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Abstract

Predicting RNA-binding protein (RBP) specificity is important for understanding gene
expression regulation and RNA-mediated enzymatic processes. It is widely believed that
RBP binding specificity is determined by both the sequence and structural contexts of
RNAs. Existing approaches, including traditional machine learning algorithms and more
recently, deep learning models, have been extensively applied to integrate RNA sequence
and its predicted or experimental RNA structural probabilities for improving the accuracy of
RBP binding prediction. Such models were trained mostly on the large-scale in vitro data-
sets, such as the RNAcompete dataset. However, in RNAcompete, most synthetic RNAs
are unstructured, which makes machine learning methods not effectively extract RBP-bind-
ing structural preferences. Furthermore, RNA structure may be variable or multi-modal
according to both theoretical and experimental evidence. In this work, we propose Thermo-
Net, a thermodynamic prediction model by integrating a new sequence-embedding convolu-
tional neural network model over a thermodynamic ensemble of RNA secondary structures.
First, the sequence-embedding convolutional neural network generalizes the existing k-mer
based methods by jointly learning convolutional filters and k-mer embeddings to represent
RNA sequence contexts. Second, the thermodynamic average of deep-learning predictions
is able to explore structural variability and improves the prediction, especially for the struc-
tured RNAs. Extensive experiments demonstrate that our method significantly outperforms
existing approaches, including RCK, DeepBind and several other recent state-of-the-art
methods for predictions on both in vitro and in vivo data. The implementation of ThermoNet
is available at https://github.com/suyufeng/ThermoNet.

Author summary

RNA-binding proteins (RBPs) play a key role in modulating various cellular processes,
including transcription, alternative splicing, and translational regulation. Identifying pro-
tein-RNA interactions and the binding preferences of RBPs are critical to unraveling the
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mechanism of post-transcriptional gene regulation. In the current study, we present a
computational approach that integrates both structure and sequence contexts for protein-
RNA binding prediction. We propose to incorporate the structure information using a
thermodynamic ensemble of secondary structures, which effectively identifies RBP-bind-
ing structural preferences, especially for structured RNAs. Our model is further empow-
ered by a deep neural network that combines the sequence and structure information to
achieve improved protein-RNA binding prediction. Extensive experiments on both in
vitro and in vivo datasets demonstrate the superior performance of our method compared
to several state-of-the-art approaches. This study suggests the great potential of our
method as a practical tool for identifying novel protein-RNA interactions and binding
sites of RBPs.

Introduction

RNA-binding proteins (RBPs) modulate the processing of cellular RNAs, including their pro-
duction, transportation, splicing, stability, translation, and degradation [1, 2]. There are more
than 1,500 RBPs in the human genome which are identified with well-defined RNA-binding
domains (RBDs) [3], including the RNA recognition motif (RRM) [4], the K-homology
domain (KH) [4], and the C3H1 zinc-finger (ZF) domain [5]. Existing studies on different
RNA binding domains indicate that their interaction specificities with RNAs are determined
by various sequence- and/or structure-specific patterns. For example, sequence motifs on hair-
pins or loops are more accessible to many RBPs, while some RBPs, such as RBM22, RBM6 and
PRR3, show a structural preference on bulged stems [6]. Understanding of the sequence/struc-
ture specificity of RNA-binding proteins is therefore critical for developing hypotheses and
models of post-transcriptional gene regulation [7].

