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ABSTRACT

Tropical Pacific decadal variability (TPDV), though not the totality of Pacific decadal variability, has wide-
ranging climatic impacts. It is currently unclear whether this phenomenon is predictable. In this study, we
reconstruct the attractor of the tropical Pacific system in long, unforced simulations from an intermediate-
complexity model, two general circulation models (GCMs), and the observations with the aim of assessing the
predictability of TPDV in these systems. We find that in the intermediate-complexity model, positive (high
variance, El Nifio-like) and negative (low variance, La Nifa-like) phases of TPDV emerge as a pair of
regime-like states. The observed system bears resemblance to this behavior, as does one GCM, while the
other GCM does not display this structure. However, these last three time series are too short to confidently
characterize the full distribution of interdecadal variability. The intermediate-complexity model is shown to
lie in highly predictable parts of its attractor 37% of the time, during which most transitions between TPDV
regimes occur. The similarities between the observations and this system suggest that the tropical Pacific may

be somewhat predictable on interdecadal time scales.

1. Introduction

The coupled ocean—-atmosphere system of the Pacific
basin exhibits variability on interdecadal time scales
that has impacts on hydroclimate around the world
(Herweijer and Seager 2008; Power et al. 1999; Krishnan
and Sugi 2003; Mantua and Hare 2002), on global mean
surface temperature (Kosaka and Xie 2013; Meehl et al.
2016a; England et al. 2014), and on the ecosystems and
fisheries of the Pacific Ocean (Francis et al. 1998). This
variability is frequently measured using indices such as
the Pacific decadal oscillation (PDO; Mantua and Hare
2002), which is based on temperature anomalies in the
North Pacific, or the interdecadal Pacific oscillation
(IPO), which additionally incorporates the influence and
variability of the southern midlatitudes (Henley et al.
2015). The behavior captured by these indices is com-
posed of contributions from a number of phenomena
including the variability of the Aleutian low, air-sea
heat flux anomalies in the midlatitudes amplified by

Corresponding author: Nandini Ramesh, nramesh@ldeo.
columbia.edu

DOI: 10.1175/JAS-D-18-0114.1

the seasonal cycle, the dynamics of subtropical ocean
gyres, internally generated stochastic variability of the
atmosphere, and the variability of the tropical Pacific
(Newman et al. 2016).

In observations and simulations, the tropical compo-
nent of this interdecadal variability takes the form of
shifts between periods of El Nifio-like (positive) states
and La Nifa-like (negative) states and is among the
dominant influences on these indices (Zhang et al. 1997,
Newman et al. 2003; Chen and Wallace 2015; Newman
et al. 2016; An et al. 2007), accounting for up to 50% of
the variance of the PDO. These phases may also be
characterized as high- and low-variance states (Atwood
et al. 2017; Choi et al. 2009), since interdecadal variance
is highly correlated with mean tropical temperature.
This variability intrinsic to the tropical Pacific region on
decadal-to-interdecadal time scales, which we will refer
to as tropical Pacific decadal variability (TPDV), will be
the focus of this study.

The pertinence of interdecadal climate variability
to the design of policies and infrastructure (Trenberth
2009) makes TPDV a desirable target for prediction.
However, the processes responsible for generating this
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phenomenon are not well understood. Some hypotheses
place the origins of this variability in the midlatitudes,
where anomalies are able to exert an influence on the
tropical wind field via air-sea fluxes (Barnett et al. 1999;
Vimont 2005). Others have suggested that phenomena
external to the Pacific basin, such as variability in the
Atlantic Ocean (Dong et al. 2006; Kang et al. 2014) or
volcanic aerosols (Adams et al. 2003) are able to induce
TPDYV as a response. However, multiple studies using
varied techniques have demonstrated that the strongest
influence on the equatorial thermocline of the Pacific
on interdecadal time scales is wind forcing within the
tropical belt (McGregor et al. 2007; Karspeck and Cane
2002; Emile-Geay and Cane 2009), implying that the
dynamics of the TPDV are governed by the wind
stresses and oceanic planetary waves originating within
this region; while others have found that the TPDV can
be generated by stochastic atmospheric variability in-
trinsic to the region (Chang et al. 1996; Fliigel and Chang
1999; Thompson et al. 2001; Okumura 2013). In addi-
tion, a model simulating only the tropical Pacific re-
gion has been shown to capture longer-than-interannual
variability with a similar level of skill to a general cir-
culation model (GCM; Ramesh et al. 2017), suggesting
that factors external to the tropical Pacific region may
not be necessary for the generation of TPDV.

Each of the proposed mechanisms has different im-
plications for the predictability characteristics of the
system. Based on the existing hypotheses, TPDV could
be entirely the product of chance, driven by stochastic
processes that render it effectively unpredictable (Kessler
2002; Kleeman 2008; Chang et al. 1996; Wittenberg
2009; Wittenberg et al. 2014), or could arise from low-
order chaos in the coupled ocean—atmosphere system of
the tropical Pacific causing it to oscillate between dif-
ferent regimes (Timmermann and Jin 2002; Tziperman
et al. 1994; Timmermann 2003), allowing for some, if
modest, predictability. Hypotheses that place the origins
of TPDV outside the tropical Pacific (Dong et al. 2006;
Barnett et al. 1999; Kang et al. 2014; Adams et al. 2003)
imply that its predictability depends on that of the ex-
ternal factors involved.

The real-world system and climate models lie some-
where on the spectrum ranging from noise driven to
chaotic. Recent studies indicate that the interdecadal
variability of the Pacific basin possesses some predict-
ability in GCMs (Meehl et al. 2016b; Thoma et al. 2015;
Ding et al. 2013), suggesting that it is not entirely sto-
chastic in these models. In an intermediate-complexity
model of the tropical Pacific, the 15-yr mean of the Nifio-
3 index was found to possess potential predictability
(Karspeck et al. 2004; Ramesh et al. 2017), and an ac-
tual prediction of the future state of the TPDV using
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this model in 2004 (Seager et al. 2004) was verified a
decade later.

In this study, we further examine the potential pre-
dictability of the internally generated TPDV identified
in Karspeck et al. (2004) and Ramesh et al. (2017) on the
15-yr time scale by applying an attractor reconstruction
scheme to the output from this model and comparing
the results with those from two GCMs and the obser-
vations. While the real-world and GCM versions of TPDV
are influenced by a variety of factors, the TPDV in the
intermediate-complexity model is generated purely by
the dynamics of the tropical Pacific region, allowing us
to study the region as an isolated system.

The reconstruction of the attractor allows us to clas-
sify physical states of the models according to their
predictability, enabling us to study the characteristics of
the states of these systems from which we can hope to
make successful predictions of the future. We use the
intermediate-complexity Zebiak—-Cane (ZC) model,
which has been found to possess the properties of a
chaotic system (Tziperman et al. 1997); the Geophysical
Fluid Dynamics Laboratory (GFDL) Coupled Model,
version 2.1, which has been shown to generate a noise-
driven TPDV (Wittenberg et al. 2014); and the Com-
munity Climate System Model, version 4 (CCSM4),
which has neither been proven to be noise driven nor
chaotic but is known to possess some predictive skill in
the Pacific basin on this time scale (Meehl et al. 2016b).
We compare the reconstructed attractor of the observed
variability (which is reconstructed with far less confi-
dence than for the models because of the shortness of
the observational record) with each of these systems in
order to gain insight into whether chaotic or noise-
driven processes dominate the observed TPDV.

