtonian nud-
ging scheme (Martens et al., 2017). The version “a” data set used herein

relies on European Reanalysis-Interim (Dee et al., 2011) for surface air temperature and radiation inputs
and MSWEP v1.0 for P.

For Q, we use the monthly basin-scale Global Runoff Data Centre (GRDC)-based estimates from Pan et al.
(2012), available for the period from 1984–2006. For basin-months lacking GRDC Q estimates, Pan et al.
(2012) filled the record with estimates from an integration of the Variable Infiltration Capacity (VIC) land sur-
face model with Princeton Global Forcing data (Sheffield et al., 2006). While the extent of filling by VIC Q was
typically minimal, it was necessary to fill greater than 40% of the record for Aral, Dnieper, Don, Nile, and Volga
basins (Table S2).

Table 2
CMIP5 Models and Their Reference Numbers as Used in Figures 11–14

Model name No.

ACCESS1-0 1
ACCESS1-3 2
bcc-csm1-1 3
bcc-csm1-1-m 4
BNU-ESM 5
CanESM2 6
CCSM4 7
CESM1-BGC 8
CESM1-CAM5 9
CESM1-FASTCHEM 10
CESM1-WACCM 11
CMCC-CESM 12
CMCC-CM 13
CMCC-CMS 14
CNRM-CM5 15
CSIRO-Mk3-6-0 16
EC-EARTH 17
FGOALS-g2 18
FGOALS-s2 19
FIO-ESM 20
GFDL-CM2p1 21
GFDL-CM3 22
GFDL-ESM 2G 23
GFDL-ESM 2M 24
GISS-E2-H 25
GISS-E2-R 26
HadCM3 27
HadGEM2-AO 28
HadGEM2-CC 29
HadGEM2-ES 30
inmcm4 31
IPSL-CM5A-LR 32
IPSL-CM5A-MR 33
IPSL-CM5B-LR 34
MIROC4h 35
MIROC5 36
MIROC-ESM-CHEM 37
MIROC-ESM 38
MPI-ESM-LR 39
MPI-ESM-MR 40
MPI-ESM-P 41
MRI-CGCM3 42
MRI-ESM 1 43
NorESM1-ME 44
NorESM1-M 45

Note. For full details regarding the models and available realizations per
CMIP experiment, see Table S1. CMIP5 = Coupled Model
Intercomparison Project Phase 5; RCP8.5 = Representative Concentration
Pathway 8.5.
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Because GLEAMv3.1 E is computed with MSWEPv1.0 P, there is physical consistency enforced between the
two products and we can compute P � E. Three-hourly MSWEPv1.0 P and daily GLEAMv3.1 E are available
from 1979 to present and from 1980 to present, respectively. Both products were spatially downscaled from
their native resolutions of 0.25° to 0.125° and temporally aggregated to monthly time step, consistent with
the CMIP5 postprocessing (section 2.2).

Figure 2. For each basin, scatter plots of the CMIP5 RCP8.5 ensemble mean P versus the CMIP5 HIST ensemble mean P
(circles). The vertical and horizontal crosshairs denote the 95% bootstrap confidence intervals for RCP8.5 and HIST
ensemble means, respectively. The annual mean (in mm/month) marker is black; other colors correspond to a particular
calendar month (see figure legend). If neither crosshair intersects the 1:1 line, then the difference is statistically significant
at the α = 0.05 level. Note that the basins are arranged according to increasing P (i.e., maximum mean P for a single
calendar month) from top to bottom.
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2.4. Statistical Methods
2.4.1. Effective Sample Size
The basin-averagedmonthly and yearly time series generated for our analysis (section 2.2) do not carry equal
confidence due to large differences in basin area and regional spatiotemporal autocorrelation characteristics.
Statistically, we may account for this information by computing for each variable/basin pairing an effective
sample size that can in turn be used to scale the associated confidence interval (CI; e.g., Bretherton
et al., 1999).

