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ABSTRACT

Partitioning of multi-block structured grids impacts the perfor-

mance and scalability of numerical simulations. An optimal parti-

tioner should achieve both load balance and minimize communica-

tion time. The state-of-art domain decomposition algorithms do a

good job at balancing the load across processors. However, even

if the work is well balanced, the communication cost might not

be. The two main factors that impact communication cost are edge

cuts and communication volume. The current partitioners primarily

focus on reducing the total communication volume and rely on

simple techniques such as cutting at the longest edge which does

not capture the connectivity in the geometry. They also don’t factor

the effect of the network’s latency and bandwidth for partitioning

resulting in the same partition across all platforms. In addition,

their performance tests mostly adopt a flat MPI model where the

partition’s effect on communication is hidden by the fast shared

memory accesses between cores on the same node.

In this paper, we present new partitioning algorithms for multi-

block structured grids that address the above limitations of current

partitioners. The new algorithms include a cost function which not

only accounts for both the communication volume and edge cuts but

also takes into account the network’s latency and bandwidth. We

minimize the overall cost among all processors in an effort to create

optimum partitions. To demonstrate the efficiency of the proposed

algorithms, we test the partitioners with an MPI+OpenMP hybrid

model where MPI routines handle inter-node communication and

OpenMP threads take advantage of the shared memory within a

node. On the Mira supercomputer, our partitioners coupled with

a Jacobi solver demonstrate 5.5 − 15× speedup in communication

against a greedy algorithm on a synthetic multi-block structured

grid and 1.5× speedup on the Falcon Heavy Space-X grid consisting

of 769 blocks.
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1 INTRODUCTION

Evolution of physics-based simulations and Computational Fluid

Dynamics (CFD) in particular has fundamentally reshaped the de-

sign and engineering process in the last several decades. To simulate

physical phenomena numerically, the domain is discretized with a

grid. A PDE solver then computes the physical variables (such as

density and velocities) either in the cells or on the vertices of the

grid. When applying numerical methods to solve PDEs, the type of

grid determines the type of solver and target optimizations.

There are two main types of grids namely, structured and unstruc-

tured grids. Structured grids are characterized by regular connectiv-

ity between its grid cells. They have the advantage that the physical

grid maps ideally with the memory layout (cell i is adjacent to cell

i + 1, both physically and in memory) and each cell’s neighbor can

be accessed by simply shifting the cell’s index. Typically, structured

grids for complex geometries such as an aircraft or turbo-machinery

contain on the order of 100s of blocks.We call such gridsmulti-block

structured grids. On the contrary, unstructured grids lack regular

connectivity and can form arbitrarily connected shapes to capture

complex geometries.

To run a CFD application in parallel, the multi-block structured

or unstructured grid has to be further partitioned into sub-blocks

to be distributed among the processors. A łgood partitioner" should

balance the workload i.e., the number of grid cells, among the pro-

cessors to achieve load balance. The processors also communicate

to exchange data (called halo cells) at the boundary of their re-

spective computational domains (called block2block boundary) at

regular intervals during the simulation. This results in inter-node

communication when connected blocks reside on different proces-

sors. It is critical to minimize this communication. Therefore, the

partitioner has to also take into account the cost of communica-

tion which is both application-specific (the number of halo cells

is dependent on the numerical scheme) and architecture-specific

(the communication cost is network dependent). There are two

primary metrics that influence the cost of communication ś the

communication volume and the number of edge cuts. The former

denotes the volume of data transferred through the network and

the latter refers to the number of messages communicated between

processors. As a result, there are numerous factors and trade-offs

to consider when devising an optimal grid partitioner.

A grid can be represented as a graph. Several libraries exist such

as METIS [12], CHACO [13] which can partition unstructured grids.

However, a direct application of graph partitioners to structured

grids is not feasible since it fails to preserve the regular connectivity.

The work on partitioning structured grids can be categorized into

two classes ś top-down and bottom-up strategies. The top-down

strategy either cuts off chunks of large grid blocks or groups small

blocks to fill the capacity of available partitions. Greedy heuristics

are typically suitable for this type of approach. A classical algorithm

was proposed in [20] and later studies [1, 3, 5, 7, 18, 19] can all be
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viewed as an improvement of a greedy framework. The key idea

behind the bottom-up strategy is to treat a structured grid as a graph

of blocks and then apply a graph partitioner. For large scale parallel

simulations, the number of computation units, i.e., the number

of partitions needed is typically larger than the number of grid

blocks. To feed enough blocks to a graph partitioner, blocks are

cut into smaller sub-blocks and then partitioned as a graph of sub-

blocks [17]. Finally, the sub-blocks within the same partition are

merged. A large number of small sub-blocks are desirable for graph

partitioners but this is likely to result in excessive blocks and halo

regions which can, in turn, impact the communication cost [14].

Prior works [1, 3, 7, 14, 17ś20] mostly share the following draw-

backs. First, they mainly focus on reducing the total communication

volume by techniques such as cutting at the longest edge [3, 18, 20]

and edge cuts are only implicitly factored by avoiding splitting

block2block boundaries [19]. A cost function that estimates the

communication cost introduced by cutting and assigning blocks

which combines the communication volume and edge cuts is yet to

be explored. Second, current domain decomposition schemes have

only been studied in the context of a flat MPI or MPI-everywhere

model where each MPI process is mapped to one core. The latency

of data access within a node is significantly lower than accesses

across nodes. Therefore, the partitioner should largely consider the

cost of communication in the latter case. Finally, most partitioners

produce the same partition regardless of the underlying network.

Some researchers [5, 7] use the network bandwidth to estimate

the communication cost of assigning a block but ignore the net-

work’s latency. We argue that the communication cost should take

into account both the latency and bandwidth of the network. The

goal of this paper is to make a concerted effort to design portable

multi-criteria partitioners for multi-block structured grids.

To that end, this paper makes the following contributions.

• We use the α − β model to construct a cost function for inter-

node communication (Section 2). The cost function captures

both the total communication volume and the number of

edge cuts in the network. The latency, α , and bandwidth,

β values are measured empirically on the target platform,

which ensures the portability of our partitioner.

