
Rebalancing in Acyclic Payment Networks*

Lalitha Muthu Subramanian, Guruprasad Eswaraiah, Roopa Vishwanathan
Department of Computer Science, New Mexico State University, USA

{lalitha,guru,roopav}@nmsu.edu

Abstract—In this paper, we propose a technique for rebal-
ancing link weights in acyclic payment networks, which are
peer-to-peer networks with payment channels or links between
users. Payment networks such as Ripple and Stellar offer a
range of services such as real-time payment transfers, including
cross-currency transactions, and are growing in popularity. They
incentivize users to use them by offering much lower transaction
fees, and quick transfer times as compared to traditional bank
wire transfers. The link weights are positive integers, and once
two users connected by a link spend their link weight, the link
gets exhausted, and no more transactions can be done over the
link. In order to allow users to do any more transactions, the link
weight must be increased, a process known as rebalancing link
weights. Existing methods of rebalancing require users to per-
form expensive blockchain transactions of closing and refunding
the channel; we consider the problem of rebalancing a payment
channel in real time in an efficient way. Our decentralized
technique of rebalancing will help users in acyclic payment
channel networks to rebalance their link weights on an as-needed
basis, and with minimal computational cost, and only off-chain
transactions.

Index Terms—rebalancing, blockchain, payment networks

I. INTRODUCTION

Since the growth of Blockchain and Bitcoin [1], many
payment channel networks have come into existence to make
service delivery more efficient in the financial services in-
dustry. Ripple [2] exemplifies the idea of a payment network
that provides high transaction throughput, and low end-to-end
transfer time, along with providing users the ability to per-
form cross-currency transactions. Ripple uses a permissioned
blockchain to write all its transaction logs. Unlike Bitcoin
and other cryptocurrencies, payment networks [3], [4], [2], [5]
have two users i and j who locally maintain a directed credit
link from user i to j that represents the amount of funds
that i can transfer to j. To provide even a basic modicum
of security, such networks need to provide mechanisms to
correctly determine a link weight at a given point of time,
prevent arbitrary changes to link weights by malicious users,
and provide accountability.

There has been a growing interest in finding solutions
for various privacy and security issues in payment networks
such as [6], [7], but not many works focus on rebalancing
techniques in payment networks. Rebalancing in payment
networks is an important problem to study, since, if the link
weight between any two nodes drops to 0, no transactions can
be done until the link is refunded, a process which involves

*Research supported by NSF award #1800088. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

expensive on-chain transactions. We model a payment network
as a directed acyclic graph, where the set of users is the set of
nodes in the graph, the links represent peer-to-peer payment
channels, and directed edges represent the directionality of
payment flow, and present the following contributions.

Our Contributions: In our system, each node maintains
some local meta-data that it can use for determining which
of its immediate neighbors can best help it rebalance its links
when required. Our rebalance protocol is simple, and provides
security against malicious nodes that try to mis-report link
weights, or otherwise misbehave during the rebalance process.
Our rebalance protocol is completely decentralized, as opposed
to previous work, which required a centralized authority. We
provide link privacy, such that no node in the network knows
the value of link weights it is not directly connected to. In
terms of efficiency, our protocol is linear in the number of
nodes in the network in the worst-case, and requires minimal
cryptographic operations.

Outline: In Section II, we briefly discuss related work in the
area, in Section III, we give our system design, in Section IV,
we give the adversary model, in Section V, we describe our
three-phase rebalancing protocol, and in Section VI, we give
an asymptotic analysis and other estimates of our system.

II. RELATED WORK

Khalil et al. proposed REVIVE [8], a payment channel
network that allows users to rebalance their channel without
having to communicate with the blockchain. Although im-
pressive, their channel rebalancing process is not transparent,
requires a centralized, elected party called “leader” that has to
always be online, whom all nodes will contact for and during
the rebalancing process, and the leader knows all nodes’ link
weights (not privacy-preserving). Moreover, REVIVE only
works in a restricted class of network topologies that has cyclic
graphs, and the authors point out that their mechanism will not
work in the case of acyclic graphs. Lightning network [9] con-
structed on top of Bitcoin is composed of one-to-one payment
channels that scale well (105 million users). Lightning network
does re-balancing off-chain, but again only for cyclic graphs.
To rebalance a low-weight link, a node makes a payment to
itself across a circular path of payments. Circular payments
are not free (every node in the path needs to receive a relay
fee, and the cycles could be arbitrarily large). In our design we
have a maximum of three participants, and avoid the cost of
paying every node in the path. There are several other notable
works in the general area of payment channel networks [3, 6],

Fig. 1: (a) Unidirectional payment network. (b) Bidirectional payment
network.

among others, but we do not cover them here as they do not
specifically deal with the rebalancing problem.

