
ADAPTIVE COMMUNICATION STRATEGIES TO ACHIEVE THE BEST
ERROR-RUNTIME TRADE-OFF IN LOCAL-UPDATE SGD

Jianyu Wang 1 Gauri Joshi 1

ABSTRACT
Large-scale machine learning training, in particular, distributed stochastic gradient descent, needs to be robust
to inherent system variability such as node straggling and random communication delays. This work considers
a distributed training framework where each worker node is allowed to perform local model updates and the
resulting models are averaged periodically. We analyze the true speed of error convergence with respect to
wall-clock time (instead of the number of iterations), and analyze how it is affected by the frequency of averaging.
The main contribution is the design of ADACOMM, an adaptive communication strategy that starts with infrequent
averaging to save communication delay and improve convergence speed, and then increases the communication
frequency in order to achieve a low error floor. Rigorous experiments on training deep neural networks show that
ADACOMM can take 3× less time than fully synchronous SGD and still reach the same final training loss.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the backbone of state-
of-the-art supervised learning, which is revolutionizing in-
ference and decision-making in many diverse applications.
Classical SGD was designed to be run on a single computing
node, and its error-convergence with respect to the number
of iterations has been extensively analyzed and improved
via accelerated SGD methods. Due to the massive training
data-sets and neural network architectures used today, it
has became imperative to design distributed SGD imple-
mentations, where gradient computation and aggregation is
parallelized across multiple worker nodes. Although paral-
lelism boosts the amount of data processed per iteration, it
exposes SGD to unpredictable node slowdown and commu-
nication delays stemming from variability in the computing
infrastructure. Thus, there is a critical need to make dis-
tributed SGD fast, yet robust to system variability.

Need to Optimize Convergence in terms of Error versus
Wall-clock Time. The convergence speed of distributed
SGD is a product of two factors: 1) the error in the trained
model versus the number of iterations, and 2) the number
of iterations completed per second. Traditional single-node
SGD analysis focuses on optimizing the first factor, be-
cause the second factor is generally a constant when SGD

1Department of Electrical & Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA. Correspondence to:
Jianyu Wang <jianyuw1@andrew.cmu.edu>, Gauri Joshi <gau-
rij@andrew.cmu.edu>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

is run on a single dedicated server. In distributed SGD,
which is often run on shared cloud infrastructure, the second
factor depends on several aspects such as the number of
worker nodes, their local computation and communication
delays, and the protocol (synchronous, asynchronous or pe-
riodic) used to aggregate their gradients. Hence, in order
to achieve the fastest convergence speed we need: 1) opti-
mization techniques (eg. variable learning rate) to maximize
the error-convergence rate with respect to iterations, and 2)
scheduling techniques (eg. straggler mitigation, infrequent
communication) to maximize the number of iterations com-
pleted per second. These directions are inter-dependent and
need to be explored together rather than in isolation. While
many works have advanced the first direction, the second
is less explored from a theoretical point of view, and the
juxtaposition of both is an unexplored problem.

Local-Update SGD to Reduce Communication Delays.
A popular distributed SGD implementation is the parame-
ter server framework (Dean et al., 2012; Cui et al., 2014;
Li et al., 2014; Gupta et al., 2016; Mitliagkas et al., 2016)
where in each iteration, worker nodes compute gradients on
one mini-batch of data and a central parameter server ag-
gregates these gradients (synchronously or asynchronously)
and updates the parameter vector x. The constant commu-
nication between the parameter server and worker nodes
in each iteration can be expensive and slow in bandwidth-
limited computed environments. Recently proposed dis-
tributed SGD frameworks such as Elastic-averaging (Zhang
et al., 2015; Chaudhari et al., 2017), Federated Learning
(McMahan et al., 2016; Smith et al., 2017b) and decentral-
ized SGD (Lian et al., 2017; Jiang et al., 2017) save this

ar
X

iv
:1

81
0.

08
31

3v
2

 [c
s.L

G
]

7
M

ar
 2

01
9

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Wall clock time# Iterations

Tr
ai

ni
ng

 lo
ss

Large comm. period

Small comm. period

Adaptive Comm.

Tr
ai

ni
ng

 lo
ss

Iteration à Elapsed time

Change x-axis

Figure 1. This work departs from the traditional view of consid-
ering error-convergence with respect to the number of iterations,
and instead considers the true convergence in terms of error ver-
sus wall-clock time. Adaptive strategies that start with infrequent
model-averaging and increase the communication frequency can
achieve the best error-runtime trade-off.

communication cost by allowing worker nodes to perform
local updates to the parameter x instead of just computing
gradients. The resulting locally trained models (which are
different due to variability in training data across nodes)
are periodically averaged through a central server, or via di-
rect inter-worker communication. This local-update strategy
has been shown to offer significant speedup in deep neural
network training (Lian et al., 2017; McMahan et al., 2016).

Error-Runtime Trade-offs in Local-Update SGD. While
local updates reduce the communication-delay incurred per
iteration, discrepancies between local models can result in
an inferior error-convergence. For example, consider the
case of periodic-averaging SGD (PASGD) where each of m
worker nodes makes τ local updates, and the resulting mod-
els are averaged after every τ iterations (Moritz et al., 2015;
Su & Chen, 2015; Chen & Huo, 2016; Seide & Agarwal,
2016; Zhang et al., 2016; Zhou & Cong, 2017; Lin et al.,
2018). A larger value of τ leads to slower convergence with
respect to the number of iterations as illustrated in Figure 1.
However, if we look at the true convergence with respect
to the wall-clock time, then a larger τ , that is, less frequent
averaging, saves communication delay and reduces the run-
time per iteration. While some recent theoretical works
(Zhou & Cong, 2017; Yu et al., 2018; Wang & Joshi, 2018;
Stich, 2018) study this dependence of the error-convergence
with respect to the number of iterations as τ varies, achiev-
ing a provably-optimal speed-up in the true convergence
with respect to wall-clock time is an open problem that we
aim to address in this work.

Need for Adaptive Communication Strategies. In the
error-runtime in Figure 1, we observe a trade-off between
the convergence speed and the error floor when the number
of local updates τ is varied. A larger τ gives a faster initial
drop in the training loss but results in a higher error floor.
This calls for adaptive communication strategies that start

with a larger τ and gradually decrease it as the model reaches
closer to convergence. Such an adaptive strategy will offer
a win-win in the error-runtime trade-off by achieving fast
convergence as well as low error floor. To the best of our
knowledge, this is the first work to propose an adaptive
communication frequency strategy.

Main Contributions. This paper focuses on periodic-
averaging local-update SGD (PASGD) and makes the fol-
lowing main contributions:

1. We first analyze the runtime per iteration of periodic
averaging SGD (PASGD) by modeling local comput-
ing time and communication delays as random vari-
ables, and quantify its runtime speed-up over fully
synchronous SGD. A novel insight from this analysis
is that periodic-averaging strategy not only reduces the
communication delay but also mitigates synchroniza-
tion delays in waiting for slow or straggling nodes.

2. By combining the runtime analysis error-convergence
analysis of PASGD (Wang & Joshi, 2018), we can ob-
tain the error-runtime trade-off for different values of τ .
Using this combined error-runtime trade-off, we derive
an expression of the optimal communication period,
which can serve as a useful guideline in practice.

3. Based on the observations in runtime and conver-
gence analysis, we develop an adaptive communication
scheme: ADACOMM. Experiments on training VGG-
16 and ResNet-50 deep neural networks and differ-
ent settings (with/without momentum, fixed/decaying
learning rate) show that ADACOMM can give a 3×
runtime speed-up and still reach the same low training
loss as fully synchronous SGD.

4. We present a convergence analysis for PASGD with
variable communication period τ and variable learn-
ing rate η, generalizing previous work (Wang & Joshi,
2018). This analysis shows that decaying τ provides
similar convergence benefits as decaying learning rate,
the difference being that varying τ improves the true
convergence with respect to the wall-clock time. Adap-
tive communication can also be used in conjunction
with existing learning rate schedules.