• Wedesign new top-down partitioning algorithms tominimize

the total communication cost estimated by the above cost

function. The algorithms are composed of new heuristics

to cut large blocks with a minimal increase in communi-

cation cost and to group small blocks to map block2block

boundaries to shared memory accesses (Section 2).

• We evaluate the quality of the proposed algorithms on two

3D geometries namely, a synthetic 5-block grid and the

SpaceX’s Falcon Heavy rocket consisting of 769 blocks. A

hybrid MPI-OpenMP Jacobi solver is used to evaluate dif-

ferent partition’s effect on performance (Section 3). On the

Mira supercomputer, the new algorithms outperform the

top-down greedy heuristic by 1.5 − 3× (Section 4).

2 DOMAIN DECOMPOSITION ALGORITHMS

In sections 2.1 and 2.2, we first describe one top-down and one

bottom-up algorithm as the baseline for comparison. Among the top-

down algorithms, the classical greedy heuristic [20] is most widely

used in CFD software such as elsA [9]. Although researchers [1, 19]

claim improvements over the greedy heuristic, their performance

enhancement is observed in the context of a flat MPI model. As a

result, the partitions’ effect on inter-node communication is not

entirely clear. In addition, their implementation details are not

available to re-produce their partitioners. Therefore we choose the

classical greedy heuristic as the baseline for top-down algorithms.

As for the bottom-up algorithm, the creation of sufficient small sub-

blocks is critical while the choice of the actual graph partitioner is

not as important. Therefore, we choose METIS for its popularity

and widespread use.

Given the number of partitions, P , the blocks are divided into

large and small sub-blocks based on the averageworkloadW i.e., the

average number of grid cells in a partition. A top-down partitioner

must handle two tasks ś (a) cut large blocks into sub-blocks such

that each sub-block fits in one partition, and (b) group small blocks

to fill remaining partitions. A small block may also be cut if the

partition’s remaining capacity is not large enough. In section 2.3,

we propose a cost function based on the well-known α −β model to

decide which block to cut/group such that the communication cost

is minimized. In the following sub-sections 2.4 - 2.7, we develop

new algorithms for cutting large blocks and grouping small blocks

based on the new cost function.

We explain the different partitioning strategies using an example

synthetic grid called Bump3D which consists of 5 blocks as shown

in Figure 1. Bump3D has one block that is significantly larger than

the others which challenges the algorithms’ ability to cut large

blocks. Note that although Bump3D is synthetic, it resembles the

flow through a pipe with outlets on the sides.

(a) Geometry

Block ID Size

0 224 × 64 × 80

1 16 × 16 × 16

2 16 × 32 × 16

3 16 × 48 × 16

4 16 × 64 × 16

(b) Block Sizes

Figure 1: Illustration of the geometry of the Bump3D grid

with 5 blocks and its corresponding block sizes.

2.1 Greedy Algorithm

The greedy algorithm [20] chooses the largest unassigned block (i.e.

the maximum number of grid cells) and the most underload parti-

tion at any step. If the block exceeds the remaining capacity of the

partition, a sub-block is cut off to fill the remaining capacity and the

remainder is added to the list of unassigned blocks. Otherwise, the

entire block is assigned to that partition. The algorithm terminates

when all blocks have been assigned. To minimize communication

volume, the greedy algorithm always cuts across the longest edge.

In the greedy strategy, the cut position is round up to an integer,

which can result in load imbalance. For instance, if the largest block

has a size of 8× 8× 32 and the average workloadW = 544, splitting

along the longest edge at z = 8 or 9 would introduce 6.75% load
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imbalance. Evenworse, the algorithmmay fail if the smallest surface

of a block has more cells thanW . To address this limitation, we

propose the following solution. Given an imbalance tolerance ϵ , a

block of size Nx ×Ny ×Nz , Nx < Ny < Nz , and remaining capacity

R of the most underload partition, if a cut position cz satisfying

|R − NxNycz | < ϵW cannot be found along the longest edge, the

algorithm traverses possible cut positions cz and cy in the longest

and second longest direction tominimize the difference |R−Nxcycz |.

Once cut positions are located, the block is cut into four sub-blocks

and a block of size Nxcycz is assigned to the partition.

We denote the greedy algorithm [20] with the above fix as pure

greedy (PG). This algorithm still has two drawbacks. First, when

the prescribed load imbalance tolerance is small, it may create too

many small blocks and increase both the communication volume

and number of edge cuts. Second, the arrangement of small blocks

does not respect the connectivity of blocks and results in increased

communication volume. As seen from Figure 2a and Table 1, this

algorithm creates small blocks at the end of the original large block

and also result in large communication volume.

Table 1: Partition metrics of different algorithms for the

Bump3D grid when P = 16. The latency and bandwidth are

set to 10−5 (s) and 109 (bytes/s).

Algorithm Load imbalance Total Total Total

ratio volume edge cuts cost

PG 0.035 2.19E+06 60 2.79E-3

METIS 1 0.214 1.72E+07 138 3.35E-3

METIS 2 0.103 2.47E+06 38 2.85E-3

REB 0.047 1.57E+06 66 2.23E-3

IF 0.035 1.61E+06 66 2.27E-3

2.2 Bottom-up Algorithm

The bottom-up algorithm decomposes the original blocks into

smaller sub-blocks and partitions them using a graph partitioner

(the sub-blocks are treated as vertices of a graph). Sub-blocks within

the same partition are merged after partitioning. Graph partition-

ers like METIS move vertices between partitions to achieve load

balance and reduce communication cost. If there are too few ver-

tices to move or the vertices have large differences in weight, the

graph partitioner may produce imbalanced partitions. Therefore, it

is desirable to have the number of small sub-blocks to be at least

several times the number of partitions and to be of equal size.

In this paper, we examine two strategies. Both strategies try to

create sub-blocks of size one-quarter of the average workloadW .

