Exploring Automation in Proofs of Attribute-based
Encryption in the Standard Model”

Guruprasad Eswaraiah, Lalitha Muthu Subramanian, Roopa Vishwanathan
Department of Computer Science, New Mexico State University, USA
{guru,lalitha,roopav} @nmsu.edu

Abstract—Motivated by the complexity of cryptographic
proofs, we propose methods to automate the construction and
verification of cryptographic proofs in the standard model.
Proofs in the standard model (as opposed to the random oracle
model) are the gold standard of cryptographic proofs, and most
cryptographic protocols strive to achieve them. The burgeoning
complexity of cryptographic proofs implies that such proofs are
prone to errors, and are hard to write, much less verify. In
this paper, we propose techniques to generate automated proofs
for attribute-based encryption schemes in the standard model,
building upon a prototype tool, AutoG&P due to Barthe et al.
In doing so, we significantly expand the scope of AutoG&P to
support a rich set of data types such as multi-dimensional arrays,
and constructs commonly used in cryptographic protocols such
as monotone-access structures, and linear secret-sharing schemes.
We also provide support for a extended class of pairing-based
assumptions. We demonstrate the usefulness of our extensions
by giving automated proofs of the Lewko et al. attribute-based
encryption scheme, and the Waters’ ciphertext-policy attribute-
based encryption scheme.

Index Terms—cryptography, attribute-based encryption, proof
automation

I. INTRODUCTION

Cryptographic schemes are designed and proven secure in
rigorous frameworks, and the proof involves showing that a
given scheme satisfies some notion of security, e.g., proving
that encryption schemes are secure against chosen-plaintext
(IND-CPA) or chosen-ciphertext (IND-CCA) attacks, proving
that a signature scheme is existentially unforgeable against
chosen-message attacks (EUF-CMA), proving a group sig-
nature scheme is anonymous and traceable, proving that a
hash function is strongly/weakly collision-resistant, and more.
Complex cryptographic protocols are designed from primitives
such as encryption and signatures schemes, pseudorandom
functions, etc. Writing proofs for primitives and protocols is
a subtle, onerous, non-trivial process, and is known to be
susceptible to errors.

Encryption, signature schemes, and a host of other cryp-
tographic protocols that are built on them are constructed by
hinging their security on one or more computational hardness
assumptions, ranging from the simple discrete logarithm, de-
cisional Diffie-Hellman (DDH), computational Diffie-Hellman
(CDH) assumptions, to more involved ones such as g-strong
Diffie-Hellman (¢gSDH), bilinear Diffie-Hellman (BDH), and
decision linear (DLIN) assumptions, to name a few.

“Research supported by NSF award #1800088. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

The typical way in which a given scheme is proven secure
is by reducing the hardness of breaking the scheme to one
or more hardness assumptions, a technique which is usually
termed a reduction. The reduction is usually intricate and de-
tailed, and subtle errors could lead to the cryptographic scheme
being rendered insecure. Several cryptographic protocols have
been proven secure in the past, and the proofs have later
been found to be inaccurate, with reasoning flaws, such as the
errors in the proof of the well-used RSA-OAEP, pointed out
by Shoup. To remedy this situation, it is imperative to invest
efforts into the area of automation of cryptographic proofs.
Fundamentally, any automated tool meant for the construction
and verification of cryptographic proofs should be constructed
so that it is possible for provers to prove statements in familiar,
well-known models, such as IND-CPA/CCA, EUF-CMA, etc.,
without modifying or re-working the fundamental models, and
the goal of the proof assistant should be to reduce the amount
of time and effort it takes to manually develop a proof.

II. RELATED WORK

Initial efforts focused on building tools for the symbolic
model of cryptography [1]], but almost all cryptographic
protocols are proven secure in the computational model.
Many recent tools that work in the computational model are
EasyCrypt [2], CryptoVerif [3[, and the more general-purpose
proof assistant Coq [4] augmented with the Foundational
Cryptography Framework library (FCF) [5]. In this paper, We
focus on the practically relevant, standard model. Akinyele
et al. [6] proposed new automated tools for pairing-based
encryption and signature schemes. AutoG&P proposed by
Barthe et al. [7] is a prototype tool that can analyze the security
of pairing-based cryptographic primitives and implements a set
of high-level logic rules for performing reductions but lacks
support for several data structures, computational assumptions,
and proof techniques.

