™

Check for
updates

Detecting Intruders by User File Access Patterns

Shou-Hsuan S. Huang, Zechun Cao®, Calvin E. Raines, Mai N. Yang,
and Camille Simon

University of Houston, Houston, TX 77204, USA
shuang@cs.uh.com, zcao3@uh.edu

Abstract. Our society is facing a growing threat from data breaches where confi-
dential information is stolen from computer servers. In order to steal data, hackers
must first gain entry into the targeted systems. Commercial off-the-shelf intru-
sion detection systems are unable to defend against the intruders effectively. This
research uses cyber behavior analytics to study and report how anomalies compare
to normal behavior. In this paper, we present methods based on machine learning
algorithms to detect intruders based on the file access patterns within a user file
directory. We proposed a set of behavioral features of the user’s file access pat-
terns in a file system. We validate the effectiveness of the features by conducting
experiments on an existing file system dataset with four classification algorithms.
To limit the false alarms, we trained and tested the classifiers by optimizing the
performance within the lower range of the false positive rate. The results from our
experiments show that our approach was able to detect intruders with a 0.94 F1
score and false positive rate of less than 3%.

Keywords: Intrusion detection - Cybersecurity - Cyber behavior analytics - File
accessing pattern - Machine learning

1 Introduction

One purpose of computer security is to limit information access to a certain autho-
rized group of people. Although current computer security methodology keeps out some
intruders, it does not deter the most persistent ones. Through backdoors, brute force, or
with stolen credentials, intruders can gain access to valuable data and abilities normally
reserved for trusted individuals. Once inside, intruders can create a multitude of prob-
lems. They could install malware, deface websites or delete documents. These actions
would visibly affect the system, requiring damage control or likely an audit. In 2014, the
U.S. Office of Personnel Management [20] lost the personal information of millions of
people. These individuals were put at risk of blackmail or identity theft. More recently,
Equifax disclosed that a massive data breach in 2017 may have impacted 143 million
consumers, which is nearly 44% of the US population. In this incident, attackers got
their hands on names, SSN, birth date, addresses, some driver license numbers, and
about 209,000 credit card numbers, causing the impact of this breach to last for years
to come [24]. In both instances, data theft put many people at risk and damaged the
reputations of the organizations stolen from. For these reasons, designing an effective

© Springer Nature Switzerland AG 2019
J. K. Liu and X. Huang (Eds.): NSS 2019, LNCS 11928, pp. 320-335, 2019.
https://doi.org/10.1007/978-3-030-36938-5_19

Detecting Intruders by User File Access Patterns 321

intrusion detection system (IDS) that is capable of quickly raising alarms to security
breaches is extremely important.

However, many of the existing IDSs do not provide enough protection as we experi-
ence an increasing number of data breaches. Some of the existing IDSs are adopting the
misuse-based detecting approach, such as network IDSs Snort and Bro [36]. They rely
on pre-defined signatures to identify known attacks. The main problem with this app-
roach is that it fails to properly detect unknown threats because the high number of new
vulnerabilities that are discovered every day are not available to the experts for analysis
and inclusion in the signatore database. Additionally, detecting attacks based on prior
knowledge often fails to develop effective signatures as there are usually numerous ways
to exploit the same vulnerability [36]. As a result, the misuse-based approach raises too
many false alarms by including as many attack signatures as possible, while some attacks
can easily evade detection by a slight variance. Additionally, more and more attacks are
launched by insiders who are abusing their privileges. The misuse-based IDS cannot
detect the attack from an insider, because the intruder can deliberately avoid attacking
against vulnerabilities that have been previously exploited.

In this paper, we hypothesize that the deviation of the intruder’s cyber behavior from
the normal one can be used to detect attempted malicious exploitations. For example,
an intruder possessing valid admin credentials is not going to alert existing security
systems while logging into the system. Since the objective of the intruders is to scan
the data, identify the information of value to them, and quickly exfiltrate the data, the
behavior of the intruders will be different from that of the normal users. Differences in
intruders’ behavior caused by their malicious nature leave traces that can be used for
detection. Desiring the ability to detect intruders based on their behavior, we propose an
approach that describes the user’s behavior through effective features. The objective of
this research is to use the differences in the behavioral features in detecting intruders.

As the computer system has been more and more involved in activities in our lives,
the file becomes an essential carrier of impoertant and sensitive information, which is
often the ultimate target of intruders. Since the file system is the permanent place to
store all the files of the host, any malicious execution intended to steal information or
damage a host will eventually set its sight upon the file system [31]. Therefore, in this
paper, we propose a new intrusion detection approach that uses behavioral features to
detect intruders in the file system.

The remainder of this paper is organized as follows. In Sect. 2, we will discuss the
existing research on behavior modeling and intrusion detection. Section 3 will expand
on presenting and evaluating our behavioral features in modeling user behavior in the
file system. In Sect. 4, we will build multiple classifiers with selected features to validate
our hypothesis that the user’s behavioral difference is sufficient to identify the intruders.
Lastly, we will conclude our paper with a summary of our contribution and briefly
mention how our approach may be able to further improve intrusion detection in Sect. 5.

