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Abstract. Our society is facing a growing threat from data breaches where confi­
dential information is stolen from computer servers. In order to steal data, hackers 
must first gain entry into the targeted systems. Commercial off-the-shelf intru­
sion detection systems are unable to defend against the intruders effectively. This 
research uses cyber behavior analytics to study and report how anomalies compare 
to normal behavior. In this paper, we present methods based on machine learning 
algorithms to detect intruders based on the file access patterns within a user file 
directory. We proposed a set of behavioral features of the user's file access pat­
terns in a file system. We validate the effectiveness of the features by conducting 
experiments on an existing file system dataset with four classification algorithms. 
To limit the false alarms, we trained and tested the classifiers by optimizing the 
performance within the lower range of the false positive rate. The results from our 
experiments show that our approach was able to detect intruders with a 0.94 Fl 
score and false positive rate of less than 3%. 

Keywords: Intrusion detection · Cybersecurity · Cyber behavior analytics · File 
accessing pattern · Machine learning 

1 Introduction 

One purpose of computer security is to limit information access to a certain autho­
rized group of people. Although current computer security methodology keeps out some 
intruders, it does not deter the most persistent ones. Through backdoors, brute force, or 
with stolen credentials, intruders can gain access to valuable data and abilities normally 
reserved for trusted individuals. Once inside, intruders can create a multitude of prob­
lems. They could install malware, deface websites or delete documents. These actions 
would visibly affect the system, requiring damage control or likely an audit. In 2014, the 
U.S. Office of Personnel Management [20] lost the personal information of millions of 
people. These individuals were put at risk of blackmail or identity theft. More recently, 
Equifax disclosed that a massive data breach in 2017 may have impacted 143 million 
consumers, which is nearly 44% of the US population. In this incident, attackers got 
their hands on names, SSN, birth date, addresses, some driver license numbers, and 
about 209,000 credit card numbers, causing the impact of this breach to last for years 
to come [24]. In both instances, data theft put many people at risk and damaged the 
reputations of the organizations stolen from. For these reasons, designing an effective 
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intrusion detection system (IDS) that is capable of quickly raising alarms to security 
breaches is extremely important. 

However, many of the existing IDSs do not provide enough protection as we experi­
ence an increasing number of data breaches. Some of the existing IDSs are adopting the 
misuse-based detecting approach, such as network IDSs Snort and Bro [36]. They rely 
on pre-defined signatures to identify known attacks. The main problem with this app­
roach is that it fails to properly detect unknown threats because the high number of new 
vulnerabilities that are discovered every day are not available to the experts for analysis 
and inclusion in the signature database. Additionally, detecting attacks based on prior 
knowledge often fails to develop effective signatures as there are usually numerous ways 
to exploit the same vulnerability [36]. As a result, the misuse-based approach raises too 
many false alarms by including as many attack signatures as possible, while some attacks 
can easily evade detection by a slight variance. Additionally, more and more attacks are 
launched by insiders who are abusing their privileges. The misuse-based IDS cannot 
detect the attack from an insider, because the intruder can deliberately avoid attacking 
against vulnerabilities that have been previously exploited. 

In this paper, we hypothesize that the deviation of the intruder's cyber behavior from 
the normal one can be used to detect attempted malicious exploitations. For example, 
an intruder possessing valid admin credentials is not going to alert existing security 
systems while logging into the system. Since the objective of the intruders is to scan 
the data, identify the information of value to them, and quickly exfiltrate the data, the 
behavior of the intruders will be different from that of the normal users. Differences in 
intruders' behavior caused by their malicious nature leave traces that can be used for 
detection. Desiring the ability to detect intruders based on their behavior, we propose an 
approach that describes the user's behavior through effective features. The objective of 
this research is to use the differences in the behavioral features in detecting intruders. 

As the computer system has been more and more involved in activities in our lives, 
the file becomes an essential carrier of important and sensitive information, which is 
often the ultimate target of intruders. Since the file system is the permanent place to 
store all the files of the host, any malicious execution intended to steal information or 
damage a host will eventually set its sight upon the file system [31]. Therefore, in this 
paper, we propose a new intrusion detection approach that uses behavioral features to 
detect intruders in the file system. 

