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ABSTRACT

Tropical Pacific decadal variability (TPDV), though not the totality of Pacific decadal variability, has wide-

ranging climatic impacts. It is currently unclear whether this phenomenon is predictable. In this study, we

reconstruct the attractor of the tropical Pacific system in long, unforced simulations from an intermediate-

complexitymodel, two general circulationmodels (GCMs), and the observations with the aim of assessing the

predictability of TPDV in these systems. We find that in the intermediate-complexity model, positive (high

variance, El Niño–like) and negative (low variance, La Niña–like) phases of TPDV emerge as a pair of

regime-like states. The observed system bears resemblance to this behavior, as does one GCM, while the

other GCM does not display this structure. However, these last three time series are too short to confidently

characterize the full distribution of interdecadal variability. The intermediate-complexity model is shown to

lie in highly predictable parts of its attractor 37% of the time, during which most transitions between TPDV

regimes occur. The similarities between the observations and this system suggest that the tropical Pacific may

be somewhat predictable on interdecadal time scales.

1. Introduction

The coupled ocean–atmosphere system of the Pacific

basin exhibits variability on interdecadal time scales

that has impacts on hydroclimate around the world

(Herweijer and Seager 2008; Power et al. 1999; Krishnan

and Sugi 2003; Mantua and Hare 2002), on global mean

surface temperature (Kosaka and Xie 2013; Meehl et al.

2016a; England et al. 2014), and on the ecosystems and

fisheries of the Pacific Ocean (Francis et al. 1998). This

variability is frequently measured using indices such as

the Pacific decadal oscillation (PDO; Mantua and Hare

2002), which is based on temperature anomalies in the

North Pacific, or the interdecadal Pacific oscillation

(IPO), which additionally incorporates the influence and

variability of the southern midlatitudes (Henley et al.

2015). The behavior captured by these indices is com-

posed of contributions from a number of phenomena

including the variability of the Aleutian low, air–sea

heat flux anomalies in the midlatitudes amplified by

the seasonal cycle, the dynamics of subtropical ocean

gyres, internally generated stochastic variability of the

atmosphere, and the variability of the tropical Pacific

(Newman et al. 2016).

In observations and simulations, the tropical compo-

nent of this interdecadal variability takes the form of

shifts between periods of El Niño–like (positive) states

and La Niña–like (negative) states and is among the

dominant influences on these indices (Zhang et al. 1997;

Newman et al. 2003; Chen and Wallace 2015; Newman

et al. 2016; An et al. 2007), accounting for up to 50% of

the variance of the PDO. These phases may also be

characterized as high- and low-variance states (Atwood

et al. 2017; Choi et al. 2009), since interdecadal variance

is highly correlated with mean tropical temperature.

This variability intrinsic to the tropical Pacific region on

decadal-to-interdecadal time scales, which we will refer

to as tropical Pacific decadal variability (TPDV), will be

the focus of this study.

The pertinence of interdecadal climate variability

to the design of policies and infrastructure (Trenberth

2009) makes TPDV a desirable target for prediction.

However, the processes responsible for generating this
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phenomenon are not well understood. Some hypotheses

place the origins of this variability in the midlatitudes,

where anomalies are able to exert an influence on the

tropical wind field via air–sea fluxes (Barnett et al. 1999;

Vimont 2005). Others have suggested that phenomena

external to the Pacific basin, such as variability in the

Atlantic Ocean (Dong et al. 2006; Kang et al. 2014) or

volcanic aerosols (Adams et al. 2003) are able to induce

TPDV as a response. However, multiple studies using

varied techniques have demonstrated that the strongest

influence on the equatorial thermocline of the Pacific

on interdecadal time scales is wind forcing within the

tropical belt (McGregor et al. 2007; Karspeck and Cane

2002; Emile-Geay and Cane 2009), implying that the

dynamics of the TPDV are governed by the wind

stresses and oceanic planetary waves originating within

this region; while others have found that the TPDV can

be generated by stochastic atmospheric variability in-

trinsic to the region (Chang et al. 1996; Flügel andChang
1999; Thompson et al. 2001; Okumura 2013). In addi-

tion, a model simulating only the tropical Pacific re-

gion has been shown to capture longer-than-interannual

variability with a similar level of skill to a general cir-

culation model (GCM; Ramesh et al. 2017), suggesting

that factors external to the tropical Pacific region may

not be necessary for the generation of TPDV.

Each of the proposed mechanisms has different im-

plications for the predictability characteristics of the

system. Based on the existing hypotheses, TPDV could

be entirely the product of chance, driven by stochastic

processes that render it effectively unpredictable (Kessler

2002; Kleeman 2008; Chang et al. 1996; Wittenberg

2009; Wittenberg et al. 2014), or could arise from low-

order chaos in the coupled ocean–atmosphere system of

the tropical Pacific causing it to oscillate between dif-

ferent regimes (Timmermann and Jin 2002; Tziperman

et al. 1994; Timmermann 2003), allowing for some, if

modest, predictability. Hypotheses that place the origins

of TPDV outside the tropical Pacific (Dong et al. 2006;

Barnett et al. 1999; Kang et al. 2014; Adams et al. 2003)

imply that its predictability depends on that of the ex-

ternal factors involved.

The real-world system and climate models lie some-

where on the spectrum ranging from noise driven to

chaotic. Recent studies indicate that the interdecadal

variability of the Pacific basin possesses some predict-

ability in GCMs (Meehl et al. 2016b; Thoma et al. 2015;

Ding et al. 2013), suggesting that it is not entirely sto-

chastic in these models. In an intermediate-complexity

model of the tropical Pacific, the 15-yrmean of theNiño-
3 index was found to possess potential predictability

(Karspeck et al. 2004; Ramesh et al. 2017), and an ac-

tual prediction of the future state of the TPDV using

this model in 2004 (Seager et al. 2004) was verified a

decade later.

In this study, we further examine the potential pre-

dictability of the internally generated TPDV identified

in Karspeck et al. (2004) andRamesh et al. (2017) on the

15-yr time scale by applying an attractor reconstruction

scheme to the output from this model and comparing

the results with those from two GCMs and the obser-

vations.While the real-world andGCMversions of TPDV

are influenced by a variety of factors, the TPDV in the

intermediate-complexity model is generated purely by

the dynamics of the tropical Pacific region, allowing us

to study the region as an isolated system.

The reconstruction of the attractor allows us to clas-

sify physical states of the models according to their

predictability, enabling us to study the characteristics of

the states of these systems from which we can hope to

make successful predictions of the future. We use the

intermediate-complexity Zebiak–Cane (ZC) model,

which has been found to possess the properties of a

chaotic system (Tziperman et al. 1997); the Geophysical

Fluid Dynamics Laboratory (GFDL) Coupled Model,

version 2.1, which has been shown to generate a noise-

driven TPDV (Wittenberg et al. 2014); and the Com-

munity Climate System Model, version 4 (CCSM4),

which has neither been proven to be noise driven nor

chaotic but is known to possess some predictive skill in

the Pacific basin on this time scale (Meehl et al. 2016b).