2 Related Work

In one of the earliest researches about IDS, Anderson [2] described that audit trails
contain valuable information and could be utilized for the purpose of misuse detection

322 S.-H. §. Huang et al.

by identifying the anomaly. The proposed misuse-based detecting approach focuses on
modeling what is normal, instead of what is anomalous. Since then, we have seen research
[12, 22] following this direction with success to a certain extent. But the misuse-based
approach is prone to generate many false alarms. Additionally, it has always been a
difficult task for researchers to know what to monitor in the system [36]. In an attempt
to model normal behavior, Denning [11] presented a host-based IDS that is capable
of detecting anomaly by computing statistics (login frequency, password fails, etc.) of
system events. Javitz et al. [17] later developed a system called IDES, which issues alerts
by comparing the new event’s parameters to the thresholds established in the statistical
models built on past events, such as a set number of mean values, standard deviations,
etc.

In comparison to the host-based IDS, researchers have also studied network-based
IDS that detects anomalies by monitoring network packets. Based on existing research
[34], many intruders route their SSH connections through a series of computers to make
backtracing more difficult. This results in a slower response time, which can be used
in stepping-stone intrusion detection. Yang et al. [34] used a clustering-partitioning
algorithm to calculate round-trip times of send/echo packet pairs in the network. In
doing so they could successfully determine if an intruder was routing their traffic through
multiple hosts. Similarly, Kuo et al. [21] proposed an algorithm based on association
rule mining to detect stepping-stone SSH attacks. These works focused on detecting
intruders by monitoring network activities and shown robustness even under certain
types of evasion techniques.

There is relatively little work has been completed in detecting intrusion to the file
system. Stolfo et al. [31] developed a File Wrapper Anomaly Detector (FWRAP) which
monitors the file system and extracted static features, such as user ID, current directory,
file name, etc. from the records. Then Probabilistic Anomaly Detection (PAD) algorithm
was applied to detect abnormal processes. However, this approach did notutilize dynamic
features and occupied system memory with a large number of files. Other file system
intrusion detection methods, such as honeyfiles [35] and decoy documents [4], had
proven to be effective under certain assumptions. But there are many limitations, for
example, it is expensive to deploy bait files in every user’s computer, and the false
alarms are overwhelming for the users who are searching intensively in their daily tasks.

‘We realize that many related studies to our work are attempting to solve masquerader
detection problems. Unlike intrusion attack, masquerade attack is a class of attacks in
which a user of a systern poses as, or assumes the identity of another legitimate user
[28]. To detect a masquerader by behavior, existing research tried to model user’s cyber
behavior based on various information, for example, operating system command [30,
33], mouse usage [26], keyboard usage [19], etc. As Schonlau et al. [30] being the
pioneer to design a dataset in an attempt to detect masqueraders, their dataset (SEA)
recorded a series of UNIX commands for each user. Although this dataset was widely
utilized, it had the limitations of being restricted to UNIX commands and a lack of real
“intrusion” behavior. Recently, Camina et al. [7, 8] focused on file system objects and
proposed a new feature abstraction model called locality to characterize users and detect
masqueraders. Compared to the action-based approach, their locality-based features
showed better performance in capturing user behavior for masquerader detection. In

Detecting Intruders by User File Access Patterns 323

summary, although the research in modeling user’s cyber behavior is prolific, there
is very limited research has been conducted in the behavior-based intrusion detection
method.

3 Modeling User Behavior in File System

Since the file system is often the endpoint of the intrusion chain, it is important to
provide protection to it. Therefore, we set the focus of this paper on detecting malicious
behavior in the file system. Our working hypothesis is that the intruders behave differently
compared to normal users due to their malicious nature. To capture such behavioral
differences, we need to define features to model users’ behavior in the file system. In
this section, we will present in detail how our behavioral features are designed and
computed based on the file access logs. We will then evaluate their effectiveness in
detecting intruders in a file systemn dataset extracted from the public repository.

3.1 Behavioral Feature Space in File Access

To profile the user’s behavior in the file system, one should continuously monitor the
events generated by the system. These events are usually triggered by the OS, applications
or users’ actions, containing file system objects access history. Modern system logging
tools, such as audit [6] in the Windows system, are able to record not only the file
system objects that have been accessed, e.g. files and directories, but also the timing
information for each record. Without loss of generality, we assume the logs recorded
by the system during a time span ¢ can be denoted by a segment of consecutive access
entries s = e1, €3, ..., €,. Bach entry ¢;, (1 < i < n) in s describes an access record in
the file system with a timestamp. Note that we partition the logs into segments based
on the time window of length ¢ because it is not feasible to profile behavior by a single
access entry. The behavioral feature space in the file system can be denoted as F, from
which another higher dimensional feature space F’ can be mapped by a function ¢

$(F) — F'. n

A user’s behavior in the file system can be viewed as how the file system objects
are accessed during a period of time. Thus, we consider temporal and spatial features
are essential in deriving other feature spaces by function ¢. We now propose three basic
temporal- and spatial-based features in the behavioral feature space F.

— time(e;): Timestamp in seconds since the system epoch of an entry e; logged by the
system.

