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Abstract—In this paper, we extend an automated proof-
generation tool, AutoG&P with new axioms and formalizations to
support composite data types and ¢-type assumptions, which in
turn can be used to automate pairing-based signature schemes.
AutoG&P due to Barthe ef al. was designed as a tool to automate
proofs of cryptographic primitives based on bilinear pairings
in the standard model, but the initial version only supported
a limited set of data types, limited pairing-based assumptions,
and only provided automated proofs for encryption schemes,
notably the Boneh-Boyen identity-based encryption scheme. As
examples of our extensions, we provide automated proofs for the
Boneh-Boyen pairing-based signature schemes under the well-
known and widely-used notion of signature security: existential
unforgeability under chosen message attacks in the standard
model, and the Boneh-Boyen-Shacham group signature scheme,
under standard notions of group signature security: anonymity
and traceability.

Index Terms—pairing-based cryptography, bilinear pairings,
signatures

I. INTRODUCTION

Cryptographic protocols, which form the backbone of sev-
eral communication networks and infrastructure, are proved
secure in well-established formal frameworks, and designers
of such protocols and primitives spend a lot of time and
effort on carefully defining security properties, and proving
that their designs possess these properties. As cryptographic
protocols increase in complexity, consequently, so do their
security definitions and proofs, and there is a real need for
automated tools, such as proof assistants, to help construct
and verify cryptographic proofs. In recent years, there has
been a concerted effort to create automated toolsets that
aid in cryptographic proof construction and verification, such
as EasyCrypt due to Barthe ef al. [1] and CryptoVerif due
to Blanchet [2]. These tools help in creating and verifying
proofs in the game-based reductionist style that cryptographers
are familiar with, and also take into account implementation
details and standards recommendations.

Halevi, in his influential paper in 2005 [3], first mooted
the idea of creating automated tools for cryptographic proof
verification. His vision was one of automated tools that help
with commonly used argument techniques, i.e., tools that help
with canonical, standard parts of the proof, and leave the more
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subtle, idiosyncratic parts of the proof to the prover to be
proved manually. Halevi’s position paper stressed the need
for such tools to be designed to work with existing proof
frameworks, i.e., frameworks that cryptographers understand
and are familiar with, as opposed to proposing new proof
frameworks, and to work in the widely-used computational
model of cryptography, as opposed to the symbolic model of
Dolev and Yao [4]. As motivational examples, Halevi pre-
sented two case-studies, in which two manually-written proofs,
one for a new block cipher encryption mode, and the other
for the Cramer-Shoup encryption system, are analyzed, and
pointed out places where a hypothetical automated tool could
possibly have been very useful in the process of constructing
the proof.

Initial efforts in this area were directed towards using
machine-checked automated frameworks from the symbolic
model of cryptography due to Dolev and Yao [4], which did
yield some interesting results [Sl], [6], [7], [8]], [9], but this
approach was quickly found to be inadequate, and researchers
have recognized the need for building automated proof assis-
tants in the computational model, in which almost all crypto-
graphic protocols are defined and proven secure. The symbolic
model of Dolev and Yao, while seemingly attractive because
of its simplicity, is one where all cryptographic primitives are
assumed to be black boxes that the adversary cannot tamper
with. This model lends itself easily to the construction of
automated verification tools, however the restricted capabilities
of the adversary make the model quite unrealistic, and proofs
in the symbolic model are generally considered weaker than
the computational model.

In the computational model, adversaries are treated as
probabilistic polynomial time Turing machines, messages are
treated as bitstrings, and the adversary has the ability to
tamper with the cryptographic primitives, but proofs in this
model are harder to write and reason about compared to the
easier symbolic model. Nevertheless, the security guarantees
offered by the computational model are stronger than that
offered by the symbolic model. As a bridge step between
the two models, there were efforts to show that the weaker
security guarantees offered by the symbolic model can be
“transferred” to the computational model using principles of
computational soundness [10], but this approach has revealed
flaws in reasoning, and it has been shown [L1] that proofs
in the symbolic model do not necessarily always translate
into proofs in the computational model, at least not without



additional, at times questionable assumptions and hypotheses,
the main assumption being that a computational soundness
result exists for every result whose security proof we want
to translate from the symbolic to computational models. The
more worrying issue is that computational soundness results
make unrealistic use-case assumptions which may be hard to
enforce, or may even be unenforceable in practice [11]].

In response to this, recently researchers have proposed
automated tools that work in the computational model of
cryptography, such as EasyCrypt [1l], CryptoVerif [2], Cer-
tiCrypt [12], ZooCrypt [13], and the more general-purpose
proof assistant Coq [14] augmented with the Foundational
Cryptography Framework library (FCF) [15]. On another note,
an interesting observation is that most research into automated
proof generation and verification, both in the symbolic and
computational models, has focused, rather disproportionately
on automating proofs of cryptographic protocols, not prim-
itives. Of the ones mentioned here, Certicrypt, EasyCrypt
and FCF can be used to verify some primitives as well as
most protocols, but the proofs are non-intuitive and tedious
to construct. ZooCrypt could be used to verify proofs of
cryptographic primitives, but works only for a special class
of constructs: padding-based encryption schemes.

In the area of pairing-based proof automation, there
has been work in automating proofs in the generic group
model [16]], [17], [18], and the standard model [19]]. In this
paper we focus on standard model tools, specifically, the
AutoG&P tool of Barthe et al. The work of Barthe et al.
has two main contributions: 1) introducing a formal logic
consisting of a set of rules that model standard proof steps
(series of reductions, transformations, sampling distributions,
among others), and providing a proof of soundness of their
formal logic. 2) the second contribution is an automated tool,
AutoG&P which implements the rules of the formal logic,
and is able to reason about, at a basic level, the security
of primitives based on bilinear pairing assumptions. As case
studies, the authors showed how to apply AutoG&P to obtain
proofs for the CPA security of the Boneh-Boyen identity-based
encryption scheme in the selective-ID model [20], and the
CPA security of Waters’ dual system identity-based encryption
system [21]].