Recent work by Eswaraiah et al. [8]] shows how to automate
proofs of signature schemes and eventually use the proofs
of these signature schemes as building blocks in automating
proofs of higher-level constructs such as attribute-based signa-
ture schemes (ABS), although they do not provide any details
about this possible ABS extension. Their work fundamentally
differs from ours in that they focus on signature schemes,
while we focus on encryption schemes.

Attribute-based encryption originated as a form of Identity-
based Encryption (IBE), first proposed by Sahai and Waters.

We focus on automating 1) Waters’ scheme [9], which was the
first to present a ciphertext-policy attribute-based encryption
scheme in the standard model, under non-interactive assump-
tions, and 2) Lewko et al. [10] scheme, which was the first to
propose a ciphertext-policy attribute-based encryption system,
that is proven adaptively secure. Our choice of automating
their proofs stems from the fact that both of these are con-
sidered landmark results in the ABE domain in the standard
model, as well as that their proofs are considered challenging,
and similar techniques can be used to automate proofs of other
ABE schemes, with less involved proofs.

A. Contributions

Our main contribution is a formal logic to reason about
the security of cryptographic primitives such as attribute-
based encryption in the standard model, that are based on
involved pairing-based assumptions, and use constructs that
are not supported by existing proof assistants. Our logic is
based on AutoG&P’s existing rules and semantics, but extends
the original tool to include rules for reasoning about games
that can discharge proof obligations about security proofs
that use structures such as monotone access structures and
linear secret sharing schemes. Using this, we automate proofs
of two efficient ciphertext-policy attribute-based encryption
schemes: the Lewko ef al. [10], and the Waters’ scheme [9].
Both of these proofs are fairly involved, challenging, and
are in the standard model. Using these as templates, one
can potentially automate proofs of any other attribute-based
encryption scheme.

III. OUR LoGIC RULES

In order to build support for monotone access structures,
access tress, and linear secret sharing schemes, we need to
formalize logic rules for handling multi-dimensional arrays.
We need to guide the tool on how to handle read/write opera-
tions in arrays, how to tell if two arrays are equal, and support
simple relation-checks such as transitivity, symmetry of arrays.
We need to guide the tool according to well-known logic rules,
and help the tool draw inferences based on these rules. For
example, checking if two arrays are equal, or checking if the
span of a row or a subset of rows in a matrix representing
a monotone span program is [1,0,0,...,0]. The latter is a
fundamental operation used in construction of attribute-based
encryption schemes.

In this section, we give our core logic rules for multidi-
mensional arrays that are used to represent monotone access
structures. Our rules are based on the theory of arrays by
McCarthy, and theory combination methods proposed in the
formal logic literature. In Figure [T} the extensionality rule,
Ext, formalizes that if two n-dimensional arrays are equal
in a security experiment, then the values they store at each
index ;4 € [1..n] will be the same. Note that every value
from [1..n] has to be at the same index in both arrays. A
special case of this rule would be 2-dimensional arrays such as
matrices and monotone access structures, where each matrix
entry at all indices (4,j);4,j € [l..n] should be the same

for two matrices a and b. The read over write rule, R-over-
W, writes a value v to an index ¢ in an n-dimensional array
a, then reads the value at index i’ in the same dimension.
If ¢ = 4/, then it returns v, else it reads and returns the
result of read(a,i’). The Partial-Eq rule states that if two
n-dimensional arrays a and b agree at every index, except
those in the set Z, then for every i ¢ Z, read(a,) should be
equal to read(b,7). The write with elimination rule, W-Elim
eliminates write expressions, replacing them with reads. The
Trans rule formalizes transitivity between three n-dimensional
arrays a, b, c. The Subst rule replaces all occurrences of an n-
dimensional array a with an n-dimensional array b in a game.
The Symm rule states that if an n-dimensional array o stores
the same value as n-dimensional array b on all indices, except
those indices in set Z, then b also stores the same value on
all indices as a, except those indices in set Z. We note that
the Trans and Symm rules will be the same, regardless of the
dimensionality of an array. We now state a soundness theorem
for our rules. The proof of the following theorem is given in
the full version of the paper.