We compare the reconstructed attractor of the observed

variability (which is reconstructed with far less confi-

dence than for the models because of the shortness of

the observational record) with each of these systems in

order to gain insight into whether chaotic or noise-

driven processes dominate the observed TPDV.

We first describe the models and data used in section

2, followed by the attractor reconstruction method in

section 3. In section 4a, we begin by examining the re-

constructed attractor of the ZC model in detail and

compare it with those of the other datasets used. We

organize the discussion around the ZC model because

the long time series available (100 000 years) allows the

attractor to be reconstructed with much higher confi-

dence than for any of the other datasets. We then con-

tinue the comparison in terms of the distributions of

15-yr standard deviations of the models used in section

4b. Next, in section 4c, we quantify the predictability

obtained from the reconstructed attractor of the ZC

model. Section 4d confirms that this attractor recon-

struction succeeds in placing similar physical states of

the system close together, as is expected, and demon-

strates the possibility of using the attractor to understand

the physical dynamics of the system during transitions be-

tween states of the TPDV. The final section summarizes
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our results, discusses the implications for the predictability

of GCMs and the real world, and outlines future research

directions building on this work.

2. Models and data

We use the following datasets:

(i) 100 000 years from an unforced run of the ZC

(Zebiak and Cane 1987) model: This model

simulates the Pacific as a 1.5-layer ocean from

298S to 298N with a global atmosphere based on

the Gill model. It produces interdecadal vari-

ability (Cane et al. 1995) that is somewhat pre-

dictable and may have some utility for real-world

predictions (Karspeck et al. 2004; Ramesh et al.

2017; Seager et al. 2004).

(ii) 4000 years from an unforced run of the GFDL

Coupled Model, version 2.1 (Delworth et al.

2006): tropical Pacific variability in this fully

coupled GCM has been studied extensively

(Karamperidou et al. 2014; Atwood et al. 2017;

Wittenberg et al. 2014).

(iii) 1000 years from a preindustrial control run of the

CCSM4, from theCMIP5 archive (Taylor et al. 2012):

IPO in this state-of-the-art GCM has been shown to

possess some predictability (Meehl et al. 2016b).

(iv) 160 years of observational data from the Kaplan

Extended Sea Surface Temperature, version 2,

dataset (Kaplan SST; Kaplan et al. 1998): This

dataset assimilates ship and satellite observations

from 1856 to the present.

(v) Preindustrial control runs spanning 1000 years

from eight CMIP5 models other than the CCSM4.

These are used briefly in section 4b for comparison

with the four datasets described above. The models

are listed in Table 1.

3. Attractor reconstruction using simplex
projection

A key feature of chaotic systems is the existence of an

underlying attractor in phase space whose topology can

yield insights into the predictability, stability, and re-

lationships between states of the system. There are

several variables in the ocean–atmosphere system of the

tropical Pacific, each with time-evolving values at each

spatial location. While the strong coupling between

these variables means that much of the information

contained in this large collection of time series is re-

dundant, it is not a trivial task to reduce the system to the

correct subset of time series with which to construct the

true phase space.

The simplex projection method (Sugihara et al. 2012;

Deyle and Sugihara 2011) addresses this problem

by applying Takens’s embedding theorem (Takens

1981), according to which a shadow manifold pre-

serving the topology of the true attractor can be re-

constructed using any single time series from the

system. The shadow manifold is n-dimensional, and

each dimension is the chosen time series lagged by an in-

tegral multiple of a time interval t. Thus the n dimensions

of a shadowmanifold reconstructed from a time series x(t)

are x(t), x(t2 t), x(t2 2t), . . . , x[t2 (n2 1)t]. The al-

gorithm seeks, and provides as output, the pair (n, t) such

that n is the dimension of the true attractor.

The shadow manifold preserves relative distances

between points on the attractor, where each point

TABLE 1. List of CMIP5 models used for comparison in this study.

Modeling center (or group) Institute ID Model name

Beijing Climate Center, China

Meteorological Administration

BCC BCC_CSM1.1

National Center for Atmospheric

Research

NCAR CCSM4

LASG, Institute of Atmospheric Physics,

Chinese Academy of Sciences

LASG/IAP FGOALS-gl

NASA Goddard Institute for Space

Studies

NASA GISS GISS-E2-R

Met Office Hadley Centre MOHC HadCM3

L’Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR

Japan Agency for Marine-Earth Science

and Technology, Atmosphere and

Ocean Research Institute (The

University of Tokyo), and National

Institute for Environmental Studies

MIROC MIROC-ESM

Max-Planck-Institut für Meteorologie MPI MPI-ESM-P

Meteorological Research Institute MRI MRI-CGCM3
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uniquely represents some state of the system. The

simplex projection method leverages this property to

select appropriate values of n and t for the system as

follows:

1) For each (n, t) pair, a version of the shadowmanifold

is constructed by producing a ‘‘map’’ of the system’s

trajectory in an n-dimensional space. For example,

for the pair n 5 2, t 5 3 months, this would be

generated by ‘‘plotting’’ the values from the time

series in an x–y plane such that the points (x, y)

are the values of the time series at a given time t and

t 2 3 (since the lag t is 3 months) for all values of

t available in the dataset. Although this cannot be

visualized for values of n larger than 3, the concept is

generalized to these dimensions by storing the time

series in a matrix where each column of the matrix

corresponds to a dimension. The first column con-

tains the time series, and each of the remaining

columns contain the time series lagged by t months

with respect to the column preceding it. Therefore,

each row in thematrix represents a set of coordinates

in an n-dimensional space. This type of matrix is

generated for each possible (n, t) pair.

2) A ‘‘prediction’’ is made for each of a number of

randomly selected points in time using each of the

matrices generated in step 1. This is done by tracing

the trajectories of the selected point’s nearest neigh-

bors (i.e., the points along the time series whose

coordinates in the n-dimensional space place it closest

to the coordinates of the selected point) into the

future. The correct (n, t) pair should, in theory, place

points in time where similar behaviors occurred near

each other (as would be the case on the system’s

true attractor), meaning that the future trajectories

of neighbors in the correct shadow manifold should

be good predictors of the future behavior of points

near them. The weighted average of these trajecto-

ries is calculated using weights that are inversely

proportional to the distance between the neighbor

and the selected point to produce the prediction for

that point.

3) Then the error (absolute difference) between the

predictions thus obtained and the actual trajectories

following the selected points being predicted is

measured for each of the (n, t) pairs. The (n, t) pair

with the minimum average error over all predicted

points is returned by the algorithm as the correct

dimension and lag for reconstructing the shadow

manifold of the system. Choosing the (n, t) pair with

the minimum average error over all predicted points

thereby selects the shadow manifold with maximal

predictive power.

In this study, we use the Niño-3 index [the monthly

mean sea surface temperature (SST) anomaly in the

region spanning 58S–58N, 1508W–908E] to reconstruct

the shadow manifold after smoothing using a low-pass

second-order Butterworth filter with a 4-month cutoff.