III. SYSTEM DESIGN

The topology of a payment network graph could be one of
the following:

• Unidirectional links with cycles
• Unidirectional links without cycles
• Bidirectional links with cycles
• Bidirectional links without cycles

We depict the four kinds of topologies in Figure 1. We
note that the first two cases: networks with unidirectional
links have received less attention in the research community
than compared to networks with bidirectional links. Figure
1a represents a network with unidirectional payment links.
The payment path A-B-C depicts a unidirectional cyclic path,
and A-B-D represents a unidirectional acyclic path. Figure 1b
represents a bidirectional payment network. The path C-D-
E represents a bidirectional cyclic path, and path A-B-C-D
represents a bidirectional acyclic path.

Figure 2 describes a scenario which depicts rebalancing in
a unidirectional payment network without cycles. Initially, A’s
link weight is 5 with respect to B and A wants the A-B link
to be rebalanced. For this purpose, A sends out a request to
B for rebalancing. B in turn contacts its next-hop neighbor C,
requesting C to increase the B-C link weight by 25 units1 If
C agrees to the increase, the B-C link gets incremented by 25,
which enables B to increase the A-B link by 25. This maintains
the zero-sum balance at node B, i.e., the difference between
B’s outgoing and incoming links stays the same, which is
an important property to provide while rebalancing payment
networks [8].

Bidirectional networks such as Lightning network use a
mechanism called splicing, a feature that enables users to
combine the open channel, close channel and on-chain Bitcoin
outputs into one transaction, which could arguably be the
most critical feature on the network. In splicing, any node can
transfer partial funds from one of its incoming links to an out-
going link. Unidirectional networks such as the one depicted
in Figure 3 will be a trivial case of the bidirectional network
splicing idea, where a node A can get funds transferred from

1In payment networks, units can be any fiat currency, e.g., $, or , or
cryptocurrency.

(a) Before rebalancing (b) After rebalancing

Fig. 2: Unidirectional network before/after rebalancing.

(a) Before rebalancing (b) After rebalancing

Fig. 3: Rebalancing link weight A-B through G-A-B using splicing.

an incoming link and increase the weight of an outgoing link.
In Figure 3a, A can decrement the G-A link by 25 units, and
transfer 25 units to the A-B link. But what happens when A
does not have any incoming links? We focus on finding ways
for a node in an unidirectional acyclic network when the node
that wants to perform rebalancing does not have any incoming
links.

Generalizing the idea, in our system, we have n nodes,
where a node i wants to rebalance an outgoing link between
(i, j). i sends a rebalance request to j and waits for j to
respond within time ts with a value val. The idea is node
j will ask all of its next-hop neighbors on outgoing links,
if they would be willing to increment their links with j by
a value val. If node j’s next-hop neighbor k is willing to
help, it increments its incoming (j, k) link by val, and j
will increment its incoming (i, j) link by val. We assume
that the number of neighboring nodes connected through j
will be large. To deal with dense networks, we specify a
Hopcount variable in our algorithms, whose exact value is
implementation-dependent. We give our table of notations in
Table I.

IV. ADVERSARY MODEL AND SECURITY PROPERTIES

In our system, the adversary can adaptively corrupt a single
user or a set of users involved in rebalancing. The corrupted
user(s) can be either the initiator of the rebalancing request, or
peer nodes receiving the request. Each user i has her own sign-
ing and verification key pair (ski, vki). Once i is corrupted,
her links will be controlled by the adversary, the adversary
can misreport i’s link value, not respond to requests, and relay
fraudulent rebalance requests to neighbors. We assume that an
adversary cannot corrupt all users in the network, and thus may

2

TABLE I: List of notations

Variable Definition

ts Timestamp

(ski, vki) Signing/verification keys of user i

tablei Local hash table storing info about link weights

Hopcount Maximum hop-count

CtRes Contract created in reserve phase

CtBal Contract created in pay phase

σRes Signature created on contract CtRes

σBal Signature created on contract CtBal

te Contract expiry time

w(i, j) Link weight between i and j

tu Time of link weight update

know partial network topology, but does not know the entire
network. We now give the desired security/privacy properties
of a payment network that enables rebalancing, and briefly
explain how our system provides them.
Desired Security/Privacy properties:
Link privacy: Link privacy is achieved when an adversary only
knows the value of links adjacent to her and will not have
access to other nodes’ links, even if they were part of the
rebalancing. This is done in our system by including just the
update value and not specifying the link value in the rebalance
contract.

