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Abstract—In this work, we consider the problem of mode
clustering in Markov jump models. This model class consists
of multiple dynamical modes with a switching sequence that
determines how the system switches between them over time.
Under different active modes, the observations can have different
characteristics. Given the observations only and without knowing
the mode sequence, the goal is to cluster the modes based on
their transition distributions in the Markov chain to find a
reduced-rank Markov matrix that is embedded in the original
Markov chain. Our approach involves mode sequence estimation,
mode clustering and reduced-rank model estimation, where mode
clustering is achieved by applying the singular value decompo-
sition and k-means. We show that, under certain conditions, the
clustering error can be bounded, and the reduced-rank Markov
chain is a good approximation to the original Markov chain.
Through simulations, we show the efficacy of our approach and
the application of our approach to real world scenarios.

Index Terms—Switched model, Markov chain, clustering

I. INTRODUCTION

Modeling dynamic systems has been a problem of great
interest in the signal processing and control communities for
decades. Many real-world phenomena cannot be described
with one dynamical model, and so switched models wherein
the dynamics transition between different system models have
been studied and applied widely. In human-made systems,
for example, a robot may have different dynamics under
different battery levels or when different modules within the
robot fail. In nature, the temperature and humidity level will
have different fluctuations under different weather conditions;
brain electricity signals will behave differently under different
emotions of the test subject. Note that in all these examples,
the modes can switch over time. To model this switching, one
systematic and probabilistic way is to assume the mode switch-
ing follows a Markov chain where future modes do not depend
on past modes given the most recent mode. This Markov jump
model [2], [3] has been used in power systems, air traffic
management, economics, and communication systems [4]–[9].

A key challenge for such models is the model compactness –
how does one represent such a complicated dynamical system
with as simple a model as possible? For example, modes
like weather conditions and human emotions have extremely
complex underlying dynamics with strong correlations over
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time. To satisfy the Markov property, one may concatenate
underlying modes into a single Markov state, and Markov
chains built in this way will have a state space that grows
exponentially with the number of modes concatenated in the
sequence. The same exponential growth rate applies when
one models human-made systems with multiple sub-modules
that each have multiple behavior modes (normal/abnormal).
Allowing the Markov model to get extremely large is compu-
tationally inefficient for analysis and control.

In the context of model reduction for Markov jump systems
(MJS), prior work mainly focuses on the reduction of contin-
uous state-space (or observation space): [10] studies the H∞
model reduction and derives conditions under which a reduced
order system can be obtained via linear matrix inequalities;
[11] reduces the model order with the help of generalized
dissipation inequalities and storage functions; [12] proposes
a balanced truncation algorithm to reduce model order and
gives upper bound on approximation error. To the best of our
knowledge, the reduction of discrete state-space (number of
modes) for Markov jump systems has not been considered
before. And prior work in state space reduction of Markov
chains does not further consider Markov jump models (i.e.,
models are fully discrete). There have been several works
studying the aggregation of states for Markov chains, which
mainly relies on assumptions such as strong/weak lumpability,
or aggregatibility properties of a Markov chain [13]–[16].
There is therefore significant potential in applying the abun-
dant algorithms and theory in Markov chain aggregation to
Markov jump systems. This can achieve model reduction from
a new perspective and will benefit the analysis and control of
systems with large discrete state-spaces.

The work presented here addresses this gap. We observe that
often times certain modes have similar transition behaviors,
and these correlations between the modes can be exploited to
construct a reduced-order model. By doing so, one may gain
more insight into the nature of the complex model. Moreover,
we will have fewer parameters to estimate when learning the
model or monitoring the system using the constructed model,
thus this may significantly reduce the computation burden.
We are interested in situations where the bottleneck is due
to a large discrete state-space (i.e., large number of modes)
and aim to cluster and aggregate the modes for reduction.
We achieve this model aggregation by clustering the modes
with similar transition distributions together. We assume the
dynamics for each mode are known, but we have no knowledge



of the true mode sequence. In our approach, we cluster the
modes based on a reduced-dimensional representation of the
empirical Markov transition matrix. We then re-estimate the
empirical Markov matrix using this cluster information, giving
us a final low-rank estimate. We discuss our method’s com-
putational advantage, and show its performance is guaranteed
in the sense that the clustering error and difference between
reduced model and the true model can be upper bounded.
Experiments show the efficacy of our approach as well as how
the performance scales with the problem complexity.