To capture interdecadal variability, we use the 15-yr

standard deviation of the filtered Niño-3 index as the

target for prediction in the simplex projection pro-

cedure. The 15-yr period is based on earlier work that

found this to be an appropriate time scale for the iden-

tification of interdecadal shifts in the behavior of the

tropical Pacific in the observations (Karspeck et al. 2004;

Seager et al. 2004). (Using a 20-yr period made little

difference for the results shown below.) These studies

concluded that this behavior is potentially predictable in

the ZC model. Another study (Ramesh et al. 2017) also

showed that the Niño-3 index, filtered in an identical

manner, contained sufficient information to make pre-

dictions of the 15-yr mean state.

Our earlier studies of TPDV (Karspeck et al. 2004;

Seager et al. 2004; Ramesh et al. 2017) used the 15-yr

mean of Niño-3 as an index, but here we abandon it in

favor of the standard deviation over 15-yr periods. Prior

work by others has used the standard deviation or var-

iance over similar lengths of time to identify the phases

of interdecadal variability in this region (e.g., Choi et al.

2009; Atwood et al. 2017). High-variance states corre-

spond to warm, El Niño–like mean states, and low-

variance states correspond to cool, La Niña–like mean

states. The correlation of 15-yr mean and variance is so

high (0.85 in the ZC model and 0.47 in observations,

both significant at the 99% level) that the two must be

regarded as different indices of the same phenomena.

This correspondence arises in good measure from the

asymmetry between El Niño (warm, high amplitude)

and La Niña events (cold, lower amplitude; e.g.,

Okumura et al. 2017). While either the mean or the

standard deviation are satisfactory indices of TPDV,

we find that the standard deviation index more effec-

tively distinguishes the extreme phases of TPDV. We

discuss this further in the context of the structure of the

attractor.

We focus on the ZC model because the substantially

longer time series available yields greater certainty of

the results than from observations or GCMs. In addition

to its proven ability to simulate and predict TPDV, this

model also has the advantage of isolating the physics

internal to the tropical Pacific system meaning that all

results relating to its predictability can be attributed

to processes arising within the region. At every stage of

this study, we compare our results with observations and

the GFDL model and CCSM4, all of which incorporate

the various external factors that can interact with the
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tropical Pacific system. The differences between these

datasets and the ZC model could result from these ex-

ternal factors, differences in the simulation of processes

internal to the tropical Pacific, or the uncertainty asso-

ciated with the shorter record lengths that may not fully

characterize all possible behaviors of the system.

4. Results

a. Attractor reconstruction

For the ZC model, the optimal dimension and lag

were found to be n 5 3 and t 5 6 months. This means

that the system is reducible to three dimensions (i.e.,

three time series determine its state) and that informa-

tion from a span of 13 months (months t, t 2 6, and

t 2 12) of the Niño-3 time series contain sufficient in-

formation to make predictions of its 15-yr standard de-

viation. Themean error obtained for this combination of

dimension and lag obtained from the simplex projection

method was 0.038C, which is 1.6% of the range 0.048–
1.838C of the 15-yr standard deviations. We begin our

interpretation of the results by examining a short seg-

ment of the Niño-3 index in the state space as the model

state evolves through time. Statistics regarding the full

dataset are presented after this short example.

Figure 1 depicts the trajectory of the system along the

reconstructed shadow manifold through a 60-yr time

interval, displayed every 5 years. The state space within

which the system traverses its trajectory is, based on the

results of the simplex projection procedure, defined by

three dimensions: the Niño-3 time series on the x axis

and the same time series lagged by 6months on the y axis

(as the optimal lag was determined to be 6 months) and

lagged by 12 months on the z axis. Each location in this

abstract space corresponds to a specific physical state of

the system, and the full attractor encompasses all pos-

sible states that the system is able to occupy, barring any

additional forcing. The location of the system in this

space at a given point in time t is, by definition, the Niño-
3 index value at time t plotted along the x dimension, the

value of the same index at time t2 6 plotted along the y

dimension, and at time t2 12 along the z dimension. The

system thus moves along a trajectory in this space as the

model state evolves over time, and this trajectory defines

its shadowmanifold. The pink line in Fig. 1, which traces

the Niño-3 index with its lagged counterparts to give the

shadow manifold, connects these states as they occur in

chronological order over a 60-yr interval. The panels of

Fig. 1 sequentially depict the location of the model state

(blue dot) in its state space as determined by the Niño-3
index in order to show the temporal evolution of the

system.

The first 10 years of the trajectory segment shown are

spent tracing a large ‘‘orbit’’ in the three-dimensional

state space (Figs. 1a,b). The system (whose current po-

sition is marked by the blue dot) moves clockwise along

this orbit. By the year 15 (Fig. 1c), the system has

entered a smaller, inner orbit. This orbit is also traversed

clockwise, until the year 40 (Fig. 1h). By the year 45

(Fig. 1i), having spent approximately 30 years in the

inner orbit, the system exits the inner orbit and reenters

the outer orbit.

The full shadow manifold of the ZC model (a rep-

resentative segment of which is depicted in Fig. 2a)

possesses densely populated inner and outer orbits,

separated by a sparsely populated region. The median

time interval between transitions1 from the outer to in-

ner orbits is 62 years. This is similar to the length of the

interval between the known shifts from a positive to a

negative PDO—that is, in 1943 and 1999—in the ob-

servations, suggesting that the two orbits of the shadow

manifold correspond to the regimes of behavior that

comprise the model’s interdecadal variability. The size

of an orbit is smaller for periods of time when theNiño-3
index displays low variance, and larger orbits corre-

spond to periods of high variance. The structure of the

attractor suggests that the standard deviation is a more

discriminating measure of TPDV, as the inner and

outer orbits possess clearly distinct standard de-

viations (as can be inferred from the large and small

radii of the orbits, which correspond approximately to

the standard deviation of the Niño-3 index) but simi-

lar means (which correspond approximately to the

centers of the orbits). This is not simply an artifact of

the 15-yr standard deviation being used as the pre-

diction target in the attractor reconstruction pro-

cedure; when the same procedure was performed

using the 15-yr mean as the target for prediction instead

(result not shown), a similar three-dimensional shadow

manifold was obtained. The error associated with the

predictions from the simplex projection was higher

(mean error 5 0.26), and the lag obtained was longer

(9 months) in this case, suggesting that the mean is

both less predictable and requires more information in

order to be predicted.

Another noteworthy feature of the shadow manifold

is that the transitions between the inner and outer orbits

appear confined to a region in the lower-left corner of

the figure. Since proximity of the points on the attractor

is indicative of similarity in the physical states repre-

sented by those points, this implies that they occur

1 The procedure used to identify the points in time at which

transitions between the orbits occur is described in section 4c.
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FIG. 1. The trajectory of the ZC model system through the three-dimensional state space of its shadow manifold over time. The axes

represent the Niño-3 index (8C; x axis) and the same index lagged by 6 months (y axis) and 12 months (z axis). The yellow 3 marks the

starting point (at time5 0), and the blue dot represents the position of the system at the time indicated in the panel title, after having traced

the trajectory indicated by the pink line. The orbits are traced clockwise.
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during a specific subset of similar physical states of the

system and therefore possess potential predictability.