Theorem 3.1: The conclusion of each rule in Definition 3.
is satisfiable, if and only if one of its premises is satisfiable.

IV. GENERAL STRUCTURE OF CP-ABE SYSTEMS

The general structure of ciphertext policy attribute-based
encryption systems is given in the full version of this paper. We
now give our first formalization of the Lewko et al. construc-
tion [10] in AutoG&P. This scheme uses the three subgroup
assumptions in composite order groups. The construction of
[10] is given below.

1) (PK,MSK) < Setup(\,U): The setup algorithm
chooses a bilinear group G of order N = (p1paps),
where pipops are three distinct primes. We let Gy,
denote the subgroup of order p; in G. It then chooses
random exponents «,a € Zpy, and a random group
element g € G), . For each attribute ¢ € U, it chooses a
random value s; € Zy. The public parameters PK are
N,g,9%¢e(g9,9)* T; = g* Vi. The master secret key
MSK is o and a generator X3 of gp,.

2) SK <« KeyGen(MSK,S,PK): The key generation
algorithm chooses a random ¢ € Zy, and random ele-
ments Ry, R, R; € Gp,. Compute K = g®¢g** Ry, L =
g'Ry, K; = T/R;Vi € S. Set SK = (K, L,K;Vi €
S).

3) CT < Encrypt(A,p,PK,M): A is an [X n matrix
and p is a map from each row A, of A to an attribute
p(x). The encryption algorithm chooses a random vector
v € Zn, denoted by v = (s,v9,- -+ ,v,). For each row
A, of A, it chooses a random r, € Zp. The ciphertext
is ((A4, p) is implicitly included in the ciphertext):

C = Me(g,9*),C" = ¢°,Cy = ¢g**VT 75, D, =
gV .

4y M <« Decrypt(CT,SK,PK): The decryption al-
gorithm computes constants w, € Zpy such that
Yo@)eswe Az = (1,0,---,0). It then computes:

6(0/, K)/Hp(w)GS(e(Cmy L)e(Dasv Kp(z)))WT = e(g, g)as.

Definition 3.1: (Extended Logic Rules)

EXt(f(il, ig, e ,i,L)) .
[G : ev (read(a, f (1,12, ,in)) # read(b, f(i1,i2, - ,in)))] S €
[G:ev(a#b)] <€
R-over-W(f(i1,%2, ... ,in), f’ (21,22, ceyin))
[G: ev (f(i17227") f(zll ./))/\
read(. . .read(read(a[i1]), i), . .)] <€
(G :ev(f(iryin, ... in) # f(3) z'2,..., i)N
read(...read(read(a[i}]),45),...,1,)] < €2
[G : ev[read(...read(read(write(. . .erte(wrlte([11]),22)y - yin), V),
(afif]),i5), .. i0)] < €1 + €2
W-E'Im(f(ll, iQ, e 7ln)) :

[G:ev((f(i1,i2,.. . in €T)A(a=1b))] <€
[G:ev(f(i1,i2,...,0n & T) A (read(...read(read(b[i1]),ia,...,in)) = V)A
(@ =1b))] < e
[G : ev (write(. .. write(write(a[i1]), i2), ... ,in),v) =7 D] < €1 + €2
Partial-Eq(f(il, ’L'27 .. ’Ln)) :

(G :ev(((f (11, i9,...,in) € I) A (a =1 D)A
read(...read(read(a[i1]),42),. .., in) = read(...read(read(b[i1]),i2),...,in))] < €1
G : ev((f(zl,w, cenin) ET)AN(a=1))] < €&

[G:ev(a=7b)] <e+e

Trans :

[G L ev ((a =7 b) A (a =7/

)N (b=1uz)] S € [Z#0andZ’ #10]

[G:ev((a=zb)A

SUbSt(f(il7 ’ig, .

(a =1 ¢))] <e

ain)):
[G : ev (b, f(i1,ia,...

in))] X €

G :ev(a, f(i1,ia,...

Symm :
[G:ev(b=1
[G:ev(a=z

lal > [0

vin))] X €

a)l
b)]

la| < [b]

The M can be recovered by doing C'/e(

There are two structures used in the [10]

functional ciphertexts and semi-functional keys. These are not
used in the real system, but are an artifact of the proof.