II. PROBLEM FORMULATION

A. Notation

In this paper, boldface and uppercase (lowercase) letters
denote matrices (vectors); plain letters denote scalars. If A
is a matrix, then A(i, j) indexes the (i, j)th element in A and
A(i, j:k) indexes the row vector corresponding to the ith row
and column j through k. A(i, :) indexes the ith row of A.
Norms without subscript, i.e. ‖·‖, all denote the `2-norm. We
let [n] := {1, 2, . . . , n} and X0:N := {Xi}Ni=0.

For Markov chain with state space [n] and row stochastic
transition matrix P ∈ Rnxn, we let π ∈ Rn denote the sta-
tionary distribution vector of P, i.e. πᵀP = π

ᵀ. Furthermore,
we let πmax := maxi πi, πmin := mini πi. If P is ergodic,
then π is unique and πmin > 0. Let πt ∈ Rn denote the
transient state distribution of P and π

ᵀ
t = π

ᵀ
t−1P. We denote

with {Ω1, . . . ,Ωr} a partition of the state space [n], where
each Ωk denotes a cluster of states. We let Ω(i) denote the
cluster with ith largest cardinality.

B. Preliminaries

The Markovian jump model we consider is the following:

yt =

na∑
i=1

ai(Xt)yt−i +

nc∑
j=1

cj(Xt)ut−j + nt, (1)

X0:N ∈ [n]N+1 ∼ Markov chain(P), (2)

where yt, ut, nt are scalars and represent the model out-
put, input and noise at time t respectively. And yt de-
pends on {yt−i}na

i=1, {ut−j}
nc
j=1 linearly through the parame-

ters {ai(Xt)}na
i=1, {cj(Xt)}nc

j=1 from mode Xt at time t. There
are n modes in total and the mode sequence X0:N is assumed
to follow a Markov chain with row stochastic Markov matrix
P ∈ Rnxn. The initial state distribution π0 can be arbitrary.
Note that one can omit input ut by taking nc = 0, which
corresponds to an autonomous model. If we let

wXt
:= [a1(Xt), . . . , ana

(Xt), c1(Xt), . . . , cnc
(Xt)]

ᵀ
, (3)

φt := [yt−1, . . . , yt−na
, ut−1, . . . , ut−nc

]
ᵀ
, (4)

then we obtain a simpler representation of the model:

yt = w
ᵀ
Xt

φt + nt, (5)

where the pair {yt,φt} can be viewed as the observation/data.
Furthermore, we assume the Markov matrix P has the

following structure:

P = P̄ + ∆, (6)

where P̄ is a Markov matrix that is r-aggregatable, i.e. there
exists an r-cluster partition {Ω1,Ω2, . . . ,Ωr} on the state
space [n] such that

∀k ∈ [r], ∀i, j ∈ Ωk, P̄(i, :) = P̄(j, :). (7)

We assume rank(P̄) = r, which guarantees there are only
r unique rows in P̄. Matrix ∆ is the perturbation that
accounts for the difference of the true Markov matrix P and
the r-aggregatable Markov matrix P̄. We assume modes are
clustered only based on the transition distributions in current
work and leave the consideration of mode dynamics and group
connectivity for future work.

C. Problem Formulation

Assuming parameters for all the modes {wk}nk=1 are
known, given observation trajectory {yt, ut}Nt=0 with length
N , we want to find an r-aggregatable approximation P̃ of
P such that the partition information in P̃ could recover
{Ω1,Ω2, . . . ,Ωr} in P̄.