Our work was motivated by the relatively sparse work done
in the area of automating proofs of cryptographic primitives,
and more so in advanced areas such as pairing-based cryptog-
raphy. Pairing-based cryptography was introduced in the early
2000’s and has formed the basis of numerous encryption and
signature schemes [20], [22], which have in turn formed the
foundations of new families of cryptosystems, such as identity-
based cryptosystems, non-interactive zero knowledge proofs,
and attribute-based cryptography, to name a few.

A. Our Contributions

Our two main contributions are: 1) to extend the type gram-
mar and semantics of AutoG&P to axiomatize composite data
types such as arrays in security games, by using ideas from
automated reasoning and symbolic computation, which helps
expand the scope of AutoG&P to support g-type assumptions

which are used as building blocks in the construction of
several pairing-based primitives and protocols. 2) to extend
the logic of AutoG&P to support the widely-used notion
of signature security: existential unforgeability under chosen
message attacks, and support automated proofs of certain
signature schemes that use bilinear pairings. The initial version
of AutoG&P was able to reason about chosen-plaintext and
chosen-ciphertext indistinguishability in the context of encryp-
tion schemes that are built upon pairing assumptions, but did
not support notions of signature security. Using these building
blocks, we provide automated proof search procedures for
the Boneh-Boyen signature scheme [23], and the anonymity,
traceability properties of the Boneh-Boyen-Shacham group
signature scheme [24] using AutoG&P.

II. RELATED WORK

CryptoVerif, due to Blanchet [2], was the first automated
prover that can prove statements of cryptographic protocols
in the computational model. One of the main contributions of
CryptoVerif was that it laid down an automation framework
and template for most or all work in this area that followed
it, i.e., discharging proof obligations in a sequence of games,
with transformations between them, starting from the higher-
order security guarantees, and reducing them, in a step-
by-step process to fundamental mathematical assumptions.
CryptoVerif has built-in transformations, which can apply
reductions to games in a fully automated way, along with
an interactive mode meant for situations in which the prover
would like to participate in creating the proof. CryptoVerif
wasn’t designed for, and as such hasn’t been used for pairing-
based cryptographic schemes.

CertiCrypt [12]] is another tool that has been used to verify
the security of cryptographic primitives using the general-
purpose Coq proof assistant [14]. CertiCrypt has been used
to generate proofs of useful crypto primitives such as zero-
knowledge proofs [25], OAEP [26], identity-based encryp-
tion [27], and Full Domain Hashes (FDH) [28]. Easycrypt
due to Barthe et al. [1]] is an automated tool that can produce
machine-checked proofs from proof sketches (of protocols and
a few primitives). EasyCrypt uses the game-playing technique,
similar to CryptoVerif and CertiCrypt, and the proofs output
by (initial version of) EasyCrypt could be verified by general-
purpose proof assistants such as Coq [14]. Probabilistic re-
lational Hoare Logic is used for proving transitions between
intermediate games, and for deriving claims about event prob-
abilities in the games; and a simple tactics language is used
for proving judgments. As example applications, the authors
show how to generate and verify proofs of the Cramer-Shoup
cryptosystem and the Hashed El-Gamal cryptosystem using
EasyCrypt. Prior work due to Barthe et al. also resulted in
the development of ZooCrypt [13], which provided a way to
analyze and prove chosen plaintext and chosen ciphertext secu-
rity of padding-based encryption schemes in the random oracle
model. Computational Indistinguishability Logic (CIL) [29] is
a general-purpose logic that does not work in the game-based
reductionist model of cryptographic proofs, and does not have
support for automation. Barthe et al. also propose automated



tools for the special-case of structure-preserving signatures in
the generic group model [30].

Although they represent important, pioneering work in
the area of proof automation, CryptoVerif, CertiCrypt, Easy-
Crypt, ZooCrypt were not designed for automating or ver-
ifying proofs that use pairing-based cryptography. Akinyele
et al. [31] proposed new automated tools for pairing-based
encryption and signature schemes; their tools are meant for
automating the construction of cryptographic protocols (not
proofs), whereas our goal is the automation of cryptographic
proofs in the bilinear pairings setup.

A. AutoG&P

AutoG&P [19] is a tool that can analyze the security of
pairing-based cryptographic primitives in the standard model,
and implements a set of high-level logic rules for performing
reductions, transforming games, and applying inferences based
on computational or decisional assumptions. AutoG&P has its
own syntax for writing expressions, and has a well-defined
grammar for writing games (or security experiments), which
could possibly include an adversary being provided access to
encryption/decryption oracles. It also provides a syntax for
writing probability judgments, and bounding the advantage of
adversaries with the hardness of breaking some fundamental
decisional or computational pairing-based assumption. The
core rules of AutoG&P consist of operations that are used
in proving equivalence between games such as transformation
rules, reduction rules, random sampling rules and probability
judgment rules.

III. NEw LoGIC RULES

A fundamental challenge we face is how to reason about
and represent composite data types such as arrays and vectors
in AutoG&P. Since AutoG&P does not support indexed
variables, we cannot directly formalize games and proofs
involving indexed variables, such as the ¢-SDH assumption in
AutoG&P. This presents us with some challenging questions:
How does one reason about composite data types, such as
arrays, in the context of an automated theorem prover? How
does one formalize the properties and operations of composite
data types? What does it mean for an array implementation
to be secure?[]_-] There is significant work, both theoretical [32],
[33], [34] and experimental [33[], [36], [37], in the area of
building theorem provers with the ability to reason about, and
solve formulas that involve arrays. Broadly, two kinds of array
theories have been studied in logic and symbolic computation,
which can be applied to areas such as formal verification of
software, and design of theorem provers and proof assistants:
extensional array theories, and non-extensional array theories.
Non-extensional theories are axiomatized by the read and
read-over-write axioms; extensional theories have the addi-
tional equality axiom which states that two arrays are equal
if they store the same element at each index i. We give the
definition of an extensional theory of arrays below.

