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ABSTRACT

Global ‘‘hot spots’’ for land–atmosphere coupling have been identified through various modeling studies—

both local and global in scope. One hot spot that is common to many of these analyses is the U.S. southern

Great Plains (SGP). In this study, we perform a mesoscale analysis, enabled by the Oklahoma Mesonet, that

bridges the spatial and temporal gaps between preceding local and global analyses of coupling. We focus

primarily on east–west variations in seasonal coupling in the context of interannual variability over the period

spanning 2000–15. Using North American Regional Reanalysis (NARR)-derived standardized anomalies of

convective triggering potential (CTP) and the low-level humidity index (HI), we investigate changes in the

covariance of soil moisture and the atmospheric low-level thermodynamic profile during seasonal hydro-

meteorological extremes. Daily CTP and HI z scores, dependent upon climatology at individual NARR grid

points, were computed and compared to in situ soil moisture observations at the nearest mesonet station

to provide nearly collocated annual composites over dry and wet soils. Extreme dry and wet year CTP

and HI z-score distributions are shown to deviate significantly from climatology and therefore may

constitute atmospheric precursors to extreme events. The most extreme rainfall years differ from cli-

matology but also from one another, indicating variability in the strength of land–atmosphere coupling

during these years. Overall, the covariance between soil moisture and CTP/HI is much greater during

drought years, and coupling appears more consistent. For example, propagation of drought during 2011

occurred under antecedent CTP and HI conditions that were identified by this study as being conducive

to positive dry feedbacks demonstrating potential utility of this framework in forecasting regional

drought propagation.

1. Introduction

Land–atmosphere coupling quantifies the complex

interactions between land surface conditions and the

atmosphere to better understand the hydrologic cycle

and can be viewed from the perspective of the terres-

trial and atmospheric segments along with the mutual

interactions between the two. Soil moisture plays an

important role in the terrestrial segment through sur-

face flux partitioning (Basara and Crawford 2002) and

changes in evapotranspiration rates (Teuling et al. 2006;

McPherson et al. 2007). However, these relationships are

not necessarily linear, and the soil moisture–evaporation

relationship may be enhanced as soils become drier

(Phillips and Klein 2014; Williams et al. 2016).

Within the atmospheric segment, surface fluxes impact

boundary layer development (Rabin et al. 1990; Santanello

et al. 2009, 2011, 2013). In addition, near-surface atmo-

spheric moisture can be driven by both nonlocal and local

soil moisture anomalies (Atlas et al. 1993; Hong and

Kalnay 2000; Pal andEltahir 2003; Su andDickinson 2017)

and can modify the local environment making it more (or

less) favorable for convective precipitation (Pielke 2001).

The scale dependency of these interactions is evident

via past studies that have explored coupling through

point-scale analyses of diurnal boundary layer devel-

opment and at the global spatial scale focused within
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the seasonal to interannual time scale. Land surface

conditions may reinforce seasonal extremes over a large

region (Trenberth and Guillemot 1996; Fischer et al.

2007a,b) and may even play a role in large-scale dy-

namics (Namias et al. 1988). From the climatological

perspective, some regions show a greater atmospheric

response to soil moisture anomalies. The first phase of

the Global Land–Atmosphere Coupling Experiment

(GLACE) found that local land–atmosphere coupling

tends to be favored over semiarid/transition regions

across climate models (Koster et al. 2004). While cou-

pling strength identified by each individual climatemodel

varied significantly, subsequent studies similarly found

stronger coupling in transition regions between arid and

humid climates, such as the southern Great Plains (Guo

et al. 2006; Koster et al. 2006; Dirmeyer 2006). Transition

climates show an increased sensitivity of evapotranspi-

ration (ET) to changes in soil moisture and atmospheric

demand, which tends to be more variable (Trenberth

1999; Guo et al. 2006; Koster et al. 2011; Dirmeyer 2011;

Wei et al. 2016). Within regions of strong coupling, the

strength of soil moisture–evapotranspiration–precipitation

relationships has been shown to change in both time and

space (Findell and Eltahir 2003b; Guo and Dirmeyer 2013;

Basara and Christian 2018). Further, climatologically dry

(wet) regions may experience an increase in sensitivity to

land surface conditions during (wet) dry months (Schubert

et al. 2004; Wei and Dirmeyer 2012). Nonlocal land–

atmosphere feedbacks have been shown to impact local

precipitation, particularly when anomalously dry soils result

in suppressed precipitation downstream (Koster et al. 2016).

While several studies have identified regions in which

the atmosphere is more sensitive to changes in soil

moisture, the sign of these feedbacks is largely depen-

dent upon both the temporal and spatial resolution used

to examine these feedbacks (Hohenegger et al. 2009;

Meng and Quiring 2010). In addition to local soil

moisture extremes, regional gradients have also been

argued to serve as a focus for differential diabatic

heating and enhanced surface convergence that may

lead to the development of convective precipitation

(Taylor et al. 2007, 2011; Frye and Mote 2010). This is

often observed where local soils are drier than their

surroundings such that convection is triggered over dry

soils (Taylor et al. 2012). The preference for convec-

tion over dry soils has also been attributed to greater

decrease in atmospheric stability due to enhancement

of surface sensible heat fluxes (Ford et al. 2015a). Over a

seasonal time scale, these gradients may influence the

location of regional drivers of convective precipitation,

such as the dryline (Flanagan et al. 2017).

