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In this article, we present a detailed simulation of floating photovoltaic's (PV) energy yield and associated
evaporation reduction potential for the largest 128 US hydropower reservoirs. A recent article by Cavusoglu
et al., published in the journal Nature Communications, outlined a hypothetical evaporation engine that could
harness the energy of lake water evaporation while simultaneously conserving the water resource. Its authors
suggest that evaporation engines deployed across all US lakes and reservoirs could, collectively, yield up to 70%
of the total U.S. electricity production. We show that floating PV technology could: (1) deliver considerably more

electrical energy than evaporation engines, amounting to 100% of the US production with only a fraction of the
lakes; (2) deliver this energy on a firm, effectively dispatchable basis; and (3) conserve as much water as the

evaporation engines.

1. Background

A new study by Cavusoglu et al. in Nature Communications
(Cavusoglu et al., 2017) claims that deploying evaporation-driven
electrical energy generators upon all US lakes could meet a sizeable
fraction of the US demand for electrical energy. This new technology to
turn water evaporation into energy is still at a very early pre-proto-
typing stage (Herkewitz, 2015; Ma et al., 2013; Chen et al., 2014; Zhang
et al., 2015; Arazoe et al., 2016; Chen et al., 2015; Kim et al., 2016; Ni
et al., 2016; Xue et al., 2017). Its cost, operational reliability, and en-
vironmental impact have yet to be established.

We aim to demonstrate that, if one were to seriously consider using
lakes for energy technology deployment, PV would be considerably
more effective than evaporation technology. PV could produce the same
quantity of electricity and cost-optimally deliver this electricity with
firm (24/7) production guaranties, while occupying only a small frac-
tion of available lake area — specifically, only a fraction of managed
reservoirs — and provide equivalent water conservation potential.

Through our systematic quantification of the electrical power gen-
eration potential and the water conservation potential of floating PV for
the largest US reservoirs, we develop clear, new, actionable information
for industry and decision-makers to better assess lake deployment op-
tions. In addition to a comparison with evaporation engine potential,
we also contrast the floating PV potential to the current hydropower
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production potential of the reservoirs.
2. Assumptions and methods
2.1. U.S. reservoir characteristics

As quantitative support for our investigation, we consider the 128
largest US reservoirs with a full lake storage capacity of one km® and
above. Many of these reservoirs are exploited for the production of
electricity via hydropower. A table is provided in the Appendix in-
cluding the reservoirs’ physical characteristics and their current hy-
dropower generation specifications. This reservoir sample amounts to
about 30% of the area of the water bodies considered in Cavusoglu et al.
(2017) (see Fig. 1).

2.2. Photovoltaic (PV) efficiency

We assume that the highest achieved module efficiency of 24% for
commercial grade crystalline silicon photovoltaic modules (Cousins
et al., 2010), while it is cutting-edge today, will represent conservative
mainstream conditions in the near future. This assumption is reasonable
for the long-term, large scale deployment planning implied in this
paper.
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Fig. 1. US lakes and reservoirs — the 128-reservoir sample used in this study is highlighted in red. All lakes and reservoirs larger than 0.1 km? across the contiguous
US (excluding the Great Lakes) were considered in Cavusoglu et al. (2017). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

2.3. PV array configuration

We assume that floating PV arrays are stationary and tilted south-
ward at 10°. This geometry is sub-optimal from an energy production
standpoint per unit of collector area (Dunlap et al., 1994); however, it is
nearly ideal from a ground [lake] energy density standpoint. Allowing
15-20% spacing to account for maintenance and [minimal] row-
shading considerations, the footprint conversion efficiency of the in-
stalled arrays thus reaches roughly 20% (i.e., 24% minus the non-PV
areas). This amounts to a peak power density of 200 W/m? (at 1000 W/
m? incoming irradiance) of ground [lake] area under standard test
conditions (ASTM E2848).

2.4. Floating PV technology

The floating PV industry is new but it is fast developing. While it is
still experiencing design complexity and cost issues at this stage of its
learning curve (Newsletter, 2018), multiple medium-to-large commer-
cial-scale projects are already currently operational (Trapani and
Redon, 2015; Sahu et al., 2016). These projects totaled several hundred
MWs as of early 2018.

The possible benefits of floating PV are multiple and echoed in
numerous publications on the subject (Cazzaniga et al., 2018; Rosa-Clot
and Tina, 2017; Ferrer-Gisbert et al., 2013; Liang and Liang, 2017).
Floating PV has been implemented in locations with a favorable tra-
deoff compared to land-based deployment, taking advantage of avail-
able and unexploited areas (wastewater basins, for instance). It can
reduce evaporation, algae growth, the formation of waves and coupled
erosion effects. Moreover, it can increase hydropower resource avail-
ability via evaporation reduction. Furthermore, the floating structural
elements may serve important secondary functions, such as storage for
compressed air. The vast potential for floating PV was perhaps most
recently demonstrated for China. Liu et al. (2017) estimated the po-
tential for floating PV at 160 GW with 2% lake coverage and
8000 GW—enough capacity to generate China’s (2015) annual elec-
trical demand—with full lake coverage.

Undeniably, floating PV has drawbacks that need to be carefully
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taken into consideration, including aesthetics, loss of recreational use,
and water quality issues (e.g., temperature) that could affect ecosys-
tems. Nevertheless, in the context of this paper, these potential draw-
backs are not different from the evaporation engine technology’s
against which floating PV is contrasted, and likely, less impactful,
especially from an aesthetics standpoint (see Fig. 2).