'In this paper we focus on adding support for the array data type; in the
future we plan to investigate other abstract and algebraic data types.

Definition 3.1: (Extensional Theory of Arrays) [38], [32]:
For all arrays a, b, indices i, j, and values v of a given type,
an extensional theory of arrays is defined by the following
axioms:

1) Read-over-Write: ((i = j) — read(write(a,,v),j) =

v) A ((i # j) — read(write(a, i,v), j) = read(a, j))

2) Extensionality: (read(a,i) = read(b,i)) — (a = b)

SMT solvers usually instantiate arrays using “lazy instan-
tiation”, wherein the array operations such as read and
write are implemented by uninterpreted functions, using the
McCarthy extensional theory of arrays in first-order logic [38]],
which is considered a classical result in array theory by the
automated reasoning community. The McCarthy theory of
arrays uses uninterpreted functions to formally represent state
(e.g., of main memory) during execution of programs that use
arrays. The basic theory is not expressive enough, since it only
supports write operations at a single memory location, and not
to a contiguous memory block, in a similar vein as C-language
memset or memcpy functions. Since then, more advanced
theories, which provide formalizations for an extended set of
array operations, including set and copy have been proposed
(e.g., [39]). Stump et al. [32] present an extensional theory
of arrays that axiomatizes a range of operations in addition
to read and write, such as transitivity, symmetry, etc. They
provide a decision procedure for the quantifier-free fragment
of the theory, and their theory can potentially be extended to
multi-dimensional arrays. For formulating our rules, we use
the extensional array theory as introduced by Stump et al. [32]]
as a foundation. Before presenting our new rules, we first give
a definition that describes an algorithm for eliminating write
expressions occurring in equations involving arrays.

Definition 3.2: (Partial equations [32]]) Let a,b be arrays,
let 1,7 be sets of an index data type, let V' be a set of a value
data type, let v € V, and let p denote a unique index in an
array. Then:

a=7bSqgr Vp:1.p ¢TI — read(a,p) = read(b, p),and hence
write(a,p,v) = b < (a =¢py b Aread(b, p) = v)

Formulas of the form a =z b with Z ¢ () are called partial
equations.

We now give our seven extended rules for AutoG&P: Ext,
R-over-W, W-Elim, Partial-Eq, Trans, Subst, and Symm. In
the rules, G is a game, ev is an event expression, and [G : ev]
describe a security experiment, [G : ev] < € is an expression
that bounds the probability of event ev in game G by ¢, and p
is a position (index) in an array. For each rule, the goal below
the line is rewritten to the subgoals above the line.

Definition 3.3: (Extended Logic Rules)

|G : ev(read(a, p) # read(b,p))] =< ¢

Ext(p) [G:ev(a#Db)] <e

[G:ev((p=1yp') Aread(a,p))] = &1
[G:ev((p#£p)A(read(a,p’)))] = €2

[G : ev (read(write(a, p,v),p’))] = €1 + €2

(G :ev (b,p)] =
[G : ev (a,p)]

R-over-W(p,p’) :

A

€
la| > b]
€

Subst(p) :

PN



[G:ev((peI)A(a=zD)] <€

[G:ev((p¢I)A(read(b,p) =v) A (a=1b))] X e

W-Elim(p) :

[G : ev (write(a,p,v) =1 b)] = €1 + €2

[G:ev((p¢I)A(a=1b)A (read(a,p) = read(b,p)))] < e

[G:ev((peI)A(a=z)))] X e

Partial-Eq(p) :

[G:ev(a=zb)] <€ +e

‘ la| > |b|;Z ¢ (; read(a, p) occurs in [G : ev] ‘

[G:ev((a=zb)A(a=1z c)N(b=1uz )] S €

Trans : Z¢PandZ' ¢ 0
[G:ev((a=zb)A(a=1¢))] <S¢ ‘ £ £ ‘
G:ev(b=za
Symm : [G:ev(b=ra)] la| < |b] TABLE I
[G:ev(a=1D)] TYPE GRAMMAR
The extensionality rule, Ext, formalizes that if two arrays Expression | Type
are not equal in a security experiment, then the values they B Boolean
store at index p will be different. The read over write rule, BS, bitstrings of length | € Len
R-over-W, writes a value v to index p in array a, then reads g : %ﬁ?:écﬁiﬁzugf?rtgezzf Sfame
the value at index p’. If p = p’, then it returns v, else it E array of size m; n € ZF of the following types:
reads and returns the result of read(a,p’). The Partial-Eq bi, - ,bn;b; €B
rule formalizes the first point of Definition [3.2] and states Arrn bsy, -+ 7b5"5béi (Gf BS,
i ; 91575, 9n3 Gi i
that if two arrays a and b agree at every index, except those Fioe fni fi €

in the set Z, then for every p ¢ Z, read(a,p) should be
equal to read(b, p). The write with elimination rule, W-Elim,
formalizes the second point of Definition which eliminates
write expressions, replacing them with reads. The Trans rule
formalizes transitivity between three arrays a, b, c. The Subst
rule replaces all occurrences of array a with array b in a game.
The Symm rule states that if array a stores the same value as
array b on all indices, except those indices in set Z, then b
also stores the same value on all indices as a, except those
indices in set Z.