In vitro and in vivo methods have been developed for determining RBP binding specifici-
ties. RNAcompete is a high-throughput in vitro assay that quantifies the relative affinity of a
specific RBP to a pre-defined set of more than 240,000 short RNAs. In a recent work, more
than 200 human RBPs are analyzed by RNAcompete, generating the first large-scale dataset of
protein-RNA interaction measurements [8]. A major limitation of RNAcompete is that the
designed RNAs are only 41nt long and not structurally stable, therefore the motifs identified
by this approach are predominantly in short unstructured contexts. SELEX (systematic evolu-
tion of ligands by exponential selection) [9] iteratively selects a set of high-affinity RNA
sequences from a large pool, similar to the evolutionary procedure used in optimization,
which is generally biased or suffers from undersampling. Different from in vitro methods,
high-throughput in vivo techniques have been developed to measure genome-wide RBP-RNA
interactions in their cellular contexts. For example, CLIP-seq, RIP-seq and their variants [10,
11] provide high-resolution protein-RNA binding sites. However, it is usually not easy to
clearly derive binding motifs from these experiments, because of the existence of protein cofac-
tors, technical artifacts, RNA folding, and high levels of noise or non-specific background.
Therefore, learning algorithms for computational prediction of protein-RNA binding from in
vitro data may be less affected by the noise and provide insights that can be generalized to in
vivo data.

Different computational methods have been introduced to protein-RNA binding predic-
tion. Traditionally, the sequence specificities of an RBP is most commonly modeled by posi-
tion weight matrix (PWM) [12] or hidden Markov models, which are solely based on the
biases or enrichments of nucleotides on the binding sites. Such models can be learned from a
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collection of RNA sequences with high binding affinities. To take RNA structure into consid-
eration, MEMERIS [13] applies MEME [14, 15] to identify binding sites in unpaired loop
regions. RNAcontext [16] learns a joint probabilistic model of both sequence and structure
contexts. RCK [17], a recent improvement of RNAcontext, uses k-mer based contexts incorpo-
rating both sequence- and structure-based binding preferences. More recently, deep learning
methods have been adapted to protein-RNA binding prediction. DeepBind [18] and DLPRB
[19] utilize convolutional neural networks (CNN) to jointly extract binding preferences from
both RNA sequence and structure and demonstrate substantial improvements, compared to
previous approaches.

In both deep learning approaches, DeepBind [18] and DLPRB [20], RNA sequence contexts
are modeled by a small number of convolutional filters, each resembling a k-mer or a binding
site. RNA structural contexts are represented as a probability matrix for structure types (paired
(P), hairpin loop (H), inner loop (I), multi-loop (M) or external region (E)) [16], each measur-
ing the thermodynamic average of a structure type of the full ensemble of all possible struc-
tures. This matrix can be computed by an RNA folding algorithm with dynamic programming
[21]. Models in both DeepBind and DLPRB were trained on the large-scale in vitro RNAcom-
pete dataset. However, in RNAcompete, most synthetic RNAs are unstructured, which makes
deep learning methods not effectively identifying RBP-binding structural preferences. Further-
more, RNA structure may be variable or multi-modal according to both theoretical and experi-
mental evidence. In this work, we propose ThermoNet, a thermodynamic prediction model by
integrating a new sequence-embedding convolutional neural network model over a thermody-
namic ensemble of RNA secondary structures. First, our sequence-embedding convolutional
neural network generalizes the existing k-mer based methods by jointly learning convolutional
filters and k-mer embeddings to represent RNA sequence contexts. In this way, each k-mer is
represented by a low-dimensional continuous vector, and convolutional filters combine a set
of k-mer embeddings of consecutive positions and their corresponding structural contexts,
thus providing more flexibility and higher expressiveness. Second, the thermodynamic average
of structure-specific predictions explores structural variability and improves the prediction
especially for the structured RNAs in in vivo datasets. Structural contexts in the high-probabil-
ity structures are not simply averaged but used for providing structure-specific predictions.
Extensive experiments demonstrate that our method significantly outperforms existing
approaches, including RCK, DeepBind, DLPRB and several other recent state-of-the-art meth-
ods for predictions on both in vitro and in vivo data.