The shadowmanifolds obtained from all four datasets

are visualized in Fig. 2. The time series for the ZCmodel

is approximately two orders of magnitude longer than

the GCM time series and three orders longer than the

observed series, yielding more certainty in its manifold

reconstruction. Also indicated are the minimum error

values obtained during the reconstruction procedure,

which can be interpreted as a measure of the overall

predictability of TPDV in the system. While the lower

error in the ZC model is no doubt in part attributable to

the longer time series available, we note that the ob-

servations, with the shortest time series, are nonetheless

more predictable than the GFDL model but less than

CCSM4 by this measure.

The shadow manifold obtained for the observations

from the simplex projection procedure is, like that of

the ZC model, three-dimensional. A sparsely populated

region is seen between a dense inner region and a few

trajectories that form a wide outer orbit, suggesting the

presence of a pair of orbits. Transitions between the

orbits are confined to one side of the manifold. This

suggests that, like the ZC model, the real world may

possess some predictability associated with regime-like

behavior. The short observational record means that

confidence in the accuracy of this shadow manifold is

low, and the shape of the true attractor for this dataset

must remain uncertain.

The GFDL model, unlike the other datasets exam-

ined, possesses a two-dimensional shadow manifold

and lacks well-defined orbits. This, in combination with

its relatively low predictive power from the simplex

projection procedure, suggests that interdecadal vari-

ability in this model may be driven by stochastic pro-

cesses rather than low-order chaos, consistent with

earlier studies of the same dataset (Wittenberg 2009;

Wittenberg et al. 2014).

CCSM4, like the ZC model and observations, pro-

duces a three-dimensional shadow manifold but does

not display as distinct a separation between inner and

outer orbits.

The lengths of the time series available from the last

three of these datasets are orders of magnitude smaller

than that from the ZC model. To assess the level of

confidence in the shadowmanifolds obtained from these

shorter time series, we perform the same attractor re-

construction procedure on all subsamples of lengths 160,

4000, and 1000 years (the lengths of the time series from

the observations, GFDL model, and CCSM4, respec-

tively) from the ZC model, in order to estimate the

probability of the shorter samples arriving at the same

FIG. 2. The shadowmanifolds constructed using the simplex projection method, which determines the number of

dimensions and length of the lag, for each of the datasets used. For each dataset, 160 years of the time series are

shown. The average error in prediction, normalized by dividing by the standard deviation of the target variable

being predicted, obtained for each shadow manifold is indicated in the top-right corner of each panel.
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number of dimensions (3) and lag (6 months) obtained

from the full ZC model time series. The results are re-

ported in Table 2. We find that the estimate of the di-

mension is fairly stable, as 72% of the 160-yr samples

were able to arrive at the correct value despite the

shortness of the record. The longer time series perform

better, as expected. The dimension is far more likely to

be correctly estimated than the lag: for the 160-yr seg-

ments, only 16% of the samples estimate the correct lag

of 6 months in combination with the correct dimension.

While there is substantial improvement in the estima-

tion of the lag with the length of the time series, with

the correct lag estimated for 44% of the 4000-yr seg-

ments, the confidence in the lags selected by the algo-

rithm for the shorter datasets is still low. We also

examine the probability of the lag being estimated cor-

rectly to within 3 months. In all three cases, there is

a preference for values close to the correct lag of

6 months, as the majority of segments predict the lag to

within 3 months of the correct value. When the shadow

manifold of the ZC model is reconstructed using three

dimensions and lags ranging from 3 to 9 months, we find

that the ‘‘double orbit’’ structure is preserved, suggest-

ing that even though the confidence in the lags selected

by the shorter datasets is low, the resulting shadow

manifolds retain structural similarities to the correct

shadow manifolds provided that the dimension was de-

termined correctly.

The simplex projection method requires the number

of nearest neighbors used to be specified. This number

is sensitive to the length of the record used and needs to

be chosen so as to not include too much or too little

information. We vary this number in order to test the

stability of the dimension and lag obtained for the

shorter datasets. The reported dimension and lag for

each dataset were stable within a range of values: 9–15

neighbors for the observations, 21–40 neighbors for

CCSM4, and 90–140 neighbors for the GFDL model.

Thus the estimates of dimension and lag for the seg-

ments available from each system are robust, but this

does not prove that they would be unchanged if much

longer samples were available.

In the following section, we further examine the bi-

modality seen in the ZC model’s shadow manifold and

compare the shorter datasets’ tendencies to display this

behavior.

b. Comparison of the distributions of interdecadal
standard deviations

The radius of an orbit in the constructed shadow

manifolds corresponds approximately to the standard

deviation of the time series over the duration of the

orbit. Thus, a well-separated inner and outer orbit

should yield a bimodal distribution of standard devia-

tion values (computed over the relevant time scale).

We verify this in Fig. 3, which shows the distributions of

15-yr standard deviations evaluated for all continuous

15-yr segments, including overlapping segments, in each

of the datasets. The ZC model shows a clearly bimodal

distribution, indicating two distinct regimes. Bimodality

can also be seen to a lesser degree (and with less confi-

dence) in the corresponding distributions for the ob-

servations and CCSM4, while the GFDLmodel displays

the least bimodal tendency.

The differing lengths of the time series from each

dataset complicates the comparison, as these lengths of

time may not be sufficient to characterize the full dis-

tribution of interdecadal behaviors of each system. We

make use of the longest time series, the 100 000 years

from the ZC model, to estimate the length of time re-

quired to reliably capture this distribution.

Assuming that the true distribution of 15-yr standard

deviations for this model is captured by the 100 000-yr

time series, we compute the corresponding distribution

for each continuous segment of a given length from the

same model and calculate its Kolmogorov distance (the

statistic used in the Kolmogorov–Smirnov test) to this

true distribution. This is a measure of the similarity be-

tween two distributions, defined as the maximum dif-

ference between their empirical cumulative probability

density functions. It can take values from 0 to 1, with 0

indicating identical distributions and increasing values

indicating increasing differences. Thus, for each seg-

ment length, we arrive at a range of possible Kolmo-

gorov distances between the distributions derived from

these shorter segments and the true distribution. The

Kolmogorov distances of the segments should converge

to a small value at some time scale that captures the

characteristics of the full distribution of interdecadal

variability.

TABLE 2. The probabilities of segments of different lengths

making correct estimates of the properties of the full shadow

manifold, as estimated using short segments from the ZC model.

The correct dimension and lag in this case are 3 and 6 months,

respectively. From left to right, the columns show the percentage of

segments from the ZC model for which correct estimates were

made of the number of dimensions, the lag, the number of di-

mensions and the lag in combination, the number of dimensions

along with a lag within the range from 3 to 9 months.