— file(e;): The file accessed by entry e; . In the file system log, it is typically represented
by the file ID or name of the accessed file.

— path(e;): Full access path of the file identified by file(e;). In a tree-structured file
system, path(e;) provides spatial information for the entry ;.

We expect other behavioral features can be mapped from the feature space F in order
to model various behaviors in the file system.

324 S.-H. §. Huang et al.

3.2 File Access Behavioral Features

In this section, we introduce two sets of behavioral features that can be mapped from
F to detect intruders in the file system. Recall that given a sequence of events s =
€1, ez, ..., e, during a time window of length ¢, let |ls| = n be the size of the file
system log segment. The behavioral feature space F can be defined as

F = {time(e;), file(e;), path(e;)}. 2)

Non-frequency-Based Feature Set. These features derived from F give the overall
measures of the users within a given time window of length ¢. Note that the features
in this set are intuitively designed aiming to identify the difference in the intruder’s
behavior from the normal ones.

Entries Per Second (EPS). EPS is the number of log entries within a one-second period.
We define

£ps — s

" time(e,) — time(e1)’

3

where 5| denotes the size of the log segment, which is the number of recorded entries
of log within the segment. EPS measures how quickly entries are created, which gives
an idea of how quickly files are being accessed. A normal user would assumedly spend
ample time on a single file, while an introder would move through many files quickly.

Fraction Unigue Path (FUP). This feature shows how many of the paths in the sequence
are distinct, measures the diversity of the accessed file. FUP is defined as

FUP = W_ (4)

Il

A normal user would likely use the same paths repeatedly, but an intruder would rarely
use the same path twice.

Fraction Unigue Location (FUL). This feature more accurately represents repeated use
of the same file. We define FUL as

[[{fileCeHl
sl

Different files necessarily have different paths, but two paths may end up in the same
file because of the shortcuts. Again, a normal user would be expected to end up at the
same file often, but an intruder would access many different files.

FUL = 5

Fraction Multiway (FM). This metric combines FUP and FUL. The number of unique
files is necessarily smaller than the number of unique paths, thus we have FM < 1. The
smaller FM is, the more often different chosen paths ended at the same location. FM is
defined as

W fiteel
M = \pathell

A normal user should have a favorite way of getting to a known file. An intruder
doing an uninformed search would find the same file in every path it can be found.

6

Detecting Intruders by User File Access Patterns 325

Fraction Single Path (FSP). FSP measures how many of the paths were only used once
in the given sequence of entries. We have FSP as

: path(e;) # path (ej)Vi # j} "
I{path(e)}l '

Intruders don’t need to repeatedly revisit files. In contrast, a normal user would likely
use the same path multiple times.

rsp = e

@

Average Location Time (ALT). ALT averages the difference in time between the first and
last entry of each unique location in the given sequence of entries. Let L = { file(e;)],
fork € L, letk irs: = €x: file(ex) = k # file(e,)Vy < x,and kigsr = €;: file(e;) =
k # file(ey)Vy > z. Then,

EL time(kigse) — time (kfirst)
ILI '

A normal user might return to a file previously used a few minutes later, while an
intruder would avoid looking at the same file over time.

ALT =

®

Average Consecutive Time (ACT). ACT measures how long on average auser is working
on the same file. The denominater reduces sequence s by removing entries whose path
is the same as the previous entry. ACT is defined as

_ time(ep) — time(ey) + 1
"~ |{ei:path(e;) # path(ei-1)}’

A normal user would be expected to spend longer on a single file than an intruder
would.

ACT @

Average Consecutive Repetitions (ACR). Instead of locking at how much time a uvser
spends before changing files, ACR looks at how many entries are created in succession
before moving. Therefore,

B sl
" |{ei:pathie;) # path(ei—)}’

A user repeatedly saving their work would create multiple consecutive entries, while
an intruder should do very few actions on a single file.

ACR

(10)

Average Depth (AD). AD provides the average number of depths in 5. We have AD as

_ ZqUpathienl — 1)
= ’

wheze || path(e;) || — 1 is the number of directories in an entry’s path, which is equivalent

to the depth. A normal user would likely use shortcuts or put their files in easy to access

locations, while an intruder doing a depth-first search would reach the deepest parts of
a file system.

AD

(an

326 S.-H. §. Huang et al.

Average Movement Distance (AMD). AMD calculates how many steps the user moves
from one entry to its next on average. We define AMD as

2., | path(e;) # path{e;—1)|
sl '

where the numerator calculates the distance between two entries. It does so by summing
how many different directories or locations there are between two consecutive entries.
For example, if event entry 0/1/3/7 is followed by 0/1/2/9/12, the distance would be 5.
This signifies moving from 7— 3, 3—1, 1>2, 2—9, and 9— 12: a total of five steps. A
normal user would jump to a very different area when deciding to work on a different
task. An intruder, in contrast, would simply check the nearest file.

AMD = (12)

Frequency-based Feature Set. Comparing to the features proposed above, which are
the overall metrics relative to the time window, frequency-based features profile user’s
behavior based on defined events’ frequencies. The event is defined by feature function
m, by which intruders and normal users are likely to have different measures. We expect
the following 6 features functions to capture the differences in file access patierns.