The low-level jet (LLJ) is the dominant source of

moisture transport within the southern Great Plains

(Stensrud 1996; Higgins et al. 1997; Song et al. 2005;

Shapiro et al. 2016; Song et al. 2016); however, there is

evidence of interactions between the land surface and

the LLJ that aid in the development of convective pre-

cipitation. In the absence of advection via the LLJ,

larger quantities of soil moisture can serve as a local

source of necessary moisture for convective precipita-

tion (Frye and Mote 2010). Addition of moisture from

wet soils can force changes in precipitation timing and

lead to an increase in peak afternoon precipitation and

intensity (Wei et al. 2016; Song et al. 2016). When soil

moisture is limited, convective precipitation can result

from rapid boundary layer growth because of enhanced

sensible heat flux and moisture supplied by the LLJ

(Ford et al. 2015b). The delicate interplay between

synoptic patterns and soil moisture demonstrates a

necessity for low-level moisture in which the source is

driven by the presence of large-scale moisture trans-

port or lack thereof.

The first goal of this paper is to introduce a modified

version of the convective triggering potential, low-level

humidity index (CTP/HI) framework (Findell and

Eltahir 2003a) that can be used at varying temporal and

spatial scales. The second goal is to provide a climatol-

ogy of the framework during hydrometeorological ex-

tremes in Oklahoma to test the framework’s utility at

varying spatial and temporal scales. This study uses ob-

servations of local soil moisture from the Oklahoma Mes-

onet, to provide a climatology of the modified framework

that is derived from reanalysis data. The chosen temporal

period exceeds the minimum number of years (approxi-

mately 12) identified by Findell et al. (2015) to adequately

study land–atmosphere interactions.

2. Data and methods

a. Oklahoma Mesonet

The Oklahoma Mesonet is an automated mesoscale

observing network consisting of over 100 sites that

report near-real-time, quality-assured meteorological

conditions at 5-min intervals (McPherson et al. 2007)

and soil moisture every 30min (Illston et al. 2008). All

mesonet sensors are calibrated prior to placement and

after repair and are replaced at the end of recommended

product lifetime, even if no problems are detected

(McPherson et al. 2007). Observations from themesonet

have been extensively validated (Scott et al. 2013) to

ensure that all observations are of research quality. One

limitation arises because of site placement within areas

of uniform low-growing vegetation (McPherson et al.

2007) as observationsmay not be representative of those

over other land-cover types.
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1) MESONET SOIL MOISTURE

Fractional water index (FWI) is a normalized mea-

surement of the Campbell Scientific 229-L sensor re-

sponse to changes in soil moisture and ranges from 0

(dry soil) to 1 (saturated soil) (Schneider et al. 2003;

Illston et al. 2008). The utility of FWI lies within its

ability to capture soil wetness independent of soil tex-

ture thus standardizing the observation and allowing

for intercomparison within the observational network.

In this study, wet soils are defined as those with FWI

greater than 0.7, which is considered optimal for plant

growth and dry soils defined as having an FWI less than

0.4, which results in water stress (Illston et al. 2008).

Soil moisture is monitored via the Campbell Scientific

229-L heat dissipation sensor, which is most commonly

deployed at 5, 25, and 60 cm. Soil moisture is measured

indirectly by measuring the magnitude of the tempera-

ture difference within a ceramic matrix before and after

introduction of a heat pulse. The sensor is assumed to be

in equilibrium with the soil such that the temperature

change is regulated by the water content of the sensor,

and thus the soil (Illston et al. 2008). While the sensor

performance is similar to that of other available sensors

(Cosh et al. 2016), it is slower to respond to changes

in soil moisture such that daily variations are muted

(Dirmeyer et al. 2016). Further, soil moisture measure-

ments are inaccurate during frozen soil conditions and

when the soil texture has a high sand fraction. Quality

assurance procedures are performed daily and each

sensor’s measurements are discarded during the first

21 days of operation to allow it to equilibrate with the

surrounding environment (Illston et al. 2008).

Previous coupling studies within Oklahoma (Ford

et al. 2015a,b) use 5-cm volumetric water content per-

centiles to quantify soil wetness. However, the 5-cm

measurements have large variability during the summer

months (Basara and Crawford 2002; Illston et al. 2004)

making this depth less representative of the overall soil

column that is contributing to ET; ET is largely driven

by plant characteristics and is a vital link in the soil–

plant–atmosphere continuum (Tindall and Kunkel

1999). Basara and Crawford (2002) showed the greatest

relationship occurred between surface latent and sensi-

ble heat fluxes and root zone soilmoisture at theNorman,

Oklahoma, Mesonet site. As such, it is necessary to ex-

amine soil moisture depths that are consistent with the

root zone of local vegetation. This study primarily uses

25-cm soil moisture measurement depth as most root

biomass in this region exists within the top 30 cm of

the soil profile (Weaver 1958; Eggemeyer et al. 2006;

Raz-Yaseef et al. 2015). This depth also yields the

greatest sample size as some stations do not have sensors

beyond 25 cm because of soil texture or bedrock. Note,

however, that similar final conclusions of this study were

found using soil moisture at all depths thus only results

from 25 cm are shown.

2) MESONET PRECIPITATION

The original convective triggering potential/low-level

humidity index (CTP/HI) framework (Findell and

Eltahir 2003a) is designed to diagnose the potential for

afternoon precipitation, therefore only precipitation

events that occurred between 2100 and 0300 UTC were

included in the analysis. The minimum measurable

precipitation at the Oklahoma Mesonet is 0.25mm

(McPherson et al. 2007) so values below this threshold

were counted as no precipitation events. Afternoon

precipitation sums were computed for every month at

every station. Each month was then assigned a rank

based on afternoon precipitation sums for the same

month during other years within the climatology. For

example, the driest July of all 16 July observations would

be given a rank of 1 and the wettest would be assigned a

rank of 16. This monthly rank was assigned to every day

within that month for monthly compositing purposes

such that if July 2000 at a given station was the wettest

July on record, each day in July at that station would

be assigned a rank of 16.