Materials and methods

We introduce a deep learning-based thermodynamic prediction model for protein-RNA bind-
ing prediction. The model integrates both sequence information and structural contexts to
better capture RBP-binding preferences. As an overview (Fig 1), our method takes an RNA
sequence as input and extracts informative features from the sequence and a thermodynamic
ensemble of its corresponding secondary structures. A deep convolutional neural network is
used to integrate the sequence and structure information and produce the prediction of bind-
ing affinity. We have two main contributions here: first, we use a sequence-embedding convo-
lutional neural network (CNN) to represent each k-mer as a low-dimensional continuous
vector, which is more flexible and expressive than previous methods that directly apply CNN
on nucleotides [18, 22] or solely use traditional k-mer based features [17]; second, we use a
thermodynamic ensemble of RNA secondary structures to explore the structural variability
and provide structure-specific predictions—this differentiates our method from previous
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Fig 1. (A) Overall framework of ThermoNet. (a) Our model receives the RNA sequence as the input and k-mers with various lengths are
extracted as sequence features. (b) Each k-mer is mapped to a low-dimensional continuous vector (called sequence embedding) through an
embedding layer to construct a sequence representation of the input sequence. (c) An ensemble of possible secondary structures of the input
RNA are sampled using the RNAsubopt function of Vienna RNA package. (d) High-probability structures from the structure ensemble are
encoded using one-hot representation separately and the remaining structures are summarized by averaging their one-hot representations into
an average structure profile. (e) Each of the high-probability structures is integrated with the sequence embedding by a convolutional neural
network (CNN) to produce structure-specific predictions. The average structure profile is also combined with the sequence embedding to
generate a prediction. (f) The final predicted protein-RNA binding intensity is obtained by computing the weighted average of individual
predictions. (B) Prediction network structure. The convolutional neural network takes the sequence embedding and secondary structure
representation as input. The network is composed of multiple 1D convolutional kernels, followed by a batch normalization layer, a ReLU
activation layer and fully-connected (fc) layer. The output of the network is the predicted binding intensity for the input RNA.

https://doi.org/10.1371/journal.pcbi.1007283.9001
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approaches that simply collapse the set of (predicted) secondary structures by taking the aver-
age, in which the structure-specific information of high-probability structures may be mixed.
We describe the details of our method below.

Input sequence and structure representations

An RNA sequence of length ¢ is a string of £ nucleotides over the alphabet {A, C, G, U}. We
represent the sequence using the one-hot encoding scheme, where A, C, G and U are repre-
sented by [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively. The secondary struc-
ture of the RNA is a string of the same length ¢ over the alphabet {P, H, I, M, E}, representing
the five types of structural contexts, namely, paired (P), hairpin loop (H), inner-loop (I),
multi-loop (M) or external region (E). Existing approaches, including DeepBind [16, 18],
DLPRB [20] and RCK [17], represent the structural context of a position as a five-dimensional
distribution vector corresponding to the probabilities of each type of structural contexts pre-
dicted by an RNA folding algorithm such as RNAplfold [21]. If only a specific structure is con-
sidered, the five-dimensional vector becomes one-hot.

Extracting sequence context features using k-mer embeddings

To better extract informative features from the RNA sequence, we propose a sequence-embed-
ding convolutional neural network that first augments sequence features with k-mers and then
uses a convolutional neural network (CNN) to extract higher-order features.

It has been demonstrated that incorporating k-mer based features, in addition to nucleo-
tide based features, can encode larger sequence contexts, model dependencies between bind-
ing site positions and thus improve the prediction performance [17]. Here we generalize this
approach to account for k-mers with various lengths (e.g., k=1, .., 5). The straightforward
way is to simply concatenate k-mers with various lengths together and encode it using one-
hot representation. However, the dimensionality of this representation increases exponen-
tially (4%), which poses computational challenges in the prediction. To address this, we apply
the embedding layer that is widely used in deep learning to do dimensionality reduction. The
embedding layer can be thought of as a look-up table, which maps the 4*-dimensional one-
hot vector to a d-dimensional continuous vector. The values of the d-dimensional vector are
not pre-specified but rather learned from the data during the model training process. For an
input RNA sequence of length € and a fixed k-mer length k, the output of the embedding
layer is a matrix with dimension € x d, in which the i-th row is the low-dimensional represen-
tation of the k-mer starting at the position i (k-mers go beyond the RNA sequence length are
zero-padded). To account for various k-mer lengths (i.e., k=1, ..., k,,,), we stack the repre-
sentations of each k-mer length to produce a sequence representation matrix E with dimen-
sion € x k,,d where k,,d < 4. These low-dimensional representations of k-mers will be
integrated by a CNN to further capture the higher-order dependencies in the RNA sequence
(described below).