Accountability: Any malicious user should not be able to
misreport her link value. In our system, each user maintains a
record of their link weights with their next-hop neighbors in a
local hash table. Each user involved in a rebalance transaction
also holds signed contracts containing the current and updated
link weights as a proof of link weight update. In case where
any user behaves maliciously, the honest peers would be able
to detect such malicious activity, also third-party arbiters can
adjudicate based on the signed contracts.
Corrupted users: We now discuss which users could possibly
get corrupted, what can a corrupted user do, and how to
mitigate the situation.
Corrupt rebalance requestor node: Any user who sends the
rebalancing request and can act maliciously, claiming or
misreporting a different value after having rebalanced with
any of its peers. In our model, we prevent such claims by
providing each of the user in rebalancing with two signed
contracts, CtRes, that is signed during the reserve phase, and
CtBal that is signed during the pay phase. The algorithm
creating these contracts is defined in Section V of this paper.

Corrupt responder node: A malicious responder j might try
to get funds from its neighbors, but will refuse to pay node i.
We have designed our pay phase such that the balance transfer
or the link weight update occurs first between the requester
node i and j, for which i would provide an acknowledgment
to j as a proof of link weight update, which j would need to
show to its own neighbors. By this method, we prevent any
malicious j from diverting the funds to update her own link

weight rather than responding to the rebalance request.
Corrupt neighbors: Any neighbor of a rebalance requestor

node, on receiving the rebalancing request can act maliciously
by just responding to every such request, but not allowing the
rebalancing to go through (denial-of-service). In our system,
we make use of a timer ts; any user i doing a rebalance would
have a time-out period after which the received responses are
not accepted, and if a neighbor does not get back within te, the
request is considered abandoned. This way we prevent having
the requester to wait for a longer time than necessary to do
her rebalancing, identify malicious intermediaries, and block
them for future rebalance requests.

V. OUR CONSTRUCTION

In this section, we describe the three phases of our construc-
tions: the rebalance request phase, the respond phase, and the
reserve/payment phase.

A. Rebalance request phase

Algorithm 1 explains the rebalancing request and response
that is carried out between two nodes, i and j where node i
wants to rebalance the link between i and j. At a high-level
the idea is j will contact all its neighbors, find a neighbor k
who will increment the (j, k) link by a value val, which will
enable j to increment the (i, j) link by val.

First, node i will check the link weight of the (i, j) link
(Line 2) stored in a hash table locally by i. Next, node i
sends a rebalance request to node j with a timestamp and
hopcount (Line 3). Node j calls the Rspond(tablej) −→ jresp
function in Line 4; the goal of this function is for j to tell
i whether j is willing and able to be part of a rebalancing
transaction, and if so, what is the max. amount by which j can
rebalance the (i, j) link. The details of the respond algorithm
are given in Algorithm 2. All the nodes have their link weights
arranged in ascending order in their local hash table so as to
be efficient while raising a rebalance request to any of its
peers. A node j figures out if any of its neighboring nodes,
k, is willing to respond to the rebalance request with a value
valj in the Rspond function. The j node could either return
a value valj or ⊥ (which would be returned when none of
j’s neighboring nodes within the hopcount radius are willing
to participate in the rebalancing request, or any of the nodes
timeout). If the response from node j is ”⊥”, then node i
aborts the rebalancing with j (Line 15). In the former case,
Node i sends an acknowledgement to j accepting the offered
value val (Line 6). Once i sends the acknowledgement to j,
j calls the Reserve function (Line 7) to create agreements to
the value val between nodes i, j, k.
Reserve returns CtResijk which is the signed contract

between (i, j) and (j, k) along with signatures σResi , σResj ,
σResk . Each node involved in the rebalancing store a copy of
the contract along with the signature as a proof of the reserve
agreement (Line 8). These contracts should be used by the
nodes in case of resolving disputes if any of the parties become
malicious. This contract is then sent as input to Pay function,
which updates the link weights (channel balances) between

3

(i, j) and (j, k) (Line 9). Node i, j and k keep a copy of the
pay contracts, CtBalij , CtBaljk respectively as a proof of
channel updates and update their link weights accordingly in
their respective local hash tables (Line 11).