The first method is to decompose the original blocks into elemen-

tary blocks [1] i.e., blocks with only one boundary condition on

each surface. If the elementary block is still too large to fit in one

partition, it is further cut by our IF algorithm proposed in section

2.5. The second method is to directly decompose the large blocks

with IF. As shown in Figures 2c and 2d, different decomposition

strategies can result in very different partitions. Clearly, the first

method results in too many sub-blocks in this case. The second

method generates simple connectivities in the graph of sub-blocks

and therefore easier to partition. Note that in Figure 2d, the four

original small blocks are grouped with their connected sub-blocks

in one partition. This shows that the graph partitioner preserves

(a) PG (b) IF

(c) METIS, elementary cuts (d) METIS, greedy cuts

(e) REB (f) REB α = 10−4

Figure 2: Partitions created by the different algorithms for

the Bump3D grid when P = 16. Blocks of the same color be-

long to the same partition.

the connectivity between blocks. However, it is also prone to load

imbalance and large communication cost compared with the other

algorithms as seen from Table 1.

2.3 Measure of Communication

The commonly used metrics for communication in both graph par-

titioning and domain decomposition are the total communication

volume and the total number of edge cuts. Top-down approaches

try to minimize the total volume but not the total number of mes-

sages. However, in some cases, latency can be more important than

volume. The time to send a message between two nodes consists

of two components ś startup time (or latency) and the time for

sending or receiving data which is proportional to the length of the

message. The cost of sending a message can be approximated by

the α − β model as,

tm = α + Smsg/β, (1)
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where α denotes the latency, Smsg is the size of the message in

bytes, and β is the bandwidth of the network. Summing this cost

over all the messages results in the following total cost.

Total cost = α · Total Cuts +
Total Volume

β

Therefore, the impact of communication volume and edge cuts

on the total cost depends on the chosen network’s latency and

bandwidth. For instance, in Table 1, the second partition created

by METIS has fewer edge cuts but a large communication volume.

The total cost based on specific α and β enables us to evaluate the

partition’s quality against other algorithms.

For a block2block boundary with surface area A, the communi-

cation cost tb2b (A) is given by

tb2b (A) = α +
A · #halo · Scell

β
. (2)

The number of halo layers (#halo) and the size of data per grid cell

(Scell) depend on the specific solver running on the partition. Using

Equation 2, the communication cost of a block can be computed by

summing the cost of all its block2block boundaries.

Note that we use the α − β model solely as a cost function to

capture both the communication volume and edge cuts rather than

as a prediction of the actual communication time. Such a prediction

would not be realistic since this model’s simple formulation is

derived from several ideal assumptions about the network such

as free of congestion, minimal queue lengths, etc [10]. To profile

the communication time accurately, more realistic models such as

logGPS [11] can be used and is beyond the scope of this work.

2.4 Find a Cut of Block

The elementary operation in partitioning a grid is to cut off a sub-

block of a given workload from a block. The function find_min_cut

shown in Algorithm 1 chooses the cut that adds the minimum

communication cost δtcut among all possible cutting positions

allowed by the imbalance tolerance, ϵ .

Algorithm 1 Find the cut of a block to fit in a given workload

1: function find_min_cut(B,Wcut , ϵ , cut, p)

▷ B: block to be cut.

▷Wcut : workload to be cut off

▷ ϵ : tolerance

▷ cut: data structure for cut info

▷ p: current partition (optional input, empty by default)

2: δtmin = ∞

3: for i = x, y, z do

4: Get area of i’s norm face Ai
5: posFloor = floor(Wcut (1 − ϵ )/Ai )

6: posCeil = ceiling(Wcut (1 + ϵ )/Ai )

7: for pos∈[posFloor, posCeil] do

8: δtcut =
∑

b2b ∋pos

α + tb2b (Ai ) −
∑

Bi ∈p

tb2b (cut,Bi )

9: if δtcut < δtmin then

10: δtmin = δtcut
11: cut.pos = pos

The communication cost of cutting a block, δtcut is computed in

line 8 of Algorithm 1. The first term includes the latency increase if

the cut splits any block2block boundary on the orthogonal surfaces

(each cutting plane is orthogonal to four surfaces of a block). Adding

this term allows the algorithm to align the sub-blocks’ boundary

with block2block boundaries. The second term adds the commu-

nication cost of the new surface created by the cut. When the cut

sub-block is assigned to partition p, the block2block boundaries

in contact with the blocks in p become shared memory accesses,

which is much faster than inter-node communication and therefore

subtracted from δtcut in the last term. The last term takes advan-

tage of the blocks’ connectivity to reduce overall communication

volume.

2.5 Cut Large Blocks

Given a large block that fits evenly inmultiple partitions, we present

two approaches for cutting such blocks namely, Recursive Edge

Bisection (REB) and Integer Factorization (IF ).

2.5.1 Recursive Edge Bisection (REB). The classical REB re-

cursively bisects the block at the longest edge until each resulting

sub-block fits in a partition. Such a bisection ignores the block2block

boundaries. As a result, when a bisection intersects a block2block

boundary, it increases the edge cut. We improve REB by using

Algorithm 1 to find the cut position such that it is aligned with

block2block boundaries. Our modified REB is outlined in Algorithm

2. Note that the imbalance from the first several bisections may

accumulate to the final sub-blocks and lead to overload partitions

violating the imbalance tolerance. A fix is proposed in section 2.7.

Algorithm 2 Recursive Edge Bisection

1: function reb_block(B, np )

▷ Block B fits in np partitions.

2: if np == 1 then

3: return

4: W = B’s workload

5: Wl =W ·
⌊np /2⌋
np
,Wr =W −Wl

6: find_min_cut(B,Wl , ϵ , cut)

7: cut B into Bl with workloadWl and Br with workloadWr

8: reb_block(Bl , ⌊np/2⌋)

9: reb_block(Br , ⌈np/2⌉)

Each bisection found by Algorithm 1 introduces minimum com-

munication cost at that step. Therefore, REB bounds communication

in a greedy fashion. The partition created by REB for Bump3D grid

is shown in Figure 2e and the corresponding metrics in Table 1.