Figure 3. As in Figure 2, but comparing CMIP5 RCP8.5 ensemble mean E versus the CMIP5 HIST ensemble mean E.
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In our case, we apply the following brute force approach to estimate effective sample size. First, we loop
over each 0.125° grid in a given basin and compute a Pearson’s r for each distance in increments of
0.375° from 0.125° to the maximum within basin grid separation distance, taking care not to double count
any two grid combination. To be clear, we compute the correlation between the 30-year time series at
the central grid and the series’ from all other grids at the specified distance. Second, the set of
Pearson’s r values computed for each distance are transformed to Fisher’s z values, averaged, and
back-transformed to yield a single Pearson’s r per distance. Third, a search for the correlation length, or

Figure 4. As in Figures 2, 3, but comparing CMIP5 RCP8.5 ensemble mean P � E versus the CMIP5 HIST ensemble mean
P � E.
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minimum distance at which Pearson’s r is less than the 95% critical value is carried out. Assuming a
cylindrical equal distance projection, the effective spatial resolution may be approximated by the
product of the correlation length and the square root of two. Finally, expanding radially from the
basin’s centroid, we determine the number of grids at the effective resolution needed to span all
0.125° grids within the basin. This grid count is the effective sample size, which we calculate for each
variable/basin (Table S3).

Figure 5. As in Figures 2–4, but comparing CMIP5 RCP8.5 ensemble mean Q versus the CMIP5 HIST ensemble mean Q.
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Effective sample size was calculated from the MIROC5 RCP8.5 0.125° monthly gridded output for 2070–2099
and in this study, we apply the minimum effective sample size computed for all months. The effective sample
size is found to range from one to eight, with a mean of two (Table S3). Accordingly, a conservative one-
sample assumption would have been fairly accurate. And we estimate the impact on the ensemble mean
30-year CIs would be less than 0.3 mm/year. The variance analysis that is conducted on a model basis is

Figure 6. A scorecard summary for Figures 2–5, which highlights shifts in the projected CMIP5 RCP8.5 2070–2099 ensem-
blemean P, E, P� E, andQ that are statistically significant at the α = 0.05 level. If a grid is neither red (negative shift) nor blue
(positive shift), then no statistically significant change (nc) was detected. Black dots indicate shifts that meet the same
significance level according to a Student’s t test, which assumes data normality.
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relatively more sensitive to effective sample size accounting, with an estimated additional 5–40% of model
shifts deemed significant.
2.4.2. Pettitt Test for Statistical Breakpoint Detection
Ameaningful comparison of climate-related statistics from two time periods presupposes that (1) the climate
during both periods is stationary, or free from significant changes in the mean (incl. trends) or variability and
that (2) the time periods are long enough to include natural low-frequency variability. A 30-year average is
generally accepted to capture sufficient natural variability and coincidentally, corresponds with the World
Meteorological Organization standard climate normal (e.g., Arguez & Vose, 2011). Whether stationarity over
a 30-year period during the present Anthropocene is a valid assumption has been brought into question (e.g.,
Milly et al., 2008).

Using the Pettitt (1979) breakpoint test, we test for statistically significant shifts in the ensemble mean over
this study’s 30-year averaging periods (1976–2005 and 2070–2099). The Pettitt test is designed to detect a
single abrupt change in the mean of the distribution of the variable of interest at an unspecified point in time
(for a review, see Mallakpour & Villarini, 2016). It has been widely used with hydroclimatological data (e.g.,
Ferguson & Villarini, 2012, 2014) and is most sensitive to breaks that occur in the middle of the series.
Because the presence of a monotonic trend could lead to false detection of a breakpoint by the Pettitt test
(Ferguson & Mocko, 2017), we jointly test for trends using the nonparametric rank-based Mann-Kendall test
(Kendall, 1975; Mann, 1945). A nonparametric approach is necessary because less than 20% of all model P, E,
P � E, and Q basin-averaged monthly subseries and annual time series conform to a normal distribution,
according to a Lilliefors (1967) test conducted at the 5% significance level. The impact of serial correlation
on the Mann-Kendall test was mitigated through trend free pre-whitening of the original time series follow-
ing Yue et al. (2002), as also detailed in Ferguson and Mocko (2017).
2.4.3. Student’s t Test for Significantly Different Means
The 95% CI associated with the multimodel ensemble means were calculated from the Student’s t distribu-
tion (e.g., Gillett & Fyfe, 2013; their Figure 2). To find the margin of error, the sample standard deviation
was first divided by the square root of the number of models in the ensemble scaled by the effective sample
size and then multiplied by the 5% cutoff value for a two-sided Student’s t distribution with degrees of free-
dom equal to one less than the number of models scaled by the effective sample size. By adding and sub-
tracting the margin of error from the ensemble mean, 2.5% and 97.5% confidence limits were found.
When the 95% CIs of two ensemble means do not overlap, their difference is deemed statistically significant.