2.5. Mean PV electrical energy production density

A peak output of 200 W/m? of ground [lake] surface amounts to a
mean output of 30-50 W/m? in the Contiguous U.S. (CONUS) de-
pending on the local solar resource (NREL, 2017). We contrast this
number to a recent NREL study reporting a mean density of only 8
Watts per m? for typical utility-scale PV farms (Ong et al., 2013). It is
important to note that this NREL study surveyed existing terrestrial
installations where ground density has not been a premium concern,
and where module efficiency has been historically lower than what is
achievable today. There is no physical or technical reason, given cur-
rent and foreseeable PV technology, why [floating] low-tilt PV arrays
could not yield 30-50 average W/m? mean power generation density or
more in the future.

2.6. Firm PV electrical generation density

Firm power generation is the ability to meet a given electrical demand
at all times. When considering conventional resources, firmness is
achieved with baseload generation (chiefly nuclear, large hydro and
coal) plus the dispatching of flexible generation (chiefly natural gas
turbines) as needed for production to match demand.

PV generation is inherently intermittent, modulated by day-night
cycles, weather, and seasonal effects. It cannot be dispatched by grid
operators and cannot, by itself, meet demand at all times. Applying
energy storage can render PV + storage fully dispatchable and trans-
form PV into a firm power generation resource. However, applying
storage alone to deliver firmness would be prohibitively expensive,
even with the most optimistic storage technology cost projections. This
is because in addition to supplying power at night, storage systems



M. Perez et al.

Solar Energy 174 (2018) 837-847

Fig. 2. 70 MW Floating PV plant on a clay quarry lake in Anhui Province, China under construction by Ciel & Terre.

source: Ciel & Terre.

would also have to be large enough to make up for extended cloudy
periods and seasonal deficits.

However recent work by the authors and others has shown that
oversizing PV deployments and proactively curtailing output could
deliver firm (365/24/7) electricity to regional power grids (Perez,
2014, 2015; Perez et al., 2018; Minnesota Department of commerce,
2018a) at an acceptable production cost. This counter-intuitive ap-
proach of oversizing PV and dynamically curtailing output significantly
reduces storage requirements to the point where total (PV + storage)
system costs become considerably lower despite the oversizing of PV.

The relationship between the relative cost contributions of PV and
storage to meet a baseload production target 100% of the time (i.e., the
equivalent of a nuclear generating facility) is illustrated in Fig. 3 for an
example in the New York metro area. In this example, optimum pro-
duction cost is achieved when oversizing PV by about two and cur-
tailing half of the output. This cost-optimized PV-plus oversizing-plus
storage-plus curtailment resource meets demand with 100% certainty.
Hence, it is effectively dispatchable. While it may not be dispatchable in
the traditional sense, it meets the central criterion of dispatchability:
meeting load demand under any circumstance.

An optimized blend of oversized PV and storage with proactive
operational curtailment yields firm, on-demand power generation at
production costs that are not as unrealistically high as applying storage
alone. When coupled with other solutions such as geographical dis-
persion, demand-side load flexibility, or even adding an optimized
wind-PV blend, an optimized overbuild/curtailment strategy could
deliver firm 24/7 baseload production at costs well below 10 cents per
kWh in a moderate solar resource State such as Minnesota (Perez et al.,
2018). This firm generation cost could approach 4-5 cents per kWh at
the 25-year time horizon as PV and load-firming technologies continue
their downward trend (NREL, 2016).

Authors observed that oversizing by a factor of about two yielded
lowest-cost firm power generation capability. They noted that in ad-
dition to resource vs. load requirements, this optimum factor depended
on the relative capital and operating costs of PV and storage. However,
given foreseeable expected cost for storage and PV (the example in
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Fig. 3. Influence of PV curtailment on firm PV generation cost in the north-
eastern US (Perez et al., 2018). The y-axis represents the firm KWh premium in
reference to unconstrained (i.e., intermittent) PV kWh. The x-axis represents the
curtailed PV fraction.

Fig. 3 assumes future, achievable turnkey costs of respectively $1000/
kW for PV and $100/kWh for storage), a factor of about two was found
to be near optimal in the Northeast US with slightly less oversizing
needed in sunnier climates.

Therefore, using this oversizing of two estimate as a measure of
lowest-cost firm PV generation, we introduce the term Firm PV
Production Density, as one-half of the mean PV electrical energy
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production density. This Firm PV Production Density thus amounts to
15-25 Watts per m?* with guaranties of cost-optimally meeting utility
demand at all times.

2.7. Site-specific PV output modeling

We simulated hourly AC electricity production for each artificial
reservoir for a period of ten years (2006-2015). In order to do so, we
applied the operational Clean Power Research SolarAnywhere
(Solaranywhere)(https://www.solaranywhere.com/) suite of models
that combine intermediate-resolution (10 km, hourly) gridded satellite-
derived irradiances from the SUNY model (Perez et al., 2002) and a PV
simulation engine based on PVFORM/PVWATTS (Menicucci, 1986;
Marion and Anderberg, 2000) to convert irradiance and meteorological
data into PV electrical production. The SUNY radiation model exploits
the shortwave and infrared channels of geostationary weather satellites
to estimate site and time-specific cloud transmission that modulates
simple clear-sky atmosphere radiative transfer models (these clear-sky
models are themselves based upon operational aerosol optical depth,
precipitable water, and atmospheric ozone data.) The SUNY model has
been extensively validated, with observed long-term biases well below
3% (Perez et al., 2017) in the CONUS. The PV simulation engines,
coupled with satellite-derived irradiances, are widely used by the solar
and utility industries for feasibility studies and operational monitoring
(Sanz-Bobi, 2014).