REB produces the least communication volume compared to the

other algorithms. Figure 2f shows the decomposition created by

REB with a latency, α = 10−4s . Given the large latency, edge cuts

become the dominating metric for communication. As a result, the

algorithm now aims to reduce edge cuts at the cost of increased

communication volume.

2.5.2 Integer Factorization (IF). Given the number of parti-

tions, np for a large block, a factorization np = nx ·ny ·nz according

to the block’s length ratio, i.e., nx : ny : nz ≈ lx : ly : lz , can be an
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optimum decomposition for that block. However, there are two lim-

itations to this decomposition. First, when np is prime, the unique

factorization 1 · 1 · np may not be proportional to the length ratio.

Second, it may split block2block boundaries and increase the com-

munication cost. In [1], when np is prime, a sub-block is cut off

to feed one partition and the algorithm searches for an optimum

factorization of np − 1 to decompose the remaining sub-block. We

propose a more generalized solution in Algorithm 3 to address both

limitations.

Algorithm 3 Integer Factorization

1: function factorize_block(B, np )

▷ Block B fits in np partitions.

2: if np == 1 then

3: return

4: t0min = ∞, t
1
min = ∞

5: for factorization nx · ny · nz = np do

6: if tb2b (B,nx ,ny ,nz ) < t0min then

7: t0min = tb2b (B,nx ,ny ,nz )

8: n0x = nx ,n
0
y = ny ,n

0
z = nz

9: find_min_cut(B,W , ϵ , cut)

10: for factorization nx · ny · nz = np − 1 do

11: t1 = max(tb2b (Bcut ), tb2b (Br em ,nx ,ny ,nz ))

12: if t1 < t1min then

13: t1min = t1

14: if t0min < t1min then

15: cut B by n0x ,n
0
y ,n

0
z

16: else

17: factorize_block(Br em , np − 1)

Algorithm 3 compares two cases. First, decompose the block

B according to the factorization of np which introduces the min-

imum communication cost (lines 4-8). The cost of a factorization

tb2b (B,nx ,ny ,nz ) is the maximum communication cost among

nx · ny · nz sub-blocks. Second, cut off a sub-block, Bcut of average

workload and decompose the remaining sub-block Br em by the

factorization of np − 1 which results in minimum overall communi-

cation cost (lines 9-13). If the first case costs less than the second, the

factorization for block B is the optimum decomposition. Otherwise,

the same comparison repeats on Br em . Note that the imbalance

problem mentioned in Section 2.1 also exists here. Therefore, the

optimum decomposition of the blocks does not guarantee a load

imbalance ratio below the given tolerance.

Figure 2b and Table 1 illustrate the partition created by IF. Each

cut in IF cuts through the entire block. Therefore, compared with

REB, IF is more apt to align block2block boundaries and reduces

the edge cuts.

2.6 Group Small Blocks

The block2block connections between blocks require inter-node

communication by default. By grouping several small blocks into

one partition, we can convert some of this communication into

sharedmemory accesses and reduce the overall communication cost.

Therefore, the grouping algorithm should group blocks connected

by large block2block boundaries in the same partition. Keeping this

goal in mind, we propose the following two algorithms.

2.6.1 Cut-Combine-Greedy (CCG). After assigning a small block

to an empty partition, there might still be room to fit additional

blocks. As shown in Algorithm 4, CCG traverses all the unassigned

blocks to find a block or sub-block that fits in the remaining ca-

pacity such that the communication cost is minimized. In line 6,

tb2b (B,Bi ) denotes the communication cost of all block2block con-

nections between block B and Bi . The communication cost saved

by adding a sub-block to a partition is computed using δtcut in

line 8 of Algorithm 1. This procedure is repeated until the given

partition, p is full. This algorithm is a greedy heuristic since each

company only minimizes the communication cost for that step but

not the final partition.

Algorithm 4 Find company to fit in one partition

1: function find_min_company(Wub , cmpny, p)

▷Wub : upper bound of the company’s work load

▷ cmpny: ID of the company block

▷ p: the partition to be filled

2: δtmin = ∞

3: for block B ∈ {unassigned blocks} do

4: Get B’s work loadW

5: ifW <Wub then

6: δt = −
∑

Bi ∈p

tb2b (B,Bi )

7: if δt < δtmin then

8: δtmin = δt

9: cmpny = B.ID

10: else

11: find_min_cut(B,Wub , ϵ , cut, p)

12: if cut.δt < δtmin then

13: δtmin = δt

14: cmpny = cut.ID

2.6.2 Graph-Growth-Sweep (GGS). GGSfirst assigns each empty

partition a small block in lines 4-5 of Algorithm 5. Using the small

block as a seed, it starts the graph growing procedure for each

partition. If moving a block can reduce the communication cost,

i.e., B.δt < 0 in line 13, it will be saved for that partition. The saved

blocks are sorted by the amount of communication reduced and

then assigned to a partition until the partition is full. All the parti-

tions are swept repeatedly until no more blocks can be assigned.

After the sweep, the unassigned blocks, if any, are partitioned using

the pure greedy algorithm.

2.7 Combined Algorithms and Partition
Adjustment

We propose new partitioning algorithms by combining the methods

for cutting large blocks and grouping small blocks. Following the

streamline in [1], any block larger than the average workload is

first truncated to a main sub-block which fits evenly in multiple

partitions and a residual sub-block. The main sub-block is cut and

assigned to partitions using either REB or IF. The residual sub-

blocks together with the remaining small blocks are grouped using

CCG or GGS.
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Algorithm 6 Numerical performance experiment

for i = 1→ NSTEP do

▷ #pragma omp for

pack_halo_to_buffer

▷ #pragma omp barrier

▷ #pragma omp master

update_halo

▷ #pragma omp for

copy_halo_shared_mem

▷ #pragma omp barrier

▷ #pragma omp for

unpack_buffer_to_halo

▷ #pragma omp barrier

▷ split blocks evenly among threads

compute

▷ #pragma omp barrier

a ping-pong benchmark, i.e. timing two adjacent nodes exchang-

ing messages with non-blocking MPI routines and fitting Equation

1 with the least squares method. The latency and bandwidth are

measured as 1.73E-05 s and 1.77E+09 bytes/s respectively.