To maintain spatial and temporal consistency and

to establish a sufficient climatological analysis length,

only stations that were continuously in operation from

1 January 2000 through 31 December 2015 were

retained for the analysis. While stations may have been

continuously in operation during this time, there may

have been periods of time with missing observations

because of instrumentation and meteorological issues,

so stations that recorded data for less than 85% of days

were omitted. Each station is less than 80km from its

nearest neighbor such that a missing observation at one

point did not significantly impair the spatial resolution

of the analyses.

b. NARR

While mesonet stations provide surface and subsurface

data, atmospheric profiles are necessary to calculateCTP/

HI. North American Regional Reanalysis (NARR) data

were used to obtain atmospheric profiles of temperature,

pressure and specific humidity over Oklahoma during the

study period. NARR data assimilate observations with

model simulations to generate a 3-hourly gridded dataset

with 32-km spatial resolution over the continental United

States at 29 vertical levels (Mesinger et al. 2006) and at

the time of the analysis was available from 1979 through

2015. Each mesonet station was paired with the nearest

NARR gridbox center. This resulted in several stations
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that shared the same grid box. To eliminate redundancy

only the station with the least number of missing obser-

vations was retained resulting in 93 stations being used for

the analysis. These are shown in Fig. 1.

Each NARR vertical profile contains data at 29 levels

starting with 1000mb (1mb 5 1 hPa) (Mesinger et al.

2006). Oklahoma’s sloping terrain means that surface

pressure can range from approximately 850mb in the

panhandle to over 1000mb in southeastern Oklahoma,

so it is necessary to only use NARR data that are at or

above themesonet surface pressuremeasurement rather

than the beginning the profile at the default 1000-mb

pressure. Daily surface pressure observations at each

mesonet site in the study were obtained and used as the

initial pressure within each vertical profile. This in-

formation is necessary for computing CTP andHI as the

computations are performed over layers that are defined

by a pressure difference from the surface. Dewpoint

observations were obtained by converting NARR pro-

files of specific humidity were converted to dewpoint

using the MetPy software package for Python designed

by May et al. (2017).

c. Creation of a CTP/HI dataset

Vertical profiles of air temperature and dewpoint

temperature at 1200 UTC were acquired from the

NARR 3-hourly dataset (Mesinger et al. 2006) and lin-

early interpolated at 1-mb intervals to ensure that cal-

culations of CTP and HI could be performed at the

desired pressure levels above surface level. The

1200 UTC time was chosen to remain consistent with

the original framework (Findell and Eltahir (2003a).

The 25-mb interval used by NARR is too large to ade-

quately capture HI given the two levels used in the

calculation are 100mb apart. The levels that define CTP

and especially HI are intended to represent boundary

layer averages. HI only uses observations at two levels,

and as suchmay not fully represent variability within the

vertical profile. Even so, they were retained for the

current work to maintain consistency with previous

studies (Ferguson and Wood 2011; Roundy et al.

2013) that also applied modifications of the framework

but retained these level definitions. The methods used

by the coupling metric toolkit (Tawfik 2016) were

adapted for Python to calculate values of CTP.

CTP is determined using a two-step process:

1) Locating the moist adiabat that intersects the tem-

perature profile 100mb above ground level (AGL).

2) Integrating the area between this moist adiabat and

the temperature profile from 100 to 300mb AGL.

HI measures the preexisting moisture content of the

lower atmosphere and is defined as

HI5 (T2T
d
)
150mb AGL

1 (T2T
d
)
50mb AGL

, (1)

where T is air temperature and Td is the dewpoint tem-

perature. Both CTP and HI were calculated daily at 1200

UTC for the NARR grid box containing each mesonet

station during the entire period from 2000 through 2015.

The aforementioned CTP and HI values were derived

from reanalysis data, and therefore, we must first

quantify their reliability. To perform this verification, we

calculate CTP and HI using reanalysis values from the

grid box nearest to the Norman mesonet station, which

is located near the center of the study domain. Next,

CTP and HI values were computed from radiosonde

data at the Norman upper-air site and compared to the

NARR-derived values; the results are shown in Fig. 2.

Overall, the observed values of CTP and HI from the

upper-air soundings agree well with the NARR-derived

values with correlation coefficients of 0.930 and 0.945,

respectively. One limitation is that the agreement be-

tween NARR-derived and observed profiles may be

inflated in locations where upper-air stations exist. Be-

cause NARR data are a result of the NCEP Eta Model

and assimilated observations that include raobs (Mesinger

et al. 2006), areas where observations are sparse may be

less representative of reality.

d. A revised approach to the CTP/HI climatology

Ferguson and Wood (2011) computed CTP and HI

departures from a latitudinal mean. In Oklahoma, where

longitudinal gradients of temperature and precipitation

exist at the same latitudes, this approach would result

latitudinal anomalies that are biased by longitudinal var-

iability. By contrast, Basara and Christian (2018) applied

a standardized anomaly approach to better assess land–

atmosphere coupling in the southern Great Plains. Thus,

the use of standardized anomalies of CTP/HI based on

station climatology may capture better the atmospheric

FIG. 1. The Oklahoma Mesonet stations included in the analysis

with the NARR grid overlaid.
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response to different soil moisture states as well as fa-

cilitate comparison of the magnitude of responses in

both time and space.