Compared with existing approaches, our method has more flexibility and higher expressive-
ness in extracting sequence features: Unlike RCK [17] that uses k-mer based features with only
a specific length (k = 5), our method is more flexible in that it can handle various lengths of k-
mers through a dimensionality reduction process, capturing multi-resolution local sequence
information. cDeepbind [22] directly applies CNN on nucleotide based input features, while
our method incorporates k-mer based features and then uses a CNN on top of the k-mer
embeddings to further extract higher-order features, providing richer information from the
RNA sequence.
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Incorporating thermodynamics contexts using an ensemble of structures

Previous studies have shown that RNA secondary structure information can provide addi-
tional prediction power in predicting protein-RNA binding [17, 20, 22]. These methods use
the RNA secondary structure context profiles predicted by RNAplfold [16, 21], which is a five-
dimensional vector of the probabilities of five contexts (paired, hairpin loop, inner loop, multi-
loop or external region) for each position in the sequence. The structure context profile can be
thought of as an ‘average’ of all possible secondary structures. However, informative structural
features of high-probability structures may be buried in this uniform average. To enable struc-
ture-specific prediction, we propose to sample an ensemble of possible structures for a given
RNA sequence. Each of the high-probability structures is then integrated with the sequence
features to give structure-specific predictions separately, and the final prediction is obtained
by combining the structure-specific predictions.

Specifically, for a given RNA sequence, we sample N possible secondary structures using
the RN Asubopt function of the ViennaRNA package [21], which draws a specific structure
with probability proportional to its Boltzmann energy. In our experiment, we choose N = 100
for computational consideration and we also found that an ensemble of this size generally
reflects the distribution of the secondary structures of an RNA sequence. We then identify
high-probability structures by counting the occurrence for each unique structures of the N
sampled structures. Denote the U unique structures by Ry, R,, . . ., Ry and their associated fre-
quency by my, my, .. ., my, where R; (1 <i < U) is a £ x 5 one-hot matrix that represents the
structural contexts of the i-th sampled structure. Here we assume the unique structures are
sorted in descending order of their frequencies, i.e., m; > m, > ..., >my. The top T structures
are considered as high-probability structures. The choice of the value of T is a joint consider-
ation of structures diversity and computational cost: we want to include more high-probability
structures, while also prevent T being too large otherwise the model training and prediction
would be inefficient. Based on the analysis of the frequency histogram, we found T'=5isa
good balance between structures diversity and computation efficiency for both in vitro and
in vivo datasets (S1 Fig and S1 Table). For example, in the in vitro dataset, the top 5 unique
structures are highly frequent, contributing ~ 50% frequencies in all sampled structures. To
reduce noise, we thus consider the top T structures as high-probability structures, while for the
remaining U — T structures, we summarize their structure information by computing an aver-
age structure profile

U

R, = Z '—LR (1)

j=U i
i=T11 Zj:T+1 m;

Next, we build a series of rank-specific neural networks (described below) f, , f,» - - - fy.»
parameterized by 0;, . . ., O, respectively. Each neural network takes as input one of the high-
probability structures R; as well as the sequence embedding E to produce a structure-specific
prediction (a binding intensity). We also build an additional neural network f, = that makes
the prediction based on the average structure profile and the sequence embedding. Predictions
of each individual neural network are combined as a weighted average to give the final predic-
tion f(s) for an RNA sequence s,

f6) = DA EBR) + (1 - Z%)f (ER;.,) @

i=1

Note that previous methods like cDeepbind [22] make predictions using only the average
structure profile as input, in which the structure-specific information may not be revealed. In
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contrast, our method, while accounting for the average structure profile, also explicitly teases
high-probability structures apart from the uniform average profile to enable structure-specific
predictions.