4 RESULTS AND DISCUSSION

In this section, we first evaluate the quality of the partitioners.

Specifically, we compare the communication volume, the number of

edge cuts, load imbalance ratio, number of sub-blocks created, and

the total communication cost of the decomposition generated by the

different algorithms, namely top-down pure greedy (PG), bottom-up

graph algorithm (METIS), recursive edge bisection for cutting large

blocks with cut combine greedy strategy for grouping small blocks

(REB+CCG), REB with graph growth sweep for grouping small

blocks (REG+GGS), integer factorization for cutting large blocks

with CCG (IF+CCG), and IF with GGS (IF+GGS). Then, we compare

their performance coupled with the OpenMP+MPI hybrid Jacobi

solver. For large scale simulations, the applications are typically run

on at leastO (103) nodes. Therefore, we only report the performance

results from 1024 nodes.

4.1 Quality of multi-block structured mesh
partitioners

4.1.1 Bump3D. Table 3 compares the quality of the different

heuristics for the Bump3D grid on up to 4096 nodes of Mira. Since

the decomposition of Bump3D is dominated by cutting a single

large block, REB+CCG and REB+GGS have similar results. The

same is true for IF+CCG and IF+GGS. Across the board, all the

schemes result in significantly less total communication volume

compared to PG at all processor counts. On the other hand, METIS

has the highest number of total edge cuts. This is because METIS

creates an excessive number of sub-blocks and consequently, both

PG and METIS have a higher total communication cost compared

to the proposed algorithms (REB and IF). The results also confirm

the fact that REB is better at reducing communication volume while

IF is better at reducing edge cuts.

The total communication cost captures the effect of both commu-

nication volume and edge cuts as given by Equation 1. For instance,

on 64 nodes PG creates less cut edges but more communication

volume than all the other algorithms. The total cost indicates that in

this case communication volume plays a more important role than

edge cuts and PG results in a higher cost than the other algorithms.

On the other hand, on 4096 nodes, IF has the lowest communication

cost. This indicates that at the highest processor count used for the

experiments in this paper, reducing the number of total edge cuts is

more critical than reducing the total communication volume. This

further validates the need for a portable partitioner that is driven

by a flexible cost model.

4.1.2 FalconHeavy. Table 4 compares the quality of the different

heuristics for the Falcon Heavy grid on up to 4096 nodes of Mira. For

64-256 nodes, METIS results in the lowest communication volume,

edge cuts, and communication cost. Second toMETIS are algorithms

using CCG to group small blocks. To explain this, we introduce two

parameters nsm and %npsm . nsm denotes the average number of

small blocks that remain after cutting large blocks and %npsm is

the percentage of partitions filled with small blocks. As seen from

Table 4, for 64-256 nodes, more than 60% of the partitions are made

up of small blocks and such partitions have more than 4 blocks on

average. Therefore, the partitioner’s ability to group small blocks

determines the partition’s quality. As a graph partitioner, METIS is

good at exploiting connectivity to reduce communication cost. As

shown in Figure 4, although METIS creates more halos than other

algorithms, it maps a large percentage of halo exchange to shared

memory copy. A similar trend can also be observed for CCG, which

uses connectivity in a greedy fashion to reduce communication. PG

does not take into account the blocks’ connectivity and introduces

the highest communication cost. The small blocks’ influence damps

as the number of nodes increases. For 512 to 4096 nodes, REB+GGS

produces the optimum partition because the sweeping process

in Algorithm 5 effectively avoids cutting blocks or introducing

communication. On the other hand,METIS loses its strength at large

node count and leads to the most edge cuts and communication

cost due to its creation of too many sub-blocks.
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Figure 4: The total halo volume of PG, REB+CCG, REB+GGS,

and METIS from left to right for the Falcon Heavy grid.
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Table 3: Partitioner quality for the Bump3D grid on Mira.

Number of processors, P 64 128 256 512 1024 2048 4096

Load imbalance PG 0.035 0.046 0.045 0.048 0.042 0.047 0.050

Load imbalance METIS 0.256 0.517 0.491 0.516 0.226 0.253 0.257

Load imbalance REB+CCG 0.035 0.050 0.044 0.075 0.106 0.100 0.134

Load imbalance REB+GGS 0.035 0.050 0.044 0.075 0.106 0.100 0.122

Load imbalance IF+CCG 0.035 0.019 0.035 0.035 0.043 0.086 0.214

Load imbalance IF+GGS 0.035 0.019 0.035 0.035 0.043 0.086 0.214

Number of sub-blocks PG 65 211 275 601 1090 2505 4855

Number of sub-blocks METIS 89 166 421 866 1638 3532 7103

Number of sub-blocks REB+CCG 67 131 259 514 1025 2048 4096

Number of sub-blocks REB+GGS 67 131 259 514 1025 2048 4096

Number of sub-blocks IF+CCG 67 129 258 513 1025 2048 4096

Number of sub-blocks IF+GGS 67 129 258 513 1025 2048 4096

Communication volume PG 1.38E+08 2.94E+08 4.59E+08 9.32E+08 9.81E+08 8.21E+08 1.06E+09

Communication volume METIS 5.28E+07 7.16E+07 9.93E+07 1.36E+08 1.75E+08 2.35E+08 3.02E+08

Communication volume REB+CCG 4.96E+07 6.89E+07 9.05E+07 1.24E+08 1.72E+08 2.33E+08 3.03E+08

Communication volume REB+GGS 4.94E+07 6.86E+07 9.04E+07 1.24E+08 1.71E+08 2.33E+08 3.02E+08

Communication volume IF+CCG 5.63E+07 1.24E+08 1.37E+08 1.47E+08 1.67E+08 3.25E+08 3.93E+08

Communication volume IF+GGS 5.61E+07 1.24E+08 1.37E+08 1.47E+08 1.67E+08 3.25E+08 3.93E+08