1) CTP/HI STANDARDIZED ANOMALIES

Both CTP and HI have annual cycles, with decreased

variability during the summer (not shown). Furthermore,

the mean values at each station vary across the state.

The annual cycle is pronounced such that CTP and HI

anomalies must be computed on time scales shorter than

1 month, and the changes in variability necessitate a daily

standardized anomaly approach. Daily standardized

anomalies result in a small sample size of only 16 years for

each day, and the resulting distributions are not Gaussian

such that z scores may be biased. As such, a method

similar to that of the standardized precipitation index

(McKee et al. 1993) using a normal quantile transform

(Wilks 2011) was used to obtain z scores. Each daily

distribution for each station was transformed into a cu-

mulative probability density function. From the derived

CDF, each daily value was assigned a cumulative prob-

ability, and this probability was used to compute the

z score. These methods were repeated for each day and

station to obtain daily z scores that could represent rel-

ative differences in the CTP and HI space among years.

2) PARAMETER SPACE APPROACH

The CTP/HI parameter space is the space that con-

tains a representation of all possible combinations of

CTP and HI z scores. Unique combinations of CTP and

HI provide a characterization of atmosphericmoisture and

instability during hydroclimate extremes. The primary

objective of this approach is to determine if there is

consistency in the degree of covariability between the land

surface and CTP/HI standardized anomalies during sea-

sonal hydrometeorological extremes rather than to es-

tablish set thresholds for coupling regimes. CTP/HI

standardized anomaly distributions vary depending upon

whether they were computed over wet or dry soils and, so it

is hypothesized that seasonal drought and pluvial extremes

might have similar distributions to the dry andwet soil cases,

respectively, within the parameter space. While other

studies focused on using the actual values of CTP andHI at

each grid box to identify wet versus dry coupling regimes

(Roundy et al. 2013; Roundy and Santanello 2017), this

study employs standardized anomalies. Standardized

anomalies allow for interstation comparisons of covari-

ability to determine if all dry soil cases for example, are

characterized by specific z-score (standardized anom-

aly) pairings in the parameter space. Among stations,

the exact values of CTP and HI that yield a specific z-

score pairing may be highly variable; however, a con-

sistency in behavior within the parameter space could

further insight into establishment of future coupling

thresholds based on standardized anomalies.

Thus, the four potential bivariate combinations of CTP

andHI anomalies are examined in theCTP/HI parameter

space in the following analysis and an example distribu-

tion is shown in Fig. 3 with the four combinations de-

scribed as follows:

1) Quadrant I (Q1), CTP below normal/ HI above

normal (13.8% of total points): The atmosphere is

generally more stable than normal in the CTP region,

while it is drier than normal at the levels where HI is

measured.

FIG. 2. Scatterplot of CTP and HI computed by NARR and mesonet methods (x axes) vs CTP and HI computed

using observed upper-air sounding data (y axes) with (left) featuring the relationship between values derived from

both methods for CTP (J kg21) and (right) the relationship between values derived from both methods for HI (8C).
Correlation coefficient, bias, and root-mean-square error are also shown in bold for each plot.
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2) Quadrant II (Q2), CTP above normal/HI above

normal (36.1% of total points): The atmosphere is

more unstable than normal in the CTP region but it

is also drier than normal. Nearer to the origin, dry

soils drive greater sensible heating and more rapid

boundary layer growth that despite limited mois-

ture could result in convective initiation if the PBL

reaches the LCL (Ek and Holtslag 2004.) On the

other hand, wet soils could result in greater latent

heat flux and an increase in moist static energy into

an environment that was moisture limited. As such,

local destabilization of the lower atmosphere could

occur through increased CAPE and a lowering of

the LCL (Taylor and Lebel 1998; Pielke 2001;

Findell and Eltahir 2003a; Pal and Eltahir 2003;

Brimelow et al. 2011). Finally, this quadrant of the

parameter space could also result in no convection

if the lower atmosphere is too dry for local surface

fluxes to overcome the moisture limited regime.

During drier-than-normal periods it is expected

that more days would fall within this parameter

space as dry surface conditions would result

in greater sensible heat fluxes, boundary layer

mixing, and entrainment of dry air. When the

standardized anomalies within this space are

exceptionally high, they may be considered too

dry for convective precipitation or atmospheri-

cally controlled.

3) Quadrant III (Q3), CTP above normal/HI below

normal (13.7% of total points): This regime would

be considered primed for convection because of

preexisting above-normal instability and above-

normal moisture in the lower troposphere.

4) Quadrant IV (Q4), CTP below normal/HI below

normal (35.8% of total points): In the moisture

abundant, energy limited regime the atmospheric

profile is likely near moist adiabatic (Findell and

Eltahir 2003a). Precipitation recycling is expected

over wet soils through the addition of moist static

energy via evapotranspiration. Dry soils could

also supply necessary energy and surface-based

instability in this case. It is also expected that anom-

alously wet periods would demonstrate a higher per-

centage of days occupying this parameter space as wet

soils would provide a continuous supply of low-level

moisture.

Warm season (May–September) composite sound-

ings for the entire state are shown in Fig. 4 to better

demonstrate the profiles that characterize each

quadrant.