Some rules must be restricted to avoid non-termination
due to repeated and trivial applications of the rule, such as
the Partial-Eq and Trans, which we enforce by adding side-
conditions. In the Partial-eq rule, this is prevented by adding
a (boxed) side-condition to the rule that prevents it from
being applied if read(a,p) and read(b, p) are already known
to be equal, or if p is already known to be an element of
Z. Similarly, the side-condition in Trans prevents the rule
from being applied if any two arrays are known to be equal
at all indices, except those in a non-empty set. For now,
we only work with single-dimensional arrays, so the above
stand-alone theory suffices. In the future, when we work
with two-dimensional arrays or multi-dimensional arrays (e.g.,
formalizing rules for monotone span programs or linear secret
sharing scheme (LSSS) matrices), we will consider combining
two array theories using theory combination methods [40],
[41]. We state and prove a soundness theorem for our rules,
which is given in the Appendix.

IV. EXTENSIONS TO AutoG&P

We now describe the extensions we make to AutoG&P’s
grammar and type semantics for it to support array axioms.
Our first extension is introducing a new parametric data type,

denoted by “Arr”, which can store a collection of variables of
some of AutoG&P’s existing data types: Boolean, bitstring,
groups and (finite) fields. In Table [ we give the grammar
of data types with our extension for arrays. In the table, Len
denotes a finite set of length variables, GName is a finite set
of group names.

AutoG&P provides a set of oracle and game grammars,
which consist of oracle and game definitions and commands.
Oracle and game definitions consist of a symbol, input pa-
rameters, a sequence of oracle/game commands and the value
returned by the oracle or game. There are four possible
game commands: let bindings (variable assignments), random
sampling from a pre-defined distribution, an assertion which
checks if a condition is true, and adversary calls. Oracle
commands are defined in the same way as game commands,
except one cannot have assertions within an oracle, and every
oracle has a guard, which prevents the adversary from submit-
ting, and obtaining answers to, invalid input, e.g., challenge
ciphertexts. Adversaries are assumed to maintain state between
calls to oracles. We introduce two new commands for an
array read/write operation, based on the extensional theory of
arrays. Table [ shows the existing oracle and game commands
with our additions. Some other extensions are described in the
Appendix.

V. BONEH-BOYEN SIGNATURE SCHEMES

The Boneh-Boyen signature scheme [23] is based on the ¢-
SDH assumption, and has two variants, each corresponding to
a different notion of security (please see Appendix for relevant
assumption definitions). The weak scheme, which provides
existential unforgeability under weak chosen message attacks,



TABLE II
ORACLE AND GAME COMMANDS

Action [ Symbol [ Type Grammar
Defining oracle [0) o(z) = {(0¢);return e}
.. c; ordinary command

Writing oracle command | oc guard(b); guard for expression b € Expry
¢; ordinary command
assert(ev); assertion for event expression

Writing game command gc ev € Expr,,
y < A(z) with 8; adversary call with one
or more oracles

Defining command c letz = e; let binding

e & t\s; sample x from distribution t\{s}

Defining event expression | ev
Vb1 s

Iby,- -

e; event expression
, by, - e; there exist queries
, bn, - €; for all queries

Query b T € Qo; x ranges over queries
Reading from an array alp] read(a, p)
Writing to an array (a,p,val) | write(a,p, val)

and the strong or the full scheme, which provides strong
existential unforgeability against standard chosen message
attacks. In the strong scheme, the existential unforgeability
game requires that the adversary is not able to generate new
(fake) signatures even on previously signed messages. Our
goal is to use AutoG&P to construct proofs for each of these
variants.

A. Weak Chosen Message Attacks

Let G1,Gy be prime-order cyclic groups where |G1| =
|G2| = p, and let g; be a generator of Gy, and go be
a generator of Go. Let there be an efficiently computable
isomorphism ¢, such that gz = 1t(g2). Then the Boneh-
Boyen weak signature scheme consists of the following three

algorithms:
1) (PK,SK) + Key Generation(1*): Set g1 = %(go).
Pick random z & Zy, compute v < g5 € G2, z
e(g1,92) € Gr. Set PK = (¢1,92,v,2), and SK = z.

2) o+ Sign(z,m): Let m € Z;. Compute signature o <

1
ng € Gy; If (x+m) =0, set 0 = 1. Return o.

3) (“accept”,“reject”) <+ Verify(PK,m,o): Check if
e(o,v - g5") = z. If yes, return accept, else reject.

We now give the weak chosen message attack game for
the weak signature scheme. The scheme is considered exis-
tentially unforgeable under a weak chosen message attack, if
no probabilistic polynomial time adversary can win the game
with non-negligible probability.

1) Query phase: Adversary A sends the challenger a list of

q messages: my, - - ,mgq, Where each m; « Zj.

2) Response phase: The challenger generates a keypair
(PK,SK), and signs the adversary’s messages: o1 =
Sign(SK,m1),--- ,04 = Sign(SK,my). The chal-
lenger gives (PK,01,--- ,04) to the adversary.

3) Output phase: A outputs a pair (m,o), and wins the
game if:

a) m¢ {mq,---,my}, and
b) Verify(PK, m,o) = “accept”.

The security of the weak signature scheme is based on the
hardness of solving the ¢-SDH problem. The idea is to prove
that if an adversary A can break the existential unforgeability
of the weak scheme under a chosen message attack, then an
adversary B can, by interacting with A, solve the ¢-SDH
problem in polynomial time, with non-negligible probability.

Definition 5.1: A probabilistic polynomial-rime forger
A(t, q, €)-weakly breaks a signature scheme if A runs in time
at most ¢, makes at most ¢ signature queries, and the advantage
of A, Adv, is at least ¢, taken over the coin tosses of the
adversary and the challenger. A signature scheme is (¢, ¢, €)-
existentially unforgeable under a weak chosen message attack
if no forger (¢, q, €)-weakly breaks it.

We now express the Boneh-Boyen weak EF-CMA game,
and the g-SDH game using the logic rules of AutoG&P.