The remainder of this paper is organized as follows. In Sect. 2, we will discuss the 
existing research on behavior modeling and intrusion detection. Section 3 will expand 
on presenting and evaluating our behavioral features in modeling user behavior in the 
file system. In Sect. 4 , we will build multiple classifiers with selected features to validate 
our hypothesis that the user's behavioral difference is sufficient to identify the intruders. 
Lastly, we will conclude our paper with a summary of our contribution and briefly 
mention how our approach may be able to further improve intrusion detection in Sect. 5. 

2 Related Work 

In one of the earliest researches about IDS, Anderson [2] described that audit trails 
contain valuable information and could be utilized for the purpose of misuse detection 
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by identifying the anomaly. The proposed misuse-based detecting approach focuses on 
modeling what is normal, instead of what is anomalous. Since then, we have seen research 
[12, 22] following this direction with success to a certain extent. But the misuse-based 
approach is prone to generate many false alarms. Additionally, it has always been a 
difficult task for researchers to know what to monitor in the system [36]. In an attempt 
to model normal behavior, Denning [11] presented a host-based IDS that is capable 
of detecting anomaly by computing statistics (login frequency, password fails, etc.) of 
system events. Javitz et al. [17] later developed a system called IDES, which issues alerts 
by comparing the new event's parameters to the thresholds established in the statistical 
models built on past events, such as a set number of mean values, standard deviations, 
etc. 

In comparison to the host-based IDS, researchers have also studied network-based 
IDS that detects anomalies by monitoring network packets. Based on existing research 
[34], many intruders route their SSH connections through a series of computers to make 
backtracing more difficult. This results in a slower response time, which can be used 
in stepping-stone intrusion detection. Yang et al. [34] used a clustering-partitioning 
algorithm to calculate round-trip times of send/echo packet pairs in the network. In 
doing so they could successfully determine if an intruder was routing their traffic through 
multiple hosts. Similarly, Kuo et al. [21] proposed an algorithm based on association 
rule mining to detect stepping-stone SSH attacks. These works focused on detecting 
intruders by monitoring network activities and shown robustness even under certain 
types of evasion techniques. 

There is relatively little work has been completed in detecting intrusion to the file 
system. Stolfo et al. [31] developed a File Wrapper Anomaly Detector (FWRAP) which 
monitors the file system and extracted static features, such as user ID, current directory, 
file name, etc. from the records. Then Probabilistic Anomaly Detection (PAD) algorithm 
was applied to detect abnormal processes. However, this approach did not utilize dynamic 
features and occupied system memory with a large number of files. Other file system 
intrusion detection methods, such as honeyfiles [35) and decoy documents [4], had 
proven to be effective under certain assumptions. But there are many limitations, for 
example, it is expensive to deploy bait files in every user's computer, and the false 
alarms are overwhelming for the users who are searching intensively in their daily tasks. 

We realize that many related studies to our work are attempting to solve masquerader 
detection problems. Unlike intrusion attack, masquerade attack is a class of attacks in 
which a user of a system poses as, or assumes the identity of another legitimate user 
[28]. To detect a masquerader by behavior, existing research tried to model user's cyber 
behavior based on various information, for example, operating system command [30, 
33), mouse usage [26), keyboard usage [19), etc. As Schonlau et al. [30] being the 
pioneer to design a dataset in an attempt to detect masqueraders, their dataset (SEA) 
recorded a series of UNIX commands for each user. Although this dataset was widely 
utilized, it had the limitations of being restricted to UNIX commands and a lack of real 
"intrusion" behavior. Recently, Camina et al. [7 , 8] focused on file system objects and 
proposed a new feature abstraction model called locality to characterize users and detect 
masqueraders. Compared to the action-based approach, their locality-based features 
showed better performance in capturing user behavior for masquerader detection. In 
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summary, although the research in modeling user's cyber behavior is prolific, there 
is very limited research has been conducted in the behavior-based intrusion detection 
method. 

3 Modeling User Behavior in File System 

Since the file system is often the endpoint of the intrusion chain, it is important to 
provide protection to it Therefore, we set the focus of this paper on detecting malicious 
behavior in the file system. Our working hypothesis is that the intruders behave differently 
compared to normal users due to their malicious nature. To capture such behavioral 
differences, we need to define features to model users' behavior in the file system. In 
this section, we will present in detail how our behavioral features are designed and 
computed based on the file access logs. We will then evaluate their effectiveness in 
detecting intruders in a file system dataset extracted from the public repository. 