As it turns out, in 28%, 40%, 55%, and 32% of P, E, P� E, and Q cases, respectively, the distribution of 30-year
HIST and RCP8.5 model basin averages violates the t tests’ normality assumption, according to a Lilliefors
(1967) test conducted at the 5% significance level. Furthermore, in these nonnormal cases, the central limit
theorem does not appear to hold for the limited sample size involved. Consequently, the t test results in
overly conservative estimates of the 95% CIs and thus, fewer significant shifts. Our remedy is to quantify sig-
nificance using 95% bootstrap CIs, following Pryor and Schoof (2008). Specifically, the distribution of 30-year
model means are resampled with replacement to generate 10,000 realizations the size of the model count
scaled by the effective sample size. The sample means are computed and the 500th and 9,500th ranked
values constitute the 95% bootstrap CI. Given the prevalence of the t test in CMIP5 analyses, we elect to
include t test statistics where feasible.
2.4.4. Bootstrap Test for Significantly Different Variances
Due to the aforementioned nonnormality of the time series (Section 2.4.2), we apply a bootstrap approach to
evaluate differences in the variance between the HIST (1976–2005) and RCP8.5 (2070–2099) periods. The test
is conducted on a model-specific basis because the results from a comparison of two groups of variances (i.e.,
HIST and RCP8.5) can be difficult to interpret. Specifically, basin-averaged monthly subseries and annual time
series are resampled with replacement to generate 10,000 realizations the size of the record length (n = 30)
scaled by the effective sample size. Then, the sample variances are computed and the 500th and 9,500th
ranked values define the 95% CI for the given model/variable/basin/period. If the HIST and RCP8.5 95% boot-
strap CIs do not overlap, then the difference in variance between the two periods is deemed significant.

Note that for several models, multiple realizations are available. In such cases, exact pooled variances were
calculated from the bootstrapped 5th and 95th percentile variances. The exact pooled variance is calculated
by summing the mean of the variances and the variance of the means (of the component realizations). As
detailed in Rudmin (2010), taking the mean of the realization variances as an estimate of the exact pooled
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variance is ill-advised for many reasons, foremost among those being it will always lead to underestimation of
the exact pooled variance.
2.4.5. Seasonality Index
In some cases, information on the precise timing (i.e., calendar month) of shifts in the P seasonal cycle may
not be needed. Shifts in the relative seasonality, or variability in monthly P throughout the year, may be quan-
tified in terms of the Walsh and Lawler (1981) seasonality index (SI):

SIi ¼ 1
Ri
∑12n¼1 Xin � Ri

12

�
�
�
�

�
�
�
�

(1)

where Xin is the P for month n of year i, Ri is the annual P accumulation in year i, and SIi is SI for year i. Similarly,
the index may be applied to E, P � E, and Q records. To account for negative monthly P � E values in the SI
calculation (equation (1)), we replaced Ri with the sum of absolute monthly P � E values in year i.

We calculated SIi for each year of the 30-year analysis period (e.g., HIST: 1976–2005) and computed period
mean values to test shift significance between periods. When more than one realization was available for a
given model (see Table S1) we computed SI for all realizations and took the median. The SI can vary from zero
(with uniform monthly rainfall) to 1.83 (if all the rainfall arrives in a single month), and its expected distribu-
tion is poorly defined. Thus, significance of differences in SI was quantified using bootstrap CIs, consistent
with the approach followed for means and variances (sections 2.4.3–4). Time series of the SIi values are
resampled with replacement to generate 10,000 realizations of the mean SI value during the 30-year period.
SI’s from two analysis periods (e.g., 1976–2005 and 2070–2099) that lie within the middle 9,500 values in an
ordered sequence of the distribution of 10,000 realizations are deemed to be insignificantly different at the
95% confidence level.