2.8. Site-specific reservoir evaporation estimates

Where deployed, floating PV eliminates the lake-atmosphere inter-
face. Thus, to first order, water conservation amounts to the water that
would otherwise have been lost to evaporation over the surface area
occupied by floating PV. To calculate this time-varying and site-specific
avoided evaporation, we applied the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS
(ECMWF, 2016) cycle 43r1 implementation of the Fresh-water Lake
model (FLake (Mironov et al., 2010)). FLake is comprised of a well-
mixed surface layer with uniform temperature and a thermocline,
which is bounded at the top by the mixed layer bottom and below by
the lake bottom. FLake accounts for the following prognostic variables:
mixed-layer temperature, mixed-layer depth, bottom temperature, and
mean temperature of the water column, shape factor (of the tempera-
ture profile in the thermocline), lake ice temperature, and ice thickness.
Despite its relative simplicity, FLake has proven skillful in prior inter-
comparisons (Mironov et al., 2010; Stepanenko et al., 2010). Any
snowpack on the lake is modeled by the IFS’s land physics package, the
Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land
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(HTESSEL (Balsamo, 2015)) (ECMWF (ECMWEF, 2016)).

In our study, each lake is modeled using a single representative grid.
Each grid is initialized with prognostic temperatures set to 280K, a
mixed-layer depth of 5m, shape factor of 0.65, and ice thickness of
zero. A single external variable, lake depth, was prescribed according to
simple geometric calculations based on the reservoir capacity and
surface area estimates (Table Al). Deeper lakes tend to be less well-
mixed and lose less water to evaporation on a per area basis compared
with shallower lakes. To allow for the ‘spin-up’ of each lake, the FLake
model was integrated for a full calendar year leading up to our 10-year
analysis window (2006-2015).

Hourly meteorological inputs to FLake were taken from Princeton
University’s 4 km hourly meteorological forcing dataset (PUmet (Pan
et al., 2016). PUmet shortwave radiation is derived from the Geosta-
tionary Operational Environmental Satellite (GOES) surface Solar In-
solation Product (GSIP) Level 2 product (Pinker et al., 2003). Other
forcing fields are downscaled from the 0.125° North American Land
Data Assimilation System Phase 2 (NLDAS-2 (Xia et al., 2012a, 2012b)
dataset with adjustment for elevation and physical consistency
(Choulga et al., 2014). The non-precipitation fields for NLDAS-2 are
derived from the 3-hourly and 32km analysis fields of the National
Oceanic and Atmospheric Administration (NOAA) National Centers for
Environmental Prediction (NCEP) North American Regional Reanalysis
(NARR (Mesinger et al., 2006; Cosgrove et al., 2003)).

Because its use is still prevalent in the hydrological modeling
community (Zhao et al., 2016), the Penman-Monteith (P-M) model
(Penman, 1948; Monteith, 1964) was applied with PUmet forcing to
compute comparative lake water evaporation estimates. For our cal-
culations, we assumed: a lake heat flux equal to 26% of net radiation
(Frempong, 1983), bulk surface resistance of 70sm ™}, shortwave al-
bedo of 0.07, and momentum roughness of 0.0001 m. The P-M ap-
proach yielded physically unrealistic instances of nighttime negative
evaporation (i.e., condensation) over the lakes, which amounted on
average to more than 8.7% of total evaporation. At nighttime, there
should be no condensation because the lake surface will be warmer
than the air advected from surrounding land, which sets-up an unstable
atmospheric condition with evaporation. We chose to disregard all
nighttime P-M estimates (negative or positive evaporation) because the
model is not physically representative during that period and suggest
this approach to the community. Generally speaking, P-M estimates of
lake evaporation should be interpreted with caution.

Fig. 4 compares the results of the two methodologies for the 128-
reservoir sample. The P-M daytime estimates are 8.1% less on average
and 10.1% less on median than those of FLake. FLake evaporation es-
timates exceed those of P-M daytime for all except ten reservoirs, in-
cluding Strawberry Reservoir, UT (—28% or 13 mm yr~ ') and Flaming
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Fig. 4. Comparing FLake and Penman-Monteith results for the 128-reservoir sample.
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Gorge Reservoir, UT/WY (—16% or 10 mm yr‘l) (Fig. 7).

2.9. Comparison of PV, evaporation engine, and hydropower generation
capacity

We quantify PV energy yield and evaporation reduction associated
with the area covered by the floating PV using 10-years’ worth of high-
resolution solar resource and meteorological data. For the evaporation
engine, we estimate the energy yield and water conservation for each
reservoir from the statewide data published in Cavusoglu et al. (2017).
That data includes annual energy yield, water conservation and total
lake area for 15 US states. From this information, we infer reservoir-
specific energy and water yields via interpolation/extrapolation of
these statewide energy and water conservation densities. For hydro-
power, we apply a US-wide capacity factor of 40% to all reservoirs. For
the last five years, mean US hydropower generation has averaged 40%
of peak capacity (US Energy Information Admisnistration, 2017).

3. Results
3.1. PV power generation

Mean annual photovoltaic (PV) electrical generation densities si-
mulated for the selected 128-reservoirs are reported in Fig. 5 (top).
These densities are a function of climate and range from 28 W/m? at
Riffe Lake in Washington State to 48 W/m? at Elephant Butte Reservoir
in New Mexico. Fig. 5 (bottom) reports the mean power generation
potential of each reservoir assuming 100% PV coverage over their full
lake areal extent. Fig. 5 also reports the existing peak hydropower
generating capacity of the reservoirs that are so equipped (100 out of
128; see Appendix A). Peak hydropower generation represents the
maximum power output of the existing turbines.