Convolutional neural network as base predictor

Deep learning continues to proliferate as a powerful set of tools to solve an increasingly diverse
range of problems, including many in structural and systems biology [23-29]. We use the con-
volutional neural network (CNN) as the base model fy to predict protein-RNA binding, where
0 represents the network weights. CNNs are useful when local groups of data with high corre-
lation and forming distinct patterns by combining lower level features and capturing more
complex feature dependencies in the sequence input. In our model, we stack five convolutional
layers. Every layer contains several one-dimensional convolutional kernels, each of which pro-
duces an output with the same size of the input. After applying the batch normalization tech-
nique [30] to the intermediate output from kernels, we fed it to the ReLU activation function
[31] and give the output to the next convolutional layer. Following the last convolutional layer,
we append a fully-connected layer to produce the predicted binding intensity of the protein-
RNA binding. The overall structure is depicted in Fig 1B. Please refer to Results section for
parameter-tuning details. In order to improve the training stability of ThermoNet, we train
the T'+ 1 models individually. Each model f, was trained using stochastic gradient descent to
find the parameters of the embedding layer and CNNs that minimize the following loss func-
tion

L= LHuber()’svfe, (E’ Ri)) (3)

where y, is the (normalized) binding affinity of the RNA s to a given protein, f, (E, R;) is the
predicted binding intensity by the model, and Li,p.e,() is the Huber loss, which is defined by

Ly, —f(s)" i [y —f(s)| <1

4
. —f(s)| — ! otherwise (4)

Liwoer(V: £ (5)) = {

We choose Huber loss as it is less sensitive to outlier data points than the squared error loss.

Results
Implementation

We performed the grid search to find the optimal hyperparameters of our model and chose
the one with the lowest validation cost using a two-fold cross-validation on the training data.
In particular, we grid-searched the initial learning rate in {0.001, 0.0001, 0.00001}, the filter
lengths in {7, 12, 16}, the number of convolutional kernels in {16, 64}, the regularization coeffi-
cient of the L, norm in {0.001, 0.0001, 0.00001}, the size of sequence embedding vector in {10,
20, 30} and the maximum k-mer length k,, in {2, 3, 4, 5}. A total of five convolutional layers
were stacked in the CNN. All CNN parameters were initialized by Xavier initializer [32]. We
chose Huber loss to define the loss function and Adam [33] as the optimizer for training the
network. We reduced the learning rate to one-tenth of the previous one after the 5th epoch.

Evaluation of prediction performance on in vitro data

We first assessed the prediction ability of our method using in vitro protein-RNA binding
dataset. We used the comprehensive RNAcompete dataset [8] which includes binding intensi-
ties for over 240,000 sequences across 244 experiments. The dataset consists of a training set of
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Fig 2. (A) Comparison between ThermoNet and four state-of-the-art methods in predicting in vitro binding.
Performances were evaluated using the Pearson correlation between the predicted and measured binding intensities.
Points in each box plot represent the 244 experiments in the RNAcompete [8] dataset. (B)-(C) Pairwise comparisons of
ThermoNet to RCK [17] and DLPRB-CNN [20], respectively. The p-values were calculated using one-sided Wilcoxon
singed rank test.

https://doi.org/10.1371/journal.pcbi.1007283.9002

sequences (set A) and a test set (set B). For each experiment, we trained a model on sequences
extracted from set A and then predicted the intensities for sequences from set B. To evaluate
the performance, we used the Pearson correlation between predicted and measured intensities
on set B as the metric. Similar to Deepbind [18], we removed outlier intensities in the dataset:
we clamped all intensities greater than the 99.5 percentile to the 99.5 percentile. Furthermore,
the scores were normalized to have a mean of zero and a variance of one.