Although we focus on periodic simple-averaging of lo-
cal models, the insights on error-runtime trade-offs and
adaptive communication strategies are directly extendable
to other communication-efficient SGD algorithms includ-
ing Federated Learning (McMahan et al., 2016), Elastic-
Averaging (Zhang et al., 2015) and Decentralized averag-
ing (Jiang et al., 2017; Lian et al., 2017), as well as syn-
chronous/asynchronous distributed SGD with a central pa-
rameter server (Dean et al., 2012; Cui et al., 2014; Dutta
et al., 2018).

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

2 PROBLEM FRAMEWORK

Empirical Risk Minimization via Mini-batch SGD. Our
objective is to minimize an objective function F (x), the
empirical risk function, with respect to model parameters
denoted by x ∈ Rd. The training dataset is denoted by
S = {s1, . . . , sN}, where si represents the i-th labeled
data point. The objective function can be expressed as the
empirical risk calculated using the training data and is given
by

min
x∈Rd

[
F (x) :=

1

N

N∑
i=1

f(x; si)

]
(1)

where f(x; si) is the composite loss function at the ith

data point. In classic mini-batch stochastic gradient descent
(SGD) (Dekel et al., 2012), updates to the parameter vector
x are performed as follows. If ξk ⊂ S represents a randomly
sampled mini-batch, then the update rule is

xk+1 = xk − ηg(xk; ξk) (2)

where η denotes the learning rate and the stochastic gradient
is defined as: g(x; ξ) = 1

|ξ|
∑
si∈ξ∇f(x; si). For simplic-

ity, we will use g(xk) instead of g(xk; ξk) in the rest of
the paper. A complete review of convergence properties of
serial SGD can be found in (Bottou et al., 2018).

Periodic-Averaging SGD (PASGD). We consider a dis-
tributed SGD framework with m worker nodes where all
workers can communicate with others via a central server
or via direct inter-worker communication. In periodic-
averaging SGD, all workers start at the same initial point
x1. Each worker performs τ local mini-batch SGD updates
according to (2), and the local models are averaged by a
fusion node or by performing an all-node broadcast. The
workers then update their local models with the averaged
model, as illustrated in Figure 2. Thus, the overall update
rule at the ith worker is given by

x
(i)
k+1 =

{
1
m

∑m
j=1[x

(j)
k − ηg(x

(j)
k)], kmod τ = 0

x
(i)
k − ηg(x

(i)
k), otherwise

(3)

where x
(i)
k denote the model parameters in the i-th worker

after k iterations and τ is defined as the communication
period. Note that the iteration index k corresponds to the
local iterations, and not the number of averaging steps.

Special Case (τ = 1): Fully Synchronous SGD. When
τ = 1, that is, the local models are synchronized after
every iteration, periodic-averaging SGD is equivalent to
fully synchronous SGD which has the update rule

xk+1 = xk − η
[
1

m

m∑
i=1

g(xk; ξ
(i)
k)

]
. (4)

= 3 local steps
at each worker
⌧

x
(1)
2

x
(1)
3

x
(2)
3

x
(2)
2

x1 = x
(2)
1 = x

(1)
1

x4

x7

Figure 2. Illustration of PASGD in the model parameter space
for m = 2 workers. The discrepancy between the local models
increases with the number of local updates, τ = 3.

Worker1

Worker2

x1 x4 x7

Figure 3. Illustration of PASGD in the time space for m = 2
and τ = 3. Lengths of the colored arrows at the ith worker are
Yi,k, the local-update times, which are i.i.d. across workers and
updates. The blue block represents the communication delay for
each model-averaging step.

The analysis of fully synchronous SGD is identical to serial
SGD with m-fold large mini-batch size.

Local Computation Times and Communication Delay.
In order to analyze the effect of τ on the expected runtime
per iteration, we consider the following delay model. The
time taken by the ith worker to compute a mini-batch gra-
dient at the kth local-step is modeled a random variable
Yi,k ∼ FY , assumed to be i.i.d. across workers and mini-
batches. The communication delay is a random variable D
for each all-node broadcast, as illustrated in Figure 3. The
value of random variable D can depend on the number of
workers as follows.

D = D0 · s(m) (5)

where D0 represents the time taken for each inter-node
communication, and s(m) describes how the delay scales
with the number of workers, which depends on the im-
plementation and system characteristics. For example, in
the parameter server framework, the communication delay
can be proportional to 2 log2(m) by exploiting a reduction
tree structure (Iandola et al., 2016). We assume that s(m)
is known beforehand for the communication-efficient dis-
tributed SGD framework under consideration.

Convergence Criteria. In the error-convergence analysis,
since the objective function is non-convex, we use the ex-
pected gradient norm as a an indicator of convergence fol-
lowing (Ghadimi & Lan, 2013; Bottou et al., 2018). We say

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

the algorithm achieves an ε-suboptimal solution if:

E
[

min
k∈[1,K]

‖∇F (xk)‖2
]
≤ ε. (6)

When ε is arbitrarily small, this condition can guarantee the
algorithm converges to a stationary point.

3 JOINTLY ANALYZING RUNTIME AND
ERROR-CONVERGENCE

3.1 Runtime Analysis

We now present a comparison of the runtime per iteration
of periodic-averaging SGD with fully synchronous SGD to
illustrate how increasing τ can lead to a large runtime speed-
up. Another interesting effect of performing more local
update τ is that it mitigates the slowdown due to straggling
worker nodes.

Runtime Per Iteration of Fully Synchronous SGD. Fully
synchronous SGD is equivalent to periodic-averaging SGD
with τ = 1. Each of themworkers computes the gradient of
one mini-batch and updates the parameter vector x, which
takes time Yi,1 at the ith worker1. After all workers finish
their local updates, an all-node broadcast is performed to
synchronize and average the models. Thus, the total time to
complete each iteration is given by

Tsync = max(Y1,1, Y2,1, . . . , Ym,1) +D (7)
E [Tsync] = E[Ym:m] + E[D] (8)

where Yi,1 are i.i.d. random variables with probability dis-
tribution FY and D is the communication delay. The term
Ym:m denotes the highest order statistic of m i.i.d. random
variables (David & Nagaraja, 2003).

Runtime Per Iteration of Periodic-Averaging SGD
(PASGD). In periodic-averaging SGD, each worker per-
forms τ local updates before communicating with other
workers. Let us denote the average local computation time
at the ith worker by

Y i =
Yi,1 + Yi,2 + . . . Yi,τ

τ
(9)

Since the communication delay D is amortized over τ itera-
tions, the average computation time per iteration is

TP-Avg = max(Y 1, Y 2, . . . , Y m) +
D

τ
(10)

E[TP-Avg] = E[Y m:m] +
E[D]

τ
(11)

The value of the first term Y m:m and how it compares with
Ym:m depends on the probability distribution FY of Y .

1Instead of local updates, typical implementations of fully
synchronous SGD have a central server that performs the update.
Here we compare PASGD with fully synchronous SGD without a
central parameter server.

3.2 Runtime Benefits of Periodic Averaging Strategy

Speed-up over fully synchronous SGD. We evaluate the
speed-up of periodic-averaging SGD over fully synchronous
SGD for different Y and D to demonstrate how the rela-
tive value of computation versus communication delays
affects the speed-up. Consider the simplest case where Y
and D are constants and define α = D/Y , the communi-
cation/computation ratio. Besides systems aspects such as
network bandwidth and computing capacity, for deep neural
network training, this ratio α also depends on the size of the
neural network model and the mini-batch size. See Figure 8
for a comparison of the communication/computation delays
of common deep neural network architectures. Then Y ,
Ym:m, Y m:m are all equal to Y , and the ratio of E[Tsync]
and E[TP-Avg] is given by

E [Tsync]

E [TP-Avg]
=

Y +D

Y +D/τ
=

1 + α

1 + α/τ
(12)

Figure 4 shows the speed-up for different values of α and
τ . When D is comparable with Y (α = 0.9), periodic-
averaging SGD (PASGD) can be almost twice as fast as
fully synchronous SGD.