We first describe the models and data used in section
2, followed by the attractor reconstruction method in
section 3. In section 4a, we begin by examining the re-
constructed attractor of the ZC model in detail and
compare it with those of the other datasets used. We
organize the discussion around the ZC model because
the long time series available (100000 years) allows the
attractor to be reconstructed with much higher confi-
dence than for any of the other datasets. We then con-
tinue the comparison in terms of the distributions of
15-yr standard deviations of the models used in section
4b. Next, in section 4c, we quantify the predictability
obtained from the reconstructed attractor of the ZC
model. Section 4d confirms that this attractor recon-
struction succeeds in placing similar physical states of
the system close together, as is expected, and demon-
strates the possibility of using the attractor to understand
the physical dynamics of the system during transitions be-
tween states of the TPDV. The final section summarizes
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TABLE 1. List of CMIP5 models used for comparison in this study.

Modeling center (or group)

Institute ID Model name

Beijing Climate Center, China
Meteorological Administration

National Center for Atmospheric
Research

LASG, Institute of Atmospheric Physics,
Chinese Academy of Sciences

NASA Goddard Institute for Space
Studies

Met Office Hadley Centre

L’Institut Pierre-Simon Laplace

Japan Agency for Marine-Earth Science
and Technology, Atmosphere and
Ocean Research Institute (The
University of Tokyo), and National
Institute for Environmental Studies

Max-Planck-Institut fiir Meteorologie

Meteorological Research Institute

BCC BCC_CSM1.1
NCAR CCSM4
LASG/IAP FGOALS-gl
NASA GISS GISS-E2-R
MOHC HadCM3

IPSL IPSL-CM5A-LR
MIROC MIROC-ESM
MPI MPI-ESM-P
MRI MRI-CGCM3

our results, discusses the implications for the predictability
of GCMs and the real world, and outlines future research
directions building on this work.

2. Models and data
We use the following datasets:

(i) 100000 years from an unforced run of the ZC
(Zebiak and Cane 1987) model: This model
simulates the Pacific as a 1.5-layer ocean from
29°S to 29°N with a global atmosphere based on
the Gill model. It produces interdecadal vari-
ability (Cane et al. 1995) that is somewhat pre-
dictable and may have some utility for real-world
predictions (Karspeck et al. 2004; Ramesh et al.
2017; Seager et al. 2004).

(ii) 4000 years from an unforced run of the GFDL
Coupled Model, version 2.1 (Delworth et al.
2006): tropical Pacific variability in this fully
coupled GCM has been studied extensively
(Karamperidou et al. 2014; Atwood et al. 2017;
Wittenberg et al. 2014).

(iii) 1000 years from a preindustrial control run of the

CCSM4, from the CMIPS5 archive (Taylor et al. 2012):

IPO in this state-of-the-art GCM has been shown to

possess some predictability (Meehl et al. 2016b).

160 years of observational data from the Kaplan

Extended Sea Surface Temperature, version 2,

dataset (Kaplan SST; Kaplan et al. 1998): This

dataset assimilates ship and satellite observations
from 1856 to the present.

(v) Preindustrial control runs spanning 1000 years
from eight CMIP5 models other than the CCSM4.

(iv)

These are used briefly in section 4b for comparison
with the four datasets described above. The models
are listed in Table 1.

3. Attractor reconstruction using simplex
projection

A key feature of chaotic systems is the existence of an
underlying attractor in phase space whose topology can
yield insights into the predictability, stability, and re-
lationships between states of the system. There are
several variables in the ocean—-atmosphere system of the
tropical Pacific, each with time-evolving values at each
spatial location. While the strong coupling between
these variables means that much of the information
contained in this large collection of time series is re-
dundant, it is not a trivial task to reduce the system to the
correct subset of time series with which to construct the
true phase space.

The simplex projection method (Sugihara et al. 2012;
Deyle and Sugihara 2011) addresses this problem
by applying Takens’s embedding theorem (Takens
1981), according to which a shadow manifold pre-
serving the topology of the true attractor can be re-
constructed using any single time series from the
system. The shadow manifold is n-dimensional, and
each dimension is the chosen time series lagged by an in-
tegral multiple of a time interval 7. Thus the # dimensions
of a shadow manifold reconstructed from a time series x(f)
are x(1), x(t — 7), x(t = 27), ..., x[t — (n—1)7]. The al-
gorithm seeks, and provides as output, the pair (n, ) such
that n is the dimension of the true attractor.

The shadow manifold preserves relative distances
between points on the attractor, where each point
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uniquely represents some state of the system. The
simplex projection method leverages this property to
select appropriate values of n and 7 for the system as
follows:

1) For each (n, 7) pair, a version of the shadow manifold
is constructed by producing a “map”’ of the system’s
trajectory in an n-dimensional space. For example,
for the pair n = 2, 7 = 3 months, this would be
generated by “plotting” the values from the time
series in an x—y plane such that the points (x, y)
are the values of the time series at a given time ¢ and
t — 3 (since the lag 7 is 3 months) for all values of
t available in the dataset. Although this cannot be
visualized for values of n larger than 3, the concept is
generalized to these dimensions by storing the time
series in a matrix where each column of the matrix
corresponds to a dimension. The first column con-
tains the time series, and each of the remaining
columns contain the time series lagged by 7 months
with respect to the column preceding it. Therefore,
each row in the matrix represents a set of coordinates
in an n-dimensional space. This type of matrix is
generated for each possible (n, ) pair.

2) A “prediction” is made for each of a number of
randomly selected points in time using each of the
matrices generated in step 1. This is done by tracing
the trajectories of the selected point’s nearest neigh-
bors (i.e., the points along the time series whose
coordinates in the n-dimensional space place it closest
to the coordinates of the selected point) into the
future. The correct (n, 7) pair should, in theory, place
points in time where similar behaviors occurred near
each other (as would be the case on the system’s
true attractor), meaning that the future trajectories
of neighbors in the correct shadow manifold should
be good predictors of the future behavior of points
near them. The weighted average of these trajecto-
ries is calculated using weights that are inversely
proportional to the distance between the neighbor
and the selected point to produce the prediction for
that point.