We compared our method against four existing methods that use both sequence and struc-
ture information for protein-RNA binding prediction, including two probabilistic model
based method—RNAcontext [16] and RCK [17], and two deep learning algorithms—DLPRB
with the CNN network (DLPRB-CNN) [19] and cDeepbind with the CNN network (cDeep-
bind-CNN) [22]. We found that our method consistently outperformed all other methods
(Fig 2A) with an average Pearson correlation of 0.6710 over all proteins, compared to 0.4344,
0.4600, 0.6058 and 0.5061 for RN Acontext, RCK, DLPRB-CNN and cDeepbind-CNN,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007283 September 4, 2019 8/14


https://doi.org/10.1371/journal.pcbi.1007283.g002
https://doi.org/10.1371/journal.pcbi.1007283

.@' PLOS COMPUTATIONAL
Z) : BIOLOGY Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction

respectively. The relative improvements achieved by our method over the for methods were
54.46%, 45.87%, 10.76% and 32.58%, respectively. In a pairwise comparison to the best per-
forming probabilistic model RCK and the best performing deep learning model DLPRB-CNN
(Fig 2B and 2C), we observed that our method achieves significantly higher Pearson correla-
tion than the two baseline methods (Wilcoxon signed rank test p-value 4.50 x 10~** and

4.82 x 107°%, respectively). Moreover, we found that the improvements achieved by Thermo-
Net are not biased toward certain predominant RNA binding domains (S2 and S3 Figs). For
example, investigating the histogram of relative improvements achieved by our method (54
Fig), we found that the subset of RBPs with the most noticeable improvements covered a wide
range of RNA binding domains. Raw numbers of prediction performance of all methods in
this experiment can be found in S2 Table.

Evaluation of prediction performance on in vivo data

We then assessed the performance of ThermoNet on in vivo protein-RNA binding dataset. We
obtained a large-scale dataset of RBP binding sites from a previous work [34], including a com-
pendium of 31 published CLIP-seq experiments on 19 RBPs. In this dataset, nucleotide posi-
tions with the highest cDNA counts were first identified as a pool of positive samples. A
random sampling process preventing consecutive genomic positions was then applied to
reduce the redundancy. Negative sites were randomly sampled from genes that were not
detected as positive sites in any of the 31 experiments. Each experiment consists of 40,000 sam-
ples divided into a training set of 20,000 samples and a test set of 20,000 samples. The length of
each RNA sequence is 101nt. Unlike the in vitro dataset that gives a real-valued binding inten-
sity for every binding event, the in vivo dataset only gives a binary label (0 or 1) based on the
c¢DNA counts to indicate whether a protein binds to an RNA or not. Therefore, we treated the
prediction for in vivo data as a binary classification problem and used AUROC (Area Under
the Receiver Operating Characteristics) as the evaluation metric.

We compared ThermoNet against two state-of-the-art deep learning algorithms, DeepBind
and DLPRB-CNN (Fig 3), using the average of the AUROC:s over the 31 experiments as the
evaluation metric. We found that ThermoNet outperformed the other two methods, achieving
an average AUROC of 0.864 against 0.835 for DLPRB-CNN and 0.836 for DeepBind. In a
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Fig 3. Pairwise comparisons of ThermoNet to (A) DLPRB-CNN and (B) DeepBind in in vivo binding. AUROC
was used as the evaluation metric. Each point in the scatter plot represents one of 31 CLIP-seq experiments. The p-
values were calculated using one-sided Wilcoxon singed rank test.

https://doi.org/10.1371/journal.pchi.1007283.g003
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pairwise comparison of ThermoNet to DeepBind and DLPRB-CNN over the 31 experiments,
we observed that the improvement gaps between ThermoNet and the two methods were also
statistically significant (Wilcoxon signed rank test p-value 4.53 x 10™° and 2.11 x 10° for
DLPRB-CNN and DeepBind, respectively). Raw numbers of prediction performance of all
methods in this experiment can be found in S3 Table.