File Visit Duration (FVD). For each new file accessed that was different than the file
that was previously accessed, FVD is measured as the total duration of the user’s access
time. Thus we have,

m(FVD) = (time(e;) — time(e;) + 1), (13)

where i < j, e; = e, ¢;_1 # ¢; and ¢j;1 # ¢;. The idea in designing this feature is
that we expect normal users have a bigger portion of the files that have long access time,
while the majority of the files accessed by intruders only being accessed briefly.

Change in Depth Per Second (CDPS). Given a one-second sequence of entries
€1, €2, ..., én, Teature CDPS measures the largest depth difference in the sequence as

m(CDPS) = (max(| path(e;)| — 1) — min(| path(e;}|| — 1)}, (14)

where || pathie;)|| — 1 is the entry’s path as we described in feature AD previously. Fol-
lowing a similar intuition with FVD, we expect intruders to be more active in searching
for valuable information. Consequently, large changes in depth occur more frequently
than in normal users.

Change in Files Per Minute (CFPM). We measure the number of file switches within
pairs of consecutive entries during the time window of one minute. Assume we have a
one-minute sequence ey, €3, .. ., &, CFPM is computed as in below

m(CFPM) = (|| file(e;) # file(eir1)l)- 15)

In this feature, we expect to see fewer file location switches within one minute for
normal users, who are performing their daily tasks.

Detecting Intruders by User File Access Patterns 327

Change in Files Per Second (CFPS). Following the similar idea of CFPM, we shorten
the time window to one second in CFPS. For antomated file system activities, such as
searching, batch operations, etc. it is common to generate numerous location switches
within one second. We skip the formula of CFPS here due to its similarity with CFPM.

Number of Times Each File Visited (NTFV). For each unique file in a sequence
€1.€2,...,¢e,, NTFV is computed by counting the number of visits for each unique
file. Note that we count consecutive entries that are accessing the same file as one
visit. To formally define NTFV, we first define the equivalence condition e; = e; if
file(e;) = file(e;) and file(e;) # file(e)V1 < i < k < j < n. Based on
the equivalence condition, the entries sequence can be partitioned into disjoint sets
G = {g1, 82, ..., gm}. For any equivalent classes set g, € G, we can compute NTFV
as in below

m(NTFV) = (|lg - (16)

Unlike feature ALT describes how long a user spends time on each file, NTFV focuses
on the access frequency of each file. We expect that normal users may visit some files
repeatedly, but intruders are less likely to do so.

Changes in Depth in Consecutive Entries (CDCE). For each pair of consecutive entries
that are different, we measure the depths difference between entries. Assume we have a
sequence of entries ey, €3, . .., &5, CDCE is computed by the following formula

m(CDCE) = (||| path(e)| — || path(eir) IVe; # €iy1. a7

We simplified the CDCE in Eq. 17 because it computes the difference between
depths.

With the 6 feature functions defined above, we have a sequence of measures
my, ma, ..., m, for a given block of entries. By applying a predefined threshold value
v, threshold-based frequency f(v) can be computed by the formula below

roy=TmEM G < <) (18)

Derived from the behavioral feature space F, we have presented the definitions of
16 behavioral features in order to distinguish the access patterns of the normal users and
the intruders. Next, we will evaluate the proposed features with the existing Windows
file system logs dataset for their effectiveness in detecting intruders.

3.3 Feature Evaluation

Most of the prior behavior modeling research was intended to solve the masquerader
detection problem. Among them, Camina et al. [6] focused on the Windows file system
and used the native Windows event logger to record data on each user over five to ten
weeks of working days. The normal logs were preprocessed to filter for actions on user
objects only, as opposed to system or application objects. The logs were then sanitized

328 S.-H. §. Huang et al.

for confidentiality. This dataset was named WUIL [6], stands for Windows-Users and
-Intruder simulations Logs, aimed to generate more faithful normal-attack patterns by
simulating data exfiltration attacks on the users’ machines. By the time we obtained the
dataset, the WUIL dataset has been updated to contain a set of normal activity from 76
users and three types of simulated attacker logs for each of the users. The users were
volunteers of varying ages, positions, and computer familiarity. Windows system users
were chosen because of their abundance. The attacks were restricted to five minutes
each, and each of the three attack logs was simulated with a different method.

While each dataset had its weaknesses, the WUIL dataset overcame many pitfalls
of its predecessors. It did not use the one-versus-the-others approach found in the SEA
[30] dataset. It had the attack and normal data collected from the same machine, which
is suitable for intrusion detection analysis. For these reasons, we decide to use the WUIL
dataset in this paper to evaluate our intrusion detection method. A few log entries from
the WUIL dataset are shown in Table 1. The dataset contains 6 columns of information:
entry number, date, clock time, seconds since 12:00 AM on January 1st, 2011 (S§S11),
depth, and path.