3) Then the error (absolute difference) between the
predictions thus obtained and the actual trajectories
following the selected points being predicted is
measured for each of the (n, 7) pairs. The (n, 7) pair
with the minimum average error over all predicted
points is returned by the algorithm as the correct
dimension and lag for reconstructing the shadow
manifold of the system. Choosing the (n, 7) pair with
the minimum average error over all predicted points
thereby selects the shadow manifold with maximal
predictive power.
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In this study, we use the Nifio-3 index [the monthly
mean sea surface temperature (SST) anomaly in the
region spanning 5°S-5°N, 150°W-90°E] to reconstruct
the shadow manifold after smoothing using a low-pass
second-order Butterworth filter with a 4-month cutoff.
To capture interdecadal variability, we use the 15-yr
standard deviation of the filtered Nifio-3 index as the
target for prediction in the simplex projection pro-
cedure. The 15-yr period is based on earlier work that
found this to be an appropriate time scale for the iden-
tification of interdecadal shifts in the behavior of the
tropical Pacific in the observations (Karspeck et al. 2004;
Seager et al. 2004). (Using a 20-yr period made little
difference for the results shown below.) These studies
concluded that this behavior is potentially predictable in
the ZC model. Another study (Ramesh et al. 2017) also
showed that the Nifio-3 index, filtered in an identical
manner, contained sufficient information to make pre-
dictions of the 15-yr mean state.

Our earlier studies of TPDV (Karspeck et al. 2004;
Seager et al. 2004; Ramesh et al. 2017) used the 15-yr
mean of Niflo-3 as an index, but here we abandon it in
favor of the standard deviation over 15-yr periods. Prior
work by others has used the standard deviation or var-
iance over similar lengths of time to identify the phases
of interdecadal variability in this region (e.g., Choi et al.
2009; Atwood et al. 2017). High-variance states corre-
spond to warm, El Nifio-like mean states, and low-
variance states correspond to cool, La Nifia-like mean
states. The correlation of 15-yr mean and variance is so
high (0.85 in the ZC model and 0.47 in observations,
both significant at the 99% level) that the two must be
regarded as different indices of the same phenomena.
This correspondence arises in good measure from the
asymmetry between El Nifio (warm, high amplitude)
and La Nifa events (cold, lower amplitude; e.g.,
Okumura et al. 2017). While either the mean or the
standard deviation are satisfactory indices of TPDV,
we find that the standard deviation index more effec-
tively distinguishes the extreme phases of TPDV. We
discuss this further in the context of the structure of the
attractor.

We focus on the ZC model because the substantially
longer time series available yields greater certainty of
the results than from observations or GCMs. In addition
to its proven ability to simulate and predict TPDV, this
model also has the advantage of isolating the physics
internal to the tropical Pacific system meaning that all
results relating to its predictability can be attributed
to processes arising within the region. At every stage of
this study, we compare our results with observations and
the GFDL model and CCSM4, all of which incorporate
the various external factors that can interact with the
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tropical Pacific system. The differences between these
datasets and the ZC model could result from these ex-
ternal factors, differences in the simulation of processes
internal to the tropical Pacific, or the uncertainty asso-
ciated with the shorter record lengths that may not fully
characterize all possible behaviors of the system.

4. Results
a. Attractor reconstruction

For the ZC model, the optimal dimension and lag
were found to be n = 3 and 7 = 6 months. This means
that the system is reducible to three dimensions (i.e.,
three time series determine its state) and that informa-
tion from a span of 13 months (months #, t — 6, and
t — 12) of the Nifio-3 time series contain sufficient in-
formation to make predictions of its 15-yr standard de-
viation. The mean error obtained for this combination of
dimension and lag obtained from the simplex projection
method was 0.03°C, which is 1.6% of the range 0.04°-
1.83°C of the 15-yr standard deviations. We begin our
interpretation of the results by examining a short seg-
ment of the Nifio-3 index in the state space as the model
state evolves through time. Statistics regarding the full
dataset are presented after this short example.

Figure 1 depicts the trajectory of the system along the
reconstructed shadow manifold through a 60-yr time
interval, displayed every 5 years. The state space within
which the system traverses its trajectory is, based on the
results of the simplex projection procedure, defined by
three dimensions: the Nifio-3 time series on the x axis
and the same time series lagged by 6 months on the y axis
(as the optimal lag was determined to be 6 months) and
lagged by 12 months on the z axis. Each location in this
abstract space corresponds to a specific physical state of
the system, and the full attractor encompasses all pos-
sible states that the system is able to occupy, barring any
additional forcing. The location of the system in this
space at a given point in time ¢ is, by definition, the Nifio-
3index value at time ¢ plotted along the x dimension, the
value of the same index at time ¢ — 6 plotted along the y
dimension, and at time ¢ — 12 along the z dimension. The
system thus moves along a trajectory in this space as the
model state evolves over time, and this trajectory defines
its shadow manifold. The pink line in Fig. 1, which traces
the Nifio-3 index with its lagged counterparts to give the
shadow manifold, connects these states as they occur in
chronological order over a 60-yr interval. The panels of
Fig. 1 sequentially depict the location of the model state
(blue dot) in its state space as determined by the Nifio-3
index in order to show the temporal evolution of the
system.
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The first 10 years of the trajectory segment shown are
spent tracing a large “‘orbit” in the three-dimensional
state space (Figs. 1a,b). The system (whose current po-
sition is marked by the blue dot) moves clockwise along
this orbit. By the year 15 (Fig. 1lc), the system has
entered a smaller, inner orbit. This orbit is also traversed
clockwise, until the year 40 (Fig. 1h). By the year 45
(Fig. 1i), having spent approximately 30 years in the
inner orbit, the system exits the inner orbit and reenters
the outer orbit.

The full shadow manifold of the ZC model (a rep-
resentative segment of which is depicted in Fig. 2a)
possesses densely populated inner and outer orbits,
separated by a sparsely populated region. The median
time interval between transitions' from the outer to in-
ner orbits is 62 years. This is similar to the length of the
interval between the known shifts from a positive to a
negative PDO—that is, in 1943 and 1999—in the ob-
servations, suggesting that the two orbits of the shadow
manifold correspond to the regimes of behavior that
comprise the model’s interdecadal variability. The size
of an orbit is smaller for periods of time when the Nifio-3
index displays low variance, and larger orbits corre-
spond to periods of high variance. The structure of the
attractor suggests that the standard deviation is a more
discriminating measure of TPDV, as the inner and
outer orbits possess clearly distinct standard de-
viations (as can be inferred from the large and small
radii of the orbits, which correspond approximately to
the standard deviation of the Nifio-3 index) but simi-
lar means (which correspond approximately to the
centers of the orbits). This is not simply an artifact of
the 15-yr standard deviation being used as the pre-
diction target in the attractor reconstruction pro-
cedure; when the same procedure was performed
using the 15-yr mean as the target for prediction instead
(result not shown), a similar three-dimensional shadow
manifold was obtained. The error associated with the
predictions from the simplex projection was higher
(mean error = 0.26), and the lag obtained was longer
(9 months) in this case, suggesting that the mean is
both less predictable and requires more information in
order to be predicted.