Game BB (GBB)

Lmy, - mg <= Ax();
3$
20w < Fp, 24 e(g1,92): let P = (91,092,903, 2);
3: M[1..q] & ArrFp,; S'[1..q] & ArrFp,;
let S[1..q] < {g;",-- ,9:"};
4: (m*,0%) < Aa(P,mq,--- ,my) with
5: Sign(my, -+ ,mq) = {
6: for (i = 154 < q;i++)
7 {
1
8:ai =g, ™

9: guard((z + m;) < 0; 0;  1);

10: write(M,i,m;);write(S,1,0;);
11: };

12: };

13: return (m* # {mq,- -

Game ¢-SDH (G9-5PH)

7m(1}7 U*)

$
I: v < Fp;
1

.95 )

Game GPBB: In line 1, the adversary chooses its signature

o 2
2: (C,ngr )<_ B(ghg?;ggag% P



queries (the Boneh-Boyen weak signature scheme requires
that the adversary submits its signature query before seeing
the public key). In lines 2,3 the challenger generates the
secret key x, initializes the message/signature arrays, and
computes the public parameters P, which include a bilinear
map, z € Gr. Note that per AutoG&P’s (original) rules, one
needs to normalize variables, i.e., instead of writing u € G,

we need to sample x i F,, and compute u = g7, where
g; is the generator of G;. In line 4, the adversary is called,
given access to the public parameters, and a signing oracle, and
queries the challenger for signatures on the previously picked
messages My, ,Mq. In AutoG&P, adversaries maintain
state between calls. The task of the adversary is to output a
message/signature pair (m*,o*) that passes verification with
non-negligible probability. Line 9 checks if (x + m;) = 0,
in which case the signing oracle sets the signature to be
1. In the weak scheme, the adversary producing a message
that corresponds to a previously obtained signature is not
considered a forgery. If A;, A, are the signature scheme
adversaries, and B is the ¢-SDH adversary, then the judgment
we need to prove is:

1
—SDH T4e
[GEEAQ s accept]suce = (G5 1 (6, 977¢) + Blsuce
The above expression essentially says that the success
probability in the weak scheme of all adversaries (i.e., an
adversary returning a signature that passes verification), is
upper-bounded by the success probability of B outputting a
1

valid (¢, gy ") pair in the ¢-SDH game.

The proof search involves automatically finding a series of
transformations using the core rules of AutoG&P to turn a
game for the weak EF-CMA scheme into a game for the
¢-SDH assumption. As shown in game GPBB, this involves
first normalizing the random samplings of the challenger, and
matching up sampling of variables in the EF-CMA game with
the ¢-SDH game. Additionally, one is required to remove
all “let” statements, e.g., setting the public parameters in
Line 2 of the GB® game, but we keep the let statements in
the game here for readability. We also expand some of the
statements involving arrays (e.g., m1,--- ,my, instead of M,
and M[1..q], instead of just M) for readability.

Next, we need to replace random variables generated and
used by the challenger. In the GB® game, this is an easy
and intuitive step, since the only random variable sampled
by the challenger is x. AutoG&P’s rules replace x & F,
by z’ & [F,,, then directly apply the g-SDH assumption, and
obtain the desired bound. One facet of AutoG&P that makes
things easy for us is that AutoG&P’s conditional deducibility
algorithm is tailored to deal with the expressions of the form
I'E ?g{f,--- 7ng: F g;-l, where T is a set of axioms, 7 is a
vector of variables of type F,,, and f; and h are polynomials.
In our case, we only need to able to deal with monomials in
the exponent for the ¢-SDH assumption. We now describe the
simulator, B, built by the tool for the ¢-SDH assumption as
applied to the weak signature scheme.

Simulator for ¢-SDH assumption in the weak scheme,

1: my, -+, Mg < Al();

$
2. x & Fp,letP = (VafYarYOafylv’yQa"' 774);

3: M[1..q] & ArrFp,; S'[1..q] & ArrFp,;
let S[1..q] < {g1*,- -, 1"}
4 (m*70'*) — AQ(P, my, - 7mq) with
5: Sign(my, -+ ,mq) = {
6: for (i = 1;4 < q;i + +)
7:{
1
8 0y = yrtmig

9: guard((z + m;) < 0; o, =1);
10: write(M,i,m;);write(S,1,0;);

11}

12: };

13: return ((&, (*,y1 * ) z v)
&& (m* # {ma, -+, mg}))

Simulator B: In Line 1, the adversary chooses its challenge
messages, mq, - - - ,Mg. In Line 2, the challenger runs the key
generation algorithm and generates a public/secret keypair,
SK = x;x & Zy, and PK = (v = e(g1,92),7 = 91,% =
92:M = g3.72 = 9%27"' Vg = g5") (the proof search
later involves renaming random variables in the game GEB
to match up with the simulator). In Line 3, the challenger
initializes the message and signature arrays. In Line 4, the
adversary is called, is given the public parameters, and chooses
a set of messages mq,---,mg; My € Z;. The adversary is
also given access to a signing oracle. Line 5-10 describe the
actions of the oracle, which signs messages of the adversary’s
choice. The oracle has a guard, which returns o; = 1 in case
(z +m;) = 0, for some m;. Finally, the adversary returns a
message/signature pair (m*, o*). In Line 13, we check if ¢ is
valid, and m* ¢ (mq,--- ,my).

B. Strong Existential Unforgeability

Let G1,Gy be prime-order cyclic groups where |G| =
|G2| = p, and let g; be a generator of Gy, and g2 be
a generator of G2. Then the Boneh-Boyen strong signature
scheme consists of the following three algorithms:

1) (PK,SK) < Key Generation(1*): Set g; = 1(g2)-
Pick z,y <i Z*, and compute u < g5 € Ga, v
gy € G2, and the bilinear map z + e(g1, g2) € Gr. Set
PK = (g1, 92,u,v,2), and SK = (z,y).

2) (0,7) ¢ Sign(SK,m): Let m € Z. Pick r & Z7, and
compute o gi/(”mﬂﬂ) €GL. If (x+m—+yr)=0,
try again with a different r. Return (o, 7).