Segment

length (years)

Probability of correct estimate (%)

n t (months) (n, t)

(n, t 6 3

months)

160 72 18 16 55

1000 85 26 23 68

4000 92 44 44 88
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Figure 4a shows the resulting distributions of

Kolmogorov distances in the ZC model for a range of

time scales from 100 to 90 000 years. The median

Kolmogorov distance to the full distribution decreases

rapidly as the length of the segments increases. The

envelope of possible Kolmogorov distances narrows

significantly between 15 000 and 20 000 years, with the

standard deviation falling below 0.01 at 20 000 years.

This suggests that at least 20 000 years of data are

needed to fully capture the features of the distribution.

At the length of the longest other dataset (i.e., 4000 years),

the spread of 95% of the distribution of Kolmogorov

distances (indicated by the gray shading in Fig. 4) falls

below 0.1 but continues to decrease to a value of 0.04 at

20 000 years, indicating that the shape of the distribu-

tion of 15-yr standard deviations has not yet stabilized

at 4000 years. It is clear from Fig. 4a that the distribu-

tion of Kolmogorov distances has a large spread at both

1000 and 160 years, implying that the samples from

CCSM4 and the observations are unlikely to be rep-

resentative of the true distributions of 15-yr standard

deviations in these systems.

We indicate the Kolmogorov distance between the

full distribution of 15-yr standard deviations for each

dataset (i.e., each CMIP model and observations) and

that of the ZC model in Fig. 4a. The observations are

found to be at a Kolmogorov distance of 0.52 from the

full distribution of the ZCmodel (indicated by the black

triangle). This lies within the range of the possible dis-

tances between 160-yr segments from the ZCmodel and

its own full distribution. The distribution from the ob-

servations is further from the full distribution than for

97.5% of the 160-yr samples from the ZC model, with

2296 segments at a distance greater than this value.

The distance between the 1000-yr segment of the

CCSM4 (black circle) and the full distribution is slightly

below the maximum possible distance between seg-

ments from the ZC model and its own full distribution,

with 39 segments at a greater distance, indicating mar-

ginal similarity between the datasets. The 4000-yr GFDL

model segment (black square) is markedly different

from the ZC model and lies far outside the distribution.

We also perform this calculation for 1000-yr pre-

industrial runs of nine other models from the CMIP5

archive (colored circles). The segment from CCSM4 is

closer to the full ZC model distribution than the seg-

ments from the other CMIP5 models, all of which lie

outside the distribution.

When the same calculation is performed using the

4000-yr time series of the GFDL model as the reference

FIG. 3. Histograms of the standard deviations of all possible continuous 15-yr segments of the filtered Niño-3 index
for each of the datasets used in this study.
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distribution (Fig. 4b), we find the Kolmogorov distance

from the observations to be far outside the distribution

of distances for 160-yr segments from the GFDLmodel,

indicating that the interdecadal behavior in the observed

period is not captured by the 4000 years from the GFDL

model used in this study. This is consistent with an ear-

lier analysis of this dataset (Atwood et al. 2017). Most of

the CMIP5 models cluster far from the GFDL model,

showing that this model is distinctly different from

all other CMIP5 models with available 1000-yr-long

simulations.

Using the 1000-yr run of CCSM4 as the reference

distribution (Fig. 4c), we find that the observations

are closer to this model than the GFDL model but still

lie outside the distribution. The other CMIP5 models

are also clearly different from this model. This indicates

that the representation of the TPDV differs widely be-

tween the available long runs of GCMs. This could be

either a result of the shortness of these datasets or be-

cause the mechanisms that generate the TPDV vary

across the GCMs.

Of the three models examined in our study, the ob-

servations are closest to the ZC model by this metric.

This analysis indicates that the interdecadal variability

of the real-world tropical Pacific system could lie within

the range of behaviors captured by the ZC model, pos-

sessing distinct regimes, and that it certainly lies outside

the range of behaviors found in the 4000-yr run of the

GFDL model, which does not possess such regimes and

has been previously identified as noise driven. Based

on these results, we further investigate the predictability

of the ZC model within the framework of its shadow

manifold, encouraged by the possibility of its relevance

to the real-world system.

c. Locating regions of predictability on
the shadow manifold

A valuable property of the attractor of a chaotic sys-

tem is that it can be used to classify states of the system

based on their predictability: regions of the attractor

where points lying close together (and therefore pos-

sessing similar physical characteristics) separate into

FIG. 4. (a)–(c) The range of Kolmogorov distances between the distributions in Figs. 3a, 3b, and 3d, respectively,

and similarly derived distributions from shorter segments of the same dataset are shown. The black line indicates

the median of the Kolmogorov distances, the dark shading fills between the 2.5th and 97.5th percentiles, and the

light shading extends to the extreme values. The corresponding distances calculated from the full time series of

observations, from 1000-yr simulations from nine CMIP5 models (including CCSM4), and the GFDL model are

also shown.
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widely differing trajectories can be considered highly

unpredictable or sensitive, as a small perturbation (which

would amount to a small shift in position on the attractor)

can lead to a drastically different future. On the other

hand, regions where points lying close together follow

similar trajectories can be considered predictable, as

similar states lead to similar outcomes and small per-

turbations do not alter this future in a significant way.

By preserving the topology of the attractor, the shadow

manifold preserves this property.

In this section, we continue to use the 15-yr standard

deviation of the filtered Niño-3 index as the target for

prediction. Based on the bimodality of the ZC model’s

distribution in Fig. 3, we reduce the problem of classi-

fying predictions to a simple binary: ‘‘positive’’ or

‘‘negative.’’ For the ZC model, this means predicting

whether the 15-yr standard deviation of the 15 years

following a given point is greater than (high variance,

referred to as positive) or less than (low variance, re-

ferred to as negative) a threshold of 1.18C, the midpoint

between the two peaks of the distribution. To classify

regions of the shadow manifold on the basis of pre-

dictability, we divide the shadowmanifold into grid cells

of volume (0.18C)3 and consider only cells containing

50 or more points from the time series.

The prediction (positive or negative) for each grid cell

is said to be that made by the majority of trajectories

passing through the grid cell. We measure the pre-

dictability of each cell as the percentage of predictions

from the cell that agree with the majority prediction,

yielding a metric taking values from 50% to 100%.

In Fig. 5, we highlight the regions of high predict-

ability on the shadow manifolds of Fig. 2 based on this

metric. For the ZC model, we highlight the grid cells

with 85% or more agreement and indicate positive

predictions in yellow and negative predictions in blue.

The high-predictability cells form distinct clusters on the

shadow manifold, with the positive and negative pre-

dictions being well separated. This has the following

implications:

1) 25.4% of grid cells, enclosing 37% of the points on the

time series, possess a predictability of 85% or higher.

Both positive and negative states can be predicted

with high confidence from these points.

2) The clustering of these cells means that the high

predictability is not a result of pure chance: since

physically similar states lie close together on the

shadow manifold, a cluster of grid cells corresponds

to a small range of physically similar states. These are

FIG. 5. The shadow manifold of each of the systems studied, with regions of high predictability indicated by

colored grid cells. Blue (yellow) grid cells indicate high-confidence predictions of a low-variance (high variance)

state 15 years into the future.
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the physical states of the system that are highly

predictable on interdecadal time scales.