3. Results
3.1. Stationarity and Water Conservation

We analyzed the basin annual mean time series of P, E, and Q for all available models and their realizations
(Table S1) over the selected 30-year HIST (1976–2005) and RCP8.5 (2070–2099) time periods. The results from
both periods/experiments were fairly consistent. Most breakpoints were detected in the E time series. Of all
the basin series analyzed, 12–13% had significant breakpoints in E, compared to 5–7% in Q, and 4–5% in P
(Figures S1 and S2). Greater than 98.7% of these breakpoints (considering all variables and both periods) were
found to be associated with statistically significant trends. Multimodel agreement on historical E trend signif-
icance exceeds 30% on positive trends over VOL, WEU, OB, and DAN (Figure S1). Similarly, more than 30% of
models project significant positive end-of-century E trends over CON, AMU, LEN, OB, and MAC (Figure S2).
The only basin/period for which simultaneous trends in P and Q are simulated by a substantial fraction of
models is LEN during the RCP8.5 period—both trends are positive (Figure S2). Among models, significant
trends were more (e.g., BNU-ESM, MIROC-ESM-CHEM, MRI-CGCM3, and MRI-ESM 1) or less widespread (e.g.,
CESM1-WACCM, GFDL-CM3, andMPI-ESM-MR) and could vary substantially between HIST and RCP8.5 periods
(Table S3). The fact that relatively more breakpoints/trends were detected in E is more likely a function of the
detectability limits of the Pettitt test (Mallakpour & Villarini, 2016; their Figure 2) than a true physical climate
signal. The median coefficient of variation (CV) is 0.06 for E, 0.11 for P, and 0.27 for Q, considering all basins
and model output from both HIST and RCP8.5 experiments.

Given the modest level of nonstationarity found, we hold that the simplifying assumption of stationarity
over the 30-year comparison periods is acceptable. Moreover, we note that significant trends were gen-
erally found to be small in magnitude (not shown) and thus, in most cases would not have a substan-
tial impact on the 30-year mean. By leaving the trends in-tact, we are in effect calculating a more
conservative estimate of the significance of any mean climate shift (i.e., detections of significance are
more likely).

Because this study is conducted in the context of the water budget it is pertinent to examine the models’
mass conservation or numerical stability. Most land surface schemes enforce a free drainage lower boundary
condition, but this water is transferred to rivers rather than to long-term storage reservoirs such as aquifers.
Accordingly, the models do not explicitly represent changes in aquifer storage or aboveground glacial mass.
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We found that for most basins andmodels, the amount of nonconservation (P� E�Q) is negligible, or on the
order of 1% of the annual P. However, there are a few exceptions such as GISS-E2-H, GISS-E2-R, CMCC-CESM,
and IPSL-CM5B-LR that do generate larger than normal terrestrial water storage gains/losses across several
basins (Figures S3–S5). Further analysis of model-specific mass conservation (or terrestrial storage loss) is
beyond the scope of this study. An in-depth analysis would need to be carried out on the model native grids
to avoid any unphysical spatial interpolation artifacts.

3.2. Projected Shifts in Mean Water Availability

The scatter plots of Figures 2–5 illustrate the difference between HIST 1976–2005 and RCP8.5 2070–2099
ensemble mean P, E, P � E, and Q at monthly (colors) and annual (black) timescales. Markers lying above
(below) the 1:1 line indicate projected increased (decreased) water availability. The vertical and horizontal
crosshairs mark the 95% bootstrap CIs for the RCP8.5 and HIST ensemble means, respectively. Markers and
associated CIs that do not intersect the 1:1 line are statistically significant at the α = 0.05 level. The basins
are arranged in order of increasing P (i.e., maximummean P for a single calendar month) from top to bottom.
It is possible to summarize the significance and sign of projected shifts using a simple scorecard (Figure 6)
without magnitude information. In general, RCP8.5 CIs (ensemble spread) are larger than HIST CIs and CIs
are larger in both experiments for the warm season (Figures 2–5).

Projected shifts in annual mean P, E, P� E, and Q are statistically significant for 15 (P), 16 (E), 15 (P� E), and 13
(Q) basins, respectively. Of these shifts, all those in P and E are in the direction of wetting. Although, eight
basins are projected to experience significant declines in P at subannual timescales. For DAN, PAR, and
AMZ these projected declines in P coincide with projected declines in E. The combined analysis of P � E
and Q corroborate significant wetting at annual timescale in eight basins (NIL, MAC, OB, LEN, AMU, VOL,
WAF, and MEK) and drying in four basins (ARA, DAN, DON, and WEU). Independently, the P� E analysis yields
significant wetting at annual mean timescale for YEL, NIG, and CON, whereas the Q analysis indicates future
drying in CUS. Overall, the bulk of the statistically significant shifts occur in the midrange of basin wetness
(i.e., from MAC to VOL). Fifteen percent of significant P, E, and Q shifts and one quarter of all significant
P � E shifts are insignificant according to the parametric t test (Figure 6).