3) (“accept”,“reject”) « Verify(PK,m,o,r): If e(o, u-g5*-
v") = z, return accept, else reject.

The notion of strong existential unforgeability under chosen
message attack is defined by the following game between an
adversary, A, and a challenger. We consider the static (non-
adaptive) adversary version of the Boneh-Boyen strong signa-
ture scheme. The scheme is said to be strongly existentially
unforgeable under a standard chosen message attack, if no



probabilistic polynomial time adversary can win this game
with non-negligible probability.

1) Setup phase: The challenger generates a public/secret

keypair, (PK, SK), and gives PK to the adversary.

2) Query phase: A requests signatures on my,--- My,

messages of its choice. The challenger returns
o1, 04
3) Challenge — response phase: A outputs a pair (m,o),
and wins the game if:
a) (mva) ¢ {(mla 01)’ T (mQ’ O'q)}, and
b) Verify(PK, m,o) = “accept”.

Definition 5.2: A probabilistic polynomial-time forger
A(t, q,€)-breaks a signature scheme if A runs in time at most
t, makes at most g queries, and Adv 4 is at least €. A signature
scheme is (¢, q, €)-existentially unforgeable under a chosen
message attack if no forger (¢, g, €)-breaks it.

We now express the EF-CMA game of the strong scheme
in the logic of AutoG&P:

Game BBStrong (GBBStrong)

$ x
i z,y < Fp; 2 < e(g1,92); let P = (91,902,095, 93, 2):
2: M1..q] & ArrFp,; S'[1..q] & ArrFp s

let S[1..q] < {g;*,-- , 91"}
: R[1..q] & ArrFp,;
mi, -, Mg — A (P);
s (m*,0%)  Aa(P,my, -+ ,m,) with
: Sign(m17' o ,mq) = {

cfor (i =1;i < qi++)

{ 1

9: 7y ﬁFp;aegw;

10: guard((x +m; +y *x ;) z 0; o; + 1);
11: write(M,i,m;);write(S,1,0;);
12: write(R,4,7;);
13: };

14: };

15: return (m* # {mq, - -

,mq}\/a* #{o1,- ’Uq})

Game GBBStone: In Line 1, the challenger picks the pub-
lic/secret keypair. In lines 2,3,4 the challenger initializes the
message and signature arrays, and the adversary picks query
messages mq,- - - ,mg. In Line 5, the adversary is called and
is asked to produce a valid message/signature pair. As before,
adversaries maintain state between calls. The adversary is
given access to a signing oracle, which returns valid signatures
for the adversary’s queries. The oracle has a guard to check if
(x + m; + yr;) = 0, for some message m;, where r; denotes
the internal random coins of the oracle, in which case the
oracle returns o; = 1. In Line 15, the adversary returns a fresh
message/signature pair. As a next step, we need to transform
the GBBStone game such that the random variables used by
the challenger are replaced in a way that is not obvious to the
adversary. This is easy to do, since there are just three internal
random variables used by the challenger, x,y,r € Z;, using
our rules, we can replace them by z/,y',r" € Z*, and the
adversary cannot tell the difference. From that point on, it is

easy to see that we can apply the ¢-SDH assumption, and
match up the variables with the ¢-SDH simulator described
below. We now describe the simulator built by AutoG&P, B,
for the ¢-SDH assumption as applied to the strong signature
scheme.

Simulator for ¢-SDH assumption in the strong scheme,
B

1: X,y g Fp’ let P = (V,’Y,’YO,’Y]7'72, T 77q+1);
2: (my, -+ ,my) < A1(P);
3: M[1..q] & ArrFp,; S’[l..q]/ & ArrFp ;s
let S[L..q) < {gi",--- 91" }:
: R[1..q] & ArrFp,;
s (m*,0%) « Aa(P,mq,--- ,mg) with

Sign (mq, -+, mq) = {
for(i = 1;4 < q;1 + +){
iy <£]Fq; O ZVW,
9: guard((x + m; +y *1;) Z 0; o, =1);
10: write(M, i, m;);write(S,i,0;);write(R,i,1;);
11: };
12: };
13: return ((&(o™, y1 % 4" * Yoi1) z v)
assert ((m* # {ma,--- ,mg}) V(" # {o1,---
Simulator B: In Line 1, the challenger chooses the pub-
lic/secret keypair, SK = (x,y);z,y & Z%, and PK = (v =
2
(91,92),7 = 91,% = g2, = 93,72 = 95 Vg =
95" ),Yq+1 = g5. In Line 5, the adversary is called and is given
access to a signing oracle. The oracle returns valid signatures
on ¢ messages of the adversary’s choice. The oracle has a
guard that checks for ( +m; +yr;) = 0, for some adversary-
chosen m;, in which case it returns o; = 1. Finally, in Line 13,
we check if o* is a valid signature for an m* ¢ {mq,--- ,m,},
or o* ¢ {01, ,04}.

AR A

VI. BONEH-BOYEN-SHACHAM GROUP SIGNATURE
SCHEME

Boneh, Boyen and Shacham (BBS) introduced an efficient
group signature scheme based on the ¢g-SDH assumption and
the decision linear assumption (DLIN) [24], in the random
oracle model. Their technique basically involves a signer
equipped with a solution to a ¢-SDH problem proving in
zero knowledge their possession of the solution. In the zero
knowledge proof, the prover’s internal random coins and
intermediate values get encrypted using a technique called
linear encryption, that was shown to be CPA-secure under
the DLIN assumption [24]].