1) Semi-functional ciphertext: Let g» be

Gp,, and ¢ be a random exponent modulo N. We
€ Zn associated to
attributes, random values 7, € Zy associated to matrix
rows x, and a random vector u € Z7%;.
functional ciphertext C’ is defined as: C' = ¢g°¢5,C, =

also choose random values z;

Fig. 1: Our Logic Rules

v— A utve2p(x »
gavaTTmQ 'Yﬂ()D_gg’YVx

Semi—fugcﬁonal key: A semi-functional key will take
on one of two forms. A semi-functional key of type
I, also called a “nominally semi-functional” key is
formed as follows. Exponents ¢,d, b € Zx and elements
Ry, R, R; € G, are chosen randomly. The key is set
as:

g,9).

. 2
scheme: semi-)

a generator of

K =g°g"Rogd, L = g'Rigb, K; = T{ Rigs* Vi € S.
Then a semi-

A semi-functional key of type 2 is formed without the

terms g5 and g57:

K = g°g™Rogd, L = g' Ry, K; = T{R; Vi € S.

We follow the proof as presented in the paper. At a high-
level, the proof works in a series of hybrids that reduce a
cpabe-adversary to the subgroup decision 1 adversary. The
reduction first transforms a real game, Gamegeq;, with normal
ciphertexts and normal keys to Gamey, where all the keys
will be normal, but the ciphertext will be semi-functional.
Then Gamey is further reduced to a game Gamey,,;, where
the challenge ciphertext becomes semi-functional, the first
k — 1 keys become semi-functional, the k" key becomes
nominally semi-functional, and the remaining keys are normal.
Gamey,; is further transformed into a game Gamey, o where
the challenge ciphertext is semi-functional, the first k£ keys
are semi-functional, and the remaining keys are normal. The
final reduction is between Gamey 2 to a game Gamefinai,
in which all the keys are semi-functional, and the challenge
ciphertext is semi-functional, and hence none of the keys
are useful in decrypting anything, and hence the adversary’s
advantage is 0. Let us call the reduction Gamepgeq; — Gameg
as Gy, the reduction Gamey — Gamey,1 as G, the re-
duction Game,1 — Gameggo as G, and the reduction
Gamey,1 — Gameyina as Gg respectively. We now give
the formalizations in AutoG&P for the hybrid games. The
superscripts on the games denote the initial game in the proof
search procedure. Due to space constraints, we only give
the game GY here, we give the proof search procedure, and
intermediate hybrids in the full version.

Game G

L: (Nvg/agtve7gvX37T) <~ Bl() with
1.1: KeyGen(Gen){
3$
L1.1: P1,P2,P3 <]Fp;
1.1.2: let N = p1paps; X3 & Gpy3b & Bool;
1.1.3: return (N, ¢, g4, €, 9, X3;
3$ 3
(VT < Gpip,) : (T < Gyy)))
1.2 };
2:a,« ﬁ Fp;
3: letpk = (N,9,9% ¢(9,9)*);
$
4: Sl[lql] — IFp;
5: (K',L,K[l..q1]) < Al(pk,Sy) with;
5.1: B2(pk, o, X3){

5.2: lett & Fp;
53t let Ro, Rl € Gpy; R'[1..q1] & F:
letR = [¢F'1, ... gRlal);

54: let K[1..q1] € Gpyps;

5.5: K' = g°tot . Ry, I = g'RY;

5.6: fori =1toqy
5.6.1: write(K, 4, g%+t . RJi]);
5.6.2: return (K', L, K);