Another noteworthy feature of the shadow manifold
is that the transitions between the inner and outer orbits
appear confined to a region in the lower-left corner of
the figure. Since proximity of the points on the attractor
is indicative of similarity in the physical states repre-
sented by those points, this implies that they occur

! The procedure used to identify the points in time at which
transitions between the orbits occur is described in section 4c.
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(a) Year 5 (b) Year 10 (c) Year 15

F 0 0
2§ 4 28 4 2 4
-2 -2 -2 .
2 4 -2 2 4 -2 2 4 -2
(d) Year 20 (e) Year 25 (f) Year 30

(g) Year 35 (h) Year 40 (i) Year 45

(j) Year 50

FIG. 1. The trajectory of the ZC model system through the three-dimensional state space of its shadow manifold over time. The axes
represent the Nifio-3 index (°C; x axis) and the same index lagged by 6 months (y axis) and 12 months (z axis). The yellow X marks the
starting point (at time = 0), and the blue dot represents the position of the system at the time indicated in the panel title, after having traced
the trajectory indicated by the pink line. The orbits are traced clockwise.
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Error = 0.07

(b) Observations
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2
Lag = 3 Months
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FIG. 2. The shadow manifolds constructed using the simplex projection method, which determines the number of
dimensions and length of the lag, for each of the datasets used. For each dataset, 160 years of the time series are
shown. The average error in prediction, normalized by dividing by the standard deviation of the target variable
being predicted, obtained for each shadow manifold is indicated in the top-right corner of each panel.

during a specific subset of similar physical states of the
system and therefore possess potential predictability.

The shadow manifolds obtained from all four datasets
are visualized in Fig. 2. The time series for the ZC model
is approximately two orders of magnitude longer than
the GCM time series and three orders longer than the
observed series, yielding more certainty in its manifold
reconstruction. Also indicated are the minimum error
values obtained during the reconstruction procedure,
which can be interpreted as a measure of the overall
predictability of TPDV in the system. While the lower
error in the ZC model is no doubt in part attributable to
the longer time series available, we note that the ob-
servations, with the shortest time series, are nonetheless
more predictable than the GFDL model but less than
CCSM4 by this measure.

The shadow manifold obtained for the observations
from the simplex projection procedure is, like that of
the ZC model, three-dimensional. A sparsely populated
region is seen between a dense inner region and a few
trajectories that form a wide outer orbit, suggesting the
presence of a pair of orbits. Transitions between the
orbits are confined to one side of the manifold. This
suggests that, like the ZC model, the real world may
possess some predictability associated with regime-like
behavior. The short observational record means that

confidence in the accuracy of this shadow manifold is
low, and the shape of the true attractor for this dataset
must remain uncertain.

The GFDL model, unlike the other datasets exam-
ined, possesses a two-dimensional shadow manifold
and lacks well-defined orbits. This, in combination with
its relatively low predictive power from the simplex
projection procedure, suggests that interdecadal vari-
ability in this model may be driven by stochastic pro-
cesses rather than low-order chaos, consistent with
earlier studies of the same dataset (Wittenberg 2009;
Wittenberg et al. 2014).

CCSM4, like the ZC model and observations, pro-
duces a three-dimensional shadow manifold but does
not display as distinct a separation between inner and
outer orbits.

The lengths of the time series available from the last
three of these datasets are orders of magnitude smaller
than that from the ZC model. To assess the level of
confidence in the shadow manifolds obtained from these
shorter time series, we perform the same attractor re-
construction procedure on all subsamples of lengths 160,
4000, and 1000 years (the lengths of the time series from
the observations, GFDL model, and CCSM4, respec-
tively) from the ZC model, in order to estimate the
probability of the shorter samples arriving at the same
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number of dimensions (3) and lag (6 months) obtained
from the full ZC model time series. The results are re-
ported in Table 2. We find that the estimate of the di-
mension is fairly stable, as 72% of the 160-yr samples
were able to arrive at the correct value despite the
shortness of the record. The longer time series perform
better, as expected. The dimension is far more likely to
be correctly estimated than the lag: for the 160-yr seg-
ments, only 16% of the samples estimate the correct lag
of 6 months in combination with the correct dimension.
While there is substantial improvement in the estima-
tion of the lag with the length of the time series, with
the correct lag estimated for 44% of the 4000-yr seg-
ments, the confidence in the lags selected by the algo-
rithm for the shorter datasets is still low. We also
examine the probability of the lag being estimated cor-
rectly to within 3 months. In all three cases, there is
a preference for values close to the correct lag of
6 months, as the majority of segments predict the lag to
within 3 months of the correct value. When the shadow
manifold of the ZC model is reconstructed using three
dimensions and lags ranging from 3 to 9 months, we find
that the “double orbit” structure is preserved, suggest-
ing that even though the confidence in the lags selected
by the shorter datasets is low, the resulting shadow
manifolds retain structural similarities to the correct
shadow manifolds provided that the dimension was de-
termined correctly.

The simplex projection method requires the number
of nearest neighbors used to be specified. This number
is sensitive to the length of the record used and needs to
be chosen so as to not include too much or too little
information. We vary this number in order to test the
stability of the dimension and lag obtained for the
shorter datasets. The reported dimension and lag for
each dataset were stable within a range of values: 9-15
neighbors for the observations, 21-40 neighbors for
CCSM4, and 90-140 neighbors for the GFDL model.
Thus the estimates of dimension and lag for the seg-
ments available from each system are robust, but this
does not prove that they would be unchanged if much
longer samples were available.

In the following section, we further examine the bi-
modality seen in the ZC model’s shadow manifold and
compare the shorter datasets’ tendencies to display this
behavior.

b. Comparison of the distributions of interdecadal
standard deviations

The radius of an orbit in the constructed shadow
manifolds corresponds approximately to the standard
deviation of the time series over the duration of the
orbit. Thus, a well-separated inner and outer orbit
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TABLE 2. The probabilities of segments of different lengths
making correct estimates of the properties of the full shadow
manifold, as estimated using short segments from the ZC model.
The correct dimension and lag in this case are 3 and 6 months,
respectively. From left to right, the columns show the percentage of
segments from the ZC model for which correct estimates were
made of the number of dimensions, the lag, the number of di-
mensions and the lag in combination, the number of dimensions
along with a lag within the range from 3 to 9 months.

Probability of correct estimate (%)

Segment (n,7=3

length (years) n 7 (months) (n, 1) months)
160 72 18 16 55
1000 85 26 23 68
4000 92 44 44 88

should yield a bimodal distribution of standard devia-
tion values (computed over the relevant time scale).
We verify this in Fig. 3, which shows the distributions of
15-yr standard deviations evaluated for all continuous
15-yr segments, including overlapping segments, in each
of the datasets. The ZC model shows a clearly bimodal
distribution, indicating two distinct regimes. Bimodality
can also be seen to a lesser degree (and with less confi-
dence) in the corresponding distributions for the ob-
servations and CCSM4, while the GFDL model displays
the least bimodal tendency.

The differing lengths of the time series from each
dataset complicates the comparison, as these lengths of
time may not be sufficient to characterize the full dis-
tribution of interdecadal behaviors of each system. We
make use of the longest time series, the 100000 years
from the ZC model, to estimate the length of time re-
quired to reliably capture this distribution.