The total potential PV generating capacity across all 128 reservoirs
adds up to 1050 GW. This amounts to an annual electrical energy
production of 9250 TWh. By comparison, the total hydropower peak
capacity for the considered lakes is 32 GW. Assuming a 40% capacity
factor (see Section 2.9), the annual hydropower production is 112 TWh,
or about 80 times less than potential PV generation assuming full
coverage. Therefore, covering 1.2% of the reservoirs’ surface area with
floating PV would produce as much electricity as hydropower turbines
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Fig. 5. Sorted mean PV power densities for the 128 reservoir sample (top); and
sorted mean lake-wide PV production (bottom) contrasted to current peak
hydropower capacity.
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currently produce.

3.2. Firm, effectively dispatchable PV power generation

With an oversizing factor of two and a proactive output curtailment
of 50%, PV plants and associated enabling technologies (storage, grid
strengthening and demand response) can cost-optimally meet utility
demand with 100% certainty. The firm, guaranteed electricity genera-
tion capacity of PV for the 128-reservoir sample thus amounts to one-
half of the mean PV generating capacity, i.e., 525 GW, corresponding to
an annual energy production of 4620 TWh. This exceeds the 2016 US
electricity consumption of 4100 TWh (EIA, 2016).

3.3. Contrasting PV and evaporation technology

The evaporation technology study considered all inland water
bodies in CONUS, both artificial and natural, excluding the Great Lakes.
This represents a total area of 95,000 km> The study claims that cov-
ering this entire area with evaporation engines would deliver 325 GW
electrical on average, which would fall somewhat short of firm power
capability. Indeed, like PV, the evaporation engine technology is
weather/climate driven—a function of local temperature, relative hu-
midity and downwelling radiation. It does have built-in weather
variability mitigation capability via heat storage in the underlying
bodies of water that allows for some level of load following. However,
this is not enough to guaranty firm power delivery everywhere without
additional technologies (e.g., battery storage). While in some states
with favorable evaporative conditions, firm demand-following could be
achieved, in other states it would fall short of meeting demand at all
times. In the state of New York, for instance, the authors indicate that
the technology could only meet demand 67% of the time.

The reservoir sample considered here covers 29,000 km?. For this
area, the evaporative engine technology would deliver 100 GW on
average, adding up to 880 TWh worth of electricity annually (firmly in
some, but not all cases). This is considerably less than the firm PV
potential of 4620 TWh covering the same area. Interestingly, both
technologies far exceed the current hydropower [firm] generation
capability of 120 TWh/year. The yields of the three technologies are
compared in Fig. 6 for all reservoirs.

In Table 1, we compare the energy generation potential of PV and
evaporation engines to the current electrical generation of selected
states assuming equal lake surface coverage (i.e., all in-state water
bodies).

On average for these states, the mean PV power generation potential

s one order of magnitude (ten times) larger than the evaporative engine
technology s mean power availability. When considering firm, effec-
tively dispatchable PV generation capability, the ratio between the two
approaches averages 5:1 across all states. Interestingly, but not

1000

O Firm PV production potential

M Evaporation Engine production potential
100

B Current hydropower production

10

Annual Electricity Production (TWh)

0

Fig. 6. Contrasting floating PV and evaporation engine electricity generation
potential to current hydropower production for the 128 reservoirs sample. Full
reservoir coverage is assumed for both PV and evaporation engine.
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Comparing PV and evaporation engine electricity generation potential for 15 US states.

Cavusoglu et al. (2017) evaporation engines

This study 128-reservoirs PV

PV production prorated to Cavusoglu et al., lake areas

production
State Considered Potential power Current state net  Considered Mean power Mean Power Firm Power Ratio to Ratio to state
lake area (km?) available with electrical lake area km2  available from Available from Available from evaporative Net generation
evaporation engines  generation (MW) PV (MW) PV (MW) PV (MW) technology
MW)

Utah 8393 47,201 4789 239 9855 345,408 172,704 366% 3606%
California 4845 27,551 22,455 657 27,202 200,654 100,327 364% 447%
Minnesota 8996 19,252 6505 1859 61,731 298,774 149,387 776% 2297%
Louisiana 4414 14,353 12,307 735 27,716 166,438 83,219 580% 676%
Nevada 1710 12,292 4457 757 33,263 75,156 37,578 306% 843%
Oklahoma 2729 9832 8691 1948 73,562 103,086 51,543 524% 593%
Oregon 2383 8994 6606 432 15,584 85,961 42,980 478% 651%
Montana 2854 8628 3345 2058 67,999 94,322 47,161 547% 1410%
Maine” 4029 8358 1340 929 3241 131,540 65,770 787% 4907%
S.Dakota 3031 7617 1100 640 22,724 107,569 53,784 706% 4891%
Idaho 1817 6897 1788 805 28,063 63,305 31,653 459% 1770%
N.Dakota 2832 6834 4242 3050 104,484 97,012 48,506 710% 1144%
Wyoming 1420 6005 5590 171 6903 57,305 28,652 477% 513%
N.Mexico 599 3735 3733 196 9286 28,372 14,186 380% 380%
Vermont 1247 2776 226 929 3241 40,703 20,351 733% 8995%

* Note: for Vermont and Maine we used Massachusetts as a basis for proration, since our 128-lake sample does not include these states.
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Fig. 9. Comparing sorted PV and evaporation engine water conservation po-
tential for all 128 reservoirs assuming full coverage. Evaporation engine con-
servation potential adapted from Cavusoglu et al. (2017) whereas floating PV
conservation potential computed by FLake (see Section 2.8).

unexpectedly, the relative advantage of PV over the evaporation engine
is larger in colder cloudy/humid states (e.g., Minnesota, Maine) than in
warmer/drier southwestern states (e.g., Nevada, New Mexico).