0 20 40 60 80 100
Communication period

1

1.2

1.4

1.6

1.8

2

Sp
ee

du
p

ov
er

 fu
lly

 sy
nc

 S
G

D

 = 0.1
 = 0.5
 = 0.9

Figure 4. The speed-up offered by using periodic-averaging SGD
increases with τ (the communication period) and with the com-
munication/computation delay ratio α = D/Y , where D is the
all-node broadcast delay and Y is the time taken for each local
update at a worker.

Straggler Mitigation due to Local Updates. Suppose that
Y is exponentially distributed with mean y and variance
y2. For fully synchronous SGD, the term E[Ym:m] in (8)
is equal to y

∑m
i=1 1/i, which is approximately equal to

y logm. Thus, the expected runtime per iteration of fully
synchronous SGD (8) increases logarithmically with the
number of workers m. Let us compare this with the scaling
of the runtime of periodic-averaging SGD (11). Here, Y
(9) is an Erlang random variable with mean y and variable
y2/τ . Since the variance is τ times smaller than that of
Y , the maximum order statistic E[Y m:m] is smaller than

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

E[Ym:m]. Figure 5 shows the probability distribution of
Tsync and TP-Avg for exponentially distributed Y . Observe
that TP-Avg has a much lighter tail. This is because the effect
of the variability in Y on TP-Avg is reduced due to the Y in
(8) being replaced by Y (which has lower variance) in (11).

0 2 4 6 8
Runtime per iteration

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Sync SGD
PASGD (= 10)2x less

Figure 5. Probability distribution of runtime per iteration, where
communication delay D = 1, mean computation time y = 1, and
number of workers m = 16. Dash lines represent the mean values.

3.3 Joint Analysis with Error-convergence

In this subsection, we combine the runtime analysis with
previous error-convergence analysis for PASGD (Wang &
Joshi, 2018). Due to space limitations, we state the neces-
sary theoretical assumptions in the Appendix; the assump-
tions are similar to previous works (Zhou & Cong, 2017;
Wang & Joshi, 2018) on the convergence of local-update
SGD algorithms.

Theorem 1 (Error-runtime Convergence of PASGD).
For PASGD, under certain assumptions (stated in the Ap-
pendix), if the learning rate satisfies ηL+η2L2τ(τ−1) ≤ 1,
Y andD are constants, and all workers are initialized at the
same point x1, then after total T wall-clock time, the mini-
mal expected squared gradient norm within T time interval
will be bounded by:

2 [F (x1)− Finf]

ηT

(
Y +

D

τ

)
+
ηLσ2

m
+ η2L2σ2(τ − 1)

(13)

where L is the Lipschitz constant of the objective function
and σ2 is the variance bound of mini-batch stochastic gra-
dients.

The proof of Theorem 1 is presented in the Appendix. From
the optimization error upper bound (13), one can easily
observe the error-runtime trade-off for different communi-
cation periods. While a larger τ reduces the runtime per
iteration and let the first term in (13) become smaller, it also
adds additional noise and increases the last term. In Figure 6,

0 1000 2000 3000 4000
Total runtime

0

0.2

0.4

0.6

0.8

1

G
ra

di
en

t n
or

m
 u

pp
er

 b
ou

nd Sync SGD
PASGD (= 10)

Figure 6. Illustration of theoretical error bound versus runtime in
Theorem 1. The runtime per iteration is generated under the same
parameters as Figure 5. Other constants in (13) are set as follows:
F (x1) = 1, Finf = 0, η = 0.08, L = 1, σ2 = 1.

we plot theoretical bounds for both fully synchronous SGD
(τ = 1) and PASGD. It is shown that although PASGD with
τ = 10 starts with a rapid drop, it will eventually converge
to a high error floor. This theoretical result is also corrobo-
rated by experiments in Section 5. Another direct outcome
of Theorem 1 is the determination of the best communica-
tion period that balances the first and last terms in (13). We
will discuss the selection of communication period later in
Section 4.1.

4 ADACOMM: PROPOSED ADAPTIVE
COMMUNICATION STRATEGY

Inspired by the clear trade-off in the learning curve in Fig-
ure 6, it would be better to have an adaptive communication
strategy that starts with infrequent communication to im-
prove convergence speed, and then increases the frequency
to achieve a low error floor. In this section, we are going to
develop the proposed adaptive communication scheme.

The basic idea to adapt the communication is to choose
the communication period that minimizes the optimization
error at each wall-clock time. One way to achieve the idea is
switching between the learning curves at their intersections.
However, without prior knowledge of various curves, it
would be difficult to determine the switch points.

Instead, we divide the whole training procedure into uniform
wall-clock time intervals with the same length T0. At the
beginning of each time interval, we select the best value of τ
that has the fastest decay rate in the next T0 wall-clock time.
If the interval length T0 is small enough and the best choice
of communication period for each interval can be precisely
estimated, then this adaptive scheme should achieve a win-
win in the error-runtime trade-off as illustrated in Figure 7.

After setting the interval length, the next question is how

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Wall clock time

Tr
ai

ni
ng

 lo
ss Switch point

Large comm. period
Small comm. period

(a) Switch between curves.

Tr
ai

ni
ng

 lo
ss

⌧⇤0 ⌧⇤1 ⌧⇤2

T00 2T0 lT0

⌧⇤l

· · ·

· · · · · ·

(b) Choose the best τ for each
time interval.

Figure 7. Illustration of communication period adaptation strate-
gies. Dash line denotes the learning curve using adaptive commu-
nication.

to estimate the best communication period for each time
interval. In Section 4.1 we use the error-runtime analysis in
Section 3.3 to find the best τ at each time.

4.1 Determining the Best Communication Period for
Each Time Interval

From Theorem 1, it can be observed that there is an optimal
value τ∗ that minimizes the optimization error bound at
given wall-clock time. In particular, consider the simplest
setting where Y and D are constants. Then, by minimizing
the upper bound (13) over τ , we obtain the following.

Theorem 2. For PASGD, under the same assumptions as
Theorem 1, the optimization error upper bound in (13) at
time T is minimized when the communication period is

τ∗ =

√
2(F (x1)− Finf)D

η3L2σ2T
. (14)

The proof is straightforward by setting the derivative of (13)
to zero. We present the details in the Appendix. Suppose all
workers starts from the same initial point x1 = xt=0 where
subscript t denotes the wall-clock time. Directly applying
Theorem 2 to the first time interval, then the best choice of
communication period is:

τ0 =

√
2(F (xt=0)− Finf)D

η3L2σ2T0
. (15)

Similarly, for the l-th time interval, workers can be viewed
as restarting training at a new initial point xt=lT0

. Applying
Theorem 2 again, we have

τl =

√
2(F (xt=lT0)− Finf)D

η3L2σ2T0
. (16)

Comparing (15) and (16), it is easy to see the generated
communication period sequence decreases along with the
objective value F (xt) when the learning rate is fixed. This

result is consistent with the intuition that the trade-off
between error-convergence and communication-efficiency
varies over time. Compared to the initial phase of training,
the benefit of using a large communication period dimin-
ishes as the model reaches close to convergence. At this
later stage, a lower error floor is more preferable to speeding
up the runtime.

Remark 1 (Connection to Decaying Learning Rate). Us-
ing a fixed learning rate in SGD leads to an error floor at
convergence. To further reduce the error, practical SGD im-
plementations generally decay the learning rate or increase
the mini-batch size (Smith et al., 2017a; Goyal et al., 2017).
As we saw from the convergence analysis Theorem 1, per-
forming local updates adds additional noise in stochastic
gradients, resulting in a higher error floor convergence. De-
caying the communication period can gradually reduce the
variance of gradients and yield a similar improvement in
convergence. Thus, adaptive communication strategies are
similar in spirit to decaying learning rate or increasing mini-
batch size. The key difference is that here we are optimizing
the true error convergence with respect to wall-clock time
rather than the number iterations.