Assuming that the true distribution of 15-yr standard
deviations for this model is captured by the 100 000-yr
time series, we compute the corresponding distribution
for each continuous segment of a given length from the
same model and calculate its Kolmogorov distance (the
statistic used in the Kolmogorov—Smirnov test) to this
true distribution. This is a measure of the similarity be-
tween two distributions, defined as the maximum dif-
ference between their empirical cumulative probability
density functions. It can take values from 0 to 1, with 0
indicating identical distributions and increasing values
indicating increasing differences. Thus, for each seg-
ment length, we arrive at a range of possible Kolmo-
gorov distances between the distributions derived from
these shorter segments and the true distribution. The
Kolmogorov distances of the segments should converge
to a small value at some time scale that captures the
characteristics of the full distribution of interdecadal
variability.
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FIG. 3. Histograms of the standard deviations of all possible continuous 15-yr segments of the filtered Nifio-3 index
for each of the datasets used in this study.

Figure 4a shows the resulting distributions of
Kolmogorov distances in the ZC model for a range of
time scales from 100 to 90000 years. The median
Kolmogorov distance to the full distribution decreases
rapidly as the length of the segments increases. The
envelope of possible Kolmogorov distances narrows
significantly between 15000 and 20 000 years, with the
standard deviation falling below 0.01 at 20000 years.
This suggests that at least 20000 years of data are
needed to fully capture the features of the distribution.
At the length of the longest other dataset (i.e., 4000 years),
the spread of 95% of the distribution of Kolmogorov
distances (indicated by the gray shading in Fig. 4) falls
below 0.1 but continues to decrease to a value of 0.04 at
20000 years, indicating that the shape of the distribu-
tion of 15-yr standard deviations has not yet stabilized
at 4000 years. It is clear from Fig. 4a that the distribu-
tion of Kolmogorov distances has a large spread at both
1000 and 160 years, implying that the samples from
CCSM4 and the observations are unlikely to be rep-
resentative of the true distributions of 15-yr standard
deviations in these systems.

We indicate the Kolmogorov distance between the
full distribution of 15-yr standard deviations for each
dataset (i.e., each CMIP model and observations) and

that of the ZC model in Fig. 4a. The observations are
found to be at a Kolmogorov distance of 0.52 from the
full distribution of the ZC model (indicated by the black
triangle). This lies within the range of the possible dis-
tances between 160-yr segments from the ZC model and
its own full distribution. The distribution from the ob-
servations is further from the full distribution than for
97.5% of the 160-yr samples from the ZC model, with
2296 segments at a distance greater than this value.

The distance between the 1000-yr segment of the
CCSM4 (black circle) and the full distribution is slightly
below the maximum possible distance between seg-
ments from the ZC model and its own full distribution,
with 39 segments at a greater distance, indicating mar-
ginal similarity between the datasets. The 4000-yr GFDL
model segment (black square) is markedly different
from the ZC model and lies far outside the distribution.

We also perform this calculation for 1000-yr pre-
industrial runs of nine other models from the CMIP5
archive (colored circles). The segment from CCSM4 is
closer to the full ZC model distribution than the seg-
ments from the other CMIPS5 models, all of which lie
outside the distribution.

When the same calculation is performed using the
4000-yr time series of the GFDL model as the reference
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FIG. 4. (a)-(c) The range of Kolmogorov distances between the distributions in Figs. 3a, 3b, and 3d, respectively,

and similarly derived distributions from shorter segments of the same dataset are shown. The black line indicates
the median of the Kolmogorov distances, the dark shading fills between the 2.5th and 97.5th percentiles, and the
light shading extends to the extreme values. The corresponding distances calculated from the full time series of
observations, from 1000-yr simulations from nine CMIP5 models (including CCSM4), and the GFDL model are

also shown.

distribution (Fig. 4b), we find the Kolmogorov distance
from the observations to be far outside the distribution
of distances for 160-yr segments from the GFDL model,
indicating that the interdecadal behavior in the observed
period is not captured by the 4000 years from the GFDL
model used in this study. This is consistent with an ear-
lier analysis of this dataset (Atwood et al. 2017). Most of
the CMIP5 models cluster far from the GFDL model,
showing that this model is distinctly different from
all other CMIP5 models with available 1000-yr-long
simulations.

Using the 1000-yr run of CCSM4 as the reference
distribution (Fig. 4c), we find that the observations
are closer to this model than the GFDL model but still
lie outside the distribution. The other CMIP5 models
are also clearly different from this model. This indicates
that the representation of the TPDV differs widely be-
tween the available long runs of GCMs. This could be
either a result of the shortness of these datasets or be-
cause the mechanisms that generate the TPDV vary
across the GCMs.

Of the three models examined in our study, the ob-
servations are closest to the ZC model by this metric.
This analysis indicates that the interdecadal variability
of the real-world tropical Pacific system could lie within
the range of behaviors captured by the ZC model, pos-
sessing distinct regimes, and that it certainly lies outside
the range of behaviors found in the 4000-yr run of the
GFDL model, which does not possess such regimes and
has been previously identified as noise driven. Based
on these results, we further investigate the predictability
of the ZC model within the framework of its shadow
manifold, encouraged by the possibility of its relevance
to the real-world system.

c¢. Locating regions of predictability on
the shadow manifold

A valuable property of the attractor of a chaotic sys-
tem is that it can be used to classify states of the system
based on their predictability: regions of the attractor
where points lying close together (and therefore pos-
sessing similar physical characteristics) separate into
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FIG. 5. The shadow manifold of each of the systems studied, with regions of high predictability indicated by
colored grid cells. Blue (yellow) grid cells indicate high-confidence predictions of a low-variance (high variance)

state 15 years into the future.

widely differing trajectories can be considered highly
unpredictable or sensitive, as a small perturbation (which
would amount to a small shift in position on the attractor)
can lead to a drastically different future. On the other
hand, regions where points lying close together follow
similar trajectories can be considered predictable, as
similar states lead to similar outcomes and small per-
turbations do not alter this future in a significant way.
By preserving the topology of the attractor, the shadow
manifold preserves this property.

In this section, we continue to use the 15-yr standard
deviation of the filtered Nifio-3 index as the target for
prediction. Based on the bimodality of the ZC model’s
distribution in Fig. 3, we reduce the problem of classi-
fying predictions to a simple binary: ‘‘positive” or
“negative.” For the ZC model, this means predicting
whether the 15-yr standard deviation of the 15 years
following a given point is greater than (high variance,
referred to as positive) or less than (low variance, re-
ferred to as negative) a threshold of 1.1°C, the midpoint
between the two peaks of the distribution. To classify
regions of the shadow manifold on the basis of pre-
dictability, we divide the shadow manifold into grid cells
of volume (0.1°C)* and consider only cells containing
50 or more points from the time series.

The prediction (positive or negative) for each grid cell
is said to be that made by the majority of trajectories
passing through the grid cell. We measure the pre-
dictability of each cell as the percentage of predictions
from the cell that agree with the majority prediction,
yielding a metric taking values from 50% to 100%.