3.4. PV water conservation potential

Fig. 7 (top) illustrates the annual water conservation densities
achievable by PV deployment for each of the 128 considered reservoirs.
As noted previously, water conservation density is assumed equal to the
net evaporation per unit area and we do not model for potential feed-
back between PV-covered and uncovered surface fractions. Water
conservation densities range from a maximum conservation density of
1850 mm per year at Falcon Lake, TX, to a minimum of 680 mm per
year at Strawberry Reservoir, UT. Evaporation rates vary according to
net available energy, air temperature, humidity, and wind speed. For
instance, Falcon Lake, at 26.7°N receives greater insolation and higher
vapor pressure deficits and sustained winds than Strawberry Reservoir
at 40.2°N. FLake-based estimates additionally account for the thermal
inertia of the reservoirs.

The total annual water conservation achievable for the 128 re-
servoirs is plotted at the bottom of Fig. 7. Across all considered re-
servoirs, total water conservation achievable assuming 100% coverage
amounts to 28 cubic kilometers, i.e., more than the fresh water with-
drawals of the State of Idaho and over half of California’s.

The water conserved could be used to meet consumptive demands



M. Perez et al.

Table 2

Solar Energy 174 (2018) 837-847

Comparing PV and evaporation engine water conservation potential for 15 US states.

Cavusoglu et al. (2017) evaporation engines

This study 128-reservoirs PV production

PV production prorated to Cavusoglu et al.

lake areas
State Considered lake Potential water State fresh water Considered lake Potential water Potential water Percentage of state
area (km?) savings 10°m>/yr withdrawals 10° m®/yr area km? savings 10°m®/yr savings 10°m®/yr withdrawals
Utah 8393 10,541 5711 239 141 4943 87%
California 4845 6376 43,049 657 664 4901 11%
Minnesota 8996 6651 5279 1859 1172 5673 107%
Louisiana 4414 4704 11,804 735 911 5473 46%
Nevada 1710 2586 3614 757 993 2243 62%
Oklahoma 2729 3160 2455 1948 2147 3009 123%
Oregon 2383 2333 9313 432 393 2168 23%
Montana 2854 2615 10,546 2058 1403 1945 18%
Maine 4029 2845 565 99 72 2934 519%
S.Dakota 3031 2762 865 640 503 2379 275%
Idaho 1817 1795 23,806 805 563 1269 5%
N.Dakota 2832 2425 1567 3050 2087 1938 124%
Wyoming 1420 1543 6414 171 121 1005 16%
N.Mexico 599 874 4367 196 218 667 15%
Vermont 1247 1019 596 99 72 908 152%
* Note: for Vermont and Maine we used Massachusetts as a basis for proration, since our 128-lake sample does not include these states.
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Fig. 10. PV land requirement to firmly meet 100% of Minnesota’s electricity demand, relative to the State’s current land cover composition (Multi-Resolution Land

Characteristics Consortium, 2006).

or to enhance hydropower potential, because water saved could also be
fed to the turbine generators. This prospective hydropower generation
enhancement is illustrated in Fig. 8 compared to the existing mean
power generation for each reservoir. The enhancement is not negligible,
totaling 565 MW across all lakes, but only amounts to a small fraction
(3%) of the existing hydropower resource. Relative to the generation
potential of floating PV this secondary hydropower enhancement im-
pact is almost insignificant (0.1%).

3.5. Contrasting PV and evaporation engine for water conservation

In Fig. 9, we compare the water conservation potential of PV and
evaporation technology for all reservoirs, assuming full coverage. As
explained in the methods section, PV-induced conservation is computed
from 10 years of site-specific irradiance and meteorological data, while
lake-specific evaporation engine-induced conservation is inferred from
published state-aggregated data (Cavusoglu et al., 2017).

Given the difference between the two approaches in terms of
modeling, site-specificity, data sources and time spans, the results be-
tween the two technologies are remarkably similar — less than 10%
difference in overall water conservation potential. This similarity is not
fortuitous because the underlying cause of water conservation is the
same for both technology: evaporation suppression in the case of PV
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and conversion to energy in the case of the evaporation engine — both
are proportional to the technology-covered area.

This similarity also confirms that the modeling approach applied in
this article is sound. Small differences between our water savings esti-
mates and those of Cavusoglu et al. (2017) may be attributed to dif-
ferences in evaporation models and meteorological data employed.
Namely, we did not need to account for the energy conversion process
of the conceptual evaporation engine. In addition, instead of a typical
meteorological year dataset, we chose to use a 10-year real-time dataset
with inherent interannual variability, and we applied a lake model to
account for the important role of lake heat storage in evaporation.

In Table 2, we contrast statewide evaporation-engine water con-
servation potential to PV’s. Both technologies lead to water conserva-
tion that exceeds statewide freshwater withdrawals (Cavusoglu et al.,
2017) in some cases (e.g., Maine, the Dakotas and Oklahoma). How-
ever, it only amounts to a modest fraction of demand in states with
intensive agricultural water use, such as Idaho and California.