Algorithm 1: Rebalance request phase

1 begin
2 Node i does tablei.get −→ (j, w(i, j)), i, j ∈ [1..n]
3 Node i calls Rreq(ts, j, hopcount)
4 j calls Rspond(tablej) −→ jresp
5 if jresp == val then
6 Node i accepts the value val and sends an

acknowledgement to j
7 j calls Reserve(i, j, k, val) −→

CtResijk, σResi , σResj , σResk

8 Nodes i, j and k keep a copy of
σResj , σResi&σResk, σResj respectively

9 j calls Pay(CtResijk, val) −→
CtBalij , CtBaljk, σBali , σBalj1 , σBalj2 , σBalk

10 Node i keep a copy of CtBalij , σBalj1

11 Node j retains a copy of CtBalij ,
CtBaljk,σBali , σBalk

12 Node k retains CtBaljk,σBalj2

13 end
14 else if jresp =⊥ then
15 Node i rejects jresp and aborts rebalancing

with jth node.
16 end
17 end

B. Respond phase

Algorithm 2 defines the Rspond function that is run by a
node j that has received a rebalance request. We refer to node
j as the intermediary node involved in the rebalancing scheme.
This algorithm takes j’s local hash table, tablej and returns
either a value valj or a ”⊥” as the return value. Node j scans
her look-up table, does a tablej.get which contains the weights
of j’s links in increasing order , and requests each neighboring
node connected by a given link for an increase in link weight
(Line 4,5). The idea is that, it would be easier for j to request
a value valj from links that have low weights first. When a
node k is willing to increase the (j, k) weight (and thus be
involved in rebalancing), j responds with a value valj to i
(Line 8).

C. Reserve and pay phase

This phase has two parts: reserve, where rebalance agree-
ments are established between nodes, and the pay part, where
the actual channel balances are updated. Algorithm 3 describes
the reserve and pay phases. Algorithm 3 defines two different
functions Reserve and Pay which are used in algorithm 1 of
this section.

The Reserve function takes as input nodes i, j, k, rebalance
amount, val, and produces as output a rebalance contract,

Algorithm 2: Respond Phase

1 Function Rspond(tablei)
Parties : i, j, k ∈ [1 . . . n]
Result: jresp

2 j sets a variable Ctr = 0
3 while Ctr = 0 do
4 j does tablej.get −→ (j, w(j, k)) in tablej
5 j requests increase in w(j, k), if yes, updates

Ctr = 1
6 end
7 k responds with a value valj to j
8 j responds with a value valj to i
9 end

CtResijk. The contract is created by node k and contains
parties identities, value, and an expiry time for the contract
(Line 2). An expiry time te indicates the time period for
which parties will hold or reserve the value, val; if the reserve
operation is not followed within time te by a pay operation,
the held values will be released by all nodes.

In Line 3, j verifies the contract and k’s signatre, and
produces her signature σResj . Then node i verifies the contract
CtResijk and also signatures σResj and σResk, and signs
the contract: Signski(CtResijk) −→ σResi (Line 4). The
Reserve function returns a contract CtResijk and signatures
σResi , σResj , σResk signed by all the nodes involved in the
rebalancing transaction.

Line 6 of this algorithm defines the Pay function which
takes reserve contract CtResijk as input and returns pay
contracts CtBalij ,CtBaljk, which are proof of channel up-
dates to be retained by each of the nodes to resolve any later
disputes. In Line 7, node j verifies the contract CtResijk and
updates the (i, j)channel weight by val. Nodes i and j store
the new weight in their respective local hash tables (Line 8, 9).
We require node j to update the (i, j) link first and node k to
update the (j, k) link later, to protect against a malicious j who
might not update the (i, j) link, if the (j, k) link gets updated
earlier. In Line 10, node i signs and sends an acknowledgement
of the (i, j) link update, which will be presented as proof to
k, where tu is the time of update.

In Line 11, k verifies the contract CtResijk and updates
the (j, k) link weight by val. Following this, nodes j, k update
their local hash tables with the new link weights (Line 12, 13
). All the three participants i, j, k retain a copy of CtBalij
and CtBaljk and the signatures on the contracts as a proof
of the rebalancing.

VI. ANALYSIS

In this section, we provide some preliminary analysis for
the protocols that comprise our system. For the purpose of
the analysis, we consider three users: node i that initiates the
rebalance request, i’s neighbor j, which acts as an facilitator,
and j’s neighbor k, which acts as a responder.