3.1 Behavioral Feature Space in File Access 

To profile the user's behavior in the file system, one should continuously monitor the 
events generated by the system. These events are usually triggered by the OS, applications 
or users' actions, containing file system objects access history. Modern system logging 
tools, such as audit [6] in the Windows system, are able to record not only the file 
system objects that have been accessed, e.g. files and directories, but also the timing 
information for each record. Without loss of generality, we assume the logs recorded 
by the system during a time span t can be denoted by a segment of consecutive access 
entries s = ei , ez, ... , en. Each entry ei , (1 ~ i ~ n) in s describes an access record in 
the file system with a timestamp. Note that we partition the logs into segments based 
on the time window of length t because it is not feasible to profile behavior by a single 
access entry. The behavioral feature space in the file system can be denoted as F, from 
which another higher dimensional feature space F' can be mapped by a function <P 

<PCF) ~ F'. (1) 

A user's behavior in the file system can be viewed as how the file system objects 
are accessed during a period of time. Thus, we consider temporal and spatial features 
are essential in deriving other feature spaces by function¢. We now propose three basic 
temporal- and spatial-based features in the behavioral feature space F. 

- time(e; ): Timestamp in seconds since the system epoch of an entry ei logged by the 
system. 

- file ( e;): The file accessed by entry ei. In the file system log, it is typically represented 
by the file ID or name of the accessed file. 

- path(e;): Full access path of the file identified by file(ei)· In a tree-structured file 
system, path(ei) provides spatial information for the entry ei. 

We expect other behavioral features can be mapped from the feature space Fin order 
to model various behaviors in the file system. 
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3.2 File Access Behavioral Features 

In this section, we introduce two sets of behavioral features that can be mapped from 
F to detect intruders in the file system. Recall that given a sequence of events s = 
e1,e2, ... ,en during a time window of length t, let 11•11 = n be the size of the file 
system log segment. The behavioral feature space F can be defined as 

F = {time(e;), file(e;), path(e;)). (2) 

Non-frequency-Based Feature Set. These features derived from F give the overall 
measures of the users within a given time window of length t. Note that the features 
in this set are intuitively designed ain!ing to identify the difference in the intruder's 
behavior from the normal ones. 

Entries Per Second (EPS ). BPS is the number oflog entries within a one-second period. 
We define 

EPS= llsll 
time(en) - time(e1)' 

(3) 

where lls II denotes the size of the log segment, which is the number of recorded entries 
of log within the segment. EPS measures how quickly entries are created, which gives 
an idea of how quickly files are being accessed. A normal user would assumedly spend 
ample time on a single file, while an intruder would move through many files quickly. 

Fraction Unique Path (FUP ). This feature shows how many of the paths in the sequence 
are distinct, measures the diversity of the accessed file. FUP is defined as 

FU p = ll{path(e;)}ll 
11•11 . 

(4) 

A normal user would likely use the same paths repeatedly, but an intruder would rarely 
use the same path twice. 

Fraction Unique Lncation (FUL). This feature more accurately represents repeated use 
of the same file. We define FUL as 

FUL = ll{file(e;)Jll 
11•11 . 

(5) 

Different files necessarily have different paths, but two paths may end up in the same 
file because of the shortcuts. Again, a normal user would be expected to end up at the 
same file often, but an intruder would access many different files. 

Fraction Multiway (FM). This metric combines FUP and FUL. The number of unique 
files is necessarily smaller than the number of unique paths, thus we have FM ~ 1. The 
smaller FM is, the more often different chosen paths ended at the same location. FM is 
defined as 

FM= ll{file(e;)}ll. 
ll{path(e;)lll 

(6) 

A normal user should have a favorite way of getting to a known file. An intruder 
doing an uninformed search would find the same file in every path it can be found. 
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Fraction Single Path (FSP). FSP measures how many of the paths were only used once 
in the given sequence of entries. We have FSP as 

II{•;: path(e;) f= path(ej)Vi f= i}ll 
FSP= . 

ll{path(e;)}ll 
(7) 

Intruders don't need to repeatedly revisit files. In contrast, a normal nser would likely 
use the same path multiple times. 