In Fig. 5, we highlight the regions of high predict-
ability on the shadow manifolds of Fig. 2 based on this
metric. For the ZC model, we highlight the grid cells
with 85% or more agreement and indicate positive
predictions in yellow and negative predictions in blue.
The high-predictability cells form distinct clusters on the
shadow manifold, with the positive and negative pre-
dictions being well separated. This has the following
implications:

1) 25.4% of grid cells, enclosing 37% of the points on the
time series, possess a predictability of 85% or higher.
Both positive and negative states can be predicted
with high confidence from these points.

2) The clustering of these cells means that the high
predictability is not a result of pure chance: since
physically similar states lie close together on the
shadow manifold, a cluster of grid cells corresponds
to a small range of physically similar states. These are
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the physical states of the system that are highly
predictable on interdecadal time scales.

3) The separation of the positive and negative clusters
shows that the states making each type of prediction
are physically distinct and relatively stable: a small
perturbation is unlikely to convert a point from
making a high-confidence negative to positive pre-
diction (or vice versa).

The frequency with which the model passes through
the predictable grid cells is also of interest, as it indicates
how often useful predictions can be made. We find that
the frequency is highly irregular but that the model
does not spend long durations of time without passing
through these clusters, as the mean length of the in-
tervals spent outside of the highly predictable clusters is
16 months, with 95% of such intervals being shorter than
6 years.

We conduct a similar analysis for the other shadow
manifolds, using a lower threshold of predictability
(70%) and an appropriate minimum number of trajec-
tories per grid cell (5 for observations, 10 for GCMs) to
identify regions of relatively high predictability in these
systems. We use thresholds of 0.82°,1.16°, and 1.31°C for
the observations, CCSM4, and the GFDL model, re-
spectively. For the first two of these datasets, these
thresholds are the midpoint between the two highest
peaks of the distributions in Fig. 3, as for the ZC model.
For the GFDL model, we use the median value from
the distribution since bimodality is not apparent in this
case. For the sparsely populated shadow manifold from
the observations, we also use a larger cell volume of
(0.2°C)*. The observations show a clustering of the high-
confidence negative predictions, with the grid cells
making high-confidence positive predictions in a sepa-
rate part of the space. In the shadow manifold of the
CCSM4, there is a cluster of high-confidence positive
predictions, but high-confidence negative predictions
are rare and do not cluster, suggesting a stark asymmetry
between the predictability of positive and negative
states in this model. The uncertainty in the lag of these
two shadow manifolds means that there is low confi-
dence in the location of these clusters.

The shadow manifold of the GFDL model possesses
many cells passing the predictability threshold for
both types of predictions. The cells making positive and
negative predictions are well mixed and situated close
together, indicating a highly unpredictable system: small
perturbations can shift the system from a state that leads
to a high-variance future to one that leads to a low-
variance future. Such a system can be expected to
respond to noise or external forcing with changes in
interdecadal behavior, whereas predictable states in
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systems like the ZC model and perhaps the observations
would remain predictable even if perturbed.

We examine the predictability of the ZC model fur-
ther in Fig. 6. Classifying the grid cells by predictability
(Fig. 6a) shows that while predictability varies widely
over the full shadow manifold, more than half of the cells
exhibit at least 75% predictability.

The transitions between orbits in the ZC model’s
shadow manifold appear to be confined to a region in the
lower left of Fig. 5a. To explore the possibility of pre-
dicting transitions between states, we locate the points
of the Nifio-3 time series when these transitions occur in
the three-dimensional space of the shadow manifold and
determine the predictability of each transition based on
the grid cell in which it is situated.

To select the points in time that represent transitions,
we compute the standard deviation of all 15-yr segments
of the filtered Nifio-3 time series beginning in January
(therefore, the 100000-yr time series yields 99986 stan-
dard deviation values). The standard deviations are then
classified into high or low variance based on the cutoff
of 1.1°C. Then we select the points in time where a high-
variance (low variance) 15-yr segment starting in a given
year is followed by a low-variance (high variance) 15-yr
segment starting in the subsequent year. Note that con-
secutive segments overlap, with start points separated by
one year (i.e., each January).

We assess the predictability of each point within a 2-yr
window centered on the selected point based on the
grid cell of the shadow manifold in which it is located
and choose the point that possesses the maximum pre-
dictability. This allows us to select the points in time
that represent the maximum predictive power within
the time frame during which each transition takes place
and eliminate the arbitrary selection of the month of
January.

Figure 6b shows the distribution of the transitions
based on their predictability assessed in this manner.
Comparing this to the distribution in Fig. 6a indicates
that transitions are more predictable than the average
state of the system, with 80.2% exhibiting a predict-
ability of 80% or higher; 66.4% of the transitions have
a predictability of 85% or higher and therefore lie
within the predictable regions highlighted in Fig. Sa.
Examining the negative and positive transitions sepa-
rately (Figs. 6c,d) reveals that most transitions of both
types have high predictability, with transitions into
high-variance states slightly more likely to be highly
predictable than transitions into low-variance states.
This is consistent with earlier studies of interdecadal
predictability in this model that found positive states to
be more predictable than negative states (Karspeck
et al. 2004; Ramesh et al. 2017).
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FIG. 6. (a) Cumulative histogram of grid cells on the shadow manifold of the ZC model classified by their pre-
dictability and (b) cumulative histogram of transitions between regimes classified based on the predictability of the
grid cells in which they are located on the ZC model’s shadow manifold. (c),(d) Asin (b), but for transitions to low-
and high-variance states, respectively. The values in all panels are cumulatively summed from right to left, such that
each bar indicates the number of (a) grid cells or (b)-(d) transitions that have agreement greater than or equal to
the percentage on the x axis. The trajectories passing through each grid cell are traced for the 15-yr period after they
exit the grid cell, and the sign of the prediction associated with the grid cell is that of the majority of these tra-
jectories. The predictability depicted in this figure is the percentage of trajectories passing through the grid cell that

are in agreement with the majority prediction.

d. Toward characterizing predictable states of the
attractor in terms of physical variables

Each location on the attractor corresponds to a par-
ticular physical state of the model system. As the
model’s trajectory passes through these locations, each
point on the trajectory corresponds to a point in time of
the model’s evolution, during which it occupies the
particular physical state corresponding to these loca-
tions, in terms of variables such as sea surface temper-
atures, wind velocities, and thermocline depth. The
same should be true of the shadow manifold if the at-
tractor reconstruction has been performed correctly, as
it preserves the topology of the attractor. In this section,
we confirm this to be the case by examining the prop-
erties of one small region of the shadow manifold.