Table 1. Sample entries from the WUIL repository

Entry Date | Clock Time 8811 | Depth| Path

70 14/02/2012 12:50:59 p.m. | 35405459 5 0/1/2/7/15/12
71 14/02/2012 12:50:59 p.m. | 35405459 5 0/1/2/7/15/12
72 14/02/2012 12:51:01 p.m. | 35405461 4 o/1/277
73 14/02/2012 112:51:01 pm. | 35405461 4 onenang
74 14/02/2012 12:51:01 p.m. | 35405461 4 0/1/2/7112

The entry number is an indexing element and thus is not very informative for our
experiments. SS11 column provides an easy-to-use reckoning of time, such that both
date and clock time columns could be derived from $S11. For this reason, we refer to
SS811 for the timestamps of the log entries. Depth measures how many levels in the
directory of an accessed file’s path, e.g., 0/1/3/9/14 has a depth of four. Depth was used
in Camina et al.’s original experimentation [6] and was also used by the authors to
break user activity into tasks [9]. In this paper, we decide to use the path column for our
experiments because depth could be easily derived from the path.

Since the intruders’ logs were simulated as five minutes of the malicious activities, it
is important to have a comparable size in normal users’ data. To achieve this, the normal
log entries are split into distinct five-minute blocks, discarding those that aren’t suitably
active. A block is considered inactive if it contains a gap lasting more than two minutes.
To keep as many normal blocks as possible, the first entry after a gap lasts longer than
two minutes starts a new block. This could potentially result in a block that lasts merely
over three minutes. Therefore, we discarded the blocks that last four minutes or less
to ensure they span a comparable length of time with intruders. Reducing the entire
log entries down to these active time blocks throws out a sizable amount of normal
data, but this is necessary as the intruders’ logs included in the dataset are highly active

Detecting Intruders by User File Access Patterns 329

and time-restricted. If all of the inactive blocks had been kept, the normal data would
have been overwhelmed by inactivity, which introduces noise into our experiment. To
create a balanced dataset with both classes, we only use the first three five-minute blocks
extracted from the normal users. Consequently, the resulting experiment dataset contains
442 data blocks, in which 220 blocks are from normal users, the rest of them are from
intruders.

Table 2. Behavioral features ranked by permutation importance

Behavioral Feature l Expected l Importance .
| Nommal Intruder
Change in Files Per Second (CFPS) Low High 60.98
Change in Files Per Minute (CFPM) Low High 39.45
Average Consecutive Time (ACT) High Low 36.84
Entries Per Second (EPS) | Low High @ 3423
Change in Depth Per Second (CDPS) ' Low High 3396
Average Depth (AD) Low High 29.56
Average Movement Distance (AMD) . High Low | 2566
Fraction Unique Path (FUP) =0 =] 23.81
Average Location Time (ALT) High Low 21.99
Fraction Unique Location (FUL) A0 ~l | 2119
Average Consecntive Repetitions (ACR) High Low 21.05
Fraction Single Path (FSP) ~0]| 17.66
Fraction Multiway (FM) wl <l | 1625
File Visit Duration (FVD) | High Low @ 1608
Number of Times Each File Visited (NTFV) High Low 14.58
Change in Depth in Consecutive Entries (CDCE) | Low High | 11.14

We argue that intrusion detection is a binary classification problem between intruders
and normal users. To evaluate the effectiveness of the behavioral features in classification
models, we compute features’ permutation importance by the experiment dataset. The
permutation importance is an intuitive, model-agnostic method to estimate the feature
importance for classifier and regression models [1]. The procedure to compute permu-
tation importance is straightforward: we take a classification model that is fit to the
dataset, and measure its predictive accuracy as baseline performance; for each feature,
we then permute its values in the dataset, and compute the decreased performance after
permutation; the feature’s importance can be computed as the difference with the base-
line performance. If a feature with high importance value shows a large performance
decrease after permutation, the indicates a strong influence on the classification model,
while an itrelevant feature has the valne close to 0. In Table 2, we list all 16 behavioral

330 S.-H. §. Huang et al.

features with our intuitive expectations for their ranges and ranked by the permutation
importance with the Random Forest (RF) model.

For the classification problem of intrusion detection, Table 2 shows that our features
are all influential, but not all the features equally contribute to the classification perfor-
mance. The design similarity in CFPS and CFPM results in a high correlation coefficient
of (.76 between these two features. To our surprise, both of them are the top 2 important
features to the classification performance, with CFPS has far more superior importance
value than the rest of the group. In Sect. 4, we will select a subset of the features to train
the classifiers, and evaluate their performances in detecting intruders in the dataset.

4 Experiments and Results

Our experiments attempt to validate our working hypothesis, that the proposed fea-
tures can capture the behavior difference to detect intruders in the file system. In this
section, we select and use behavioral features with four classification algorithms, namely
Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM) and Neural
Network (NN) with the dataset extracted from the WUIL repository. We evaluate their
performances by a metric that is customized for the intrusion detection problem.

4.1 Performance Measure

One way to analyze the classification performance is by plotting the classifier’s Receiver
Operating Characteristic (ROC) curves [25]. The ROC curve evaluates the classification
performance in a two-dimensional space. It can be understood as the relation of the ratios
of the correctly identified positive samples (true positive rate, TPR) and the incorrectly
classified negative samples (false positive rate, FPR) at various threshold settings. One
of the frequently used metrics extracted from the ROC curve is the value of area under
the entire curve, commonly denoted as AUC. With a correctly chosen threshold, a two-
class classifier has an AUC value of 1 achieves perfect accuracy, and the classifier that
predicts the class at random has an AUC value of 0.5.