Average Location Time (ALT). ALT averages the difference in time between the first and 
last entry of each unique location in the given sequence of entries. Let L = {file(e;)}, 
fork E L, letk first =ex: file(e,) = k f= file(ey )Vy < x, andk1ast = e,: file(e,) = 
k f= file(e, )Vy > z. Then, 

LL time(k10 ,,) - time(kJirot) 
ALT= llLll . (8) 

A normal user might return to a file previously used a few minutes later, while an 
intruder would avoid looking at the same file over time. 

Average Consecutive Time (ACT). ACT measures how long on average a user is working 
on the same file. The denominator reduces sequence s by removing entries whose path 
is the same as the previous entry. ACT is defined as 

ACT = time(e.) - time(e1) + 1 
ll{e;:path(e;) f= path(e1-1)lll 

(9) 

A normal user would be expected to spend longer on a single file than an intruder 
would. 

Average Consecutive Repetitions (ACR). Instead of looking at how much time a user 
spends before changing files, ACR looks at how many entries are created in succession 
before moving. Therefore, 

ACR= llsll 
ll{e;:path(e;) f= path(e1-1)lll 

(10) 

A user repeatedly saving their work would create multiple consecutive entries, while 
an intruder should do very few actions on a single file. 

Average Depth (AD). AD provides the average number of depths ins. We have AD as 

L;,.(llpath(e;)ll - 1) 
AD=-~·------

llsll ' 
(11) 

where II path ( e;) II - 1 is the numberof directories in an entry's path, which is equivalent 
to the depth. A normal user would likely use shortcuts or put their files in easy to access 
locations, while an intruder doing a depth-first search would reach the deepest parts of 
a file system. 
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Average Movement Distance (AMD ). AMO calculates how many steps the user moves 
from one entry to its next on average. We define AMO as 

L,. llpath(e;) "I path(e;-1) II 
AMD= ' llsll ' (12) 

where the numerator calculates the distance between two entries. It does so by summing 
how many different directories or locations there are between two consecutive entries. 
For example, if event entry 01113n is followed by 0/1/219/12, the distance would be 5. 
This signifies moving from 7~3. 3~1. 1~2. 2~9. and 9~12: a total of five steps. A 
normal user would jump to a very different area when deciding to work on a different 
task. An intruder, in contrast, would simply check the nearest file. 

Frequency-based Feature Set. Comparing to the features proposed above, which are 
the overall metrics relative to the time window, frequency-based features profile user's 
behavior based on defined events' frequencies. The event is defined by feature function 
m, by which intruders and normal users are likely to have different measures. We expect 
the following 6 features functions to capture the differences in file access patterns. 

File Wsit Duration (FVD ). For each new file accessed that was different than the file 
that was previously accessed, FVD is measured as the total duration of the user's access 
time. Thus we have, 

m(FVD) = (time(ei)-time(e;) + 1), (13) 

where i < j, e; = ei, e;-1 "I e; and ei+I "I ei. The idea in designing this feature is 
that we expect normal users have a bigger portion of the files that have long access time, 
while the majority of the files accessed by intruders only being accessed briefly. 

Change in Depth Per Second (CDPS). Given a one-second sequence of entries 
e1, e1, ... , en, feature COPS measures the largest depth difference in the sequence as 

m(CDPS) = (max(llpath(e;)ll - 1) - min(llpath(e;)ll - 1)), (14) 

where llpath(e;) II - 1 is the entry's path as we described in feature AD previously. Fol­
lowing a similar intuition with FVD, we expect intruders to be more active in searching 
for valuable information. Consequently, large changes in depth occur more frequently 
than in normal users. 

Change in Files Per Minute (CFPM). We measure the number of file switches within 
pairs of consecutive entries during the time window of one minute. Assume we have a 
one-minute sequence ei, e2, ... , en, CFPM is computed as in below 

m(CFPM) = (llfile(e;) "I file(e;+1)ll). (15) 

In this feature, we expect to see fewer file location switches within one minute for 
normal users, who are performing their daily tasks. 
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Change in Files Per Second (CFPS). Following the similar idea of CFPM, we shorten 
the time window to one second in CFPS. For automated file system activities, such as 
searching, batch operations, etc. it is common to generate numerous location switches 
within one second. We skip the formula of CFPS here due to its similarity with CFPM. 