Figure 5a shows that the region where the model
predicts a negative state with high confidence forms a

single small cluster of points lying close together (in-
dicated in blue). If the reconstruction procedure has
correctly preserved the structure of the system’s true
attractor, the states within this cluster should show more
similarity to each other in terms of the important phys-
ical variables of the system than to regions outside of
the cluster. To test whether this is in fact the case, we
locate all the points in time that lie within this high-
predictability cluster and extract the model’s physical
states at these times. We then compute the standard
deviation of a few physical variables over these points
in time, which we expect should be significantly smaller
for this subset of points than for the full time series.
We report the following in Table 3:

1) The standard deviation for some physical variables
for the model states that lie within the volume of the
cluster, averaged over all spatial points. In all cases,
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TABLE 3. Spatial averages of the standard deviations of the sea surface temperature anomaly, upper-ocean layer thickness, surface zonal
wind speed, and divergence of surface wind speed compared between (column 2) the full range of model behaviors and (column 1) the
range of behaviors constrained by the cluster shown in Fig. 5a. (column 3) The ratio between the values in columns 1 and 2. (column 4) The

minimum value over the spatial domain when the ratio in column 3 is calculated individually for each spatial point.

Variable (anomaly Standard deviation Standard deviation over Standard deviation Minimum standard

from annual cycle) within cluster full time series ratio deviation ratio
SST 0.22°C 0.47°C 0.47 0.32
Upper-ocean layer thickness 7.17m 13.14m 0.54 0.29
Surface zonal wind speed 0.22ms ! 0.58ms™! 0.38 0.32
Surface wind speed divergence 237 X107 75! 454 x1077s7! 0.52 0.28

this value is found to be considerably smaller than
the full range of variability expected for these
variables.

2) The standard deviation for each variable, averaged
over all spatial points, for all model states from the
full time series.

3) The ratio between the standard deviations reported
in columns 1 and 2: the smaller this ratio, the more
tightly the spatial field of the variable is constrained
by the cluster in phase space.

4) The minimum value of the standard deviation ratio
in the spatial domain of the model: for each variable,
the ratio of the standard deviations is computed for
each spatial point, and the minimum value over the
spatial domain is reported. Since the three dimen-
sions of the shadow manifold correspond to three
unknown physical variables whose spatial extent is
unknown, there may be regions in space that are
better constrained by the shadow manifold than
others. This ratio is found to be approximately 0.3
for all the variables examined, showing that there is
some spatial region where each of these variables is
highly constrained.

Therefore, the points lying within the cluster and close
together in phase space represent some subset of phys-
ically similar model states, as expected if the attractor
topology has been preserved. In Fig. 7, we show statistics
related to the spatial fields of the sea surface tempera-
ture anomalies (SSTAs), thermocline depth anomalies,
and wind velocities extracted at the points in time lying
within the region of the shadow manifold that predict a
negative state with high confidence (shown in blue in
Fig. 5a).

The left column of Fig. 7 displays the spatial fields of
the standard deviation ratios computed for Table 3, that
is, the standard deviation of the variable of interest at
each spatial point over the states lying within the cluster
divided by the standard deviation of the same variable at
each spatial point over the entire time series. Note that
these are not the 15-yr standard deviations but the

standard deviations calculated over the selected subset
of points in time. We use this value to assess the relative
importance of each variable at each location in de-
termining the predictable state represented by the
cluster on the shadow manifold. We rely on this ratio
rather than the standard deviation within the cluster
alone because a variable with a low standard deviation
in a region of generally low variability is less informative
than a variable with a low standard deviation in a region
of large variability.

To confirm that the mean values of these variables
within the set of states lying within the cluster are dis-
tinct from the mean of the values outside the cluster, we
perform Welch’s (unequal variance) ¢ test at each spatial
point, comparing the distribution of values within the set
of states encompassed by the region predicting a nega-
tive state with high confidence to the distribution of
values lying outside this cluster. We find that the hy-
pothesis that these two sets of values come from distri-
butions with equal means can be rejected at the 5%
significance level at nearly all of the spatial points in the
domain for the three variables examined (i.e., anomalies
of SST, thermocline depth, and wind stress divergence).
The regions where this is not the case are stippled in
Fig. 7. These are found to be only two to four grid cells
for each of the variables, with spatial averages of the
p values over the domain being 0.0029, 0.0042, and 0.0026
for SST, thermocline depth, and wind stress divergence
anomalies, respectively.

The right column of Fig. 7 shows the average spatial
fields of SSTAs, thermocline depth anomalies, and wind
velocity anomalies corresponding to the states within
the cluster. These are averaged over the subset of points
in time lying within the cluster. The black contour line
over these maps encloses the regions from the corre-
sponding maps to the left possessing standard deviation
ratios smaller than 0.5 and therefore the most informa-
tive in defining the state of the system that reliably
produces a negative transition. In the case of all three
variables shown, the eastern tropical Pacific is decisive in
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determining this state. The predictable state is associ-
ated with small cool SSTAs in the eastern equatorial
Pacific, a thermocline in the far eastern tropical Pacific
that is slightly shallower than normal, and convergent
wind velocity anomalies in the central equatorial Pacific

region accompanied by off-equatorial westerly anoma-
lies in the eastern part of the basin. The small values of
the anomalies are not a consequence of averaging over
widely differing values, as the standard deviations seen
in the left column (as well as in Table 3) for these regions
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are small and these variables are close to climatological
values in the regions indicated. While the processes in
these regions have not been shown to control the evo-
lution into a negative TPDV phase, they are at the very
least reliable indicators of the change in phase that is
about to occur.

The analysis in this section demonstrates that it is
possible to isolate a particular state of interest based on
its predictability characteristics using this attractor re-
construction method. Developing an understanding of
the physics driving a negative transition will require
further analysis of the model variables associated with
this state and their evolution through time, which is
beyond the scope of this study.

5. Discussion

The shadow manifolds of the four systems in this study
were reconstructed based on the predictive power of the
Nifio-3 time series from each system. These shadow
manifolds preserve crucial properties of the systems’
true attractors, allowing us both to assess the pre-
dictability of the TPDV in these models and to classify
the various states of each model by their predictability.

A wide range of behaviors is found in the models
examined. When viewed as part of a chaotic system, the
TPDYV in the ZC model emerges as a pair of separate
regimes of behavior corresponding to the two orbits
seen in the shadow manifold. The attractor of this model
is three-dimensional, implying that there exists some
combination of three time series from the model that
contains enough information to specify the state of the
entire system. For over a third of the time, the model
inhabits states where the phase of the TPDV for the
following 15 years is predictable with 85% agreement.
These predictable states form distinct clusters in the
state space that correspond to particular physical states
of the model. The predictability of states varies consid-
erably over the shadow manifold, meaning that there are
some states of the model from which there is little
chance of making a correct prediction of the inter-
decadal variability but also that there exist states from
which confident predictions of interdecadal variability
can be made.

In contrast, the GFDL model’s representation of the
TPDV is one of a nearly unpredictable, noise-driven
process, as expected from earlier work (Wittenberg et al.
2014). This model’s shadow manifold is two-dimensional
with no clear clustering of the predictable states, im-
plying that these predictable states are likely the product
of chance and do not correspond to specific physical
states of the system that are inherently more predictable
than others. This model’s distribution of 15-yr standard
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deviations is also distinctly different from that of the ZC
model and lacks clear bimodality, which is further sup-
ported by its large Kolmogorov distance from the ZC
model. These differences suggest that the TPDV in this
model is likely generated by a fundamentally different
set of processes than that in the ZC model.