6: };
7: (C,C",C", D) «+ Al(mg, m1, A*, p,1,n) with

7.1: B3(mg, my, A*, p,1,n){
7.1.1: b & Bool; letR[1..1] & Zn;
7.1.2: CL.] & Fy; let ¢ = [gC1) ... g€},
7.1.3: let C = (mype(g>T)),let C" = T;
7.1.4: V[1.n] & Zy;
let V/ =[1,gVI ... ¢V[);
7.1.5: fori = 1tol{
7.1.6: write(C, i, 7oA AV PRIl $p())
7.1.7: write(D, 3, TRU);
7.1.8: return (C,C’, C", D);
8: 1 h
9: Silgr + 1.9 & Fp;
10: (K', L, K[q1 + 1..q]) + Al(pk, Sy) with;
10.1: B2(pk, a, X3){
10.2: let Ro, Rp; R'[q1 + 1,--- ,q] & Fy;
let R = [gFlo+1] ... gR'ld]).
10.3 let K[g1 + 1..q] € Gp,py;
104: K' = gt . Ry, L = ¢g'Ry{;
10.5: fori = g1 + 1tog;
10.5.1: guard(K ¢ A*)
10.5.2: write(K, i, g5+t . R[4]);
10.5.3: return (K', L, K);
I:}:b=0
We assume that g € Gy, g2 € Gp,, g3 € Gp,, ¢ € G and
g¢ € Gp are the respective generators, and e : G2 — Grp
is a bilinear map. |Gr| = |G| = pipaps. In line 1, the
subgroup assumption 1 adversary, B is given the public
parameters of the system, the generator g of the subgroup
G, , generator of subgroup X3 € Gy, and its challenge, T,
among other things. In Line 5, A requests its secret keys,
which B responds correctly to. In Line 7, A sends its messages
mg, my, access structure A*, mapping between attributes and
rows, p, and requests its challenge ciphertext, in response to
which B generates and returns the correct ciphertext tuple
(C,C",C", D). A can again query for private keys in Line
10, with the restriction that the private keys cannot satisfy A*,
which is enforced by the guard. In Line 11, B outputs A’s
guess as its own guess. We note that there are some syntactic
issues in AutoG&P (e.g., we cannot directly sample elements

from a group G, but need to sample x & Zg, and then do
g*, where g € G, etc.), but we omit these from our game
formalization in some places, for readability. We now give the
Waters CP-ABE scheme based on the ¢g-BDHE assumption.

V. WATERS’ SCHEME BASED ON ¢-BDHE ASSUMPTION

This scheme is based on the Decisional g¢-Bilinear Diffie
Hellman Exponent Assumption, which is considered stronger
than the simple Decisional Bilinear Diffie Hellman (DBDH)
assumption, but weaker than the g-Parallel Bilinear Diffie
Hellman Exponent Assumption (¢-PBDHE). We describe syn-
thesizing the game hybrids and proof search procedure in the
full version. The main challenge in the proof is to find a way
to embed the adversary’s challenge parameters into the public
parameters generated by the simulator. The scheme below is

proven secure under the restriction that an attribute appears
in only one row in the access structure, i.e, the attribute-to-
row mapping function p(-) is injective, although Waters [9]
informally describe how the scheme can be extended to the
situation where a single attribute is used in multiple rows, by
adding an unique identifier to each instance, e.g., if attribute
A is used in multiple rows, one could just label each instance
separately, e.g., Ay : 1, Ay : 2, etc. In the non-injective variant,
the size of users’ secret key grows to |\S| - kpax, Where Ky is
maximum number of instances of an attribute. In the simple,
injective variant, the size of users’ secret key is |.S|, where S
is the set of attributes the user possesses.

A. Proof

At a high level, the proof aims to construct a simulator B
that can solve the g-BDHE problem in polynomial time with
non-negligible advantage, by interacting with an adversary A,
which has a non-negligible advantage of breaking the security
of the CP-ABE scheme in the selective security model. Let us
assume the existence of a CP-ABE adversary A, that chooses
a challenge access structure (M™*, p*), where the size of M* is
I* x n*, where n* < ¢q. We also assume that the total number
of attribute sets, and the number of attributes in each set is
upper-bounded by the max. number of system attributes, U.
A has non-negligible advantage of ¢ = Adv,4 in the CP-ABE
selective security game. We also assume that the challenger
for B is given a group G of prime oder p, g € G, the max.
number of attributes in the system, U, and it sets B’s challenge
in accordance with these parameters. The proof was given for
symmetric, type I groups; we follow the same.