3) The separation of the positive and negative clusters

shows that the states making each type of prediction

are physically distinct and relatively stable: a small

perturbation is unlikely to convert a point from

making a high-confidence negative to positive pre-

diction (or vice versa).

The frequency with which the model passes through

the predictable grid cells is also of interest, as it indicates

how often useful predictions can be made. We find that

the frequency is highly irregular but that the model

does not spend long durations of time without passing

through these clusters, as the mean length of the in-

tervals spent outside of the highly predictable clusters is

16months, with 95%of such intervals being shorter than

6 years.

We conduct a similar analysis for the other shadow

manifolds, using a lower threshold of predictability

(70%) and an appropriate minimum number of trajec-

tories per grid cell (5 for observations, 10 for GCMs) to

identify regions of relatively high predictability in these

systems.We use thresholds of 0.828, 1.168, and 1.318C for

the observations, CCSM4, and the GFDL model, re-

spectively. For the first two of these datasets, these

thresholds are the midpoint between the two highest

peaks of the distributions in Fig. 3, as for the ZC model.

For the GFDL model, we use the median value from

the distribution since bimodality is not apparent in this

case. For the sparsely populated shadow manifold from

the observations, we also use a larger cell volume of

(0.28C)3. The observations show a clustering of the high-

confidence negative predictions, with the grid cells

making high-confidence positive predictions in a sepa-

rate part of the space. In the shadow manifold of the

CCSM4, there is a cluster of high-confidence positive

predictions, but high-confidence negative predictions

are rare and do not cluster, suggesting a stark asymmetry

between the predictability of positive and negative

states in this model. The uncertainty in the lag of these

two shadow manifolds means that there is low confi-

dence in the location of these clusters.

The shadow manifold of the GFDL model possesses

many cells passing the predictability threshold for

both types of predictions. The cells making positive and

negative predictions are well mixed and situated close

together, indicating a highly unpredictable system: small

perturbations can shift the system from a state that leads

to a high-variance future to one that leads to a low-

variance future. Such a system can be expected to

respond to noise or external forcing with changes in

interdecadal behavior, whereas predictable states in

systems like the ZCmodel and perhaps the observations

would remain predictable even if perturbed.

We examine the predictability of the ZC model fur-

ther in Fig. 6. Classifying the grid cells by predictability

(Fig. 6a) shows that while predictability varies widely

over the full shadowmanifold, more than half of the cells

exhibit at least 75% predictability.

The transitions between orbits in the ZC model’s

shadowmanifold appear to be confined to a region in the

lower left of Fig. 5a. To explore the possibility of pre-

dicting transitions between states, we locate the points

of the Niño-3 time series when these transitions occur in

the three-dimensional space of the shadowmanifold and

determine the predictability of each transition based on

the grid cell in which it is situated.

To select the points in time that represent transitions,

we compute the standard deviation of all 15-yr segments

of the filtered Niño-3 time series beginning in January

(therefore, the 100000-yr time series yields 99986 stan-

dard deviation values). The standard deviations are then

classified into high or low variance based on the cutoff

of 1.18C. Then we select the points in time where a high-

variance (low variance) 15-yr segment starting in a given

year is followed by a low-variance (high variance) 15-yr

segment starting in the subsequent year. Note that con-

secutive segments overlap, with start points separated by

one year (i.e., each January).

We assess the predictability of each point within a 2-yr

window centered on the selected point based on the

grid cell of the shadow manifold in which it is located

and choose the point that possesses the maximum pre-

dictability. This allows us to select the points in time

that represent the maximum predictive power within

the time frame during which each transition takes place

and eliminate the arbitrary selection of the month of

January.

Figure 6b shows the distribution of the transitions

based on their predictability assessed in this manner.

Comparing this to the distribution in Fig. 6a indicates

that transitions are more predictable than the average

state of the system, with 80.2% exhibiting a predict-

ability of 80% or higher; 66.4% of the transitions have

a predictability of 85% or higher and therefore lie

within the predictable regions highlighted in Fig. 5a.

Examining the negative and positive transitions sepa-

rately (Figs. 6c,d) reveals that most transitions of both

types have high predictability, with transitions into

high-variance states slightly more likely to be highly

predictable than transitions into low-variance states.

This is consistent with earlier studies of interdecadal

predictability in this model that found positive states to

be more predictable than negative states (Karspeck

et al. 2004; Ramesh et al. 2017).
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d. Toward characterizing predictable states of the
attractor in terms of physical variables

Each location on the attractor corresponds to a par-

ticular physical state of the model system. As the

model’s trajectory passes through these locations, each

point on the trajectory corresponds to a point in time of

the model’s evolution, during which it occupies the

particular physical state corresponding to these loca-

tions, in terms of variables such as sea surface temper-

atures, wind velocities, and thermocline depth. The

same should be true of the shadow manifold if the at-

tractor reconstruction has been performed correctly, as

it preserves the topology of the attractor. In this section,

we confirm this to be the case by examining the prop-

erties of one small region of the shadow manifold.

Figure 5a shows that the region where the model

predicts a negative state with high confidence forms a

single small cluster of points lying close together (in-

dicated in blue). If the reconstruction procedure has

correctly preserved the structure of the system’s true

attractor, the states within this cluster should showmore

similarity to each other in terms of the important phys-

ical variables of the system than to regions outside of

the cluster. To test whether this is in fact the case, we

locate all the points in time that lie within this high-

predictability cluster and extract the model’s physical

states at these times. We then compute the standard

deviation of a few physical variables over these points

in time, which we expect should be significantly smaller

for this subset of points than for the full time series.

We report the following in Table 3:

1) The standard deviation for some physical variables

for the model states that lie within the volume of the

cluster, averaged over all spatial points. In all cases,

FIG. 6. (a) Cumulative histogram of grid cells on the shadow manifold of the ZC model classified by their pre-

dictability and (b) cumulative histogram of transitions between regimes classified based on the predictability of the

grid cells in which they are located on the ZCmodel’s shadowmanifold. (c),(d) As in (b), but for transitions to low-

and high-variance states, respectively. The values in all panels are cumulatively summed from right to left, such that

each bar indicates the number of (a) grid cells or (b)–(d) transitions that have agreement greater than or equal to

the percentage on the x axis. The trajectories passing through each grid cell are traced for the 15-yr period after they

exit the grid cell, and the sign of the prediction associated with the grid cell is that of the majority of these tra-

jectories. The predictability depicted in this figure is the percentage of trajectories passing through the grid cell that

are in agreement with the majority prediction.
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this value is found to be considerably smaller than

the full range of variability expected for these

variables.

2) The standard deviation for each variable, averaged

over all spatial points, for all model states from the

full time series.

3) The ratio between the standard deviations reported

in columns 1 and 2: the smaller this ratio, the more

tightly the spatial field of the variable is constrained

by the cluster in phase space.

