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1. Introduction

Fix s ∈ (0, ∞] ∪ {ω} and let M be a C s+2 manifold, where C s denotes the Zygmund 
space2 of order s, C∞ denotes C∞, C ω denotes the space of real analytic functions, and 
we use the convention ∞ + 2 = ∞ + 1 = ∞ and ω + 2 = ω + 1 = ω. Let L be a C s+1

complex elliptic structure on M ; in particular, L is a complex sub-bundle of CTM , is 
formally integrable, and L satisfies Lζ + Lζ = CTζM , ∀ζ ∈ M . See Sections 2 and 3
for the full definitions. Set n + r := dim Lζ and r := dim Lζ ∩Lζ (by hypothesis, n and 
r do not depend on ζ; see Section 3). For a Banach space V , let BV (δ) denote the ball 
of radius δ > 0, centered at 0, in V . The main theorem of this paper is:

Theorem 1.1. For all ζ ∈ M , there exists an open neighborhood V ⊆ M of ζ and a C s+2

diffeomorphism Φ : BRr×Cn(1) → V such that ∀(t, z) ∈ BRr×Cn(1):

spanC
{(

Φ∗
∂

∂tk

)
(Φ(t, z)),

(
Φ∗

∂

∂zj

)
(Φ(t, z)) : 1 ≤ k ≤ r, 1 ≤ j ≤ n

}
= LΦ(t,z).

Here, we have given Rr ×Cn coordinates (t1, . . . , tr, z1, . . . , zn).

See Theorem 4.18 for a more abstract version of Theorem 1.1.
When s = ω, Theorem 1.1 is classical. When s = ∞, Theorem 1.1 is a result of 

Nirenberg [7]; and the goal of this paper is to achieve the sharp regularity for Φ in 
terms of the regularity of M and L . When r = 0, L is a complex structure, and 
Theorem 1.1 was proved by Malgrange [5]–in this case, the result gives the sharp reg-
ularity for the Newlander-Nirenberg Theorem [8].3 One standard way to prove results 
like Theorem 1.1 for r > 0 is to reduce the claim to the setting of r = 0, and apply 
the Newlander-Nirenberg Theorem, where sharp regularity is known due to Malgrange’s 
result. Unfortunately, this reduction loses a derivative (i.e., only proves Theorem 1.1
with Φ a C s+1 diffeomorphism). Instead, we proceed by adapting Malgrange’s proof to 
directly prove Theorem 1.1.

This paper is outlined as follows. In Section 2 we introduce the basic function spaces 
we need. In Section 3 we give all the relevant (standard) definitions for bundles and 
structures. In Section 4 we define a category of manifolds in which our results are natu-
rally stated: this is the category of manifolds endowed with an “elliptic” structure. This 
category contains both real and complex manifolds as full sub-categories. We use this 
to state a more abstract version of our main result (Theorem 4.18). In Section 7 we 
state and prove the main technical result of this paper. As discussed in Section 1.2, with 

2 For non-integer exponents, the Zygmund space agrees with the classical Hölder space. More precisely, for 
m ∈ N, a ∈ (0, 1), the Zygmund space Cm+a is locally the same as the Hölder space Cm,a–see Remark 2.3. 
However, for a ∈ {0, 1}, these spaces differ: Cm+1,0 � Cm,1 � Cm+1.
3 Another proof of the case r = 0 was later given by Webster [18]. Both [5] and [18] state results for Hölder 

spaces and avoid integer exponents. As is well-known, and described in the case r = 0 of Theorem 1.1, the 
results extend to integer exponents by using Zygmund spaces.
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future applications in mind we keep careful track of what all the constants in Section 7
depend on. This is the heart of this paper. In Section 8 we prove the main result; i.e., 
Theorem 1.1 and more generally Theorem 4.18.

1.1. Some further comments

Results like Theorem 1.1 (in the smooth case, s = ∞) were introduced by Nirenberg 
to prove his more general Complex Frobenius Theorem [7]. There, one starts with a 
C∞ formally integrable structure L on M (see Section 3). The classical (real) Frobenius 
Theorem applies to the essentially real sub-bundle L +L to foliate the ambient manifold 
into leaves, and L is an elliptic structure on each leaf. Then one can apply a result like 
Theorem 1.14 to each leaf. In this way, one can achieve a result which has the real 
Frobenius theorem, the Newlander-Nirenberg Theorem, and the integrability of elliptic
structures as special cases (at least in the smooth setting).