Number of 'limes Each File Visited (NTFV). For each unique file in a sequence 
ei, e2, ... , en, NTFV is computed by counting the number of visits for each unique 
file. Note that we count consecutive entries that are accessing the same file as one 
visit. To formally define NTFV, we first define the equivalence condition ei = e j if 
file(ei) = file(ei) and file(ei) 'f. file(ek..)Vl :::; i < k < j :::; n. Based on 
the equivalence condition, the entries sequence can be partitioned into disjoint sets 
G = {g1, g2, ... , gm}. For any equivalent classes set gz E G, we can compute NTFV 
as in below 

m(NT FV) = (llgzll). (16) 

Unlike feature ALT describes how long a user spends time on each file, NTFV focuses 
on the access frequency of each file. We expect that normal users may visit some files 
repeatedly, but intruders are less likely to do so. 

Changes in Depth in Consecutive Entries ( CDCE). For each pair of consecutive entries 
that are different, we measure the depths difference between entries. Assume we have a 
sequence of entries e1, e2, ... , en. CDCE is computed by the following formula 

m(CDCE) = (lllpath(ei)ll - llpath(ei+1)lll)Vei '!- ei+l· (17) 

We simplified the CDCE in Eq. 17 because it computes the difference between 
depths. 

With the 6 feature functions defined above, we have a sequence of measures 
m 1, m2, ..• , mn for a given block of entries. By applying a predefined threshold value 
v, threshold-based frequency f (v) can be computed by the formula below 

f(v) = ll{ilmi ~ v}ll, (l:::; i:::; n). (18) 
n 

Derived from the behavioral feature space F, we have presented the definitions of 
16 behavioral features in order to distinguish the access patterns of the normal users and 
the intruders. Next, we will evaluate the proposed features with the existing Wmdows 
file system logs dataset for their effectiveness in detecting intruders. 

3.3 Feature Evaluation 

Most of the prior behavior modeling research was intended to solve the masquerader 
detection problem. Among them, Camina et al. [6] focused on the Windows file system 
and used the native Wmdows event logger to record data on each user over five to ten 
weeks of working days. The normal logs were preprocessed to filter for actions on user 
objects only, as opposed to system or application objects. The logs were then sanitized 
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for confidentiality. This dataset was named WUIL [6], stands for Wmdows-Users and 
-Intruder simulations Logs, aimed to generate more faithful normal-attack patterns by 
simulating data exfiltration attacks on the users' machines. By the time we obtained the 
dataset, the WUIL dataset has been updated to contain a set of normal activity from 76 
users and three types of simulated attacker logs for each of the users. The users were 
volunteers of varying ages, positions, and computer familiarity. Wmdows system users 
were chosen because of their abundance. The attacks were restricted to five minutes 
each, and each of the three attack logs was simulated with a different method. 

While each dataset had its weaknesses, the WUIL dataset overcame many pitfalls 
of its predecessors. It did not use the one-versus-the-others approach found in the SEA 
[30] dataset It had the attack and normal data collected from the same machine, which 
is suitable for intrusion detection analysis. For these reasons, we decide to use the WUIL 
dataset in this paper to evaluate our intrusion detection method. A few log entries from 
the WUIL dataset are shown in Table 1. The dataset contains 6 columns of information: 
entry number, date, clock time, seconds since 12:00 AM on January 1st, 2011 (SSll), 
depth, and path. 

Table 1. Sample entries from the WUIL repository 

Entry Date Clock Time SSll Depth Path 

70 14/0212012 12:50:59 p.m. 35405459 5 O/lfl17 /15/12 

71 14/02/2012 12:50:59 p.m. 35405459 5 O/lfl17 /15/12 

72 14/02/2012 12:51:01 p.m. 35405461 4 O/lfl17/17 

73 14/0212012 12:51:01 p.m. 35405461 4 0/1fl17/17 

74 14/0212012 12:51:01 p.m. 35405461 4 0/1fl17/12 

The entry number is an indexing element and thus is not very informative for our 
experiments. SSll column provides an easy-to-use reckoning of time, such that both 
date and clock time columns could be derived from SS 11. For this reason, we refer to 
SS 11 for the timestamps of the log entries. Depth measures how many levels in the 
directory of an accessed file's path, e.g., 0/1/3/9114 has a depth of four. Depth was used 
in Camina et al.'s original experimentation [6] and was also used by the authors to 
break user activity into tasks [9]. In this paper, we decide to use the path column for our 
experiments because depth could be easily derived from the path. 