4. Summary and discussion

We have shown that, in terms of energy production, deploying
floating PV on US lakes would be considerably more space-efficient
than deploying a prospective evaporation-based technology. Deployed
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on the 128 largest US reservoirs floating PV could supply firm, 24/7
electricity equivalent to 100% of US electrical demand. Deployed on all
the lakes considered for evaporation engine study, floating PV would
produce 10 times that amount. In terms of water conservation, the
floating PV potential is comparable to that of the evaporation engine’s.

We also showed that PV is considerably more space-efficient than
the hydroelectric power generation facilities currently operational at
the considered reservoirs. Covering 1.2% of their surface with PV would
generate as much electrical energy as hydropower currently generates.
This finding may carry important prospects for water managers. If hy-
droelectric production via turbines could be reduced or eliminated as a
reservoir management objective by deploying floating PV on a small
fraction of reservoir area, managers could focus on meeting alternate
objectives, such as flood control and water supply.

Finally and most importantly, while we analyzed floating PV as an
alternative to, and in reaction to deploying evaporation-based energy
technology, a key point we would like to stress is that of PV space-
efficiency. While PV deployment may have a vast potential on re-
servoirs and lakes, it is far from the only deployment option for this
technology. As an example, Fig. 10 illustrates recent work we com-
pleted as part of the Minnesota Solar Pathway study (Minnesota
Department of commerce, 2018b). The space needed to firmly generate
100% of the State of Minnesota’s electricity with PV at lowest cost (i.e.,
including appropriate oversizing), is contrasted to the state’s land cover
(Multi-Resolution Land Characteristics Consortium, 2006). This shows
that open water is but one among many possibilities for PV deployment

Appendix A
See Table Al.

Table Al
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and that small, fractional deployments in any combination of land cover
categories (in particular, already-perturbed high and medium intensity
urban spaces) would be sufficient.
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Supplemental data for the 128 reservoir sample including physical properties (https://en.wikipedia.org/wiki/List_of largest reservoirs_in_the United States) and
2006-2015 based estimates of aridity index, evaporation, hydroelectric capacity, and PV capacity.

Name State (s) Latitude (°) Longitude () Max Water Surface Area at Depth at Regional FLake E Existing Peak Mean PV
Storage Capacity (km?) Capacity (m) Aridity Index (myr~!) Hydro Capacity capacity
(km®) MW) MW)
Abiquiu Lake NM 36.28 —106.48 1.471 50.3 29 0.32 1.14 17 2294
Alamo Lake AZ 34.30 —113.55 1.287 69 19 0.11 1.60 3209
Allegheny Reservoir NY/PA  41.96 —78.93 1.604 85.7 19 1.41 0.84 400 2705
American Falls ID 42.91 —-112.75 2.063 230 9 0.30 0.94 112 9052
Reservoir
Amistad Reservoir COA/TX 29.47 —-101.10 6.98 263 27 0.22 1.76 132 10,353
Arkabutla Lake MS 34.74 —90.10 1.707 120 14 1.05 1.36 4392
Banks Lake WA 47.80 —119.20 1.573 109 14 0.28 0.96 3698
Beaver Lake AR 36.35 -93.92 2.405 128 19 1.08 1.20 112 4716
Belton Lake X 31.13 —97.51 2.315 151.1 15 0.62 1.64 5866
Bighorn Lake MT/WY 45.11 —108.19 1.704 70 24 0.37 0.97 250 2588
Broken Bow Lake OK 34.21 —94.68 1.688 73 23 1.13 1.35 2671
Brownlee Reservoir ID/OR 44.59 -117.13 1.76 61 29 0.57 1.03 585 2299
Bull Shoals Lake AR/MO  36.50 —-92.77 7.105 288.3 25 1.00 1.19 380 10,543
Canyon Ferry Lake MT 46.52 -111.57 2.464 142.37 17 0.38 0.94 50 4832
Cedar Creek Reservoir ~ TX 32.27 —96.14 1.338 140 10 0.77 1.52 5372
Center Hill Lake TN 36.03 —85.75 2.58 73.7 35 1.32 1.12 160 2604
Cherokee Lake TN 36.27 —83.37 1.901 116.5 16 1.02 1.13 136 4228
Dale Hollow Reservoir KY/TN  36.61 —85.31 2.104 112 19 1.30 1.14 54 3903
DeGray Lake AR 34.24 —-93.19 1.699 73 23 1.21 1.34 68 2665
Don Pedro Reservoir CA 37.78 —120.36 2.504 52.4 48 0.45 1.41 203 2209
Douglas Lake TN 35.99 —-83.37 1.802 115 16 1.08 1.20 146 4133
Dworshak Reservoir D 46.61 —116.11 4.28 66.44 64 1.03 0.84 400 2205
Elephant Butte Lake NM 33.31 —107.17 2.547 145.62 17 0.19 1.43 28 6992
Enid Lake MS 34.15 —89.81 1.497 110 14 1.16 1.34 5 4067
Eufaula Lake OK 35.29 —95.54 4.685 420 11 0.99 1.31 90 15,733
F.D. Roosevelt Lake WA 48.33 —-118.17 11.795 320 37 0.53 0.93 6900 10,280
Falcon Lake TAM/TX 26.74 —99.23 3.263 354 9 0.24 1.85 63 14,021
Falls Lake NC 36.02 —78.71 1.259 50.2 25 1.02 1.26 1868
Flaming Gorge UT/WY  41.09 —109.54 4.673 170 27 0.25 0.77 152 6942
Reservoir
Flathead Lake MT 47.90 —114.10 1.501 510 3 1.28 0.80 208 15,943
Fontana Lake NC 35.44 —83.68 1.78 41.4 43 1.34 1.05 239 1513
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Table Al (continued)