4.2 Practical Considerations

Although (15) and (16) provide useful insights about how
to adapt τ over time, it is still difficult to directly use them
in practice due to the Lipschitz constant L and the gradi-
ent variance bound σ2 being unknown. For deep neural
networks, estimating these constants can be difficult and un-
reliable due to the highly non-convex and high-dimensional
loss surface. As an alternative, we propose a simpler rule
where we approximate Finf by 0, and divide (16) by (15) to
obtain the basic communication period update rule:

Basic update rule τl =

⌈√
F (xt=lT0)

F (xt=0)
τ0

⌉
(17)

where dae is the ceil function to round a to the nearest inte-
ger ≥ a. Since the objective function values (i.e., training
loss) F (xt=lT0

) and F (xt=0) can be easily obtained in the
training, the only remaining thing now is to determine the
initial communication period τ0. We obtain a heuristic esti-
mate of τ0 by a simple grid search over different τ run for
one or two epochs each.

4.3 Refinements to the Proposed Adaptive Strategy

4.3.1 Faster Decay When Training Saturates

The communication period update rule (17) tends to give a
decreasing sequence {τl}. Nonetheless, it is possible that
the best value of τl for next time interval is larger than the
current one due to random noise in the training process.
Besides, when the training loss gets stuck on plateaus and

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

decreases very slowly, (17) will result in τl saturating at
the same value for a long time. To address this issue, we
borrow a idea used in classic SGD where the learning rate
is decayed by a factor γ when the training loss saturates
for several epochs (Goyal et al., 2017). Similarly, in the
our scheme, the communication period will be multiplied
by γ < 1 when the τl given by (17) is not strictly less than
τl−1. To be specific, the communication period for the lth

time interval will be determined as follows:

τl =


⌈√

F (xt=lT0
)

F (xt=0)
τ0

⌉
, if

⌈√
F (xt=lT0

)

F (xt=0)
τ0

⌉
< τl−1

γτl−1, otherwise
.

(18)

In the experiments, γ = 1/2 turns out to be a good choice.
One can obtain a more aggressive decay in τl by either
reducing the value of γ or introducing a slack variable s in

the condition, such as d
√

F (xt=lT0
)

F (xt=0)
τ0e+ s < τl−1.

4.3.2 Incorporating Adaptive Learning Rate

So far we consider a fixed learning rate η for the local
SGD updates at the workers. We now present an adaptive
communication strategy that adjusts τl for a given variable
learning rate schedule, in order to obtain the best error-
runtime trade-off. Suppose ηl denotes the learning rate for
the lth time interval. Then, combining (15) and (16) again,
we have

τl =

⌈√
η30
η3l

F (xt=lT0
)

F (xt=0)
τ0

⌉
. (19)

Observe that when the learning rate becomes smaller, the
communication period τl increases. This result corresponds
the intuition that a small learning rate reduces the discrep-
ancy between the local models, and hence is more tolerant
to large communication periods.

Equation (19) states that the communication period should
be proportional to (η0/ηl)

3/2. However, in practice, it is
common to decay the learning rate 10 times after some given
number of epochs. The dramatic change of learning rate may
push the communication period to an unreasonably large
value. In the experiments, we observe that when applying
(19), the communication period can increase to τ = 1000
which causes the training loss to diverge.

To avoid this issue, we propose the adaptive strategy given
by (20) below. This strategy can also be justified by theoret-
ical analysis. Suppose that in lth time interval, the objective
function has a local Lipschitz smoothness Ll. Then, by
using the approximation ηlLl ≈ 1, which is common in
SGD literature (Balles et al., 2016), we derive the following

adaptive strategy:

τl =

⌈√
η30L

2
0

η3l L
2
l

F (xt=lT0
)

F (xt=0)
τ0

⌉
≈
⌈√

η0
ηl

F (xt=lT0
)

F (xt=0)
τ0

⌉
.

(20)

Apart from coupling the communication period with learn-
ing rate, when to decay the learning rate is another key
design factor. In order to eliminate the noise introduced by
local updates, we choose to first gradually decay the commu-
nication period to 1 and then decay the learning rate as usual.
For example, if the learning rate is scheduled to be decayed
at the 80th epoch but at that time the communication period
τ is still larger than 1, then we will continue use the current
learning rate until τ = 1.

4.4 Theoretical Guarantees for the Convergence of
ADACOMM

In this subsection, we are going to provide a convergence
guarantee for the proposed adaptive communication scheme
by extending the error analysis for PASGD. Without loss
of generality, we will analyze an arbitrary communication
period sequence {τ0, . . . , τR}, where R represents the total
communication rounds2. It will be shown that a decreasing
sequence of τ is beneficial to the error-convergence rate.

Theorem 3 (Convergence of adaptive communication
scheme). For PASGD with adaptive communication pe-
riod and adaptive learning rate, suppose the learning rate
remains same in each local update period. If the following
conditions are satisfied as R→∞,

R∑
r=0

ηrτr →∞,
R∑
r=0

η2rτr <∞,
R∑
r=0

η3rτ
2
r <∞, (21)

then the averaged model x is guaranteed to converge to a
stationary point:

E

[∑R−1
r=0 ηr

∑τr
k=1 ‖∇F (xsr+k)‖

2∑R−1
r=0 ηrτr

]
→ 0 (22)

where sr =
∑r−1
j=0 τj .

The proof details and a non-asymptotic result (similar to
Theorem 1 but with variable τ) are provided in Appendix. In
order to understand the meaning of condition (21), let us first
consider the case when τ0 = · · · = τR is a constant. In this
case, the convergence condition is identical to mini-batch

2Note that in the error analysis, the subscripts of communica-
tion period and learning rate represent the index of local update
periods rather than the index of the T0-length wall-clock time
intervals as considered in Sections 4.1-4.3.

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

SGD (Bottou et al., 2018):
R∑
r=0

ηr →∞,
R∑
r=0

η2r <∞. (23)

As long as the communication period sequence is bounded,
it is trivial to adapt the learning rate scheme in mini-batch
SGD (23) to satisfy (21). In particular, when the communica-
tion period sequence is decreasing, the last two terms in (21)
will become easier to be satisfied and put less constraints on
the learning rate sequence.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setting

Platform. The proposed adaptive communication scheme
was implemented in Pytorch (Paszke et al., 2017) with
Mpi4Py (Dalcı́n et al., 2005). All experiments were con-
ducted on a local cluster with 4 worker nodes, each of which
has an NVIDIA TitanX GPU and a 16-core Intel Xeon CPU.
Worker nodes are connected via a 40 Gbps (5000 Mb/s) Eth-
ernet interface. Due to space limitations, additional results
with 8 nodes are listed in Appendix A.

Dataset. We evaluate our method for image classifica-
tion tasks on CIFAR10 and CIFAR100 dataset (Krizhevsky,
2009), which consists of 50,000 training images and 10,000
validation images in 10 and 100 classes respectively. Each
worker machine is assigned with a partition which will be
randomly shuffled after every epoch.

Model. We choose to train deep neural networks VGG-16
(Simonyan & Zisserman, 2014) and ResNet-50 (He et al.,
2016) from scratch 3. These two neural networks have dif-
ferent architectures and parameter sizes, thus resulting in
different performance of periodic-averaging. As shown in
Figure 8, for VGG-16, the communication time is about 4
times higher than the computation time. Thus, compared
to ResNet-50, it requires a larger τ in order to reduce the
runtime-per-iteration and achieve fast convergence. Sim-
ilar high communication/computation ratio is common in
literature, see (Lin et al., 2018; Harlap et al., 2018).

Hyperparameter Choice. Mini-batch size on each worker
is 128. Therefore, the total mini-batch size per iteration is
512. The initial learning rates for VGG-16 and ResNet-50
are 0.2 and 0.4 respectively. The weight decay for both
networks is 0.0005. In the variable learning rate setting, we
decay the learning rate by 10 after 80th/120th/160th/200th

epochs. We set the time interval length T0 as 60 seconds
(about 10 epochs for the initial communication period).

Metrics. We compare the performance of proposed adaptive

3The implementations of VGG-16 and ResNet-50 follow this
GitHub repository: https://github.com/meliketoy/
wide-resnet.pytorch

ResNet50 ResNet50, =10 VGG16 VGG16, =10
0

5

10

15

20

25

W
al

l c
lo

ck
 ti

m
e

Computation time
Communication time

Figure 8. Wall-clock time to finish 100 iterations in a cluster
with 4 worker nodes. To achieve the same level communica-
tion/computation ratio, VGG-16 requires larger communication
period than ResNet-50.

communication scheme with following methods with a fixed
communication period: (1) Baseline: fully synchronous
SGD (τ = 1); (2) Extreme high throughput case where
τ = 100; (3) Manually tuned case where a moderate value
of τ is selected after trial runs with different communication
periods. Instead of training for a fixed number of epochs, we
train all methods for sufficiently long time to convergence
and compare the training loss and test accuracy, both of
which are recorded after every 100 iterations.