3. Results

a. Climatology of CTP/HI

Before computing standardized anomalies, the au-

thors first examined the mean state of CTP and HI

within Oklahoma. Monthly mean values of CTP and HI

are shown in Fig. 5. In the monthly mean CTP plot, blue

denotes values that are less than 0 on average; CTP values

below 0 are not conducive for coupling as this would

represent a stable profile. Western portions of the domain

have the greatest number of months with CTP greater

than 0, and therefore the greatest opportunity for

coupling. The entire state experiences mean positive

values of CTP during the warm season, or the months

of May through September and, based on these results,

further analysis will focus primarily on these months

for the coupling analysis.

Both CTP and HI means demonstrate month-to-

month variability with a noticeable gradient from east

to west. This supports the use of an alternative appli-

cation of the CTP/HI framework to understand cova-

riability between the land surface and atmosphere and

implications for land–atmosphere coupling. Other

studies found similar results in different locations of

the world and proceeded to establish new thresholds

for each regime based upon local climatology (Roundy

et al. 2013; Roundy and Santanello 2017). Given the

spatial variability in climatology of CTP and HI

in Oklahoma, a modified CTP/HI framework was

FIG. 3. Example of a CTP–HI parameter space for a region.

Quadrants are labeled I–IV in a clockwise direction and rep-

resent the 4 possibilities for CTP–HI anomaly pairing. Quad-

rant I: CTP below normal, HI above normal; quadrant II: CTP

above normal, HI above normal; quadrant III: CTP above

normal, HI below normal; and quadrant IV: CTP below normal,

HI below normal.
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employed to better understand the covariability be-

tween the atmosphere and the land surface.

b. Composite analysis of extreme events

1) WET VERSUS DRY SOILS WARM SEASON

The parameter space approach is a useful tool for char-

acterizing and comparing atmospheric preconditioning to

convection across the region as z scores are unique to each

station’s climatology, but can be aggregated to create a

statewide composite. CTP and HI z scores were compos-

ited for all warm season (May through September) days

over dry (FWI , 0.4) or wet (FWI . 0.7) soils. The per-

centage of CTP/HI z-score pairings that were within each

0.5 3 0.5 standard deviation bin in the parameter space

were computed for the dry and wet soil cases individually.

The results of this calculation are shown in Figs. 6a and 6b,

with the composite difference given in Fig. 6c. Statistical

significance was tested through bootstrap resampling

with replacement over all warm season days for 1000

iterations in which composite differences for two sam-

ples with the same size as the original samples were

differenced. Stippling shows those differences that were

significant at the 95% confidence level.

FIG. 4. Composite soundings derived from NARR data for all May–September days from 2000 through

2015, starting at 50 hPa above the surface, filtered for only those profiles that had CTP and HI z scores one

standard deviation above or below normal for combinations of CTP/HI that corresponded to (top left) Q1,

(top right) Q2, (bottom left) Q4, and (bottom right) Q3. Red (green) profiles are quadrant compos-

ite temperature (dewpoint), while black (gray) represents the overall warm season mean temperature

(dewpoint). Red (blue) shading is the area of the profile used to compute CTP and represents positive

(negative) CTP. Differences in HI between the overall and quadrant filtered profiles are shown in text at the

bottom of each plot.
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Dry soils have the largest percentage of days within

Q2, while wet soils have a greater percentage of days in

the other three quadrants. The distinct difference in dry

and wet soil parameter spaces highlights an important

difference in covariability between the surface and the

atmosphere. That is, atmospheric profiles with more

negative HI z scores, and therefore greater moisture

content occur more frequently over wet soils while the

converse is true for dry soils. CTP z scores follow a

similar trend, though the polarity of the distributions

between negative (wet soils) and positive (dry soils) z

scores is less pronounced than for the case with HI. The

FIG. 5. (top) Monthly climatology of NARR CTP in Oklahoma with blue shades representing negative values and red shades repre-

senting positive. (bottom)Monthly climatology of NARRHI in Oklahoma over the period 2000–15 with green shades representing those

mean values that are below 158C and brown representing those that are above.
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covariability between the atmosphere and land surface

during hydrometeorological extremes presents an im-

portant result; however, it is not entirely clear at the

temporal and spatial scale used in this study whether this

covariability is purely the result of positive feedbacks, a

persistent atmospheric state that is driving the wet or dry

extremes, or more likely some combination of both.

2) EXTREME YEAR CTP/HI SPACE: PLUVIAL

Years with heavy rainfall should maintain a wet soil

profile, and therefore such years would be expected to

have similar distributions within the parameter space to

the wet soil composite case. Rainfall during the 2007 and

2015 warm seasons was largely above normal across

Oklahoma, and many stations recorded some of the

wettest warm seasons for the 16-yr period during these

two years (Fig. 7). These two seasons served as a focus

for understanding differences in the CTP/HI z-score

space during hydrometeorological extremes. Composite

differences between 2007 and all other warm seasons

show a statistically significant (p , 0.05) difference in

the parameter space similar to the difference between

wet and dry soils (Figs. 8a–c). Statewide, HI was

anomalously low indicating a moist low-level atmo-

spheric profile. CTP was also below normal and only a

small percentage of days featured CTP and HI ob-

servations above normal. Figures 9a–d illustrate the

composite differences at individual stations for the

percentage of days in each quadrant during 2007 versus

all other years. As in the statewide composite, there

are a greater percentage of days in Q4 than normal, but

these differences were greatest in the western half of

the state.