We seek an r-aggregatable approximation of the original
Markov matrix while preserving the clustering information in
the underlying aggregatable Markov matrix. Given a Markov
chain, one could use the power method [17] to iteratively
simulate the evolution of the state distribution or compute
the stationary distribution. So, one motivation to solve the
aforementioned problem is that, during the power method, it
requires O(n2) scalar multiplications in one iteration for P but
only O(rn) for the r-aggregatable P̃. Meanwhile, the compro-
mise in accuracy brought by the reduction of computation can
be upper bounded with the following theorem.

Theorem 1: The differences between two Markov matrices
P and P̃ in terms of stationary distribution satisfy

‖π− π̃‖1 ≤
n∑
i=2

1

1− λi(P)
‖P− P̃‖∞. (8)

Furthermore, if P and P̃ are both ergodic, their transient
distributions and satisfy

‖πt − π̃t‖1 ≤ Cρt + ‖π− π̃‖1 (9)

for some C > 0 and 0 < ρ < 1.
We can see that as long as the approximation error
‖P− P̃‖∞ is upper bounded, the stationary and transient
behavior differences between the true Markov matrix P and
the r-aggregatable approximation P̃ can be bounded. This
gives the justification for using P̃ as a surrogate for P in
the power method. The distance ‖P− P̃‖∞ with P̃ obtained
from our approach is bounded in Theorem 4.

III. OUR APPROACH

Our approach to solve the problem mentioned above is
given in Algorithm 1. In Line 3, we estimate the active
mode at time t by picking the mode whose dynamics gives
the smallest residual error |yt − wᵀ

kφt|. Then, in Line 5,
based on the estimated mode sequence, we estimate P with
the empirical Markov matrix P̂. The SVD and truncation
in Line 7 is essentially a denoising step that reduces the



Algorithm 1: Mode Clustering for MJS

Input: Observation {yt, ut}Nt=0, dynamics {wk}nk=1

1 for t = 0, . . . , N do
2 φt := [yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]ᵀ

3 X̂t = arg min
k∈[n]

|yt −wᵀ
kφt|

4 end
5 Compute empirical Markov matrix:

P̂(i, j) =

∑N
t=1 1{X̂t−1 = i, X̂t = j}∑N

t=1 1{X̂t−1 = i}
(10)

6 SVD decomposition: P̂ = UΣVᵀ

7 Ur = U(:, 1:r)
8 Solve the following k-means problem:

Ω̂1:r, ĉ1:r = arg min
Ω̂1,...,Ω̂r

ĉ1,...,ĉr

r∑
k=1

∑
i∈Ω̂k

‖Ur(i, :)− ĉk‖2 (11)

9 Aggregatable approximation: assume i ∈ Ω̂s

P̃(i, j) =

∑
k∈Ω̂s

∑N
t=1 1{X̂t−1 = k, X̂t = j}∑

k∈Ω̂s

∑N
t=1 1{X̂t−1 = k}

(12)

Output: Partition {Ω̂1, . . . , Ω̂r} and matrix P̃

influence of perturbation ∆ and estimation error in P̂. Then,
we use k-means to estimate the clustering information in P̄.
Finally, in Line 9, we compute P̃ by taking modes within the
same estimated cluster as a single mode and re-computing the
empirical Markov matrix.

Note that if a certain mode does not show up at all in the
trajectory, i.e. the denominators in Line 5 and Line 9 might be
0, then we simply assign uniform distribution to that mode, i.e.
P̂(i, j) = 1/n. We show in the proof that when the trajectory
is long enough, every mode will show up with high probability.

IV. THEORETICAL GUARANTEES

A. Relevant Definitions

Before discussing theoretical guarantees of the proposed
approach, we introduce some definitions that will be used later.

Definition 1 (Mixing Time of MC): Let P ∈ Rnxn be a row
stochastic Markov transition matrix with stationary distribution
π. Then for any ε > 0, the ε−mixing time is defined as

τ(ε) = min

{
k : max

i∈[n]

1

2
‖(Pk)(i, :)

ᵀ − π‖1 ≤ ε
}
. (13)

Moreover, we let τ∗ = τ( 1
4 ).

Since k-means is used in Algorithm 1, we assume a (1 + ε)
solution to the k-means problem can be obtained and later
show how ε affects the overall clustering error.