5.2 Adaptive Communication in PASGD

We first validate the effectiveness of ADACOMM which uses
the communication period update rule (18) combined with
(20) on original PASGD without momentum.

Figure 9 presents the results for VGG-16 for both fixed and
variable learning rates. A large communication period τ
initially results in a rapid drop in the error, but the error fi-
nally converges to higher floor. By adapting τ , the proposed
ADACOMM scheme strikes the best error-runtime trade-off
in all settings. In Figure 9a, while fully synchronous SGD
takes 33.5 minutes to reach 4 × 10−3 training loss, ADA-
COMM costs 15.5 minutes achieving more than 2× speedup.
Similarly, in Figure 9b, ADACOMM takes 11.5 minutes to
reach 4.5× 10−2 training loss achieving 3.3× speedup over
fully synchronous SGD (38.0 minutes).

However, for ResNet-50, the communication overhead is
no longer the bottleneck. For fixed communication period,
the negative effect of performing local updates becomes
more obvious and cancels the benefit of low communication
delay (see Figures 10b and 10c). It is not surprising to
see fully synchronous SGD is nearly the best one in the
error-runtime plot among all fixed-τ methods. Even in
this extreme case, adaptive communication can still have
a competitive performance. When combined with learning
rate decay, the adaptive scheme is about 1.3 times faster

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

than fully synchronous SGD (see Figure 10a, 15.0 versus
21.5 minutes to achieve 3× 10−2 training loss).

Table 1 lists the test accuracies in different settings; we
report the best accuracy within a time budget for each setting.
The results show that adaptive communication method have
better generalization than fully synchronous SGD. In the
variable learning rate case, the adaptive method even gives
the better test accuracy than PASGD with the best fixed τ .

5.3 Adaptive Communication in Momentum SGD

The adaptive communication scheme is proposed based on
the joint error-runtime analysis for PASGD without mo-
mentum. However, it can also be extended to other SGD
variants, and in this subsection, we show that the proposed
method works well for SGD with momentum.

5.3.1 Block Momentum in periodic-averaging

Before presenting the empirical results, we describe how to
introduce momentum in PASGD. A naive way is to apply the
momentum independently to each local model, where each
worker maintains an independent momentum buffer, which
is the latest change in the parameter vector x. However, this
does not account for the potential dramatic change in x at
each averaging step. When local models are synchronized,
the local momentum buffer will contain the update steps
before averaging, resulting in a large momentum term in
the first SGD step of the each local update period. When τ
is large, this large momentum term can side-track the SGD
descent direction resulting in slower convergence.

To address this issue, a block momentum scheme was pro-
posed in (Chen & Huo, 2016) and applied to speech recogni-
tion tasks. The basic idea is to treat the local updates in each
communication period as one big gradient step between two
synchronized models, and to introduce a global momentum
for this big accumulated step. The update rule can be written
as follows in terms of the momentum uj :

uj = βglobuj−1 + Gj (24)
x(j+1)τ+1 = xjτ+1 − ηjuj (25)

where Gj = 1
m

∑m
i=1

∑τ
k=1 g(x

(i)
jτ+k) represents the accu-

mulated gradients in the jth local update period and βglob
denotes the global momentum factor. Moreover, workers
can also conduct momentum SGD on local models, but their
local momentum buffer will be cleared at the beginning of
each local update period. That is, we restart momentum
SGD on local models after every averaging step. The same
strategy was also suggested in Microsoft’s CNTK frame-
work (Seide & Agarwal, 2016). In our experiments, we
set the global momentum factor as 0.3 and local momen-
tum factor as 0.9 following (Lin et al., 2018). In the fully
synchronous case, there is no need to introduce the block

Table 1. Best test accuracies on CIFAR10 in different settings
(SGD without momentum).

MODEL METHODS FIXED LR VARIABLE LR

VGG-16

τ = 1 90.5 92.75
τ = 20 92.25 92.5
τ = 100 92.0 92.4

ADACOMM 91.1 92.85

RESNET-
50

τ = 1 88.76 92.26
τ = 5 90.42 92.26
τ = 100 88.66 91.8

ADACOMM 89.57 92.42

momentum and we simply follow the common practice set-
ting the momentum factor as 0.9.

5.3.2 ADACOMM plus Block Momentum

In Figure 11, we apply our adaptive communication strategy
in PASGD with block momentum and observe significant
performance gain on CIFAR10/100. In particular, the adap-
tive communication scheme has the fastest convergence
rate with respect to wall-clock time in the whole training
process. While fully synchronous SGD gets stuck with a
plateau before the first learning rate decay, the training loss
of adaptive method continuously decreases until converging.
For VGG-16 in Figure 11b, ADACOMM is 3.5× faster (in
terms of wall-clock time) than fully synchronous SGD in
reaching a 3 × 10−3 training loss. For ResNet-50 in Fig-
ure 11a, ADACOMM takes 15.8 minutes to get 2 × 10−2

training loss which is 2 times faster than fully synchronous
SGD (32.6 minutes).

6 CONCLUDING REMARKS

The design of communication-efficient SGD algorithms that
are robust to system variability is vital to scaling machine
learning training to resource-limited computing nodes. This
paper is one of the first to analyze the convergence of er-
ror with respect to wall-clock time instead of number of
iterations by accounting for the effect of computation and
communication delays on the runtime per iteration. We
present a theoretical analysis of the error-runtime trade-off
for periodic-averaging SGD (PASGD), where each node
performs local updates and their models are averaged after
every τ iterations. Based on the joint error-runtime analysis,
we design the first (to the best of our knowledge) adaptive
communication strategy called ADACOMM for distributed
deep learning. Experimental results using VGGNet and
ResNet show that the proposed method can achieve up to a
3× improvement in runtime, while achieving the same error
floor as fully synchronous SGD.

Going beyond periodic-averaging SGD, our idea of adapting

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

0 5 10 15 20 25 30 35
Wall clock time / min

10-2

100

Tr
ai

ni
ng

 lo
ss

VGG-16, variable learning rate
 = 1
 = 20
 = 100

AdaComm

0 5 10 15 20 25 30 35
0

10
20

C
om

m
. P

er
io

d

2x less

(a) Variable learning rate on CIFAR10.

0 10 20 30 40 50 60
Wall clock time / min

10-1

100

Tr
ai

ni
ng

 lo
ss

VGG-16, fixed learning rate
 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40 50 60
0

10
20

C
om

m
. P

er
io

d

3.3x less

(b) Fixed learning rate on CIFAR10.

0 5 10 15 20 25 30
0

10
20

C
om

m
. P

er
io

d

0 5 10 15 20 25 30
Wall clock time / min

10-1

100

Tr
ai

ni
ng

 lo
ss

VGG16, fixed learning rate, CIFAR100
 = 100
 = 20
 = 1

AdaComm

(c) Fixed learning rate on CIFAR100.

Figure 9. ADACOMM on VGG-16: Achieves 3.3× speedup over fully synchronous SGD (in (b), 11.5 versus 38.0 minutes to achieve
4.5× 10−2 training loss).

0 5 10 15 20 25
Wall clock time / min

10-2

10-1

100

Tr
ai

ni
ng

 lo
ss

ResNet-50, variable learning rate
 = 1
 = 5
 = 100

AdaComm

0 5 10 15 20 25
0
5

10

C
om

m
. P

er
io

d

1.4x less

(a) Variable learning rate on CIFAR10.

0 5 10 15 20 25
Wall clock time / min

100

Tr
ai

ni
ng

 lo
ss

 = 1
 = 5
 = 100

0 5 10 15 20 25
0
5

10

C
om

m
. P

er
io

d

0 5 10 15 20 25
Wall clock time / min

100

Tr
ai

ni
ng

 lo
ss

ResNet-50, fixed learning rate
 = 1
 = 5
 = 100

AdaComm

(b) Fixed learning rate on CIFAR10.