Widespread anomalously heavy rainfall also occurred

during the 2015 warm season, however, the composite

parameter space and composite differences are very

different from those of 2007. While 2007 had a greater

number of days with CTP and HI below normal, 2015

had fewer days (Figs. 8d–f). There were fewer days that

had a large magnitude in CTP and HI z scores, and the

greatest percentage of days had HI at or below normal

with CTP slightly above normal. Station-based com-

posite differences (Figs. 9e–h) reveal similar results with

smaller magnitude deviations from normal. Unlike 2007

(Figs. 9a–d), the greatest differences were in the south-

eastern part of the state, and there were fewer days inQ4

than normal. Overall, the most consistent increase in

percentage of days within a quadrant occurred in Q3,

and the greatest reduction was in Q4.

3) EXTREME YEAR CTP/HI SPACE: DROUGHT

Rainfall was anomalously low during 2006, and 2011

(Fig. 7) with many stations recording some of the driest

warm seasons within the 16-yr period. The largest defi-

cits in precipitation were observed in eastern Oklahoma

during 2006 and southwest Oklahoma during 2011.

Similar to 2007, the greatest composite differences are

observed for percentage of days within Q2 and Q4

during both 2006 (Figs. 8g–i) and 2011 (Figs. 8j–l). As

expected based on the dry soil composite, there were a

greater number of days inQ2 and fewer in Q4 during the

selected drought years than climatology. However, the

magnitude of the differences is much greater during

2011 (Figs. 10e–h) than in 2006 (Figs. 10a–d) with a

notable decrease in percentage of days within Q3 as well

as Q4 to complement the greater percentage of days

within Q2 at almost all stations. This indicates that the

atmosphere was increasingly dry during this period

with a large percentage of days having HI above normal.

These differences prevailed across the entire state.

FIG. 6. Distribution of CTP and HI standardized anomalies for warm season days with (a) dry soils (FWI, 0.4), (b) wet soils (FWI.
0.7), and (c) composite difference of wet soil bin percentages minus dry soil bin percentage. CTP standardized anomalies are represented

on the x axes of each panel, while HI standardized anomalies are represented on the y axes. Fills represent the percentage of days within

that region that occupy a given bin with darkest colors at or exceeding 10%of days for (a) and (b). For (c) colors represent percentages and

blue fills indicate bins with a greater percentage of dry soil days and red fills indicate a greater percentage of wet soils days. Black dots in

(c) indicate where composite differences are statistically significant (p, 0.05) as determined by bootstrap resampling (with replacement).
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4) DROUGHT EVOLUTION AND PERCENT

OF DAYS IN Q2

Comparing Drought Monitor (Svoboda et al. 2002)

classifications to percentage of days inQ2 at each station

during 2011 identifies a clear relationship between dry-

ing land surface conditions and the increase in CTP

z scores (Fig. 11). At the beginning of June the most

intense drought existed in the western half of the state.

By July all counties had the greatest percentage of area

classified as at least D0 (abnormally dry). Those counties

that experienced some of the greatest intensification

of drought, particularly in northeast Oklahoma, also

had some of the greatest percentages of days in Q2

during June. Similar results occurred in August and

September. Furthermore, the greatest percentage of

days in Q2 occurred where drought was most intense

or showed the greatest intensification.

4. Discussion

The CTP/HI framework provides a useful foundation

for understanding covariability between the land surface

and atmosphere. As with previous work, it is most useful

when modified to capture local climatology. CTP stan-

dardized anomalies diagnose the instability of the local

atmosphere while HI standardized anomalies supply

information regarding low-level moisture relative to a

temporal mean. The point-based evaluation of these

parameters allows for adjustments to local variability,

while the standardized anomaly approach makes it

possible to upscale the point-based computations such

that interstation comparisons can be made. Overall, this

approach highlights the nature of the covariability be-

tween the land surface and atmosphere during hydro-

meteorological extremes and how this covariability

evolves in both space and time using a consistent metric.

Past studies have shown that spatial and temporal

scale is important for diagnosing whether positive or

negative feedbacks are occurring, and thus the nature

of land–atmosphere coupling (Guillod et al. 2015). The

current metric can reconcile these differences through

its flexibility of application from diurnal to annual scales

as well as point-based to regional composites. The

comparison to in situ soil moisture observations

provides a source of verification with land surface ob-

servations and its application across varying tempera-

ture and precipitation climatologies supports its ability

FIG. 7. Rainfall rank by station for (top left) 2007, (top right) 2015, (bottom left) 2006, and

(bottom right) 2011. Rank of 1 is shown in brown and indicates the least warm season (May–

September) total rainfall for 2000 through 2015, while 16 is in dark green and indicates the

greatest warm season total rainfall.
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to be applied to future work over larger spatial domains.

As such, both point-scale and regional-scale coupling

can be explored using a single unified framework.

The revised CTP/HI framework based upon stan-

dardized anomalies sufficiently reflects the persistence

of anomalies in atmospheric stability andmoisture during

different hydrometeorological extremes as demonstrated

by the analysis of drought and pluvial years. Composite

soundings for each quadrant also reflect these distinct

differences.

FIG. 8. As in Fig. 6, but for (a) all years except 2007, (b) 2007, and (c) 2007 minus all years. (d)–(f) As in (a)–(c), but for 2015, (g)–(i) as in

(a)–(c), but for 2006, and (j)–(l) as in (a)–(c), but for 2011.
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FIG. 9. (a) Composite difference between percentage of days in Q1 during 2007 and all other

years per station. (b) As in (a), but for Q2. (c) As in (a), but for Q4. (d) As in (a), but for Q3.