Importantly, Figures 2–6 enable attribution of significant projected changes in annual mean water availability
to the signals seasonal source. For example, annual mean increases in P for YAN can be traced to increased P
during the February–August period. Figures 2–6 also serve to highlight several basins for which significant
subseasonal shifts in P, E, P � E, and/or Q are projected but the projected annual mean change is statistically
insignificant (at α = 0.05). For some basins the subseasonal response reinforces underlying seasonality, as
manifested in the “S” pattern formed by the monthly markers in the case of WEU P (Figure 2). The cold season
(November–February) is projected to receive greater P, whereas the warm season (May–September) is pro-
jected to receive significantly less P. A similar pattern emerges in Figure 2 for DAN and DNI—other
European basins, as well as DON in western Russia.

While the mean annual shift results for P � E and Q are more or less consistent at annual timescale as
expected, the results do differ substantially at the monthly timescale (Figures 4–6). For example, Q is pro-
jected to decline significantly in CUS for all months but only during December–February for P � E. For MIS,
significant increases in P � E are projected for January–April, a period when Q is projected to remain
unchanged. For YEL, significant increases in P � E are projected for April–June and September–November,
but only for January in terms of Q. And for IND, decreases in P � E are projected for December–March for
which Q is projected to vary insignificantly.

Recall that for this comparison, the ensemble was composed only of models for which P, E, and Qwere simul-
taneously available (section 2.1). To test the sensitivity of our results, we performed a parallel set of analyses
using all available models/realizations for each variable, thus allowing for ensembles of different sizes for
each variable. As may have been expected, most differences were limited to the P � E field because mass
was no longer being conserved. In summary, fewer basins are projected to undergo significant shifts in
P� E. With respect to the other terms, the following contrasts with the conserved ensemble analysis are note-
worthy: significant declines in June–September P and August–October E for M-D, an enhanced seasonal dry-
ing signal in P for SEN (December–January and April–July) and NIG (January–June), and significant annual
mean shifts in P for ARA (+), DON (+), and DAN (�; Figure S6).
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Figure 7. Summary of Figure S22; the fraction of CMIP5 models for which statistically significant shifts (α = 0.05) are detected in the RCP8.5 2070–2099
variance of P relative to the HIST 1976–2005 variance of P for each month and for the annual mean. Red and blue shading denotes the ensemble
fraction for which RCP8.5 projected variance is significantly greater or less than HIST variance, respectively. The percent breakdown of ensemble response
(no change/increased variance/decreased variance) for interannual variance (topmost bar) is annotated on the top of each regional panel. Forty models
comprise the P ensemble (see Table S1).
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Results from the ESMHIST versus ESMRCP8.5 analogue scorecard were similar but with 23% fewer signifi-
cant shifts overall and 30% fewer basin/months projected to experience increased water availability. In
fact, the ESM results include deeper and significant declines in the annual mean P for DAN and WEU
and P � E for CUS (Figures S7–S11). Towards attribution of these projection differences, we also compiled
HIST-ESMHIST and RCP8.5-ESMRCP8.5 scatter plots and scorecards (Figures S12–S21). All statistically

Figure 8. Summary of Figure S23; as in Figure 7 but for E. Thirty-eight models comprise the E ensemble (see Table S1).

10.1029/2018WR022792Water Resources Research

FERGUSON ET AL. 7805



significant annual mean differences are detailed in Table S5. In summary, ESMHIST and ESMRCP8.5
generate greater water availability in LEN—by all measures, greater Q in VOL and MEK, and less P � E
in SUS. Differences in SUS P � E constitute the largest GCM-ESM percent differences for both periods
(HIST: 41%; RCP8.5: 24%).

Figure 9. Summary of Figure S24; as in Figures 7, 8 but for P � E. Thirty-eight models comprise the P � E ensemble (see Table S1).
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3.3. Projected Shifts in the Variability of Water Availability

Figure 7 illustrates the fraction of CMIP5 RCP8.5 models that project significantly more (red), significantly less
(blue), or statistically equivalent (empty bar) variability in P during the 2070–2099 period for each monthly
subseries and for the annual mean relative to the 1976–2005 HIST baseline. The ensemble’s tendencies at

Figure 10. Summary of Figure S25; as in Figures 7–9 but for Q. Thirty-four models comprise the Q ensemble (see Table S1).
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annual mean scale are annotated in terms of percentages at the top of each subpanel. Figures 8–10 present
results in similar format for E, P � E, and Q.

For the majority of basins and variables most models project insignificant changes in future variability. In fact,
a projection of no significant change in interannual variability is the most common model response in 89
(89%) of basin/variable comparisons. Of the remaining 11 cases, variability is projected to increase in all
but one case. The model majority points to increased variability for: P in LEN and AMU; E in MIS and AMU;
P� E in NIG, WAF, and CON; and Q in LEN, NIG, and WAF. On the other hand, a significant reduction in varia-
bility is projected for Q in CUS (Figures 7–10).