Since the intruders' logs were simulated as five minutes of the malicious activities, it 
is important to have a comparable size in normal users' data. To achieve this, the normal 
log entries are split into distinct five-minute blocks, discarding those that aren't suitably 
active. A block is considered inactive if it contains a gap lasting more than two minutes. 
To keep as many normal blocks as possible, the first entry after a gap lasts longer than 
two minutes starts a new block. This could potentially result in a block that lasts merely 
over three minutes. Therefore, we discarded the blocks that last four minutes or less 
to ensure they span a comparable length of time with intruders. Reducing the entire 
log entries down to these active time blocks throws out a sizable amount of normal 
data, but this is necessary as the intruders' logs included in the dataset are highly active 
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and time-restricted. If all of the inactive blocks had been kept, the normal data would 
have been overwhelmed by inactivity, which introduces noise into our experiment. To 
create a balanced dataset with both classes, we only use the first three five-minute blocks 
extracted from the normal users. Consequently, the resulting experiment dataset contains 
442 data blocks, in which 220 blocks are from normal users, the rest of them are from 
intruders. 

'Thble 2. Behavioral features ranked by permutation importance 

Behavioral Feature Expected Importance 

Nonna! Intruder 

Change in Files Per Second (CFPS) Low High 60.98 

Change in Files Per Minute (CFPM) Low High 39.45 

Average Consecutive Time (ACT) High Low 36.84 

Entries Per Second (EPS) Low High 34.23 

Change in Depth Per Second (CDPS) Low High 33.96 

Average Depth (AD) Low High 29.56 

Average Movement Distance (AMD) High Low 25.66 

Fraction Unique Path (FUP) RlO Rll 23.81 

Average Location Time (ALT) High Low 21.99 

Fraction Unique Location (FUL) RlO ~1 21.19 

Average Consecutive Repetitions (ACR) High Low 21.05 

Fraction Single Path (FSP) RlO ~1 17.66 

Fraction Multiway (FM) Rll <1 16.25 

File Visit Duration (FVD) High Low 16.08 

Number of Tnnes Each File Visited (NTFV) High Low 14.58 

Change in Depth in Consecutive Entries (CDCE) Low High 11.14 

We argue that intrusion detection is a binary classification problem between intruders 
and normal users. To evaluate the effectiveness of the behavioral features in classification 
models, we compute features' permutation importance by the experiment dataset. The 
permutation importance is an intuitive, model-agnostic method to estimate the feature 
importance for classifier and regression models [l ]. The procedure to compute permu­
tation importance is straightforward: we take a classification model that is fit to the 
dataset, and measure its predictive accuracy as baseline performance; for each feature, 
we then permute its values in the dataset, and compute the decreased performance after 
permutation; the feature's importance can be computed as the difference with the base­
line performance. If a feature with high importance value shows a large performance 
decrease after permutation, the indicates a strong influence on the classification model, 
while an irrelevant feature has the value close to 0. In Table 2, we list all 16 behavioral 
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features with our intuitive expectations for their ranges and ranked by the permutation 
importance with the Random Forest (RF) model. 

For the classification problem of intrusion detection, Table 2 shows that our features 
are all influential, but not all the features equally contribute to the classification perfor­
mance. The design similarity in CPPS and CPPM results in a high correlation coefficient 
of0.76 between these two features. To our surprise, both of them are the top 2 important 
features to the classification performance, with CFPS has far more superior importance 
value than the rest of the group. In Sect. 4, we will select a subset of the features to train 
the classifiers, and evaluate their performances in detecting intruders in the dataset. 

4 Experiments and Results 

Our experiments attempt to validate our working hypothesis, that the proposed fea­
tures can capture the behavior difference to detect intruders in the file system. In this 
section, we select and use behavioral features with four classification algorithms, namely 
Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM) and Neural 
Network (NN) with the dataset extracted from the WUIL repository. We evaluate their 
performances by a metric that is customized for the intrusion detection problem. 