Name State (s) Latitude (°) Longitude () Max Water Surface Area at Depth at Regional FLake E Existing Peak Mean PV
Storage Capacity (km?) Capacity (m) Aridity Index (myr~') Hydro Capacity capacity
(km?) W) MW)
Fort Gibson Lake OK 35.95 —95.27 1.594 81 20 0.99 1.33 48 3006
Fort Peck Lake MT 47.76 —106.72 23.56 990 24 0.42 0.84 185 33,385
Grand Lake o' the OK 36.61 —94.85 2.062 188 11 1.05 1.26 120 6992
Cherokees
Greers Ferry Lake AR 35.52 -92.12 3.508 164 21 1.25 1.29 48 5984
Grenada Lake MS 33.83 —89.73 3.358 145 23 1.24 1.36 9 5390
Guntersville Lake AL 34.51 —86.16 1.257 275 5 1.18 1.26 496 10,034
Hugo Lake OK 34.06 —95.42 1.572 141.82 11 0.95 1.38 5300
Hungry Horse MT 48.23 —113.80 4.277 96.37 44 1.45 0.90 428 3076
Reservoir

John H. Kerr Reservoir NC/VA 36.57 —78.49 4.149 337 12 1.03 1.24 227 12,500
Jordan Lake NC 35.74 —79.03 2.031 129 16 1.00 1.28 16 4822
Kaw Lake OK 36.77 —96.83 1.32 150 9 0.76 1.36 36 5739
Kentucky Lake KY/TN 36.52 —88.04 7.56 649 12 1.24 1.20 184 23,031
Keystone Lake OK 36.23 —96.30 2.143 219.8 10 0.85 1.33 70 8358
Lake Almanor CA 40.26 -121.17 1.613 114 14 0.74 1.07 41 4765
Lake Barkley KY/TN 36.87 —87.99 2.568 234.4 11 1.22 1.20 130 8271
Lake Berryessa CA 38.59 —122.23 1.976 84 24 0.60 1.33 12 3526
Lake Cumberland KY 36.92 —85.02 7.511 265.2 28 1.21 1.08 270 9193
Lake Elwell MT 48.35 -111.25 1.869 60.06 31 0.36 0.76 2062
Lake Francis Case SD 43.44 —99.21 7.031 410 17 0.60 1.00 320 14,552
Lake Hartwell GA/SC 34.50 —82.82 4.242 226.4 19 1.04 1.32 421 8670
Lake Jocassee NC/SC 34.98 —82.94 1.462 30.61 48 1.42 1.26 710 1143
Lake Kemp TX 33.76 —99.15 1.283 67.3 19 0.48 1.56 2724
Lake Koocanusa BC/MT  48.82 —115.28 7.24 189 38 0.99 0.81 600 6113
Lake Lanier GA 34.24 —83.95 3.15 190.94 16 1.14 1.28 130 7181
Lake Livingston TX 30.74 —95.13 2.634 370 7 0.82 1.50 24 14,051
Lake Marion SC 33.46 —80.33 1.517 450 3 0.97 1.39 17,349
Lake Martin AL 32.86 —85.89 2.001 180 11 1.01 1.35 182 6847
Lake McClure CA 37.64 —120.28 1.273 28.92 44 0.40 1.38 95 1227
Lake McConaughy NE 41.26 —101.84 2.146 144 15 0.49 1.06 52 5503
Lake Mead AZ/NV  36.14 —114.43 35.703 650 55 0.07 1.58 2080 28,568
Lake Meredith TX 35.64 —101.66 3.003 87.6 34 0.35 1.43 3755
Lake Mohave AZ/NV 35.41 —114.64 2.243 107 21 0.10 1.73 251 4695
Lake Moultrie SC 33.31 —80.06 1.369 240 6 0.97 1.38 9324
Lake Murray SC 34.06 —81.37 2.714 200 14 0.92 1.37 207 7670
Lake Norman NC 35.53 —80.94 1.349 131.6 10 1.02 1.28 350 4979
Lake Oahe ND/SD 45.30 —100.30 28.987 1500 19 0.53 0.92 786 52,215
Lake of the Ozarks MO 38.16 —92.80 2.455 220 11 1.15 1.16 176 7955
Lake Oroville CA 39.57 —121.46 4.364 63.96 68 0.81 1.28 819 2597
Lake Ouachita AR 34.60 —93.32 3.414 195 18 1.20 1.31 75 7180
Lake Pend Oreille ID 48.15 —116.38 1.422 383 4 1.35 0.81 42 12,028
Lake Pleasant AZ 33.89 —112.28 1.367 48.7 28 0.15 1.72 45 2217
Lake Powell AZ/UT  37.32 -110.79 32.336 660 49 0.18 1.25 1320 29,590
Lake Ray Roberts TX 33.41 —97.03 2.383 118.8 20 0.69 1.52 4675
Lake Red Rock 1A 41.43 —93.16 1.771 260.9 7 1.10 0.97 36 9031
Lake Sakakawea ND 47.77 -102.29 29.974 1550 19 0.52 0.78 583 52,268
Lake Sharpe SD 44.19 —99.68 2.356 230.2 10 0.57 0.94 493 8172
Lake Strom Thurmond GA/SC 33.81 —82.32 4.712 288 16 0.89 1.39 380 11,003
Lake Tawakoni TX 32.81 —95.92 2.048 145 14 0.85 1.47 5547
Lake Texoma OK/TX 3391 —96.65 6.164 360 17 0.77 1.43 80 13,979
Lake Travis TX 30.41 -97.99 1.4 78.09 18 0.56 1.59 102 3029
Lake Umatilla OR/WA  45.79 —120.06 3.121 220 14 0.26 1.15 2160 8038
Lake Wallula OR/WA  46.06 —118.94 1.665 157 11 0.29 1.11 1127 5471
Lake Winnibigoshish MN 47.44 —-94.19 1.322 274 5 0.67 0.78 9002
Leech Lake MN 47.16 —94.41 1.233 416.62 3 0.76 0.79 13,863
Lewis Smith Lake AL 33.96 —87.11 1.715 86 20 1.26 1.27 157 3167
Lewisville Lake TX 33.11 —-96.97 2.569 93.2 28 0.69 1.53 3643
Mark Twain Lake MO 39.65 -91.75 2.594 215 12 1.16 1.06 58 7612
Milford Lake KS 39.16 —96.92 1.388 130 11 0.83 1.18 4910
Millwood Lake AR 33.75 —93.98 2.288 385 6 0.99 1.37 14,343
Navajo Lake CO/NM  36.90 —107.46 2.108 63.2 33 0.29 1.09 32 2916
New Melones Lake CA 37.99 —120.53 2.985 51 59 0.46 1.31 300 2141
Norfork Lake AR/MO  36.36 -92.23 2.446 89 27 1.09 1.20 3267
Norris Lake N 36.29 —83.92 2.516 138 18 1.25 1.16 132 4897
Oologah Lake OK 35.55 —95.60 1.874 230 8 0.98 1.31 132 8657
Owyhee Reservoir OR 43.46 —117.34 1.46 55 27 0.27 1.04 12 2074
Painted Rock Reservoir AZ 33.03 —-112.87 3.073 215 14 0.09 1.64 9907
Palisades Reservoir ID/WY 43.24 —-111.12 1.728 65 27 0.75 0.84 177 2480
Pathfinder Reservoir wy 42.42 —106.91 1.254 89 14 0.28 0.91 67 3580
Perry Lake KS 39.18 —95.46 1.749 102.75 17 0.93 1.13 3731
Pine Flat Lake CA 36.86 —119.30 1.233 24.2 51 0.42 1.24 165 1034
Quabbin Reservoir MA 42.36 -72.30 1.571 99.27 16 1.53 0.89 3241