Black cross indicates the composite difference is statistically significant (p , 0.05) via a

bootstrapping test. (e)–(h) As in (a)–(d), but for 2015.
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While 2007 and 2015 were both characterized by

anomalously heavy warm season precipitation, the

overall atmospheric conditions varied greatly between

the two years. Where 2007 had a greater percentage of

days inQ4 than normal, 2015 had a greater percentage in

Q3. Furthermore, the composite differences between

2007 and climatology were significantly greater than

those of 2015. The difference between these years was

FIG. 10. As in Fig. 9, but for (a)–(d) 2006 and (e)–(h) 2011.
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unexpected, andmight indicate fundamental differences

in both the large-scale drivers of precipitation and the

interaction of the land surface with these drivers. Heavy

precipitation is often a result of complex interactions

between the land surface and large-scale features such

as the low-level jet rather than the land surface acting

alone, making it difficult to quantify the relative con-

tributions from the land surface (Frye and Mote 2010;

Ford et al. 2015a,b; Song et al. 2016; Welty and Zeng

2018). Pluvial years in the southern Great Plains are

often driven by characteristic synoptic patterns, and

these patterns were responsible for the anomalous pre-

cipitation during 2015 but not during 2007 (Flanagan

et al. 2018). During 2007, the same patterns were not

in place, but a persistent upper-level low over Texas

played a significant role (Dong et al. 2011). Even with

large-scale drivers, it is thought that land–atmosphere

feedbacks also played a nonnegligible role in precipitation

persistence (Dong et al. 2011; Su et al. 2014; Wei et al.

2016; Su and Dickinson 2017). Most moisture during

extreme precipitation events can be traced to evapora-

tion over large bodies of water (Dirmeyer and Kinter

2010), though nonlocal land surface feedbacks can alter

the supply of moisture (Koster et al. 2016), with land

surface evaporation upstream augmenting preexisting

moisture (Teufel et al. 2017).

Precipitation anomalies during 2015 were widespread

across the Great Plains, while during 2007 they were

more concentrated within Oklahoma and Texas. Posi-

tive feedbacks in time and negative feedbacks in space

can both contribute to land–atmosphere coupling and

are not mutually exclusive (Guillod et al. 2015). The

long-term means presented here mute those periods

when heterogeneities in soil moisture may have driven

localized negative feedbacks. However, in the case of

2007, they might indicate some degree of persistence via

FIG. 11. 2011U.S. DroughtMonitor Classification by county for classification with greatest areal percentage valid

on (top left) 1 Jun, (top right) 1 Jul, (bottom left) 1 Aug, and (bottom right) 1 Sep. The percentage of days in Q2

during the preceding month is represented by the black portion of the pie chart for each station, while the per-

centage of days within the rest of the quadrants is represented in gray.
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positive feedbacks over time, as Roundy et al. (2013)

showed that the duration wet coupling events increases

with increasing soil moisture. Future work will explore

whether land–atmosphere feedbacks can be identified

during these pluvial periods by employing the framework

at shorter time scales to analyze the duration of periods

with strong covariability, and during periods when soils

were more heterogeneous to better understand the role

of spatial feedbacks. A final key limitation to the study is

that much of the precipitation within this region is driven

by nocturnal convection (Wallace 1975), which is not

captured by this framework as it is afternoon-convection

focused (Findell and Eltahir 2003a). Differences in di-

urnal precipitation timing for 2007 and 2015 may have

also influenced the nature of the results presented.

Drought years showedmore consistency than wet years

within the CTP/HI z-score parameter space, and results

generally agreed with those for days with dry soils. Sen-

sitivity of forecast skill to initial soil moisture condi-

tions increases with magnitude of soil moisture anomalies

(Koster et al. 2011) while evapotranspiration becomes

more responsive to changes in soil moisture when soils

are drier (Phillips and Klein 2014; Williams et al. 2016). It

is thus no surprise that we find greater consistency in

surface–atmosphere covariability during drought periods.

The monthly breakdown of drought evolution and

percentage of days within the Q2 space (Fig. 11)

showed a large majority of days display above-normal

CTP and HI during the preceding month in the regions

where drought was already present, or where drought

intensified rapidly. Furthermore, the presence of drought

in western Oklahoma and the Texas Panhandle during

June, July, and August of 2011 (Fig. 12), may have re-

sulted in a reduction of precipitation farther to the east,

propagating drought via nonlocal feedbacks, via similar

mechanisms to those discussed in Koster et al. (2016).

During late spring of 2011 in Texas, anomalous

westerly winds advected warm dry air from the Mexican

plateau, which resulted in anomalously warm dry air

being observed at 850hPa (Fernando et al. 2016). Be-

cause of zonal topographic gradients, dry soils in the

Texas Panhandle and western Oklahoma might have

similar implications for the level in which HI is mea-

sured in eastern Oklahoma assuming a mean westerly

flow and minimal vertical transport. As such, elevated

percentages of Q2 in western Oklahoma (Fig. 11) that

slowly propagate eastward preceding the eastward

propagation of drought certainly suggest some degree

of covariability at the local and nonlocal scale. This is

evidenced by examining the monthly evolution of per-

sistence within Q2 as drought intensified and propa-

gated. The persistence in above-normal CTP and HI

indicate a progressively drier atmosphere that becomes

more hostile to convective precipitation. Drought in-

tensity was greater in western Oklahoma at the begin-

ning of July, but the percentage of days in Q2 was above

60% for most stations from southwest Oklahoma to

northeast Oklahoma. Few stations had Q2 percentages

below 60% in southeast Oklahoma during July, and by

August many were above 80%. This accompanied the

intensification of drought from D0 (abnormally dry) on

1 July to D3 (extreme drought) by 1 September in the

southeastern part of the state. The August to September

change in drought is weakest where the Q2 percentages

are also weakest during August.