0 5 10 15 20 25
Wall clock time / min

1

2

3
4

Tr
ai

ni
ng

 lo
ss

ResNet-50, fixed learning rate, CIFAR100
 = 1
 = 5
 = 100

AdaComm

0 5 10 15 20 25
0
5

10

C
om

m
. P

er
io

d
(c) Fixed learning rate on CIFAR100.

Figure 10. ADACOMM on ResNet-50: Achieves 1.4× speedup over Sync SGD (in (a), 15.0 versus 21.5 minutes to achieve 3× 10−2

training loss).

0 10 20 30 40
Wall clock time / min

0

0.5

1

1.5

2

2.5

Tr
ai

ni
ng

 lo
ss

ResNet-50 with block momentum
 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40
0
5

10

C
om

m
. P

er
io

d

(a) ResNet-50 on CIFAR10.

0 10 20 30 40 50 60 70
Wall clock time / min

10-2

100

Tr
ai

ni
ng

 lo
ss

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40 50 60 70
0

10
20

C
om

m
. P

er
io

d

3.5x less

(b) VGG-16 on CIFAR10.

0 10 20 30 40
Wall clock time / min

0

1

2

3

4

5

Tr
ai

ni
ng

 lo
ss

ResNet-50 w/ block momentum, CIFAR100
 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40
0

10
20

C
om

m
. P

er
io

d

(c) ResNet-50 on CIFAR100.

Figure 11. ADACOMM with block momentum achieves 3.5× speedup over Sync SGD (in (b), 19.0 versus 66.7 minutes to achieve
3× 10−3 training loss).

frequency of averaging distributed SGD updates can be
easily extended to other SGD frameworks including elastic-
averaging (Zhang et al., 2015), decentralized SGD (e.g.,
adapting network sparsity) (Lian et al., 2017) and parameter
server-based training (e.g., adapting asynchrony).

ACKNOWLEDGMENTS

The authors thank Prof. Greg Ganger for helpful discussions.
This work was partially supported by NSF CCF-1850029
and an IBM Faculty Award. Experiments were conducted
on clusters provided by the Parallel Data Lab at CMU.

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

REFERENCES

Balles, L., Romero, J., and Hennig, P. Coupling adap-
tive batch sizes with learning rates. arXiv preprint
arXiv:1612.05086, 2016.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Chaudhari, P., Baldassi, C., Zecchina, R., Soatto, S., Tal-
walkar, A., and Oberman, A. Parle: parallelizing stochas-
tic gradient descent. arXiv preprint arXiv:1707.00424,
2017.

Chen, K. and Huo, Q. Scalable training of deep learning ma-
chines by incremental block training with intra-block par-
allel optimization and blockwise model-update filtering.
In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pp. 5880–5884.
IEEE, 2016.

Cui, H., Cipar, J., Ho, Q., Kim, J. K., Lee, S., Kumar, A.,
Wei, J., Dai, W., Ganger, G. R., Gibbons, P. B., et al. Ex-
ploiting bounded staleness to speed up big data analytics.
In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp. 37–48, 2014.

Dalcı́n, L., Paz, R., and Storti, M. MPI for python. Journal
of Parallel and Distributed Computing, 65(9):1108–1115,
2005.

David, H. A. and Nagaraja, H. N. Order statistics. John
Wiley, Hoboken, N.J., 2003.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L.
Optimal distributed online prediction using mini-batches.
Journal of Machine Learning Research, 13(Jan):165–202,
2012.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar,
P. Slow and stale gradients can win the race: Error-
runtime trade-offs in distributed SGD. arXiv preprint
arXiv:1803.01113, 2018.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch SGD: training ImageNet in
1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gupta, S., Zhang, W., and Wang, F. Model accuracy and
runtime tradeoff in distributed deep learning: A system-
atic study. In IEEE 16th International Conference on
Data Mining (ICDM), pp. 171–180. IEEE, 2016.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V.,
Devanur, N., Ganger, G., and Gibbons, P. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: near-linear acceleration of deep neural
network training on compute clusters. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2592–2600, 2016.

Jiang, Z., Balu, A., Hegde, C., and Sarkar, S. Collaborative
deep learning in fixed topology networks. In Advances in
Neural Information Processing Systems, pp. 5906–5916,
2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583–598, 2014.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5336–5346, 2017.

Lin, T., Stich, S. U., and Jaggi, M. Don’t use large mini-
batches, use local SGD. arXiv preprint arXiv:1808.07217,
2018.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al.
Communication-efficient learning of deep networks from
decentralized data. arXiv preprint arXiv:1602.05629,
2016.

Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony
begets momentum, with an application to deep learning.
In 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 997–1004. IEEE,
2016.

Moritz, P., Nishihara, R., Stoica, I., and Jordan, M. I.
SparkNet: Training deep networks in spark. arXiv
preprint arXiv:1511.06051, 2015.

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Seide, F. and Agarwal, A. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2135–2135. ACM, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017a.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. In Advances in Neural
Information Processing Systems, pp. 4424–4434. 2017b.

Stich, S. U. Local SGD converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Su, H. and Chen, H. Experiments on parallel training of deep
neural network using model averaging. arXiv preprint
arXiv:1507.01239, 2015.

Wang, J. and Joshi, G. Cooperative SGD: A
unified framework for the design and analysis of
communication-efficient SGD algorithms. arXiv preprint
arXiv:1808.07576, 2018.

Yu, H., Yang, S., and Zhu, S. Parallel restarted SGD for
non-convex optimization with faster convergence and less
communication. arXiv preprint arXiv:1807.06629, 2018.

Zhang, J., De Sa, C., Mitliagkas, I., and Ré, C. Paral-
lel SGD: When does averaging help? arXiv preprint
arXiv:1606.07365, 2016.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-
ing with elastic averaging SGD. In NIPS’15 Proceedings
of the 28th International Conference on Neural Informa-
tion Processing Systems, pp. 685–693, 2015.

Zhou, F. and Cong, G. On the convergence properties
of a k-step averaging stochastic gradient descent al-
gorithm for nonconvex optimization. arXiv preprint
arXiv:1708.01012, 2017.

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

A ADDITIONAL EXPERIMENTAL RESULTS

In the 8 worker case, the communication among nodes is accomplished via Nvidia Collective Communication Library
(NCCL). The mini-batch size on each node is 64. The initial learning rate is set as 0.2 for both VGG-16 and ResNet-50.
In Figure 12a, while fully synchronous SGD takes 17.5 minutes to reach 10−2 training loss, ADACOMM only costs 6.0
minutes achieving about 2.9× speedup.

0 5 10 15 20
Wall-clock time / min

10-2

100

Tr
ai

ni
ng

 lo
ss

VGG-16, variable LR, 8 nodes

0 5 10 15 20
0

50

C
om

m
. P

er
io

d

2.9x less

(a) Variable learning rate on CIFAR10.

0 5 10 15
Wall-clock time / min

100

Tr
ai

ni
ng

 lo
ss

VGG-16, fixed LR, CIFAR100, 8 nodes
 = 1
 = 20
 = 100

AdaComm

0 5 10 15
0

50

C
om

m
. P

er
io

d

(b) Fixed learning rate on CIFAR100.

Figure 12. ADACOMM on VGG-16 with 8 workers: Achieves 2.9× speedup over Sync SGD (in (a), 6.0 versus 17.5 minutes to achieve
1× 10−2 training loss). Test accuracies at convergence when using variable learning rate: 92.52% (τ = 1), 91.85% (τ = 20), 91.15%
(τ = 100), and 92.72% (AdaComm).

0 5 10 15 20 25
0
5

10

C
om

m
. P

er
io

d

0 5 10 15 20 25
Wall-clock time / min

10-1

100

Tr
ai

ni
ng

 lo
ss

ResNet-50, variable LR, 8 nodes
 = 1
 = 10
 = 100

AdaComm

1.6x less

(a) Variable learning rate on CIFAR10.