In general, acquiring a classifier with large AUC value is desirable, one of the major
drawbacks of relying on the AUC metric, however, is that it surnmarizes the entire curve,
including regions that may not be relevant to the security problems (e.g. the regions with
high FPR) [23]. Comparing to other classification applications, IDS has much lower
tolerance on the false alarm. Dealing with false alarm is not only extremely time- and
labor-intensive, but also decreases the chance of a system administrator to capture the
real alarms fired by the intruders, which makes the system essentially useless. To remedy
this limitation, the Partial Area Under the Curve (pAUC) [18] can be used as a summary
index of detecting accuracy over a range of FPR that is of security interest, i.e.

pAUC(n) = fg’ ROC()dt, 19

where [0, %] is the range of interest that needs to be specified before using the pAUC
metric. In our experiments, we particularly focus on reducing FPR instead of treating
TPR and FPR as equally important. In the training process of our experiments, we specify

Detecting Intruders by User File Access Patterns 331

to = 0.05, which means we train and optimize the classifiers by maximizing the pAUC
value within the range of 0-5% in FPR.

Although the pAUC value provides an overall evaluation of the classification per-
formance within the range of interest, we need a set of metrics to describe a classifier’s
performance provided a chosen classification threshold. Accuracy is not an ideal indi-
cator because, in a real organization, the number of normal users is several orders of
magnitude greater than the intruders. Hence, all the accuracy values are close to 1 and
these results prevent capturing the true effectiveness of a classifier. On the contrary, the
F1 score combines precision and recall into a single value, in which the precision indi-
cates how much a given approach is likely to previde a correct result, and recall is used
to measure the detection rate. F1 score reaches its best value at 1 with perfect precision
and recall, and the worst possible value at 0.

4.2 Feature Selection

Whereas permutation importance is generally considered as an efficient technique that
works well in practice, we should not select the features by directly referring to the
ranking. In fact, one drawback of the permutation importance is that the importance of
correlated features may be overestimated [32]. To reduce the effect of the correlation on
the importance measure, e.g. highly correlated features CFPS and CFPM, the Recursive
Feature Elimination (RFE) algorithm should be used to make the feature selection [14].
RFE algorithm is inspired by [16] and implemented in this paper with the random
forest algorithm. In RFE, features are eliminated iteratively to examine the classifier’s
performance change. The algorithm is recursive as it updates the ranking based on
features’ importance after each iteration, then the least important feature is eliminated
until no further features remain [14]. Applying the RFE in our experiments eliminated
feature CDCE, and achieved the best classification performance with the remaining 15
features. Therefore, we use this 15-feature dataset to train and evaluate the classifiers in
the rest of this section.

4.3 Experimental Settings

All our experiments in this paper are conducted with R. For all 442 samples in the
dataset, 80% of them are for training and 20% are reserved for testing. We employ
the 10-fold cross-validation approach, enabled by R’s caret package, to train the clas-
sifiers. In the training process, parameters are chosen by maximizing the classifier’s
pAUC(0.05) value. Then the performance is evaluated by applying the classifiers to the
testing dataset. DT is based on the decision tree algorithm [5, 27, 29]. In this experi-
ment, we used the rparf package of R to implement the recursive partitioning procedure
in growing the decision tree. Using the rpart package allows the training function to
use Gini Index-based measurement [3] in performing recursive partitioning for mod-
eling. Comparing to DT, an RF classifier contains many decision trees, each of which
is constructed by instances with randomly sampled features and produces a response
when a set of predictor values are given as input [10, 15]. We construct the RF classi-
fier by using R’s randomforest package. Existing researches indicate that SVM-based
algorithms show noticeable performance gains in anomaly detection system [13, 28,

332 S.-H. §. Huang et al.

37] over other machine leaming algorithms. In cur experiments, we evaluate the SVM
classifier by R’s package el07] with different kernels and report the best performance
results from the linear kernel. In the NN classifier, the outcome values come from the
input data passing through the multiple successive neural network layers in between.
Each layer learns a specific feature of input data and contributes to the final decision.
We select a three-layer neural network with the backpropagation algorithm, in which
the hyperparameters of the network are optimized by the grid search process to maxi-
mize the pAUC(0.05) value. We implemented the NN classifier by the mxnet package
in R, which is a powerful tool to construct and customize the state-of-art deep learning
models.

4.4 Experimental Results

Figure 1 plots four ROC curves by applying the classifiers to the testing dataset. We
removed the data points that have TPR lower than 70% on the y-axis from the graph,
to reduce the redundancy and improve the readability. The x-axis denotes the FPR in
percentage, is in the logarithm scale to set the focus on the range of interest of 0-5%.

True Positive Rate (%)

— SVM: 0.9428

-—- Random Forest: 0.9375
-—- Decision Tree: 0.9306

Neural Network: 0.9269

False Positive Rate (%) with Log Scale

Fig. 1. Comparison of the ROC curves with partial AUC (<5%).