When all years are considered, this interannual vari-

ability in mean warm season CTP and HI z scores is

evident (Fig. 13). Drought years (2006, 2011, 2012) have

FIG. 12. U.S. Drought Monitor Classifications for (left) 31 May and (right) 30 Aug 2011. (Image credit: U.S. Drought Monitor; Svoboda

et al. 2002.)
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similar mean tendencies toward Q2, while wet years are

more variable. During the pluvial cases, large-scale at-

mospheric drivers played a significant role in generating

anomalous precipitation; however, covariability between

the land surface and atmosphere during 2007 is much

more consistent with the wet soil case.

This study shows significant differences in the atmo-

spheric profile between quadrants, demonstrating the

framework’s ability to capture different atmospheric

preconditioning for different hydrometeorological ex-

tremes. When drought versus pluvial years are consid-

ered, the large differences in the distributions of CTP

andHI z scores between the two displays some degree of

covariability between precipitation extremes observed

at the land surface, and CTP/HI z-score extremes within

the atmosphere.

One unexpected result is the large difference in dis-

tributions of CTP/HI z scores for 2007 and 2015, as well

as the overall tendency for extreme z scores to be ob-

served during hydrometeorological extremes. The sta-

tistical significance of the difference between extreme

years and climatology suggests that there is covariability

between the land surface and CTP/HI z scores during

hydrometeorological extremes at the seasonal scale.

Such results are somewhat contradictory of previous

analyses with applications of the CTP/HI framework

(Roundy et al. 2013; Roundy and Santanello 2017) that

suggest coupling is more likely for cases when CTP and

HI are less extreme. The analysis presented here is

performed at the seasonal time scale, and as such does

not capture the smaller time scales at which coupling

was observed in Roundy et al. (2013).

5. Conclusions

The primary objective of this study is to 1) introduce a

modified CTP/HI framework that is flexible to various

datasets and local climatology and 2) present initial re-

sults from application of the framework at a seasonal to

interannual scale. The modified framework reflects the

varying instability and moisture characteristics of the

atmosphere for each quadrant, and shows how these

characteristics covary with soil moisture and for pre-

cipitation extremes.

While a difference in atmospheric preconditioning,

as represented by CTP/HI, is identified for drought,

pluvial, and soil moisture extremes, these patterns are

far more consistent for drought than pluvial cases. The

difference in distributions of CTP/HI standardized

anomalies from year to year further displays interannual

variability in coupling metrics identified in previous

work (Guo and Dirmeyer 2013; Basara and Christian

2018). Within this interannual variability is a relatively

consistent separation of drought and pluvial distribu-

tions in the CTP/HI parameter space. While this study

is focused on seasonal time scales, several important

results arose from this study:

1) The composite differences in CTP and HI z scores

over dry versus wet soils are statistically significant,

suggesting covariability between the atmosphere and

land surface is manifested in the CTP/HI z-score

distributions.

2) Similarly, the magnitudes of the differences in CTP/

HI z-score distributions for drought versus pluvial

years demonstrates a persistence in CTP/HI z scores

that is similar among these extreme years.

3) There is greater variability in CTP/HI z scores

among pluvial years than for drought years likely

because of differences in the large-scale atmospheric

drivers of pluvial events as well as the strength of the

role of land–atmosphere coupling in these cases.

Such differences between pluvial years warrant fur-

ther exploration.

4) During 2011, the percentage of days within Q2

showed both local and nonlocal covariability with

drought intensity. The greatest percentage of days

within Q2 began where drought was most intense at

the onset of the warm season and spread eastward

with drought, demonstrating the utility of the CTP/HI

FIG. 13. Warm season (May–September), statewide climatology

of CTP and HI z scores by year. The center of each ellipse repre-

sents the mean z score for that year, while the width represents one

standard deviation in CTP z scores for the year and the height

represents one standard deviation in HI z scores for the year.

Numbers in parentheses next to each year in the legend represent

the statewide warm season precipitation rank for the year with

1 being the driest and 16 being the wettest.
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z-score framework for evaluating the role of land–

atmosphere coupling in evaluating drought intensi-

fication and propagation. This framework may hold

fundamental clues about the evolution of atmospheric

conditions that are favorable for drought onset before

the land surface responds, providing a greater op-

portunity for seasonal and subseasonal predictability

of drought and greater lead time for agricultural

stakeholders.

5) There exists significant interannual variability in the

CTP/HI z-score parameter space (Fig. 13). While

many years were clustered together, there were sev-

eral years that also stand out; not surprisingly, these

were the years with the greatest precipitation ex-

tremes including 2007, 2006, and 2011. Such findings

demonstrate the utility of the revised CTP/HI

framework for diagnosis and prediction of hy-

droclimate extremes, especially in drought cases.

The current study presents a modified CTP/HI

framework that depends on local climatology and thus

can be compared across time and space. This framework

demonstrates distinct differences in the distribution of

CTP/HI z scores across hydrometeorological extremes,

especially for pluvial years. As noted in previous work,

coupling often occurs over shorter time scales than the

seasonal scale used here, and therefore future work will

explore the variations in CTP and HI z scores at finer

temporal scales to better understand the differences

observed during pluvial years as well as the relative

contribution of coupling to both drought and pluvial

extremes.
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