Edge cuts PG 220 1108 1592 3794 8340 18186 41188

Edge cuts METIS 538 1052 2728 5790 11312 25548 54136

Edge cuts REB+CCG 336 746 1616 3278 6744 14282 29086

Edge cuts REB+GGS 332 742 1614 3276 6778 14180 29104

Edge cuts IF+CCG 276 442 1012 2476 5388 9938 22352

Edge cuts IF+GGS 272 438 1010 2474 5386 9938 22288

Communication cost PG 8.15E-02 1.85E-01 2.87E-01 5.91E-01 6.97E-01 7.77E-01 1.31E+00

Communication cost METIS 3.91E-02 5.85E-02 1.03E-01 1.77E-01 2.94E-01 5.74E-01 1.10E+00

Communication cost REB+CCG 3.38E-02 5.17E-02 7.89E-02 1.27E-01 2.13E-01 3.78E-01 6.73E-01

Communication cost REB+GGS 3.36E-02 5.15E-02 7.88E-02 1.27E-01 2.14E-01 3.76E-01 6.73E-01

Communication cost IF+CCG 3.65E-02 7.77E-02 9.46E-02 1.26E-01 1.87E-01 3.55E-01 6.07E-01

Communication cost IF+GGS 3.63E-02 7.75E-02 9.45E-02 1.26E-01 1.87E-01 3.55E-01 6.06E-01

Note that PG results in comparable or even less cost compared

with our algorithms at 1024 and 2048 nodes. Unlike Bump3D where

the largest block occupies the majority of the partitions, the largest

block of Falcon Heavy only occupies 12 and 25 partitions on 1024

and 2048 processors respectively. As a result, PG’s greedy heuristic

of cutting at the longest edge leads to a near optimum partition.

However, at 4096 nodes, the largest block occupies 51 partitions

and PG’s disadvantage of creating excessive blocks re-appears and

increases the communication cost.

4.2 Performance and Scalability

Figure 5 shows the running time of the different algorithms coupled

with the Jacobi solver for the Bump3D and Falcon Heavy grids. The

time consists of communication, computation, and others which is

mainly the time for packing and unpacking the halos for communi-

cation (refer to Algorithm 6). As predicted by the communication

cost in Table 3, METIS, REB and IF result in significantly better

performance compared to PG for the Bump3D grid. The best perfor-

mance is from the partition created by IF which achieves 5.5 − 15×

speedup for communication and 3× overall speedup compared to

PG. Note that in Table 3, only PG keeps the load imbalance within

tolerance (ϵ = 5%) for all cases while METIS and IF cause more

than 20% imbalance at 4096 nodes. Unlike PG, REB and IF don’t pay

the penalty of creating an excessive number of sub-blocks which

in turn results in increased communication cost at the expense of

increased load imbalance. Although METIS does create more blocks

than PG, its lower communication volume indicates that a large

amount of communication between blocks goes through the shared

memory. Therefore, this trade-off between load balance and total

communication cost is desirable in this case.

The trend for Falcon Heavy as seen from Figure 5 is likewise con-

sistent with the communication cost estimation in Table 4 except

for METIS at 4096 nodes. METIS achieves the worst performance

at 1024 and 2048 nodes as predicted. However, the unexpected

reduction of its communication time at 4096 nodes requires fur-

ther investigation. PG leads to slightly better performance than

CCG algorithms and IF+GGS at 1024 and 2048 nodes but has the

worst runtime at 4096 nodes. The best performance comes from

REB+GGS, which achieves 1.5× overall speedup and 2.1× better

communication time compared to PG.

Note that the communication time stops scaling at 4096 nodes

for the Jacobi solver while the communication cost estimated by the

α − β model still continues to scale. As remarked earlier, the α − β

model is only used as a cost function rather than as a prediction
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Table 4: Partitioner quality for the SpaceX Falcon Heavy grid on Mira.

Number of processors, P 64 128 256 512 1024 2048 4096

nsm 12 7.1 4.3 2.6 1.7 1.6 1.8

%npsm 100% 84.3% 69.5% 57.2% 41.5% 22% 9.8%

Load imbalance PG 0.005 0.028 0.022 0.040 0.047 0.049 0.049

Load imbalance METIS 0.097 0.210 0.283 0.311 0.729 0.973 0.236

Load imbalance REB+CCG 0.100 0.100 0.100 0.097 0.100 0.089 0.098

Load imbalance REB+GGS 0.049 0.049 0.034 0.048 0.047 0.066 0.118

Load imbalance IF+CCG 0.100 0.100 0.100 0.059 0.097 0.078 0.099

Load imbalance IF+GGS 0.049 0.049 0.034 0.048 0.059 0.082 0.109

Number of sub-blocks PG 769 789 847 995 1466 2445 4585

Number of sub-blocks METIS 810 843 1005 1527 2652 4715 9006

Number of sub-blocks REB+CCG 787 817 927 1147 1668 2620 4620

Number of sub-blocks REB+GGS 769 789 847 993 1477 2443 4443

Number of sub-blocks IF+CCG 787 817 927 1147 1668 2617 4614

Number of sub-blocks REG+CCG 769 789 847 993 1486 2441 4429

Communication volume PG 3.00E+08 3.05E+08 3.18E+08 3.45E+08 4.03E+08 5.17E+08 7.41E+08

Communication volume METIS 8.17E+07 1.20E+08 2.10E+08 2.85E+08 3.96E+08 5.18E+08 6.76E+08

Communication volume REB+CCG 1.16E+08 1.54E+08 2.41E+08 3.09E+08 4.06E+08 5.15E+08 6.93E+08

Communication volume REB+GGS 2.59E+08 2.45E+08 2.71E+08 3.16E+08 4.04E+08 5.02E+08 6.64E+08

Communication volume IF+CCG 1.16E+08 1.54E+08 2.41E+08 3.09E+08 4.07E+08 5.21E+08 6.92E+08

Communication volume IF+GGS 2.59E+08 2.45E+08 2.71E+08 3.16E+08 4.06E+08 5.42E+08 6.74E+08