As we can see in Fig. 1, classifiers perform differently by varying FPR on the x-axis.
The RF has a higher true positive rate than other classifiers with higher FPR, however,
SVM has the edge if only 2% FPR or less is allowed. In Fig. 1, pAUC(0.05) value is
computed by measuring the size of the region under the ROC curve with FPR smaller or
equal than 5%. Although the NN classifier has the lowest pAUC(0.05) value of 0.9269,
it reaches the highest true positive rate at the 3% FPR mark. In order to compare four

Detecting Intruders by User File Access Patterns 333

classifiers with the same FPR upper bound, we summarize their best performances
respect to 5%, 3% and 1% FPR.

Table 3. Performance of four classifiers with different FPR tolerance values
DT RF svM | NN
5% 3% 1% 5% 3% 1% 5% 3% 1% 5% 3% 1%
Precision | 1.000 1.000 1.000 0952 0.975 1.000 0952 1.000 1.000 0976 0.976 1.000

Recall |0.864 0.864 0.864 0.909 0.88¢ 0.864 0.909 0.886 0.886 0.909 0.909 | 0.795
F1 Score | 0.927 0.927 | 0.927 0.930 0.929 0.927 0.930 0.940 0.540 0.941 0.941 0.886

In Table 3, with every FPR upper bound value evaluated, we list the precision, recall
and F1 score for each classifier. We notice that DT retains the same performance for
all three upper bound values. This is due to its sparse threshold data points on the ROC
curve, and the best performance is achieved at the point where FPR is 0. For the FPR
upper bound values of 3% and 5%, the NN classifier performs the best with the highest
F1 scores of 0.941. However, SVM surpasses all other classifiers in the F1 score with
a 1% FPR upper bound value. These findings from Table 3 are coherent with what we
observed in Fig. 1, and validate our hypothesis that the proposed behavioral features are
effective in discovering different behaviors to detect intruders in the dataset.

5 Conclusion

In this paper, we hypothesize that intruders have different cyber behavior patterns com-
pared to that of the normal users in a system, which can then be used to detect intrusions.
Instead of focusing on local and static features as in existing research, we described a
behavior-based model that can be used to detect intruders based on the user file access
patterns. The result of our experiments is very encouraging. It supported our hypothesis
that normal user behavior in a file system is significantly different from the intruder’s, and
our proposed behavioral-based model is effective in detecting such behavior deviation
with an F1 score of 0.94 and false positive rate upper bound of 3%.

Future work will focus on exploring other possible behavioral features in order to
further improve performance. We plan to explore more temporal and spatial features of
the time series, including the access order of the file systerm objects, elapse time before
revisiting the same file, etc. Although our method shows a high detection rate with the
dataset extracted from the WUIL repository, we are interested in validating this approach
with other types of the dataset to further validate this work.

Acknowledgment. We would like to thank Raiil Monroy for creating and sharing the WUIL
dataset [6]. This work was supported in part by the National Science Foundation (NSF) under
grants NSF-1659755, NSF-1433817, and NSF-1356705.

334

S.-H. §. Huang et al.

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

Altmann, A, Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature
importance measure. Bioinformatics 26(10), 1340-1347 (2010). ISSN 1460-2059, 1367—
4803, p. 395

. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical report, James

P. Anderson Company, Fort Washington, Pennsylvania (1980)

. Atkinson, E.I., Therneau, TM.: An Introduction to Recursive Partitioning Using the Rpart

Routines. Mayo Foundation, Rochester (2000)

. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers using decoy

documents. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2005. LNICST, vol.
19, pp. 51-70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05284-2_4

. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.

‘Wadsworth & Brooks, Monterey (1984)

. Camifia, I.B., Herndndez-Gracidas, C., Monroy, R., Trejo, L.: The Windows-users and-

intruder simulations logs dataset (WUIL): an experimental framework for masquerade
detection mechanisms. Expert Syst. Appl. 41, 919-930 (2014)

. Camifia, J.B., Monroy, R., Trejo, L.A., Medina-Perez, M.A.: Temporal and spatial locality:

an abstraction for masquerade detection. IEEE Trans. Inf. Forensics Secur. 11(9), 2036-2051
(2016)

. Camifia, B., Monroy, R., Trejo, L.A., Sdnchez, E.: Towards building a masquerade detection

method based on user file system navigation. In: Batyrshin, I., Sidorov, G. (eds_) MECAI 2011.
LNCS (LNALI), vol. 7094, pp. 174-186. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25324-9_15

. Camifia, J.B., Rodriguez, J., Monroy, R.: Towards a masquerade detection system based on

user’s tasks. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688,
pp. 447463, Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11379-1_22

Chen, Y.W.,, Lin, C.J.: Combining SVMs with various feature selection strategies. In: Guyon,
L, Nikravesh, M., Gunn, S., Zadch, L.A. (eds.) Feature Extraction. STUDFUZZ, vol. 207,
PP 315-324. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-35488-8_13
Denning, D E.: An intrusion-detection model. [EEE Trans. Softw. Eng. 13(SE-2), 222-232
(1987)