0 5 10 15
Wall-clock time / min

1

2

3

4

Tr
ai

ni
ng

 lo
ss

ResNet-50, fixed LR, CIFAR100, 8 nodes
 = 1
 = 10
 = 100

AdaComm

0 5 10 15
0
5

10

C
om

m
. P

er
io

d

(b) Fixed learning rate on CIFAR100.

Figure 13. ADACOMM on ResNet-50 with 8 workers: Achieves 1.6× speedup over Sync SGD (in (a), 11.15 versus 18.25 minutes to
achieve 1× 10−1 training loss). Test accuracies at convergence when using variable learning rate: 91.93% (τ = 1), 91.51% (τ = 10),
90.46% (τ = 100), and 91.77% (AdaComm).

B INEFFICIENT LOCAL UPDATES

It is worth noting there is an interesting phenomenon about the convergence of periodic averaging SGD (PASGD). When the
learning rate is fixed, PASGD with fine-tuned communication period has better test accuracy than both fully synchronous

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

SGD and the adaptive method, while its training loss remains higher than the latter two methods (see Figure 9, Figure 10).
In particular, on CIFAR100 dataset, we observe about 5% improvement in test accuracy when τ = 5. To investigate this
phenomenon, we evaluate the test accuracy for PASGD (τ = 15) in two frequencies: 1) every 135 iterations; 2) every 100
iterations. In the former case, the test accuracy is reported just after the averaging step. However, in the latter case, the test
accuracy can come from either the synchronized/averaged model or local models, since 100 cannot be divided by 15.

From Figure 14, it is clear that local model’s accuracy is much lower than the synchronized model, even when the algorithm
has converged. Thus, we conjecture that the improvement of test accuracy only happens on the synchronized model. That is,
after averaging, the test accuracy will undergo a rapid increase but it decreases again in the following local steps due to noise
in stochastic gradients. Such behavior may depend on the geometric structure of the loss surface of specific neural networks.
The observation also reveals that the local updates are inefficient as they reduces the accuracy and makes no progress. In this
sense, it is necessary for PASGD to reduce the gradient variance by either decaying learning rate or decaying communication
period.

0 50 100 150
Epochs

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

Evaluated every 100 iterations
Evaluated every 15 9 iterations

~ 10 % variation

Figure 14. PASGD (τ = 15) with ResNet-50 on CIFAR10 (fixed learning rate, no momentum). There exists about 10% accuracy gap
between local models and the synchronized model.

C ASSUMPTIONS FOR CONVERGENCE ANALYSIS

The convergence analysis is conducted under the following assumptions, which are similar to the assumptions made
in previous work on the analysis of PASGD (Zhou & Cong, 2017; Yu et al., 2018; Wang & Joshi, 2018; Stich, 2018).
In particular, we make no assumptions on the convexity of the objective function. We also remove the uniform bound
assumption for the norm of stochastic gradients.
Assumption 1 (Lipschitz smooth & lower bound on F). The objective function F (x) is differentiable and L-Lipschitz
smooth, i.e., ‖∇F (x)−∇F (y)‖ ≤ L ‖x− y‖. The function value is bounded below by a scalar Finf.

Assumption 2 (Unbiased estimation). The stochastic gradient evaluated on a mini-batch ξ is an unbiased estimator of the
full batch gradient Eξ|x [g(x)] = ∇F (x).
Assumption 3 (Bounded variance). The variance of stochastic gradient evaluated on a mini-batch ξ is bounded as

Eξ|x ‖g(x)−∇F (x)‖2 ≤ β ‖∇F (x)‖2 + σ2

where β and σ2 are non-negative constants and in inverse proportion to the mini-batch size.

D PROOF OF THEOREM 2: ERROR-RUNTIME CONVERGENCE OF PASGD
Firstly, let us recall the error-analysis of PASGD. We adapt the theorem from (Wang & Joshi, 2018).
Lemma 1 (Error-Convergence of PASGD (Wang & Joshi, 2018)). For PASGD, under Assumptions 1 to 3, if the learning
rate satisfies ηL+ η2L2τ(τ − 1) ≤ 1 and all workers are initialized at the same point x1, then after K iterations, we have

E
[

min
k∈[1,K]

‖∇F (xk)‖2
]
≤ E

[
1

K

K∑
k=1

‖∇F (xk)‖2
]
≤ 2 [F (x1)− Finf]

ηK
+
ηLσ2

m
+ η2L2σ2(τ − 1) (26)

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

where L is the Lipschtiz constant of the objective function, σ2 is the variance bound of mini-batch stochastic gradients and
xk denotes the averaged model at the kth iteration.

From the runtime analysis in Section 2, we know that the expected runtime per iteration of PASGD is

E[TP-Avg] = Y +
D

τ
. (27)

Accordingly, the total wall-clock time of training K iteration is

T = K

(
Y +

D

τ

)
. (28)

Then, directly substituting K = T/E[TP-Avg] in (26), we complete the proof.

E PROOF OF THEOREM 3: THE BEST COMMUNICATION PERIOD

Taking the derivative of the upper bound (14) with respect to the communication period, we obtain

−2 [F (x1)− Finf]

ηT

E [D]

τ2
+ η2L2σ2. (29)

When the derivative equals to zero, the communication period is

τ∗ =

√
2(F (x1)− Finf)E[D]

η3L2σ2T
. (30)

Since the second derivative of (14) is

4 [F (x1)− Finf]

ηT

E [D]

τ3
> 0, (31)

then the optimal value obtained in (30) must be a global minimum.

F PROOF OF THEOREM 4: ERROR-CONVERGENCE OF ADAPTIVE COMMUNICATION
SCHEME

F.1 Notations

In order to faciliate the analysis, we would like to first introduce some useful notations. Define matrices Xk,Gk ∈ Rd×m
that concatenate all local models and gradients:

Xk =[x
(1)
k , . . . ,x

(m)
k], (32)

Gk =[g(x
(1)
k), . . . , g(x

(m)
k)]. (33)

Besides, define matrix J = 11>/(1>1) where 1 denotes the column vector [1, 1, . . . , 1]>. Unless otherwise stated, 1 is a
size m column vector, and the matrix J and identity matrix I are of size m×m, where m is the number of workers.

F.2 Proof

Let us first focus on the j-th local update period, where j ∈ {0, 1, . . . , R}. Without loss of generality, suppose the local
index of the jth local update period starts from 1 and ends with τj . Then, for the k-th local step in the interested period, we
have the following lemma.
Lemma 2 (Lemma 1 in (Wang & Joshi, 2018)). For PASGD, under Assumptions 1 to 3, at the k-th iteration, we have the
following bound for the objective value:

Ek [F (xk+1)]− F (xk) ≤−
ηj
2
‖∇F (xk)‖2 −

ηj
2

[
1− ηjL

(
β

m
+ 1

)]
· ‖∇F (Xk)‖2F

m
+
η2jLσ

2

2m
+

ηjL
2

2m
‖Xk(I− J)‖2F (34)

where xk denotes the averaged model at the kth iteration.