The GFDL model’s higher complexity may be re-
sponsible for some of these differences. However, the
predictability of TPDV reported in GCMs other than
the GFDL model (Meehl et al. 2016b; Ding et al. 2013;
Thoma et al. 2015) shows that having higher complexity
than the ZC model does not always result in highly un-
predictable systems. The shorter time series from the
CCSM4 and real world are quite different from the
GFDL model and have more in common with the ZC
model both in terms of their dimensionality (section 4a)
and their distributions of 15-yr standard deviations
(section 4b). This suggests that they may have similar
predictability characteristics to the ZC model. The
number of dimensions in these two cases is determined
with some confidence (85% for CCSM4 and 72% for the
observations). However, the low confidence in the lag
implies that the precise structure of the shadow mani-
folds may not be correctly determined, so the clustering
of predictable states on these shadow manifolds is less
certain.

A key difference between GCMs and the intermediate-
complexity ZC model is that the latter computes
anomalies from a specified seasonal cycle, whereas
GCMs must simulate the seasonal cycle. Representing
the seasonal cycle accurately may be crucial in this
context, as the interactions between the annual cycle
and ENSO are likely to play an important role in gen-
erating the system’s chaotic behavior (Tziperman et al.
1994; Jin et al. 1994; Stuecker et al. 2015). Accurate
simulation of the seasonal cycle in the tropical Pacific
remains a challenge for many GCMs (Flato et al. 2013),
meaning that if the real-world system is indeed chaotic,
they may not be able to correctly capture its predict-
ability characteristics without first producing a realistic
seasonal cycle.

Another important difference is that while the GCMs
and observations include the effects of variability in
other parts of the world on the tropical Pacific region,
the ZC model does not. The influence of regions outside
the tropical Pacific may alter the interdecadal pre-
dictability of the system, so assessing the magnitude of
the influence of external factors on this region across
different GCMs and in the observations would be
valuable.

Our results indicate that the interdecadal character-
istics of the real-world system bear most resemblance to
the more predictable ZC model in terms of both the
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distribution of 15-yr standard deviations and the di-
mensionality of the attractors obtained. The shortness of
the observational record means that the confidence in
this resemblance cannot be high. However, the sub-
stantial differences between the noise-driven GFDL
model and the observations lend support to the hy-
pothesis that TPDV in the real world may be the product
of a chaotic oscillator.

If this is the case, the real-world system, like the ZC
model’s representation of TPDV, passes through states
from which the likelihood of making successful inter-
decadal predictions varies substantially. In the ZC
model, the periods when transitions between inter-
decadal states occur are among the most likely to yield
successful predictions, whereas the persistence of either
of the TPDV states is more difficult to reliably predict.

Applying the results of this study would require
characterizing and identifying the states of the system in
nature from which successful predictions can be made.
The length of the time series required to confidently
characterize interdecadal variability is a significant ob-
stacle. The results of section 4b suggest on the basis of
the Kolmogorov—Smirnov test that 20000 years of data
are needed to fully characterize the distribution of
interdecadal variability and that a sample of at least
4000 years is needed to yield a result with fairly high
confidence. Even the latter, lesser standard requires a
far longer time series than the length of the observations
available and of most GCM simulations. Paleoclimate
proxies are able to provide us with some knowledge of the
variability over time spans of comparable length, but at
present, their low temporal resolution and limited
precision render them unsuitable for shadow manifold
reconstruction.

A more promising way forward would be to charac-
terize the physical variables associated with the pre-
dictable states in the ZC model and compare their
evolution to that in the observations at the times of
known transitions between TPDV shifts. The results of
section 4d show that the points on the shadow manifold
lying within the predictable region examined corre-
spond to a specific physical state. The transition to a
negative TPDV state is associated with a shallow ther-
mocline and cool SSTAs in the eastern tropical Pacific
and convergent wind anomalies in the central equatorial
Pacific region. An analysis of this physical state has
the potential to shed light on the physical processes that
give rise to a negative TPDV state, as the predictable
cluster groups together the states that evolve similarly to
produce this outcome. Our further studies will build
upon this result to trace the temporal evolution of key
variables as the system passes through the predictable
state and to understand the processes associated with
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predictable states and the dynamics underlying tran-
sitions between TPDV phases. A comparison of the
physical processes occurring during known shifts of the
TPDYV in observations and the ZC model would shed
light on the extent of the similarity between these sys-
tems and, therefore, the applicability of our results to
real-world prediction.

This study demonstrates the usefulness of data-driven
attractor reconstruction methods in studying the tropi-
cal Pacific system. The simplex projection method used
here not only yields insights into its chaotic nature but
also reveals a more complete and nuanced picture of
predictability in the ZC model than a conventional
perturbed-ensemble approach to the same problem
(Ramesh et al. 2017). The reconstructed shadow mani-
fold shows that the predictive skill of the model varies
widely depending upon the state it occupies at the time
the prediction is made. Unless the criteria for selecting
the initial state of the model in perturbed-ensemble
experiments are specifically designed to choose the most
predictable states, such experiments can be expected to
produce larger errors in their predictions than other-
wise. Identifying predictable states would provide the
opportunity to make a relatively confident prediction of
the state of the TPDV by initializing it at the appropriate
time. If we correctly identify the location of the system
on the shadow manifold (a trivial task in the case of the
ZC model), the likelihood of making a correct pre-
diction at any given time is known. This information can
be used to decide which predictions should be given the
most weight when making a forecast based on the lo-
cation of the system in its state space at the time the
prediction is made. This is analogous to the seasonal
variation of the predictability of ENSO: predictions
made at certain times of year, when the system is known
to be in a state that is relatively sensitive to perturba-
tions, are known to be less likely to be correct (Chen and
Cane 2008). Similarly, on an interdecadal time scale, the
shadow manifold can be used to make the distinction
between states that are the most and least likely to yield
reliable predictions. Unlike the seasonal cycle, the tra-
versal of predictable states for the interdecadal time
scale does not have a regular frequency; however, our
results indicate that the model is highly unlikely to spend
more than 6 years without passing through a state that
has a predictability of 85% or higher. The model’s tra-
versal of predictable states is more frequent than the
time scale of the predictions that can be made (15 years)
and the median length of interdecadal states (31 years).
Therefore, a prediction scheme for this model using
our results would be to monitor the Nifio-3 index as
the model evolves, wait until it arrives in a predictable
region of the shadow manifold, and issue a forecast of



818

the standard deviation of the following 15 years at that
point in time.

To make use of the results from our study in real-
world prediction, recognizing specific physical states, if
they exist, from which the natural system is predictable
would be a necessary additional step. As there is sig-
nificant uncertainty associated with the reconstructed
shadow manifold of the observations, it is unlikely to
be possible to use the Nifio-3 index alone to identify
whether the system is in a predictable state. Instead, this
problem will need to be approached by comparing the
physical processes associated with predictable states in
the ZC model to the evolution of the system in the real
world. If the processes underlying the TPDV in the ZC
model and the real world are sufficiently similar, pre-
dicting this phenomenon in the real world may well be
an attainable goal.
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