One important measure of the efficiency of any system
that uses cryptography is the raw number of cryptographic

4

Algorithm 3: Reserve and Pay Phase

1 Function Reserve(i, j, k, val)
Parties : i,j,k ∈ [1 . . . n]
Output: CtResijk, σResi , σResj , σResk

2 k creates contract CtResijk for an amount val
between (i, j, k), where
CtResijk = ⟨i, j, k, val, te⟩, produces
Signskk

(CtResijk) −→ σResk

3 j verifies σResk and agrees to CtResijk, produces
Signskj

(CtResijk) −→ σResj

4 i verifies σResk and σResj , agrees to CtResijk,
produces Signski

(CtResijk) −→ σResi

5 end
6 Function Pay(CtResijk)

Input : CtResijk is the input
Output: CtBaljk,

CtBalij ,σBali , σBalj1 , σBalj2σBalk

7 j verifies CtResijk, increases
w(i, j)new = w(i, j)old + val

8 j does tablej.put(w(i, j)new)
9 i does tablei.put(w(i, j)new)

10 i sends an Signski
(ack) −→ σacki

to j as a proof
of channel update, where ack = ⟨i, j, val, tu⟩

11 k verifies CtResijk and σacki
from j, increases

w(j, k)new = w(j, k)old + val
12 k does tablek.put(w(j, k)new)
13 j does tablej.put(w(j, k)new)
14 i, j and k sign CtBalij and CtBaljk as a proof

of channel update, produces,
Signski(CtBalij) −→ σBali ,
Signskj (CtBalij) −→ σBalj1 ,
Signskj

(CtBaljk) −→ σBalj2 ,
Signskk

(CtBaljk) −→ σBalk
15 end

operations that need to be performed per user, per phase by the
system. The cryptographic primitives used in our system are
digital signatures and their verification. We present the number
of signatures and verification operations per user per phase in
Table II. The relevant phases are the reserve and pay phase; the
respond phase does not use any cryptographic operations and
the rebalance request phase calls the reserve and pay phases,
but does not have any cryptographic operations other then the
ones contained in them. As the table shows, the number of
signatures and verifications done per user is minimal.

TABLE II: Cryptographic operations

Phases Reserve Phase Pay Phase

Cryptographic operations Sign Verify Sign Verify

Initiator (i) 1 2 2 0

Intermediate (j) 1 1 2 1

Responder (k) 1 0 1 2

Next, we present an asymptotic analysis of the running time
for each phase of the protocols in our system in Table III. For
this, we model the payment network as a graph, G = (V,E).
We use the fact that hash table lookup and insert operations can
be done in O(1) time. Also, since we are primarily concerned
with computation time at each node, we disregard network
latency and other network delays. The respond phase involves
the facilitator node j, who incurs a cost of O(|V |) since in
the worst case, j has to request increases from all nodes in
its hash table, which in the worst case could be |V |. The cost
of the reserve and pay phase is O(1) for all nodes involved
in the transaction, since every node has to do only a fixed
number of signatures and verification operations (which are
quantified in Table II), plus some hash table insert operations.
Finally, the rebalance request phase calls the respond and
reserve/pay phases internally. The cost of the rebalance request
phase is dominated by the cost of the respond phase which is
O(1). Note that these are worst-case times; on an average, the
complexities are expected to be lesser.
TABLE III: Worst case running time per phase for a network graph
G = (V,E)

Phase Worst-case time

Respond Phase O(|V |)
Reserve and Pay Phase O(1)

Rebalance request phase O(|V |)

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a design to rebalance the
link weights in unidirectional, acyclic payment networks. We
have done a preliminary analysis of the number of crypto-
graphic operations needed in our design. As a part of future
work, we plan to analyze our system in a formal cryptographic
adversarial framework, as well as do an extensive thorough
experimental evaluation.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,

“Ripple: Overview and outlook,” in International Conference on Trust
and Trustworthy Computing. Springer, 2015, pp. 163–180.

[3] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhis-
pers: Enforcing security and privacy in decentralized credit networks,” in
24th Annual Network and Distributed System Security Symposium, NDSS,
2017.

[4] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling pay-
ments fast and private: Efficient decentralized routing for path-based
transactions,” arXiv preprint arXiv:1709.05748, 2017.

[5] P. Dandekar, A. Goel, R. Govindan, and I. Post, “Liquidity in credit
networks: A little trust goes a long way,” in Proceedings of the 12th
ACM conference on Electronic commerce. ACM, 2011, pp. 147–156.

[6] G. Panwar, S. Misra, and R. Vishwanathan, “Blanc: Blockchain-based
anonymous and decentralized credit networks,” in In Ninth ACM Con-
ference on Data and Application Security and Privacy (CODASPY19),
2019.

[7] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in lightning network,” White Paper, 2016.

[8] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 439–453.

[9] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

5

	Introduction
	Related Work
	System Design
	Adversary Model and Security Properties
	Our Construction
	Rebalance request phase
	Respond phase
	Reserve and pay phase

	Analysis
	Conclusion and future work
	References