Edge cuts PG 3718 3826 4216 5330 9268 17652 37598

Edge cuts METIS 944 1466 3240 6890 14412 29418 57834

Edge cuts REB+CCG 1368 1726 3398 5312 9504 16568 31428

Edge cuts REB+GGS 3266 3266 3626 4622 8540 15392 30286

Edge cuts IF+CCG 1368 1726 3410 5358 9394 16814 32746

Edge cuts IF+GGS 3266 3266 3626 4638 8822 16294 30508

Communication cost PG 2.33E-01 2.38E-01 2.52E-01 2.87E-01 3.87E-01 5.96E-01 1.07E+00

Communication cost METIS 6.24E-02 9.27E-02 1.74E-01 2.80E-01 4.72E-01 8.00E-01 1.38E+00

Communication cost REB+CCG 8.92E-02 1.17E-01 1.95E-01 2.66E-01 3.93E-01 5.76E-01 9.33E-01

Communication cost REB+GGS 2.03E-01 1.94E-01 2.15E-01 2.58E-01 3.75E-01 5.49E-01 8.97E-01

Communication cost IF+CCG 8.92E-02 1.17E-01 1.95E-01 2.67E-01 3.92E-01 5.84E-01 9.56E-01

Communication cost IF+GGS 2.03E-01 1.94E-01 2.15E-01 2.58E-01 3.81E-01 5.87E-01 9.07E-01

of the communication runtime. Nevertheless, it is still worthwhile

to analyze the gap between the cost model and the actual mea-

sured time. Two factors may contribute to this gap. First, in our

performance experiments, we ignore the topology of the network.

Communication cost between any two partitions is estimated based

on the latency and bandwidth values measured using a ping-pong

benchmark between two adjacent nodes. However, two partitions

may be mapped to two nodes that are physically separated by sev-

eral hops. Second, some fraction of the total communication time is

spent on waiting for other processes to issue their messages sends.

This idle time may take up to 80% of the total communication time

[16] for some applications. The waiting time, in turn, depends on

several factors such as the overall time of communicating processes,

load imbalance, and the congestion in the network. Nevertheless, as

observed by the experimental data, the cost function is still a pow-

erful and useful predictor for domain decomposition and results in

better partitioning than the current state-of-the-art heuristics for

multi-block structured grids.

5 RELATED WORK

Among the top-down strategies, the greedy heuristic [20] is the most

widely adopted method. REB [4] is a good alternative to the former.

In [2], a greedy heuristic is combined with REB. At any step, the

largest block is assigned to the most underloaded partition. After

assigning all blocks, if a certain number of partitions is overloaded,

then the same number of large blocks is bisected in half at the

longest edge. This process is repeated until all partitions are within

the load imbalance tolerance. It is hard to say if this hybrid approach

is better than the classical greedy heuristic [20] since no comparison

has been made.

A decomposition according to the block’s aspect ratio is optimum

in the number of edge cuts. This idea is used in [1] for 2D grids.

Compared to REB [4], this strategy results in less imbalance but

more communication volume. No performance comparison is made.

More recently, this algorithm has been extended to 3D problems

[15]. Given the number of partitions, all their test grids are made of

blocks larger than the average workload. Therefore, the grouping

of small blocks is not clearly shown.
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Figure 5: The average running time of 1 iteration of the Jacobi solver coupled with the different paritioners for the Bump3D

(left) and Falcon Heavy (right) grids. Each bar from the left to right represent the performance of the solver coupled with PG,

METIS, REB+CCG, IF+CCG, REB+GGS, and IF+GGS respectively.

In [19], large blocks are cut into cubic sub-blocks as much as pos-

sible because, for a fixed volume, the cubic shape has the minimum

surface area. The residual blocks are assumed to have a minor ef-

fect on performance. Coupled with a CFD solver, they demonstrate

1.2 − 1.4× speedup up to 800 processes against the greedy heuris-

tic [20]. However, the communication time stops scaling between

300-400 processes.

In the above works [1, 2, 4, 19, 20], the communication volume

can be viewed as the cost function. In [6, 7], the total running time

is chosen as the cost function and balanced by grouping small sub-

blocks with a greedy heuristic similar to [20]. The communication

time is estimated using the bandwidth of the network. As discussed

in Section 4.2, the actual communication time can be larger than

the cost estimated using bandwidth and latency alone. Therefore,

the estimated total running time may not provide a good insight

for designing partitioners.

Compared to top-down strategies, unfortunately, there is con-

siderably limited literature on bottom-up strategies for multi-block

structured grids. The idea is first proposed in [17] where the orig-

inal blocks are split into small sub-blocks, the number of which

needs to be three times more than the partitions. Then, a graph

partitioner is used to partition the small blocks. This algorithm is

compared with top-down algorithms on a 2D multi-element and

demonstrates improved performance. More recently, a new method

for decomposing the original blocks is proposed in [14] which re-

sults in fewer blocks and communication volume than decomposing

the blocks with REB. The effect on the performance of a solver is

not yet assessed.

To the best of the author’s knowledge, this paper is the first of its

kind to design portable multi-criteria partitioners for multi-block

structured grids using a cost function which not only accounts for

both the communication volume and edge cuts but also takes into

account the network’s latency and bandwidth.

6 CONCLUSIONS

We use the α − β model to realize a new cost function to partition

structured multi-block grids. Based on the cost function, we pro-

posed two new methods to cut large blocks, namely the Recursive

Edge Bisection (REB) and Integer Factorization (IF). REB recursively

bisects a block at the position that introduces the minimum commu-

nication cost. IF decomposes a block according to the factorization

of the number of partitions assigned which minimizes the commu-

nication cost introduced by cutting blocks. We also propose two

methods to group small blocks, Cut-Combine-Greedy (CCG) and

Graph-Growth-Sweep (GGS). CCG fills a partition by searching for

a block or a cut-off sub-block which converts inter-node communi-

cation into shared memory accesses. This method works very well

when the small blocks occupy a large percentage of the partitions.