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Taking the total expectation and summing over all iterates in the j-th local update period, we can obtain

E
[
F (xτj+1)− F (x1)

]
≤− ηj

2

τj∑
k=1

E ‖∇F (xk)‖2 −
ηj
2

[
1− ηjL

(
β

m
+ 1

)]
·
τj∑
k=1

E ‖∇F (Xk)‖2F
m

+
η2jLσ

2τj

2m
+

ηjL
2

2m

τj∑
k=1

E ‖Xk(I− J)‖2F . (35)

Next, we are going to provide an upper bound for the last term in (35). Note that

Xk(I− J) = Xk−1(I− J)− ηjGk−1(I− J) (36)
= Xk−2(I− J)− ηjGk−2(I− J)− ηjGk−1(I− J) (37)

= X1(I− J)− ηj
k−1∑
r=1

Gr(I− J) (38)

= −ηj
k−1∑
r=1

Gr(I− J) (39)

where (39) follows the fact that all workers start from the same point at the beginning of each local update period, i.e.,
X1(I− J) = 0. Accordingly, we have

E
[
‖Xk(I− J)‖2F

]
=η2jE

∥∥∥∥∥
k−1∑
r=1

Gr(I− J)

∥∥∥∥∥
2

F

 (40)

≤η2jE

∥∥∥∥∥
k−1∑
r=1

Gr

∥∥∥∥∥
2

F

 = η2j

m∑
i=1

E

∥∥∥∥∥
k−1∑
r=1

g(x(i)
r)

∥∥∥∥∥
2
 (41)

where the inequality (41) is due to the operator norm of (I−J) is less than 1. Furthermore, using the fact (a+b)2 ≤ 2a2+2b2,
one can get

E
[
‖Xk(I− J)‖2F

]
≤η2j

m∑
i=1

E

∥∥∥∥∥
k−1∑
r=1

(
g(x(i)

r)−∇F (x(i)
r)
)
+

k−1∑
r=1

∇F (x(i)
r)

∥∥∥∥∥
2
 (42)

≤ 2η2j

m∑
i=1

E

∥∥∥∥∥
k−1∑
r=1

(
g(x(i)

r)−∇F (x(i)
r)
)∥∥∥∥∥

2


︸ ︷︷ ︸
T1

+2η2j

m∑
i=1

E

∥∥∥∥∥
k−1∑
r=1

∇F (x(i)
r)

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

. (43)

For the first term T1, since the stochastic gradients are unbiased, all cross terms are zero. Thus, combining with Assumption 3,
we have

T1 =2η2j

m∑
i=1

k−1∑
r=1

E
[∥∥∥g(x(i)

r)−∇F (x(i)
r)
∥∥∥2] (44)

≤2η2j
m∑
i=1

k−1∑
r=1

[
βE
[∥∥∥∇F (x(i)

r)
∥∥∥2]+ σ2

]
(45)

=2η2jβ
k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]
+ 2η2jm(k − 1)σ2. (46)

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

For the second term in (43), directly applying Jensen’s inequality, we get

T2 ≤2η2j (k − 1)
m∑
i=1

k−1∑
r=1

E
[∥∥∥∇F (x(i)

r)
∥∥∥2] (47)

=2η2j (k − 1)
k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]
. (48)

Substituting the bounds of T1 and T2 into (43),

E
[
‖Xk(I− J)‖2F

]
≤2η2j [β + (k − 1)]

k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]
+ 2η2jm(k − 1)σ2. (49)

Recall the upper bound (35), we further derive the following bound:
τj∑
k=1

E
[
‖Xk(I− J)‖2F

]
≤2η2j

τj∑
k=1

[
[β + (k − 1)]

k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]]
+ 2η2jmσ

2

τj∑
k=1

(k − 1) (50)

=2η2j

τj∑
k=1

[
[β + (k − 1)]

k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]]
+ η2jmσ

2τj(τj − 1) (51)

=2η2j

τj∑
k=2

[
[β + (k − 1)]

k−1∑
r=1

E
[
‖∇F (Xr)‖2F

]]
+ η2jmσ

2τj(τj − 1). (52)

Then, since
∑k−1
r=1 E

[
‖∇F (Xr)‖2F

]
≤∑τj−1

r=1 E
[
‖∇F (Xr)‖2F

]
, we have

τj∑
k=1

E
[
‖Xk(I− J)‖2F

]
≤2η2j

τj−1∑
r=1

E
[
‖∇F (Xr)‖2F

] τj∑
k=2

[β + (k − 1)] + η2jmσ
2τj(τj − 1) (53)

=η2j

τj−1∑
r=1

E
[
‖∇F (Xr)‖2F

]
[2β(τj − 1) + τj(τj − 1)] + η2jmσ

2τj(τj − 1). (54)

Plugging (54) into (35),

E
[
F (xτj+1)− F (x1)

]
≤− ηj

2

τj∑
k=1

E ‖∇F (xk)‖2 −
ηj
2

[
1− ηjL

(
β

m
+ 1

)]
·
τj∑
k=1

E
[
‖∇F (Xk)‖2F

]
m

+
η2jLσ

2τj

2m
+

η3jL
2

2
[2β(τj − 1) + τj(τj − 1)]

τj−1∑
r=1

E
[
‖∇F (Xr)‖2F

]
m

+
η3jL

2σ2τj(τj − 1)

2
(55)

≤− ηj
2

τj∑
k=1

E ‖∇F (xk)‖2 −
ηj
2

[
1− ηjL

(
β

m
+ 1

)]
·
τj∑
k=1

E
[
‖∇F (Xk)‖2F

]
m

+
η2jLσ

2τj

2m
+

η3jL
2

2
[2β(τj − 1) + τj(τj − 1)]

τj∑
r=1

E
[
‖∇F (Xr)‖2F

]
m

+
η3jL

2σ2τj(τj − 1)

2
. (56)

Note that when the learning rate satisfies:

η2jL
2(τj − 1) (2β + τj) + ηjL

(
β

m
+ 1

)
≤ 1, (57)

we have

E
[
F (xτj+1)− F (x1)

]
≤− ηj

2

τj∑
k=1

E ‖∇F (xk)‖2 +
η2jLσ

2τj

2m
+
η3jL

2σ2τj(τj − 1)

2
. (58)

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Suppose lj =
∑j−1
r=0 τr + 1 is the first index in the j-th local update period. Without loss of generality, we substitute the

local index by global index:

E
[
F (xlj+1)− F (xlj)

]
≤− ηj

2

τj∑
k=1

E
∥∥∇F (xlj+k−1)∥∥2 + η2jLσ

2τj

2m
+
η3jL

2σ2τj(τj − 1)

2
. (59)

Summing over all local periods from j = 0 to j = R, one can obtain

E [F (xlR)− F (x1)] ≤−
1

2

R∑
j=0

ηj

τj∑
k=1

E
∥∥∇F (xlj+k−1)∥∥2 + Lσ2

2m

R∑
j=0

η2j τj +
L2σ2

2

R∑
j=0

η3j τj(τj − 1). (60)

After minor rearranging, it is easy to see

E

 R∑
j=0

ηj

τj∑
k=1

∥∥∇F (xlj+k−1)∥∥2
 ≤2 [F (x1)− F ∗] +

Lσ2

m

R∑
j=0

η2j τj + L2σ2
R∑
j=0

η3j τj(τj − 1). (61)

That is,

E

[∑R
j=0 ηj

∑τj
k=1

∥∥∇F (xlj+k−1)∥∥2∑R
j=0 ηjτj

]
≤2 [F (x1)− F ∗]∑R

j=0 ηjτj
+
Lσ2

m

∑R
j=0 η

2
j τj∑R

j=0 ηjτj
+ L2σ2

∑R
j=0 η

3
j τj(τj − 1)∑R−1
j=0 ηjτj

. (62)

F.3 Asymptotic Result (Theorem 3)

In order to let the upper bound (62) converges to zero as R→∞, a sufficient condition is

lim
R→∞

R∑
j=0

ηjτj =∞, lim
R→∞

R∑
j=0

η2j τj <∞, lim
R→∞

R∑
j=0

η3j τ
2
j <∞. (63)

Here, we complete the proof of Theorem 3.

F.4 Simplified Result

We can obtain a simplified result when the learning rate is fixed. To be specific, we have

E

[∑R
j=0

∑τj
k=1

∥∥∇F (xlj+k−1)∥∥2∑R
j=0 τj

]
≤2 [F (x1)− F ∗]

η
∑R
j=0 τj

+
ηLσ2

m

∑R
j=0 τj∑R
j=0 τj

+ η2L2σ2

∑R−1
j=0 τj(τj − 1)∑R−1

j=0 τj
(64)

≤2 [F (x1)− F ∗]
η
∑R
j=0 τj

+
ηLσ2

m
+ η2L2σ2

(∑R
j=0 τj(τj − 1)∑R−1

j=0 τj

)
. (65)

If we choose the total iterations K =
∑R
j=0 τj , then

E

[∑K
k=1 ‖∇F (xk)‖

2

K

]
≤2 (F (x1)− F ∗)

ηK
+
ηLσ2

m
+ η2L2σ2

(∑R
j=0 τ

2
j∑R

j=0 τj
− 1

)
. (66)