4) The minimum value of the standard deviation ratio

in the spatial domain of the model: for each variable,

the ratio of the standard deviations is computed for

each spatial point, and the minimum value over the

spatial domain is reported. Since the three dimen-

sions of the shadow manifold correspond to three

unknown physical variables whose spatial extent is

unknown, there may be regions in space that are

better constrained by the shadow manifold than

others. This ratio is found to be approximately 0.3

for all the variables examined, showing that there is

some spatial region where each of these variables is

highly constrained.

Therefore, the points lying within the cluster and close

together in phase space represent some subset of phys-

ically similar model states, as expected if the attractor

topology has been preserved. In Fig. 7, we show statistics

related to the spatial fields of the sea surface tempera-

ture anomalies (SSTAs), thermocline depth anomalies,

and wind velocities extracted at the points in time lying

within the region of the shadow manifold that predict a

negative state with high confidence (shown in blue in

Fig. 5a).

The left column of Fig. 7 displays the spatial fields of

the standard deviation ratios computed for Table 3, that

is, the standard deviation of the variable of interest at

each spatial point over the states lying within the cluster

divided by the standard deviation of the same variable at

each spatial point over the entire time series. Note that

these are not the 15-yr standard deviations but the

standard deviations calculated over the selected subset

of points in time. We use this value to assess the relative

importance of each variable at each location in de-

termining the predictable state represented by the

cluster on the shadow manifold. We rely on this ratio

rather than the standard deviation within the cluster

alone because a variable with a low standard deviation

in a region of generally low variability is less informative

than a variable with a low standard deviation in a region

of large variability.

To confirm that the mean values of these variables

within the set of states lying within the cluster are dis-

tinct from the mean of the values outside the cluster, we

performWelch’s (unequal variance) t test at each spatial

point, comparing the distribution of values within the set

of states encompassed by the region predicting a nega-

tive state with high confidence to the distribution of

values lying outside this cluster. We find that the hy-

pothesis that these two sets of values come from distri-

butions with equal means can be rejected at the 5%

significance level at nearly all of the spatial points in the

domain for the three variables examined (i.e., anomalies

of SST, thermocline depth, and wind stress divergence).

The regions where this is not the case are stippled in

Fig. 7. These are found to be only two to four grid cells

for each of the variables, with spatial averages of the

p values over the domain being 0.0029, 0.0042, and 0.0026

for SST, thermocline depth, and wind stress divergence

anomalies, respectively.

The right column of Fig. 7 shows the average spatial

fields of SSTAs, thermocline depth anomalies, and wind

velocity anomalies corresponding to the states within

the cluster. These are averaged over the subset of points

in time lying within the cluster. The black contour line

over these maps encloses the regions from the corre-

sponding maps to the left possessing standard deviation

ratios smaller than 0.5 and therefore the most informa-

tive in defining the state of the system that reliably

produces a negative transition. In the case of all three

variables shown, the eastern tropical Pacific is decisive in

TABLE 3. Spatial averages of the standard deviations of the sea surface temperature anomaly, upper-ocean layer thickness, surface zonal

wind speed, and divergence of surface wind speed compared between (column 2) the full range of model behaviors and (column 1) the

range of behaviors constrained by the cluster shown in Fig. 5a. (column 3) The ratio between the values in columns 1 and 2. (column 4) The

minimum value over the spatial domain when the ratio in column 3 is calculated individually for each spatial point.

Variable (anomaly

from annual cycle)

Standard deviation

within cluster

Standard deviation over

full time series

Standard deviation

ratio

Minimum standard

deviation ratio

SST 0.228C 0.478C 0.47 0.32

Upper-ocean layer thickness 7.17m 13.14m 0.54 0.29

Surface zonal wind speed 0.22m s21 0.58m s21 0.38 0.32

Surface wind speed divergence 2.37 3 1027 s21 4.54 3 1027 s21 0.52 0.28
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determining this state. The predictable state is associ-

ated with small cool SSTAs in the eastern equatorial

Pacific, a thermocline in the far eastern tropical Pacific

that is slightly shallower than normal, and convergent

wind velocity anomalies in the central equatorial Pacific

region accompanied by off-equatorial westerly anoma-

lies in the eastern part of the basin. The small values of

the anomalies are not a consequence of averaging over

widely differing values, as the standard deviations seen

in the left column (as well as in Table 3) for these regions

FIG. 7. (a),(c),(e) Ratio between the standard deviation at each spatial point for all temporal points within the

high-predictability cluster and the same for all points over the full shadowmanifold for (a) sea surface temperature,

(c) thermocline depth, and (e) zonal wind velocity. (b),(d),(f) Mean spatial fields of the corresponding physical

variables. The black contour encloses regions with a standard deviation ratio less than 0.5. The arrows in (f) indicate

themeanwind velocity anomalies in the high-predictability region. Stippling indicates regions where the hypothesis

that the values lying within the predictable cluster have the same mean as the values outside the cluster cannot be

rejected at the 5% level.
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are small and these variables are close to climatological

values in the regions indicated. While the processes in

these regions have not been shown to control the evo-

lution into a negative TPDV phase, they are at the very

least reliable indicators of the change in phase that is

about to occur.

The analysis in this section demonstrates that it is

possible to isolate a particular state of interest based on

its predictability characteristics using this attractor re-

construction method. Developing an understanding of

the physics driving a negative transition will require

further analysis of the model variables associated with

this state and their evolution through time, which is

beyond the scope of this study.

5. Discussion

The shadowmanifolds of the four systems in this study

were reconstructed based on the predictive power of the

Niño-3 time series from each system. These shadow

manifolds preserve crucial properties of the systems’

true attractors, allowing us both to assess the pre-

dictability of the TPDV in these models and to classify

the various states of each model by their predictability.

A wide range of behaviors is found in the models

examined. When viewed as part of a chaotic system, the

TPDV in the ZC model emerges as a pair of separate

regimes of behavior corresponding to the two orbits

seen in the shadowmanifold. The attractor of this model

is three-dimensional, implying that there exists some

combination of three time series from the model that

contains enough information to specify the state of the

entire system. For over a third of the time, the model

inhabits states where the phase of the TPDV for the

following 15 years is predictable with 85% agreement.

These predictable states form distinct clusters in the

state space that correspond to particular physical states

of the model. The predictability of states varies consid-

erably over the shadowmanifold, meaning that there are

some states of the model from which there is little

chance of making a correct prediction of the inter-

decadal variability but also that there exist states from

which confident predictions of interdecadal variability

can be made.

In contrast, the GFDL model’s representation of the

TPDV is one of a nearly unpredictable, noise-driven

process, as expected from earlier work (Wittenberg et al.

2014). Thismodel’s shadowmanifold is two-dimensional

with no clear clustering of the predictable states, im-

plying that these predictable states are likely the product

of chance and do not correspond to specific physical

states of the system that are inherently more predictable

than others. This model’s distribution of 15-yr standard

deviations is also distinctly different from that of the ZC

model and lacks clear bimodality, which is further sup-

ported by its large Kolmogorov distance from the ZC

model. These differences suggest that the TPDV in this

model is likely generated by a fundamentally different

set of processes than that in the ZC model.