The original (manual) proof of Waters had just one set of
attributes .S in phase 1, phase 2, and the challenge-response
phase, presumably for simplicity, and uncluttered presentation.
The idea was that the two phases, and the challenge-response
step will be repeated multiple times, up until the appropriate
set bounds. We could, in principle, do the same, but we choose
to give the more general version, with sets Sy,---,Sg,, and
84141, ,q» and the corresponding sets of secret keys in all three
steps. This makes synthesizing the simulator tricky, introduces
quite a bit of new notation, and the proof is more complicated
(notationally, and in terms of reasoning too) than what it
would have been in the single set case. . We describe how to
automate the proof of Waters’ scheme based on the g-PBDHE
assumption, which is stronger than the ¢-BDHE assumption
in the full version of the paper.

VI. EXPERIMENTS

We have implemented the full automation of the proofs of
the Lewko et al. scheme [10], and the Waters’ scheme [9] in
AutoG&P, the results are tabulated in Table In all cases,
the proof is discovered semi-automatically, with the lines of
code including the manual hand-tuning steps. Our experiments
were run on an Intel core i3 — 7100T (Dual Core, 3MB, 4T,
3.4GHz) running Ubuntu 16.04. The Lewko et al. scheme

Uhttps://github.com/sigcrypto/sigs-autognp

proof generation time is the sum of the proof-generation time
for 4 different intermediate hybrid games (Game G(, Game
G1, Game (o, and Game (73). Waters’ schemel is the scheme
based on the gBDHE assumption, and scheme? is the scheme
based on the gPBDHE assumption.

TABLE I
EXPERIMENTAL RESULTS

Proof of Scheme [Lines of Code | Time (ms)

Lewko et al. scheme [10] 343 238
Waters’ schemel [9] 105 79
Waters’ scheme2 [9] 121 97

VII. FUTURE WORK

An interesting direction to pursue is to explore how to
extend AutoG&P to support multilinear or k-linear pairings, as
opposed to just bilinear pairings. A natural step would also be
to explore if we can automate proofs of attribute-based signa-
tures schemes [?], and proofs of other, more generalized forms
of attribute-based encryption such as functional encryption or
predicate encryption. In applications where independent proof
verification by other tools is desirable, one could explore if
proofs output by AutoG&P can still be exported into Easy-
Crypt or Coq (only initial version had support) for verification.

REFERENCES

[1] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin, “Automated
analysis of diffie-hellman protocols and advanced security properties,”
in 25th IEEE Computer Security Foundations Symposium, CSF, 2012,
pp. 78-94.

[2] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub,
“Easycrypt: A tutorial,” in Foundations of Security Analysis and Design
FOSAD, 2013, pp. 146-166.

[3] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” in 2006 IEEE Symposium on Security and Privacy (S&P),
2006, pp. 140-154.

[4] I labs, “The Coq proof assistant,” https://coq.inria.fr/.

[S] A. Petcher and G. Morrisett, “The foundational cryptography frame-
work,” in Principles of Security and Trust - 4th International Conference,
POST, Proceedings, 2015, pp. 53-72.

[6] J. A. Akinyele, C. Garman, and S. Hohenberger, “Automating fast
and secure translations from type-i to type-iii pairing schemes,” in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS 15, 2015, pp. 1370-1381.

[7]1 G. Barthe, B. Grégoire, and B. Schmidt, “Automated proofs of pairing-
based cryptography,” in Proceedings of the 22nd ACM Conference on
Computer and Communications Security, CCS, 2015, pp. 1156-1168.

[8] G. Eswaraiah, R. Vishwanathan, and D. Nedza, “Automated proofs
of signatures using bilinear pairings,” in 16th Annual Conference on
Privacy, Security and Trust, PST 2018, 2018, pp. 1-10.

[9] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,

efficient, and provably secure realization,” in Public Key Cryptography

- PKC 2011 - 14th International Conference on Practice and Theory in

Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceed-

ings, 2011, pp. 53-70.

A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,

“Fully secure functional encryption: Attribute-based encryption and

(hierarchical) inner product encryption,” in Advances in Cryptology

- EUROCRYPT 2010, 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, French Riviera,

May 30 - June 3, 2010. Proceedings, 2010, pp. 62-91.

[10]

https://github.com/sigcrypto/sigs-autognp

	Introduction
	Related Work
	Contributions

	Our Logic Rules
	General Structure of CP-ABE systems
	Waters' Scheme based on q-BDHE assumption
	Proof

	Experiments
	Future Work
	References