Definition 2 (Approximate Solution to k-means Clustering
Problem): For problem in (11), we say Ω̂1, . . . , Ω̂r, ĉ1, . . . , ĉr
is a (1 + ε) solution [18] if

r∑
s=1

∑
i∈Ω̂s

‖Ur(i, :)− ĉs‖2 ≤

(1 + ε) min
Ω1,...,Ωr
c1,...,cr

r∑
s=1

∑
i∈Ωs

‖Ur(i, :)− cs‖2. (14)

Definition 3 (Misclustering Rate): Let {Ω1,Ω2, . . . ,Ωr}
be the underlying true clustering partition of [n] and
{Ω̂1, Ω̂2, . . ., Ω̂r} be an estimate of the true partition. We
define misclustering rate of {Ω̂1, Ω̂2, . . ., Ω̂r} as

MR(Ω̂1, Ω̂2, . . . , Ω̂r) = min
k∈K

r∑
j=1

|{i : i ∈ Ωj ; i /∈ Ω̂k(j)}|
|Ωj |

,

(15)
where K is the set of all bijections from [r] to [r].

Since the partition is invariant to the labels of clusters, when
we evaluate the misclustering rate, we compute the error under
the best label matching, which is the reason we need K.

B. Main Results

Let N ′ :=
∑N−1
t=0 1{X̂t 6= Xt} denote the number of

mistakes in the estimated mode sequence and η := N ′

N denote
the mistake rate. In the following analyses, Lemma 2 gives
conditions under which N ′ = 0. Theorem 3 and 4 give the
upper bounds on misclustering rate and approximation error.

Lemma 2: Assume for any t, |nt| < nmax,

|φᵀ
t (wXt

−wj)| > 2nmax ∀j ∈ [n]\Xt, (16)

then the sequence estimated in Line 3 of Algorithm 1 is
correct, i.e. N ′ = 0.

When nt = 0, the dynamics given in (5) defines a hy-
perplane plus noise. Data points at the intersection of these
hyperplanes (a set of measure zero in the noiseless case)
are not useful in distinguishing the mode. Equation (16)
essentially means that such data points do not exist.

Theorem 3: Assume: (i) P is ergodic; (ii) {Ω̂1, . . . , Ω̂r}
is a (1+ε1) solution to the k-means problem in Al-
gorithm 1; (iii) ‖∆‖≤ σr(P̄)

8
√

(2+ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1; (iv) mistake

rate η<πmin

2 . Then, for any ε2>0 small enough, when
N≥400τ∗πmax log(log(ε−1

2 )) log(ε−1
2 )ε−2

2 , with probability
no less than

1− exp

(
− N

200τ∗πmax log(ε−1
2 )ε−2

2

)
, (17)

we have

MR(Ω̂1, Ω̂2, . . . , Ω̂r)

≤ 64(2 + ε1)r

(
‖∆‖
σr(P̄)

+
4(ε2 + 1.5η)(‖∆‖+ ‖P̄‖)

πminσr(P̄)

)2

.

(18)

Theorem 4: Under the same conditions as Theorem 3, if
MR=0, then with the same probability lower bound we have

‖P− P̃‖∞ ≤ 12
√
nπ−1

minσ1(P)(ε2 + 1.5η) + 2‖∆‖∞. (19)

From Theorem 3 and 4, the bounds improve as any of
the following decreases: number of modes n, number of



clusters r, perturbation ‖∆‖, mixing time τ∗, condition num-
ber σ1(P̄)/σr(P̄), and disparities in stationary distribution π
and cluster population, namely πmax/πmin and |Ω(1)|/|Ω(r)|.
Assumption (iii) restricts how the true Markov matrix is differ-
ent from the underlying aggregatable matrix and assumption
(iv) guarantees the Markov matrix can be learned accurately
enough from the trajectory.