Group signature schemes have three security properties as
defined by Bellare er al. [42]: correctness, full-anonymity,
and full-traceability. The correctness property says that if
the signer (prover) and verifier are both honest, then a valid
group signature will always be accepted by the verifier. The
anonymity property says that no party, except a group manager
can identify which party created a signature. The traceability
property says that no colluding subset of group members

:0q})))



TABLE III
EXPERIMENTAL RESULTS

Proof of Scheme [ Lines of Code [ Time (ms)
BB weak signature scheme 114 43
BB strong signature scheme 146 46
BBS group signature scheme-anon 69 25
BBS group signature scheme-traceability | 68 32

should be able to create a signature that is un-openable and
cannot be traced back to some member of the group. Bellare et
al. had shown that full-anonymity and full-traceability imply
all other requirements for group signatures (e.g., unforge-
ability, collusion-resistance, exculpability, framing, and more).
Boneh et al. prove their construction possesses the properties
of correctness, anonymity for signers, and traceability. In
the BBS proofs, the adversary isn’t allowed to query the
Open function used to trace signatures. In other words, it is
assumed the group manager is honest, and the adversary is not
privy to the process of signatures being opened by the group
manager, nor is he given the results of the opening process.
The correctness property directly follows from the DLIN and
g-SDH assumptions. In this paper, we automate both, the
anonymity and traceability properties (see Appendix). Due
to space constraints, we only give the initial game for each
of these properties in Appendix; the detailed reductions and
proofs are available in the full version of this paper; the source
code is available on Githubf]

VII. EXPERIMENTS

We have implemented the proofs of the Boneh-Boyen weak
and strong signature schemes, and the proof of the anonymity,
traceability properties of the Boneh-Boyen-Shacham group
signature scheme in AutoG&P, the results are tabulated in
Table For all three schemes, the proof is discovered auto-
matically. The BB weak signature scheme and BBS anonymity
involve a reduction to the base assumptions. The strong
scheme, and BBS traceability involve reductions to a weak
adversary, and hence have comparable, fairly short running
times. If we do a “long-form” reduction, i.e., not building
on the security of the weak scheme, the running time for the
strong scheme and traceability scheme would be around 30-40
milliseconds more. Our experiments were run on an Intel core
13 — 7100T (Dual Core, 3MB, 4T, 3.4GHz) running Ubuntu
16.04.

VIII. FUTURE WORK

An interesting direction to pursue is to explore how to
extend AutoG&P to support multilinear or k-linear pairings, as
opposed to just bilinear pairings. Our motivation in choosing
the Boneh-Boyen signature scheme was the fact that it is used
as a building block in several high-level protocols notably
attribute-based signature protocols [43]. Automating primitives
such as signature schemes in the standard model would pave
the way for automating proofs of families of several high-level
protocols which use them. On another note, in applications

Zhttps://github.com/sigcrypto/sigs-autognp

where independent proof verification by other tools is desir-
able, one could explore if proofs output by AutoG&P can still
be exported into EasyCrypt or Coq (only initial version had
support) for verification.
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APPENDIX

Definition A.1: (Bilinear Map): Let G; and G2 be cyclic
groups of prime order p, let g1, g2 be generators of G; and G4
respectively. Let ¢ be an efficiently computable isomorphism
from G5 to Gy such that g; = ¢ (g2), and let G be a third
cyclic group such that |Gy| = |G2| = |Gr| = p. Then e :
G1 X G2 — G is a bilinear map if it satisfies the following
properties:

1) Bilinearity: For all v € G1, v € Gs, and a,b € Z,

e(u®,v*) = e(u,v)?, and

2) Non-degeneracy: e(g1, g2) # 1.

Definition A.2: (g-Strong Diffie Hellman Assumption, g-
SDH): The ¢-SDH assumption holds in (G1,G3) if, for a

randomq:c € Z,, given the elements (g1, g2, g5, 952,
-+, g%"), it is computationally infeasible to compute any pair
1

of the form (¢, gy *¢), with non-negligible probability, where
¢ € Ly,

Definition A.3: (Decision Linear Assumption, DLIN): The
DLIN assumption holds in G; if, given the elements
(u,v, hyu®, v he), for u,v,h € Gi, and a,b € Z,, it is
computationally infeasible to decide if ¢ = a + b, or c is
random in Z,,.

Definition A.4: (Linear Encryption Scheme, LE) [24]: A
linear encryption scheme based on the DLIN assumption
consists of the following three algorithms:

1) (PK,SK) «+ KeyGen(1*). Pick an x,y € Z,. Pick
u,v,h € G1 such that u* = v¥ = h. Set SK =
(z,y), PK = (u,v,h).

2) ¢ < Encrypt(PK,m € G,): Pick a,b € Z,. Compute
Ty = u T, = v, T3 = m - hot?. Return C =
(Ty, Tz, T5).

3) m <+ Decrypt(c, SK): Compute m < T3/(T¥ - T3).
If the DLIN assumption holds the above linear encryption
scheme is CPA-secure.

Theorem A.I: The conclusion of each rule in Definition 3.3]
is satisfiable, iff one of its premises is satisfiable.

Proof: We consider each rule:

1) Ext,R-over-W,Symm: Proof follows from the exten-
sional array theory in Definition

2) W-Elim, Partial-Eq: The proof follows from the defini-
tion of partial equations in Definition [3.2] We can see
from that definition that if « =7 b, and p ¢ Z, then a and
b agree on index p, and if p € Z means that a and b agree
on every index, except p. For the other direction of the
iff, if the premise has a model, so does the conclusion,
as the conclusion is a subset of the premise.

3) Trans: If a =7 b and @ =7/ ¢ are true in some model,
then from Definition b =7u7 is also true in some
model. If ¢ agrees with b at every index except those in
Z, then p ¢ ZUZ' implies that ¢ agrees with a at p, and
also that a agrees with b at p. Hence, ¢ agrees with b at
p. For the other direction of the iff, the conclusion is a
subset of the premise, and hence has a model.