The GFDL model’s higher complexity may be re-

sponsible for some of these differences. However, the

predictability of TPDV reported in GCMs other than

the GFDL model (Meehl et al. 2016b; Ding et al. 2013;

Thoma et al. 2015) shows that having higher complexity

than the ZC model does not always result in highly un-

predictable systems. The shorter time series from the

CCSM4 and real world are quite different from the

GFDL model and have more in common with the ZC

model both in terms of their dimensionality (section 4a)

and their distributions of 15-yr standard deviations

(section 4b). This suggests that they may have similar

predictability characteristics to the ZC model. The

number of dimensions in these two cases is determined

with some confidence (85% for CCSM4 and 72% for the

observations). However, the low confidence in the lag

implies that the precise structure of the shadow mani-

folds may not be correctly determined, so the clustering

of predictable states on these shadow manifolds is less

certain.

A key difference between GCMs and the intermediate-

complexity ZC model is that the latter computes

anomalies from a specified seasonal cycle, whereas

GCMs must simulate the seasonal cycle. Representing

the seasonal cycle accurately may be crucial in this

context, as the interactions between the annual cycle

and ENSO are likely to play an important role in gen-

erating the system’s chaotic behavior (Tziperman et al.

1994; Jin et al. 1994; Stuecker et al. 2015). Accurate

simulation of the seasonal cycle in the tropical Pacific

remains a challenge for many GCMs (Flato et al. 2013),

meaning that if the real-world system is indeed chaotic,

they may not be able to correctly capture its predict-

ability characteristics without first producing a realistic

seasonal cycle.

Another important difference is that while the GCMs

and observations include the effects of variability in

other parts of the world on the tropical Pacific region,

the ZCmodel does not. The influence of regions outside

the tropical Pacific may alter the interdecadal pre-

dictability of the system, so assessing the magnitude of

the influence of external factors on this region across

different GCMs and in the observations would be

valuable.

Our results indicate that the interdecadal character-

istics of the real-world system bear most resemblance to

the more predictable ZC model in terms of both the

816 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76



distribution of 15-yr standard deviations and the di-

mensionality of the attractors obtained. The shortness of

the observational record means that the confidence in

this resemblance cannot be high. However, the sub-

stantial differences between the noise-driven GFDL

model and the observations lend support to the hy-

pothesis that TPDV in the real worldmay be the product

of a chaotic oscillator.

If this is the case, the real-world system, like the ZC

model’s representation of TPDV, passes through states

from which the likelihood of making successful inter-

decadal predictions varies substantially. In the ZC

model, the periods when transitions between inter-

decadal states occur are among the most likely to yield

successful predictions, whereas the persistence of either

of the TPDV states is more difficult to reliably predict.

Applying the results of this study would require

characterizing and identifying the states of the system in

nature from which successful predictions can be made.

The length of the time series required to confidently

characterize interdecadal variability is a significant ob-

stacle. The results of section 4b suggest on the basis of

the Kolmogorov–Smirnov test that 20 000 years of data

are needed to fully characterize the distribution of

interdecadal variability and that a sample of at least

4000 years is needed to yield a result with fairly high

confidence. Even the latter, lesser standard requires a

far longer time series than the length of the observations

available and of most GCM simulations. Paleoclimate

proxies are able to provide uswith some knowledge of the

variability over time spans of comparable length, but at

present, their low temporal resolution and limited

precision render them unsuitable for shadow manifold

reconstruction.

A more promising way forward would be to charac-

terize the physical variables associated with the pre-

dictable states in the ZC model and compare their

evolution to that in the observations at the times of

known transitions between TPDV shifts. The results of

section 4d show that the points on the shadow manifold

lying within the predictable region examined corre-

spond to a specific physical state. The transition to a

negative TPDV state is associated with a shallow ther-

mocline and cool SSTAs in the eastern tropical Pacific

and convergent wind anomalies in the central equatorial

Pacific region. An analysis of this physical state has

the potential to shed light on the physical processes that

give rise to a negative TPDV state, as the predictable

cluster groups together the states that evolve similarly to

produce this outcome. Our further studies will build

upon this result to trace the temporal evolution of key

variables as the system passes through the predictable

state and to understand the processes associated with

predictable states and the dynamics underlying tran-

sitions between TPDV phases. A comparison of the

physical processes occurring during known shifts of the

TPDV in observations and the ZC model would shed

light on the extent of the similarity between these sys-

tems and, therefore, the applicability of our results to

real-world prediction.

This study demonstrates the usefulness of data-driven

attractor reconstruction methods in studying the tropi-

cal Pacific system. The simplex projection method used

here not only yields insights into its chaotic nature but

also reveals a more complete and nuanced picture of

predictability in the ZC model than a conventional

perturbed-ensemble approach to the same problem

(Ramesh et al. 2017). The reconstructed shadow mani-

fold shows that the predictive skill of the model varies

widely depending upon the state it occupies at the time

the prediction is made. Unless the criteria for selecting

the initial state of the model in perturbed-ensemble

experiments are specifically designed to choose themost

predictable states, such experiments can be expected to

produce larger errors in their predictions than other-

wise. Identifying predictable states would provide the

opportunity to make a relatively confident prediction of

the state of the TPDVby initializing it at the appropriate

time. If we correctly identify the location of the system

on the shadow manifold (a trivial task in the case of the

ZC model), the likelihood of making a correct pre-

diction at any given time is known. This information can

be used to decide which predictions should be given the

most weight when making a forecast based on the lo-

cation of the system in its state space at the time the

prediction is made. This is analogous to the seasonal

variation of the predictability of ENSO: predictions

made at certain times of year, when the system is known

to be in a state that is relatively sensitive to perturba-

tions, are known to be less likely to be correct (Chen and

Cane 2008). Similarly, on an interdecadal time scale, the

shadow manifold can be used to make the distinction

between states that are the most and least likely to yield

reliable predictions. Unlike the seasonal cycle, the tra-

versal of predictable states for the interdecadal time

scale does not have a regular frequency; however, our

results indicate that themodel is highly unlikely to spend

more than 6 years without passing through a state that

has a predictability of 85% or higher. The model’s tra-

versal of predictable states is more frequent than the

time scale of the predictions that can be made (15 years)

and the median length of interdecadal states (31 years).

Therefore, a prediction scheme for this model using

our results would be to monitor the Niño-3 index as

the model evolves, wait until it arrives in a predictable

region of the shadow manifold, and issue a forecast of
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the standard deviation of the following 15 years at that

point in time.

To make use of the results from our study in real-

world prediction, recognizing specific physical states, if

they exist, from which the natural system is predictable

would be a necessary additional step. As there is sig-

nificant uncertainty associated with the reconstructed

shadow manifold of the observations, it is unlikely to

be possible to use the Niño-3 index alone to identify

whether the system is in a predictable state. Instead, this

problem will need to be approached by comparing the

physical processes associated with predictable states in

the ZC model to the evolution of the system in the real

world. If the processes underlying the TPDV in the ZC

model and the real world are sufficiently similar, pre-

dicting this phenomenon in the real world may well be

an attainable goal.
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