GGS first assigns one small block to each empty partition and then

repeatedly performs graph growing until no more blocks can be

assigned. It avoids cutting blocks as much as possible and results

in less communication cost than CCG at large node counts. New

domain decomposition algorithms are derived by combining REB/IF

with CCG/GGS. We apply our algorithms to partition a synthetic

grid, Bump3D and a grid based on SpaceX’s Falcon Heavy rocket

with 769 blocks with varying block distribution. The partitions are

tested with a hybrid MPI+OpenMP Jacobi benchmark solver on the

Mira supercomputer. Compared with the popular greedy heuristic,

our algorithms result in 5.5 − 15× speedup in communication for

Bump3D and 1.5× speedup for Falcon Heavy at 4096 nodes.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF)

under the award number 1750549. Any opinions, findings and con-

clusions expressed in this material are those of the authors and do

not necessarily reflect those of NSF. We also wish to thank Pavan

Balaji at Argonne National Lab for his insights on MPI and Ferran

Marti, a former postdoctoral researcher in our group for generating

the Falcon Heavy grid used in the experiments.



Multi-criteria partitioning of multi-block structured grids ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

REFERENCES
[1] E. Ahusborde and S. Glockner. 2011. A 2D block-structured mesh partitioner for

accurate flow simulations on non-rectangular geometries. Computers and Fluids
43, 1 (2011), 2ś13. https://doi.org/10.1016/j.compfluid.2010.07.009

[2] Kwesi Parry Apponsah. 2012. Multi-block CFD Applications Applied To A Parallel
Newton-Krylov Algorithm. Ph.D. Dissertation. University of Toronto.

[3] K P Apponsah and D W Zingg. 2012. A Load Balancing Tool for Structured
Multi-Block Grid CFD Applications. In 20th Annual Conference of the CFD Society
of Canada.

[4] Shahid H. Bokhari. 1987. A Partitioning Strategy for Nonuniform Problems on
Multiprocessors. IEEE Trans. Comput. C-36, 5 (1987), 570ś580. https://doi.org/
10.1109/TC.1987.1676942

[5] Y. P. Chien, F. Carpenter, A. Ecer, and H. U. Akay. 1995. Load-balancing for
parallel computation of fluid dynamics problems. Computer Methods in Applied
Mechanics and Engineering 120, 1-2 (1995), 119ś130. https://doi.org/10.1016/
0045-7825(94)00048-R

[6] M. Jahed Djomehri and Rupak Biswas. 2003. Performance enhancement strategies
for multi-block overset grid CFD applications. Parallel Comput. 29, 11-12 SPEC.ISS.
(2003), 1791ś1810. https://doi.org/10.1016/j.parco.2003.05.019

[7] M Jahed Djomehri, Rupak Biswas, Noe Lopez-Benitez, and Bryan Biegel. 2002.
Load balancing Strategies for Multi-Block Overset Grid Applications. (2002).

[8] C. M. Fiduccia and R. M. Mattheyses. 1988. A linear-time heuristic for improving
network partitions. In Papers on Twenty-five years of electronic design automation
- 25 years of DAC. 241ś247. https://doi.org/10.1145/62882.62910

[9] Laurent Y.M. Gicquel, N. Gourdain, J. F. Boussuge, H. Deniau, G. Staffelbach, P.
Wolf, and Thierry Poinsot. 2011. High performance parallel computing of flows
in complex geometries. Comptes Rendus - Mecanique 339, 2-3 (2011), 104ś124.
https://doi.org/10.1016/j.crme.2010.11.006

[10] Torsten Hoefler, William Gropp, Rajeev Thakur, and Jesper Larsson Träff. 2010.
Toward performance models of MPI implementations for understanding applica-
tion scaling issues. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6305 LNCS
(2010), 21ś30. https://doi.org/10.1007/978-3-642-15646-5_3

[11] F Ino, N Fujimoto, and K Hagihara. 2001. LogGPS: A parallel computational
model for synchronization analysis. ACM SIGPLAN Notices 36, 7 (2001), 133ś142.
https://doi.org/10.1145/568014.379592

[12] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998), 359ś392. https://doi.org/10.1137/S1064827595287997

[13] R Leland. 1995. The Chaco User’s Guide Version 2.0. Technical Report. Technical
Report SAND95-2344, Sandia National Laboratories, Albaquerque, NM 87185-
1110.

[14] Hongkang Liu, Chao Yan, Yatian Zhao, and Boxi Lin. 2016. An improved partition-
ing strategy for structured multiblock grids. Proceedings of 2016 7th International
Conference on Mechanical and Aerospace Engineering, ICMAE 2016 (2016), 322ś326.
https://doi.org/10.1109/ICMAE.2016.7549559

[15] P. Lubin and S. Glockner. 2015. Numerical simulations of three-dimensional
plunging breaking waves: Generation and evolution of aerated vortex filaments.
Journal of Fluid Mechanics 767 (2015), 364ś393. https://doi.org/10.1017/jfm.2015.
62

[16] Qingyu Meng, Justin Luitjens, and Martin Berzins. 2010. Dynamic task scheduling
for scalable parallel AMR in the Uintah framework. Technical Report. Citeseer.

[17] J Rantakokko. 2000. Partitioning strategies for structured multiblock grids. Par-
allel Comput. 26, 12 (2000), 1661ś1680. https://doi.org/10.1016/S0167-8191(00)
00044-2

[18] Kurt Sermeus and Eric Laurendeau. 2007. Parallelization and Performance Op-
timization of Bombardier Multiblock Structured Navier-Stokes Solver on IBM
eserver Cluster 1600. Aerospace January (2007), 1ś24. https://doi.org/10.2514/6.
2007-1109

[19] Min Xiong, Chuanfu Xu, Xiang Gao, Dali Li, Dandan Qu, Zhenghua Wang, and
Xiaogang Deng. 2018. Improved grid partitioning algorithms for load-balancing
high-order structured aerodynamics simulations. Computers and Electrical Engi-
neering 67 (2018), 70ś84. https://doi.org/10.1016/j.compeleceng.2018.03.016

[20] Anders Ytterström. 1997. A Tool for Partitioning Structured Multiblock Meshes
for Parallel Computational Mechanics. The International Journal of Supercomputer
Applications and High Performance Computing 11, 4 (1997), 336ś343. https:
//doi.org/10.1177/109434209701100407