A similar summary may be given for shifts in monthly subseries variability. In cases where models project sig-
nificant change in future variability, it is overwhelmingly in the direction of increased variability (i.e., red bars).
Interestingly, signs of seasonality do emerge for select basins/variables, as in the mean shift analysis. For
example, a larger fraction of models project significant increases in E variability during the OB, LEN, and
AMU cold season (November–April) than in other months of the year (Figure 8). Seasonal shifts in variability
like these in E, as well as those in Q for MAC, OB, AMU, and VOL, tend to go undetected at annual timescale.
Nonetheless, they constitute important information. Declining warm season variability in P � E as projected
by somemodels for DAN andWEU, combined with the findings our mean shift analysis (section 3.2), points to
consistently drier warm season conditions for these basins (Figures 7–10).

Overall, a larger fraction of the ensemble projected significant shifts in the future variability of Q than for P, E,
and P� E and the number of models projecting changes in E is greater than for P or P� E. Indeed, the results
for P � E (Figure 9) appear to better match the response obtained for P (Figure 7) than for E (Figure 8).
Notably, there are basins for which most models agree there will be little change in future variability—at
neither monthly nor annual timescales. For P, these basins include ARA, M-D, CUS, DAN, DON, DNI, WEU,
SUS, and PAR (Figures 7–10).

3.4. Projected Shifts in the Relative Seasonality of Water Availability

An alternative to evaluating projected calendar month changes in water availability is to use a SI (Walsh &
Lawler, 1981). Figure 11 illustrates the RCP8.5 2070–2099 P SI for all basins and models. If a model’s projected
SI is significantly greater or less than its HIST 1976–2005 baseline SI, then the SI is colored accordingly (red:
increase; blue: decrease), and a line trace to its baseline SI is plotted. For each basin (subpanel of
Figure 11), the most popular model future SI projection (increase, decrease, or no change) is annotated in
terms of its ensemble percentage. For example, the most common projection is increased P SI for 14 basins
and for the other basins the popular model response is split between diminished P SI (six basins) and statis-
tically equal P SI (five basins; Figure 11). The largest shifts in P SI by magnitude can be seen for MAC
(decrease), DAN (increase), DON (increase), LEN (decrease), DNI (increase), WEU (increase), and AMU
(decrease). Consistent with the signature S pattern in projected shifts in monthly mean P for WEU, 88% of
the models show a significant increase in P SI for that basin. Similar plots for the projected SI of other water
budget variables—E, P � E, and Q—are provided in Figures 12–14.

The results indicate declines in E SI over most basins, except M-D, PAR, AMZ, and MEK. In terms of P� E SI, the
dominant model signal is no change (13 basins), with increased SI in nine basins and decreased SI in three
basins. Lastly, in terms of Q SI, increased SI is projected for a majority of basins (n = 14), decreased SI for nine
basins, and statistically equal SI for two basins.

It is interesting to note that the results for P� E SI and Q SI highlight basins for which SI shifts are of opposite
sign. For P � E SI, the largest shifts by magnitude occur for WEU, YAN, and AMZ for which SI is projected to
increase substantially. ForQ SI, the largest shifts bymagnitude occur for MAC, OB, and VOL for which substan-
tial decreases in SI are projected. Our takeaway from these two findings is that changing high latitude
cold/shoulder season processes (incl. terrestrial water storage changes) are behind large shifts in Q SI
whereas dry season shifts in P and/or constraints on E drive future P � E SI shifts.

3.5. AMIP Model Performance

Figure 15 illustrates the CMIP5 AMIP 1979–2008 multimodel mean seasonal P and E cycles in contrast to
MSWEPv1.0 P and GLEAMv3.1 E. In Figure 15, gray- and blue-filled areas denote periods when AMIP P is less
than or greater thanMSWEPv1.0 P, respectively. Similar to Figures 2–5, Figure 15 is useful because it illustrates
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Figure 11. Shifts in the P seasonality index (SI) between CMIP5 RCP8.5 and HIST for all available models (see Table 2 for model number assignments). The filled circle
marks the RCP8.5 SI and the stem traces back to the HIST SI. For models withmore than one realization available, themedian SI was used. Statistical significance at the
α = 0.05 level is indicated by red (projected increase) and blue (projected decrease). Insignificant shifts are indicated with empty circles and x’s denote models for
which the RCP8.5 output was unavailable. At the top of each panel, the dominant ensemble response (%) and its sign—positive (red), negative (blue), or neutral
(gray)—is annotated.
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themagnitude of the differences, as well as the 95% bootstrap CI of the AMIP ensemble. For example, the CI is
remarkably wide for June–October P in IND and MEK.