4) Subst: Evaluating an expression containing occurrences
of array a gives the same result as evaluating the
expression with the contents of a replaced with b at all
indices, except those in set Z. The side-condition in the
Subst rule ensures well-formedness.

|

AutoG&P provides algorithms to perform contextual rea-
soning and checking contextual equivalence of the form I' =
e =. €, where I', € are a set of axioms, and e and €’ are a
set of expressions. The set of axioms defined by I, € are field
axioms for finite fields of order p, I, bilinear group axioms
for groups G, and axioms for logical and bitwise operations.
The algorithms for checking contextual equivalence between
e and ¢’ involves first normalizing ¢ and ¢, and checking if e
and €’ are syntactically equal. Next, we compute the strongest
postconditions at a given position, which is a collection of
inequalities (random samplings and other commands) at every



TABLE IV
COMPUTING STRONGEST POSTCONDITION

Command | Effect on state

c=z ¢ \a T #a

c=letz=e T=e

¢ = guard(b) b

¢ = assert(ev) nquant(ev): inequalities not below a quantifier
¢ = write(a, i, val) | return a[j] < val

step leading up to the given position. To this end, a function,
conseq was defined that characterized the effect of a command
on the state of a (set of) variable(s). We extend the conseq
function to deal with array write commands; the existing
commands with our extension are given in Table Once the
strongest postcondition is computed, it is written in disjunctive
normal form, and T' = e =, €’ is checked for each disjunct
separately. e and ¢’ are then checked for syntactic equality,
which involves normalizing variables of different data types
(Boolean, bitstrings, F,,, and G;) in e and €’ in different
ways. We deal with arrays of group elements by treating each
indexed variable as an independent variable of type G;, and
using AutoG&P’s underlying normalization algorithm. In the
future, we hope to optimize this step, and investigate if it
might be faster to normalize the array as a whole, and what
techniques would such a normalization entail.

We now give the BBS group signature scheme anonymity
and traceability games. Game GS-anon (Ganon®>?)

La1,a3,a3,7 & Fpi let P = (g1,92,95", 9%, 9%, 93);
z Fp; A + g}/(wﬂ);let Ko = (4,2);

bE B EF, A g Ky = (A, 2);qn & F
tm Al() with

: H[1..qp] & ArrFp,;

for (i =1;i < gp;i++)

{

sletr ﬁ Fp;

9: write(H,i, H(r));

10: };

11: b AQ(P,m,H[l..qh],KO,Kl, (b?KO : Kl)) with
12: Sign(m) = {

13: 0, B & F:

14: let Ty = g\ let Ty = g{**";

15: let Ty = A % g\ (T2,

16: let 61 = x * a;let 09 = x * 3;

P JN A2 =

17: TasTByTas T3 T8, ﬁ Fp;
18: let Ry = ggapkr(y);let RQ _ g;az*rﬁ);
19: let R4 = T{I * gi_al*’rél);
T (—az*rs,)
let Ry =Ty * gy 2).
let Ry = (T3, g2)" + (g3, g3)( 770
«6(gi?, go) (o T

22: letc = H(m7T1,T2,T37Rl,R27R3,R4,R5>;
23:letsq =7 +cxasletsg =rg +cx B

24: let s, = r, + c*xx;

25: let 85, = 15, + ¢ O1;let 85, = 15, + € * da;
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26: let o = (11,12, T3, ¢, Sas S3, Sy S615 565 )3
27: return o
28: };

In Line 4, A; queries a random oracle (modeled as hash
function H); qp, is the bound on hash function queries. The
challenger responds with elements selected randomly from Z,,
(in the code, we maintain an additional buffer to check for and
ensure the oracle responds consistently to identical queries, but
have omitted that part here). These values are then passed on to
the adversary A. In Line 11, the adversary gets the public key,
the message, and the responses to its hash function queries.
Additionally, if b = 0, the challenger gives K, as input to
the adversary, and K7 is given to adversary if b = 1 (Ao, of
course, does not know b).

The traceability game basically reduces the hardness of the
adversary forging a signature that traces back to a member of
the group, without knowing that group member’s signing key
to the hardness of the GB® game. The proof search proceeds
similar to the GS — anon game, except that the reduction is
to a GBB adversary. We do not give all the steps and the
reductions of the anonymity and traceability games, due to
space constraints (available in the full version).

Game GS-trace (G — trace®50)

$
1: a17a27a37£17£277 — IET;D; let P = (9139279?179?27.9(11379’27)

2: X[1..q — 1] & ArrFp,;
let A[1..q — 1]  [gi/ DD
3: m « A;() with
4: H[1..g] & ArrFp,;
5: for (i = 1;i < qp;i + +)
6
7
8

gl/(7+X[q—1])].

AR A >

A
s letr <$¥ Fp;
cwrite(H,i, H(r));
9: %
10: o «+ Ag(P,m, &1, &a, (A[i*], X[i*])) with
11: Sign() = {
12: , B i Fp;
. _ (a1xa), _ (a2xB),
13: letTh = ¢y letTh = gy ;
14: let Ty = A[i*] + g\"* "),
15: let 61 = X[i*] * a;let 5o = X [i*]  5;
16: 70, 78,70, 751, 75, <£ Fp;
17: let By = g\ let Ry = g\***");
18: let R4 — T{z * gi*m*r«n);
19: let Ry = Ty= + gy “*""2,;
s let Ry = é(Ts, g2)™ + &(g%®, g3 )("ra—78)
xe(gy?, g2) 7T T2
21: letc = H(m, 11,715,153, R1, Ra, R3, Ry, R5);
22: letsq =74 +cxaslet sg =g+ c* f;

23: let s, =1y + ¢ x X[i*];

24: let s5, =15, + c*01;let s5, = 15, + € * d2;
25:let o = (11,12, T3, ¢, Sa, S8y Sus S6y5 565)5
26: return o

27: };

28: let A[i*] = Ty / (T, T5?);

bl



29: return (A[i*], X [i*]);
30: };
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