Ablation analysis of ThermoNet

Having demonstrated the superior prediction ability of ThermoNet for both the in vitro and in
vivo bindings, we proceeded to perform an ablation analysis to explain the sources of perfor-
mance improvements achieved by ThermoNet. We built several variants of ThermoNet to
investigate the importance of different novel designs in ThermoNet. The variants include i)
“I-struc”: using only 1-mer and the average structure profile as input; ii) “k-no-struc”: using k-
mers of various lengths and without using structure information as input; iii) “k-struct”: using
k-mers of various lengths and the average structure profile as input; and iv) “k-struc-sampling”:
the full model, i.e., using k-mers of various lengths, individual secondary structures and aver-
age structure profile as input. All variants were trained and tested on the aforementioned in
vitro dataset. We evaluated the performance of each variant using the average Pearson correla-
tion over the 244 experiments in the in vitro dataset and the 31 experiments in the in vivo data-
set (Fig 4; Detailed results in S4 Table).

We first observed that the k-struc model (green) improves the 1-struc model (blue) with a

pronounced gap (average correlation 0.663 compared to 0.620 for the in vitro dataset and
AUROC 0.861 compared to 0.856 for the in vivo dataset). Note that previous methods such
as DeepBind, cDeepbind and DLPRB only used single nucleotide based sequences. The
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Fig 4. Ablation analysis of various designs in ThermoNet using (A) in vitro and (B) in vivo datasets. Several variants of ThermoNet were
built and evaluated, including I-struc (blue): training only one CNN with 1-mer representations and averaged secondary structure information.
k-no-struc (brown): training only one network with various k-mer representations but without any structure information. k-struc (green):
training only one CNN with various k-mer representations as well as averaged structure information. k-struc-sampling (red): training various
networks for individual secondary structures. All variants received the sequence embedding settings as input. x: one-sided Wilcoxon signed

rank test p-value < 0.05.

https://doi.org/10.1371/journal.pchi.1007283.g004
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improvements of our method over these methods can thus be partially explained by the richer
sequence information we have captured in the k-mer embedding process of our method.

In addition, the performance gap between the k-struc model (green) and the k-no-struc
model (brown) was not significant: on the in vitro dataset, the k-struc model achieved an aver-
age correlation of 0.663 as compared to 0.661 for the k-no-struc model; on the in vivo dataset,
both models achieved an AUROC of 0.861. The only difference between these two models is
that k-struc used the average structure profile but k-no-struc did not. As the average structure
profile is a uniform average of all sampled secondary structures, informative features of high-
probability structures that are useful for protein-RNA binding prediction may not be revealed
by the average profile, and thus the performance improvement was not significant. The small
performance gap between the two variants may also be explained by the high expressiveness of
the sequence embeddings, which already capture the information that the average structure
profile can provide for the binding prediction.

Moreover, we found that adding individual high-probability structures as input (the k-
struc-sampling model) further improved the prediction performance of the k-struc model
(average correlation 0.671 compared to 0.663 for the in vitro dataset and AUROC 0.864
compared to 0.861 for the in vivo dataset). This result highlights the effectiveness of using the
thermodynamic ensemble of secondary structures in ThermoNet. The unique features of
structured RNAs revealed by the high-probability structures and the thermodynamic average
of structure-specific predictions have resulted in a substantial improvement over existing
methods.

Discussion

We have introduced ThermoNet, a deep learning-based thermodynamic model for protein-
RNA binding prediction. ThermoNet incorporates the thermodynamic and sequence con-
texts by integrating a sequence-embedding convolutional neural network over a thermody-
namic ensemble of RNA secondary structures. The model both explores structural variability
and captures the higher-order dependencies in the RNA sequences, providing richer infor-
mation and higher expressiveness for protein-RNA binding prediction. In addition, high-
probability structures are utilized in ThermoNet to better extract informative structure fea-
tures that enable structure-specific predictions. We compared ThermoNet to multiple state-
of-the-art methods for protein-RNA binding prediction on both in vitro and in vivo binding
datasets, and ThermoNet has achieved substantial improvements over other methods on
both datasets. Ablation study performed on a series of ThermoNet also demonstrated the
effectiveness of multiple novel designs in ThermoNet that lead to improved prediction
performance.