V. EXPERIMENTS

A. Synthetic Data

We first study the performance of our approach with syn-
thetic data. In the Markov jump model, we let na=3, nc=2
and number of modes n = 50. For each mode, the dynamics
are generated by uniformly sampling its poles on (−1, 1). We
let input ut ∼ N (0, 1) and noise nt ∼ Unif(−nmax, nmax).
The state space [n] is partitioned into r clusters Ω1:r randomly
such that every possible partition is sampled with equal prob-
ability. The mode transition probabilities P̄(Ωk, :) for every
k and initial mode distribution π0 are sampled from uniform
Dirichlet distribution.

The error metrics we evaluate are: (i) clustering error CE =
n−1 mink∈K

∑r
j=1 |{i : i ∈ Ωj ; i /∈ Ω̂k(j)}| where K is given

in Definition 3; (ii) ‖π̃− π‖1, i.e. the stationary distribution
difference between P̃ and P.. For each parameter setup, we
record the average of these two metrics over 100 experiments.

1) Without Perturbation (∆ = 0): We first evaluate how
the performance depend on number of clusters r and noise
magnitude nmax. We set perturbation ∆ = 0 for these test
cases. The experiment results are given in Fig.(1a-1d). We set
nmax = 0.1 in Fig.(1a-1b) and r = 6 in Fig.(1c-1d).

2) With Perturbation (∆ 6= 0): In this test case, we fix
n = 50, r = 6, nmax = 0.05, N = 105. The space of ∆
is a polytope which makes it difficult to sample uniformly,
so instead for i ∈ Ωk, we sample P(i, :) from Dirichlet
distribution with parameters αP(Ωk, :) and record ∆ = P−P̄.
In this case, E[P(i, :)] = P(Ωk, :) and α controls how much
P(i, :) deviates from P(Ωk, :). We sweep α and use scatter
plots Fig.(1e-1f) to show how the error metrics vary with ‖∆‖.

B. Practically Motivated Example—Patrol Robot

Now we consider a more realistic case involving Markov
jump system that can possibly benefit from our approach.
Assume in a region, we have n stations each with position
pi ∈ R and at time t there is only one active station st that
generates requests; the sequence of active stations s0:t follows
a Markov chain P. There is a robot with position xt ∈ R at
time t aiming to reach the active station as fast and close as
possible. Assuming the dynamics and control law of the robot
are given by

xt+1 = xt + ut + nt,

ut = K(pst − xt),
(20)

the closed-loop dynamics take the form

xt+1 = (1−K)xt +Kpst + nt, (21)

103 104 105 106

N

0

0.2

0.4

0.6

C
lu

st
er

in
g 

E
rr

or

 

(a)

103 104 105 106

N

0

0.1

0.2

0.3  

(b)

103 104 105 106

N

0

0.2

0.4

0.6

C
lu

st
er

in
g 

E
rr

or

 

(c)

103 104 105 106

N

0

0.1

0.2

0.3  

(d)

10-2 10-1 100
0

0.2

0.4

0.6

C
lu

st
er

in
g 

E
rr

or

 

(e)

10-2 10-1 100
0

0.05

0.1

0.15  

(f)

Fig. 1: Performance vs: (a,b) N and r; (c,d) N and nmax; (e,f) ‖∆‖

which is a Markov jump model. In this setting, if the un-
derlying Markov chain bears aggregatability property to some
extent, we could use our approach to uncover the correspond-
ing partition of modes as well as find an approximation of
Markov transition matrix with stationary distribution that is
easier to compute. Understanding the similarities between the
stations’ activation schedule can be useful to design improved
control strategies for the robot.

In the experiment, we set n = 50, pi = i,K = 0.7, nt ∼
N (0, 0.1), N = 106 and sample clusters, P̄, and P same as
V-A1. Over the average of 100 runs, clustering error CE =
0.04 and ‖π̃− π‖1 = 0.07.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we consider the problem of model reduction
for Markov jump systems by clustering the modes based
on their transition distributions. The proposed approach has
guaranteed clustering error upper bound and exhibits decent
performance in the experiments.

One direction for future for is to consider lumpable Markov
chains as an alternative criterion for reduction. We will also
study clustering of the continuous-dynamics in each mode
based on their similarities and quantify the model mismatch
between the actual and reduced order models in this setting.
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