D’haeseleer, P., Forrest, 8., Helman, P.: An immunological approach to change detection:
algorithms, analysis, and implications. In: IEEE Symposium on Security and Privacy (1996)
Eskin, E., Amold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsu-
pervised anomaly detection. In: Barbar4, D., Jajodia, S. (eds.) Applications of Data Mining
in Computer Security. ADIS, vol. 6, pp. 77-101. Springer, Boston, MA (2002). https://doi.
org/10.1007/978-1-4615-0953-0_4

Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance in random
forests. Stat. Comput. 27(3), 659678 (2017)

Gupta, B., Rawat, A., Jain, A., Arcra, A., Dhami, N.: Analysis of various decision tree
algorithms for classification in data mining. Int. J. Comput. Appl. 163(8), 15-19 (2017)
Guyon, L., Weston, J., Barnhill, 8., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46, 389-422 (2002)

Javitz, H.S., Valdes, A_: The SRI IDES statistical anomaly detector. In: Proceedings of IEEE
Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA,
PP- 316-326 (1991)

Jiang, Y., Metz, C.E., Nishikawa, R.M.: A receiver operating characteristic partial area index
for highly sensitive diagnostic tests. Radiology 201(3), 745-750 (1996)

19.

20.

21.

28

27.
28.

29.

30.

31.

32.

3.

34.

3s.

36.

37.

Detecting Intruders by User File Access Patterns 335

Killourhy, K., Maxion, R.: Why did my detector do That?! In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 256-276. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15512-3_14

Koemer, B.L: Inside the cyberattack that shocked the US government, October 2016.
https:/fwww.wired.com/2016/10/inside-cyberattack-shocked-us-government/. Accessed 21
Mar 2018

Kuo, Y., Huang, S.5.: Detecting stepping-stone connection using association rule mining. In:
Proceedings of International Conference on Availability, Reliability, and Security, Fukuoka,
Pp- 90-97 (2009)

. Lunt, T.F.: A survey of intrusion detection techniques. Comput. Secur. 12, 405-418 (1993)
. Ma, H., Bandos, A.IL, Gur, D.: On the use of partial area under the ROC curve for compariscn

of two diagnostic tests. Biometrical I. 57, 304-320 (2015)

. Newman, L.H.: How to protect yoursclf from that massive Equifax breach, Septem-

ber 2017. https:/fwww.wired.com/story/how-to-protect-yourself-from-that-massive-equifax-
breach/. Accessed 21 Mar 2018 (2017)

. Provost, F,, Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing

induction algorithms. In: Proceedings of the Fifteenth International Conference on Machine
Learning, pp. 445-453 (1998)

. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In: Proceedings of

ACM Workshop on Visualization and Data Mining Computer Security (VizSEC/DMSEC),
pp. 1-8 (2004)

Quinlan, J.R.: Introduction of decision trees. Mach. Learn. 1(1), 81-106 (1986)

Salem, M.B., Stolfo, 8.J.: Modeling user search behavior for masquerade detection. In: Som-
mer, R., Balzarotti, D., Maier, G. (eds.) RAID 201 1. LNCS, vol. 6961, pp. 181-200. Springer,
Heidelberg (2011). https://doi.org/1(.1007/978-3-642-23644-0_10

Salzberg, S.L.: C4.5: programs for machine learning by J. Ross Quinlan. Morgan Kaufmann
Publishers, Inc., 1993. Mach. Learn. 16(3), 235-240 (1994)

Schonlaw, M., DuMouchel, W., Ju, W-H., Karr, A.E, Theus, M., Vardi, Y.: Computer
intrusion: detecting masquerades. Statistic. Science 16(1), 58-74 (2001)

Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly detection in computer
security and an application to file system accesses. In: Hacid, M.-S., Murray, N.V., Ra§, ZW.,
Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 14-28. Springer, Heidelberg
(2005). https://doi.org/10.1007/11425274_2

Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable
importance for random forests. BMC Bioinf. 9(1), 307 (2008)

Wu, H., Huang, S.5.: User behavior analysis in masquerade detection using principal compo-
nent analysis. In: Proceedings of 8th International Conference on Intelligent Systems Design
and Applications (ISDA), pp. 201-206 (2008)

Yang, J., Huang, 8.8.: Mining TCP/IP packets to detect stepping-stone intrusion. Comput.
Secur. 26(7), 479-484 (2007)

Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files for intrusion detection.
In: Proceedings of the 5th Annual IEBRE SMC Information Assurance Workshop (IAW 2004),
pp- 116-122 (2004)

Zanero, S.: Behavioral intrusion detection. In: Aykanat, C., Dayar, T., Korpeoglu, 1. (eds.)
ISCIS 2004. LNCS, vol. 3280, pp. 657-666. Springer, Heidelberg (2004). hitps://doi.org/10.
1007/978-3-540-30182-0_66

Zhang, F., Wang, Y., Wang, H.: Gradient correlation: are ensemble classifiers more robust
against evasion attacks in practical settings? In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y,,
Zhou, R. (eds.) WISE 2018. LNCS, vol. 11233, pp. 96-110. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02922-7_7