4.1 Performance Measure 

One way to analyze the classification performance is by plotting the classifier's Receiver 
Operating Characteristic (ROC) curves [25]. The ROC curve evaluates the classification 
performance in a two-dimensional space. It can be understood as the relation of the ratios 
of the correctly identified positive samples (true positive rate, lPR) and the incorrectly 
classified negative samples (false positive rate, PPR) at various threshold settings. One 
of the frequently used metrics extracted from the ROC curve is the value of area under 
the entire curve, commonly denoted as AUC. With a correctly chosen threshold, a two­
class classifier has an AUC value of 1 achieves perfect accuracy, and the classifier that 
predicts the class at random has an AUC value of 0.5. 

In general, acquiring a classifier with large AUC value is desirable, one of the major 
drawbacks of relying on the AUC metric, however, is that it summarizes the entire curve, 
including regions that may not be relevant to the security problems (e.g. the regions with 
high PPR) [23]. Comparing to other classification applications, IDS has much lower 
tolerance on the false alarm. Dealing with false alarm is not only extremely time- and 
labor-intensive, but also decreases the chance of a system administrator to capture the 
real alarms fired by the intruders, which makes the system essentially useless. To remedy 
this limitation, the Partial Area Under the Curve (pAUC) [18] can be used as a summary 
index of detecting accuracy over a range of PPR that is of security interest, i.e. 

pAUC(to) = J~ ROC(t)dt, (19) 

where [O, to] is the range of interest that needs to be specified before using the pAUC 
metric. In our experiments, we particularly focus on reducing FPR instead of treating 
TPR and PPR as equally important. In the training process of our experiments, we specify 
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to = 0.05, which means we train and optimize the classifiers by maximizing the pAUC 
value within the range of 0-5% in FPR. 

Although the pAUC value provides an overall evaluation of the classification per­
formance within the range of interest, we need a set of metrics to describe a classifier's 
performance provided a chosen classification threshold. Accuracy is not an ideal indi­
cator because, in a real organization, the number of normal users is several orders of 
magnitude greater than the intruders. Hence, all the accuracy values are close to 1 and 
these results prevent capturing the true effectiveness of a classifier. On the contrary, the 
Fl score combines precision and recall into a single value, in which the precision indi­
cates how much a given approach is likely to provide a correct result, and recall is used 
to measure the detection rate. Fl score reaches its best value at 1 with perfect precision 
and recall, and the worst possible value at 0. 

4.2 Feature Selection 

Whereas permutation importance is generally considered as an efficient technique that 
works well in practice, we should not select the features by directly referring to the 
ranking. In fact, one drawback of the permutation importance is that the importance of 
correlated features may be overestimated [32]. To reduce the effect of the correlation on 
the importance measure, e.g. highly correlated features CFPS and CFPM, the Recursive 
Feature Elimination (RFE) algorithm should be used to make the feature selection [14]. 
RFE algorithm is inspired by [16] and implemented in this paper with the random 
forest algorithm. In RFE, features are eliminated iteratively to examine the classifier's 
performance change. The algorithm is recursive as it updates the ranking based on 
features' importance after each iteration, then the least important feature is eliminated 
until no further features remain [14]. Applying the RFE in our experiments eliminated 
feature CDCE, and achieved the best classification performance with the remaining 15 
features. Therefore, we use this 15-feature dataset to train and evaluate the classifiers in 
the rest of this section. 