(continued on next page)
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Name State (s) Latitude (°) Longitude () Max Water Surface Area at Depth at Regional FLake E Existing Peak Mean PV
Storage Capacity (km?) Capacity (m) Aridity Index (myr~') Hydro Capacity capacity
(km?) W) MW)
Red Lake Reservoir MN 48.07 —95.03 4.228 1168.1 4 0.54 0.78 5 38,866
Richard B. Russell Lake GA/SC 34.09 —82.64 1.836 107.8 17 0.96 1.36 600 4117
Richland-Chambers TX 31.98 -96.19 2.15 181.1 12 0.74 1.53 6916
Reservoir
Riffe Lake WA 46.48 —122.29 2.078 47.9 43 2.55 0.79 300 1341
Ross Lake BC/WA  48.85 —121.03 1.77 47 38 2.10 0.79 460 1339
Sam Rayburn Reservoir TX 31.21 —94.28 4.931 463 11 0.92 1.47 25 17,547
San Luis Reservoir CA 37.06 —-121.12 2.518 51 49 0.17 1.36 424 2190
Sardis Lake MS 34.49 —89.64 1.865 237 8 1.13 1.33 15 8738
Seminoe Reservoir WYy 42.04 —106.85 1.255 82.11 15 0.27 0.85 45 3323
Shasta Lake CA 40.77 —-122.30 5.615 120.4 47 1.05 1.23 676 4809
Smith Mountain Lake =~ VA 37.08 —79.62 2.837 83 34 1.03 1.19 560 3047
Stockton Lake MO 37.61 -93.77 2.065 256 8 1.19 1.19 52 9267
Strawberry Reservoir uT 40.17 -111.13 1.365 69.46 20 0.55 0.68 45 2913
Table Rock Lake AR/MO  36.62 —93.41 4.27 212 20 1.07 1.20 200 7775
Tenkiller Ferry Lake OK 35.67 —94.98 1.518 84 18 1.01 1.27 34 3128
Theodore Roosevelt AZ 33.68 -111.11 3.59 129 28 0.26 1.59 36 5982
Lake
Toledo Bend Reservoir LA/TX 31.49 —-93.73 5.517 735 8 0.94 1.50 92 27,716
Trinity Lake CA 40.88 -122.71 3.019 66.91 45 1.21 1.11 140 2704
Truman Reservoir MO 38.26 —93.44 6.398 847 8 1.01 1.18 160 30,582
Tuttle Creek Lake KS 39.35 —96.68 3.93 217.6 18 0.85 1.14 8123
Wappapello Lake MO 36.95 —90.31 1.4 94 15 1.24 1.21 3 3386
Watts Bar Lake TN 36.77 —84.67 1.449 160 9 1.30 1.10 190 5539
Weiss Lake AL 34.18 —85.60 1.768 122 14 1.07 1.27 30 4524
Wheeler Lake AL 34.71 —87.14 1.295 272 5 1.18 1.22 361 9850
Whitney Lake TX 32.85 —96.52 2.591 240 11 0.75 1.48 38 9234
Wright Patman Lake TX 33.27 —94.22 3.274 484 7 0.99 1.42 18,205
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