ThermoNet is a flexible and scalable model that can be applied to a broad range of RNA-
binding proteins. We expect ThermoNet to be an effective tool in practice for identifying
novel binding sites for RBPs. In addition to its direct application in protein-RNA binding
prediction, multiple novel model designs of ThermoNet can also be used as a stand-alone
tool in other applications. For example, the sequence-embedding convolutional neural net-
work can also be applied to understand signals in biological sequence data of other molecular
events, including transcription factor (TF) binding, DNA accessibility, and histone modifica-
tion. Interpreting the ThermoNet model is one of the directions worth pursuing in future
work. A better understanding of what the deep learning model has learned, for example,
what sequence and structure motifs contribute to protein-RNA binding, may reveal new bio-
logical insights. A great challenge of protein-RNA binding prediction is the in vitro-to-in
vivo generalization. It was observed in previous works [17, 20] that a model trained on in

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007283 September 4, 2019 11/14


https://doi.org/10.1371/journal.pcbi.1007283

O PLOS

COMPUTATIONAL

BIOLOGY

Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction

vitro data did not perform very well on in vivo data, possibly due to the biases of different
experimental protocols [35]. We think the generalization requires not only a generalizable
prediction model but also an in-depth characterization of the in vitro and in vivo datasets.
Achieving a robust in vitro-to-in vivo generalization in protein-RNA binding prediction is
also one of our future directions.

Supporting information

S1 Table. Secondary structures frequency statistics in in vitro dataset and in vivo dataset.
This table is also available at https://github.com/suyufeng/ThermoNet/tree/master/
supplementary.

(XLSX)

$2 Table. Comparison of ThermoNet against RNAcontext, RCK, DLPRB-CNN and cDeep-
Bind-CNN on in vitro binding, measured using pearson correlation. This table is also avail-
able at https://github.com/suyufeng/ThermoNet/tree/master/supplementary.

(XLSX)

$3 Table. Comparison of ThermoNet against DLPRB-CNN and DeepBind on in vivo bind-
ing, measured using AUROC. This table is also available at https://github.com/suyufeng/
ThermoNet/tree/master/supplementary.

(XLSX)

S4 Table. Ablation study for various features on in vivo and in vitro binding. This table is
also available at https://github.com/suyufeng/ThermoNet/tree/master/supplementary.
(XLSX)

S1 Fig. Frequency histogram of unique sampled secondary structures in (A) in vitro and
(B) in vivo datasets. Structures are sorted from the most frequent to the least frequent in the
x-axis. The y-axis shows the average frequencies of structures across all RNAs in each dataset.
Structures ranked at the top T = 5 are colored in purple and the remaining structures are col-
ored in yellow.

(TIF)

S2 Fig. The distribution of the RNA-binding domains on the in vitro dataset (RNAcom-
pete).
(TTF)

S3 Fig. Pairwise comparisons of ThermoNet to (A) RCK and (B) DLPRB-CNN on the
RNAcompete dataset. Each point in the scatter plots represents an experiment in the RNA-
compete dataset and is labeled with a color specific to its corresponding RNA-binding
domain.

(TIF)

$4 Fig. The histogram of relative improvements achieved by ThermoNet. We compute the
relative improvement over DLPRB-CNN achieved by our method for each experiment in the
RNAcompete dataset. These relative improvements are sorted from the largest to the smallest
and then discretized into bins of percentiles (0", 10"], (10™, 25", (25™, 50™], (50™, 100""].
The normalized counts of each RNA-binding domain within each bin are shown in the histo-
gram. Note that the S1 binding domain has only one protein hence the relative count of the S1
domain in the (0*, 10”] bin is 1.0.

(TIF)
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