Overall, the AMIP ensemble significantly underestimates warm season P for CUS, DAN, DON, OB, DNI, WEU,
MIS, and VOL and significantly overestimates cold season P for many of these same basins (Figure 15).

Figure 12. As in Figure 11, but for shifts in the E SI.

10.1029/2018WR022792Water Resources Research

FERGUSON ET AL. 7810



When the information in Figure 15 is reduced to a scorecard summary, this seasonal tendency stands out
(Figure 16). In other words, the AMIP P SI is too large. In terms of E, the AMIP ensemble is biased high for
nearly all basin months, with the exception of a few months for CUS, MAC, DON, OB, LEN, DNI, MIS, AMU,
VOL, SUS, PAR, and AMZ.

Figure 13. As in Figures 11, 12, but for shifts in the P � E SI.
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The scorecard summary in Figure 16 also includes AMIP comparison results for P � E, calculated from
MSWEPv1.0 P andGLEAMv3.1 E, andQ from theGRDC-based estimates of Pan et al. (2012). TheAMIP ensemble
P� E is generally biased lowwith the exception of some cold seasonmonths inmid-to-high latitude basins, in
which case it is biased high. For the most part, biases in AMIPQ are consistent with those for P� E (Figure 16).

Figure 14. As in Figures 11–13, but for shifts in the Q SI.
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Figure 15. Regional CMIP5 AMIP 1979–2008 monthly (lines) and annual (filled circles) mean P and E relative to 1979–2008 MSWEPv1.0 P and 1980–2009 GLEAMv3.1
E. Vertical bars constitute the 95% bootstrap confidence intervals on the CMIP5 AMIP ensemble mean. Light blue and gray fill areas highlight months for which the
CMIP5 AMIP ensemble mean is higher or lower than the observational counterpart, respectively. Twenty-nine models comprise both the CMIP5 AMIP P and E
ensembles (see Table S1).

10.1029/2018WR022792Water Resources Research

FERGUSON ET AL. 7813



The number of significant differences between the AMIP ensemble means and observationally based esti-
mates underscores limits to the spatiotemporal representativeness of the modeled water cycle. However,
the fact that relatively more AMIP versus observation differences than HIST versus RCP8.5 differences are
significant is due in part to our treatment of the observationally based products as truth (i.e., CI = 0), and

Figure 16. As in Figure 6, a scorecard summary for CMIP5 AMIP (1979–2008) ensemble mean monthly and mean annual
differences from observational estimates. MSWEPv1.0 and GLEAMv3.1 were used for P and E, respectively. For Q, mean
AMIP values for the period from 1984–2006 were compared with GRDC-based estimates taken from Pan et al. (2012).
Twenty-nine models comprise the CMIP5 AMIP P, E, and P � E ensembles and 20 models comprise the Q ensemble (see
Table S1). Non-river basins for which there is no GRDC-based estimate of Q are shaded in gray. Corresponding scatter plots
like Figures 2–5 are provided in Figures S26–S29.
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to a lesser extent, the relatively smaller ensemble size (i.e., AMIP P: n = 28; RCP8.5 P: n = 38) with less
dispersion. All RCP8.5 projections should be interpreted in the context of known model systematic biases.
For example, the finding that WEU P � E is projected to decline in the future (Figure 6) is consistent with
the finding that the models may be inherently predisposed to low P � E in that basin (Figure 16). While
space constraints preclude detailed discussion here, we have included assessments of AMIP variability and
SI in Figures S30–S37).

4. Summary and Conclusion

Using CMIP5 as our case study, we have demonstrated a systematic approach to synthesizing large multimo-
del ensemble climate projections in the context of basin-scale water availability, as defined for meteorologi-
cal (P), hydrological (Q), and agricultural/ecological (P � E) purposes. We assert that these basin-scale
summaries constitute valuable and actionable information to regional water planners and decision makers.
Our approach could be easily automated and implemented in a diagnostic toolkit, such as ESMValTools
(Eyring, Righi, et al., 2016), and the results included as a compulsory component of future IPCC assessment
reports. The comprehensiveness of the approach, which entails full inclusion of all available model output;
identification and handling of statistical breakpoints, trends, nonnormality, and effective sample size; analysis
of change and variability on multiple time scales; error characterization; and summary across 25 large-scale
basins, distinguishes it from prior efforts. It is clear that inappropriate use of the t test in prior CMIP5 studies
has led to the underestimation of statistically significant changes in future water availability by 15–25%.