4.3 Experimental Settings 

All our experiments in this paper are conducted with R. For all 442 samples in the 
dataset, 80% of them are for training and 20% are reserved for testing. We employ 
the 10-fold cross-validation approach, enabled by R's caret package, to train the clas­
sifiers. In the training process, parameters are chosen by maximizing the classifier's 
pAUC(0.05) value. Then the performance is evaluated by applying the classifiers to the 
testing dataset. DT is based on the decision tree algorithm [5 , 27, 29]. In this experi­
ment, we used the rpart package of R to implement the recursive partitioning procedure 
in growing the decision tree. Using the rpart package allows the training function to 
use Gini Index-based measurement [3] in performing recursive partitioning for mod­
eling. Comparing to DT, an RF classifier contains many decision trees, each of which 
is constructed by instances with randomly sampled features and produces a response 
when a set of predictor values are given as input [10, 15]. We construct the RF classi­
fier by using R's randomforest package. Existing researches indicate that SVM-based 
algorithms show noticeable performance gains in anomaly detection system [13, 28, 
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37] over other machine learning algorithms. In our experiments, we evaluate the SVM 
classifier by R's package e1071 with different kernels and report the best performance 
results from the linear kernel. In the NN classifier, the outcome values come from the 
input data passing through the multiple successive neural network layers in between. 
Each layer learns a specific feature of input data and contributes to the final decision. 
We select a three-layer neural network with the backpropagation algorithm, in which 
the hyperparameters of the network are optimized by the grid search process to maxi­
mize the pAUC(0.05) value. We implemented the NN classifier by the mxnet package 
in R, which is a powerful tool to construct and customize the state-of-art deep learning 
models. 

4.4 Experimental Results 

Figure 1 plots four ROC curves by applying the classifiers to the testing dataset. We 
removed the data points that have TPR lower than 70% on the y-axis from the graph, 
to reduce the redundancy and improve the readability. The x-axis denotes the FPR in 
percentage, is in the logarithm scale to set the focus on the range of interest of 0--5%. 
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Fig.1. Comparison of the ROC curves with partial AUC (::::5%). 
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As we can see in Fig. 1, classifiers perform differently by varying FPR on the x-axis. 
The RF has a higher true positive rate than other classifiers with higher FPR, however, 
SVM has the edge if only 2% FPR or less is allowed. In Fig. 1, pAUC(0.05) value is 
computed by measuring the size of the region under the ROC curve with FPR smaller or 
equal than 5%. Although the NN classifier has the lowest pAUC(0.05) value of 0.9269, 
it reaches the highest true positive rate at the 3% FPR mark. In order to compare four 
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classifiers with the same FPR upper bound, we summarize their best performances 
respect to 5%, 3% and 1 % FPR. 

Table 3. Pedormance of four classifiers with different FPR tolerance values 

DT RF SVM NN 

5% 3% 1% 5% 3% 1% 5% 3% 1% 5% 3% 1% 

Precision 1.000 1.000 1.000 0.952 0.975 1.000 0.952 1.000 1.000 0.976 0.976 1.000 

Recall 0.864 0.864 0.864 0.909 0.886 0.864 0.909 0.886 0.886 0.909 0.909 0.795 

Fl Score 0.927 0.927 0.927 0.930 0.929 0.927 0.930 0.940 0.940 0.941 0.941 0.886 

In Table 3, with every FPR upper bound value evaluated, we list the precision, recall 
and Fl score for each classifier. We notice that DT retains the same performance for 
all three upper bound values. This is due to its sparse threshold data points on the ROC 
curve, and the best performance is achieved at the point where FPR is 0. For the FPR 
upper bound values of 3% and 5%, the NN classifier performs the best with the highest 
Fl scores of 0.941. However, SVM surpasses all other classifiers in the Fl score with 
a 1 % FPR upper bound value. These findings from Table 3 are coherent with what we 
observed in Fig. 1, and validate our hypothesis that the proposed behavioral features are 
effective in discovering different behaviors to detect intruders in the dataset. 

5 Conclusion 

In this paper, we hypothesize that intruders have different cyber behavior patterns com­
pared to that of the normal users in a system, which can then be used to detect intrusions. 
Instead of focusing on local and static features as in existing research, we described a 
behavior-based model that can be used to detect intruders based on the user file access 
patterns. The result of our experiments is very encouraging. It supported our hypothesis 
that normal user behavior in a file system is significantly different from the intruder's, and 
our proposed behavioral-based model is effective in detecting such behavior deviation 
with an Fl score of 0.94 and false positive rate upper bound of 3%. 

Future work will focus on exploring other possible behavioral features in order to 
further improve performance. We plan to explore more temporal and spatial features of 
the time series, including the access order of the file system objects, elapse time before 
revisiting the same file, etc. Although our method shows a high detection rate with the 
dataset extracted from the WUIL repository, we are interested in validating this approach 
with other types of the dataset to further validate this work. 
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