As we have stressed throughout our study, knowing the seasonality of both projected changes and of the
biased model background climatology onto which they are imposed is critical to ensuring proper interpreta-
tion and ascribing confidence. It is not enough to know whether a region will undergo drying or wetting over
the long term. It is the seasonal timing of the projected change in water availability that is key. A prime exam-
ple of this ideology is the reinforced seasonality, or signature S pattern manifested in the HIST-to-RCP8.5 1:1
scatter plots for WEU P.

Our AMIP comparisons against observational data sets exposed shortcomings in model representativeness.
In our view, the best first step towards addressing these issues is to quantify uncertainty and face it head-
on with follow-on observing system improvements and error attribution studies. We concede that the
observational data sets are subject to shortcomings of their own, including limited station counts and varying
network density over time (e.g., Ferguson & Villarini, 2012). These are challenging issues.

Importantly, comprehensive syntheses such as ours can serve to motivate, justify, and steer regional hydro-
climate projects (RHPs), such as those supported programmatically through the Global Energy and Water
Cycle Exchanges project of the World Climate Research Programme (e.g., Debeer et al., 2015; Drobinski
et al., 2014; Groisman et al., 2009; van Dijk et al., 2013). RHPs fill important gaps in observations and concen-
trate the efforts of international, multidisciplinary teams towards improving understanding and prediction of
a region’s weather and hydroclimate. In this sense, basins in our study for which themodel dispersion (CI) was
shown to be relatively large may constitute candidate RHP targets.

Across all regions, it will be important to further assess the robustness of the smaller ESMRCP8.5 ensemble pro-
jections of fewer significant shifts in water availability relative to the full RCP8.5 ensemble. Specifically, to what
processes (e.g., vegetation dynamics) may these differences be attributed and what is our current confidence
in the corresponding parameterizations (e.g., Prudhomme et al., 2014)? The large number of parameters
included in vegetation-carbon schemes and the myriad of pathways for feedbacks underscores the need to
exercise great care in interpreting the results of such schemes (e.g., Kauwe et al., 2017). While attribution
hypothesis testing is supported to a certain extent by monthly standard CMIP5 outputs (e.g., leaf area index,
cloud properties, and radiation budget), the only path to irrefutable attribution lies through model perturba-
tion “(sensitivity)” experiments conducted at, or in close coordination with the modeling centers themselves.

As the resolution of climate models increases, orographic-induced features such as the Great Plains low-level
jet (e.g., Weaver & Nigam, 2008) and related mesoscale convective systems (MCSs; e.g., Fritsch et al., 1986;
Jirak & Cotton, 2007) will be better represented and along with it the regional hydroclimate. Human land
and water management represents yet another significant source of uncertainty for the local climate and
regional water cycle that is not accounted for in CMIP5. Irrigation and reservoir operation rules are slowly
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being integrated into land and coupled ESMs (e.g., Hanasaki et al., 2010; Neverre & Dumas, 2016; Pokhrel
et al., 2016; Polcher et al., 2016).

In closing, we acknowledge limitations to our analysis framework as well as the probable existence of other
equally valid frameworks in which projected water availability may be quantified and communicated. A var-
iation on our approach in which ensemble members are not equally weighted but weighted according to
regional (AMIP) skill would be meaningful (e.g., Knutti, Furrer, et al., 2010) because model performance does
vary regionally. The same weighting convention could be applied to an ensemble of observationally based
comparison data, which also has varying (perhaps complimentary) skill over time and space (e.g., Beck, van
Dijk, et al., 2017). Finally, internal (atmospheric) variability, which constitutes irreducible uncertainty in the
climate projections deserves further consideration (e.g., Hawkins et al., 2016; Thompson et al., 2015;
Williams et al., 2017). The CMIP5 multimodel ensemble spread itself covers only a modest degree of all
potential climate pathways (Deser et al., 2017). Special experiments may be designed to quantify the relative
forced and unforced response (e.g., Kay et al., 2015; McKinnon et al., 2017). Communicating the inherent
uncertainty in climate projections to decision makers will present an ongoing challenge.
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