In Theorem 1.1, the coordinate chart Φ is one derivative better than the bundle L
(i.e., Φ is C s+2, while L is C s+1). This is the best one can hope for, since the hypotheses 
of Theorem 1.1 are invariant under C s+2 diffeomorphisms. However, even in the classical 
real Frobenius theorem, one cannot obtain appropriate coordinate charts which are one 
derivative better than the underlying vector fields: see [2, Example 4.5] for a very simple 
example involving only one vector field. Thus, we restrict attention to the setting of 
Theorem 1.1 (which does not involve any kind of foliation) because this seems to be a 
natural generality in which we can achieve this level of regularity.

As mentioned above, one common way of proving results like Theorem 1.1 is to reduce 
them to the Newlander-Nirenberg theorem; though this reduction unnecessarily costs a 
derivative. One can do this without losing a derivative by assuming the existence of some 
sufficiently regular vector fields which commute. This is the approach taken in [3] where 
results are proved for Lipschitz bundles. With our approach, we do not need to assume 
the existence of such vector fields (and in fact, their existence is a consequence of our 
result). It is possible that the methods of this paper combined with the methods of [3]
could be used to prove results like the ones in that paper, without assuming the existence 
of such commuting vector fields.

1.2. A main motivation

A simple consequence of Theorem 1.1 is the following:

Corollary 1.2. Fix s ∈ (0, ∞] ∪ {ω} and let M be a C s+2 manifold. Let L1, . . . , Lm

be C s+1 complex vector fields on M and X1, . . . , Xq be C s+1 real vector fields on M . 
Suppose:

4 One needs a version of Theorem 1.1 with a parameter, which can be achieved with a similar proof in 
the smooth case.
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• For all ζ ∈ M ,

spanC
{
L1(ζ), . . . , Lm(ζ), L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)

}
= CTζM.

• For all ζ ∈ M , 1 ≤ j, j1, j2 ≤ m, 1 ≤ k, k1, k2 ≤ q,

[Lj1 , Lj2 ](ζ), [Lj , Xk](ζ), [Xk1 , Xk2 ](ζ)

∈ spanC {L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)} .

• For all ζ ∈ M ,

spanC {L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)}⋂
spanC

{
L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)

}
= spanC {X1(ζ), . . . , Xq(ζ)} .

• The map ζ 
→ dim spanC {L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)} is constant in ζ.

Set n + r := dim spanC {L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)} (which does not depend on 
ζ by hypothesis) and set r := dim spanC {X1(ζ), . . . , Xq(ζ)} (which also does not depend 
on ζ–see Lemma 3.6). Then, ∀ζ ∈ M , there exists a neighborhood V of ζ and a C s+2

diffeomorphism Φ : BRr×Cn(1) → V such that ∀ξ ∈ BRr×Cn(1)

spanC {Φ∗L1(ξ), . . . ,Φ∗Lm(ξ),Φ∗X1(ξ), . . . ,Φ∗Xq(ξ)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

where we have given Rr ×Cn coordinates (t1, . . . , tr, z1, . . . , zn).

Proof. Apply Theorem 1.1 (see, also, Theorem 4.18) to the bundle

Lζ := spanC {L1(ζ), . . . , Lm(ζ), X1(ζ), . . . , Xq(ζ)} ;

L is easily seen to be a C s+1 elliptic structure on M . See Section 3 for this terminol-
ogy. �

We now consider a harder question. Let M be a C2 manifold, and let L1, . . . , Lm be 
C1 complex vector fields on M and X1, . . . , Xq be C1 real vector fields on M .

Question 1.3. Fix ζ ∈ M and s ∈ (0, ∞] ∪{ω}. When is there a neighborhood V of ζ and 
a C2 diffeomorphism Φ : BRr×Cn(1) → V such that Φ∗L1, . . . , Φ∗Lm, Φ∗X1, . . . , Φ∗Xq

are C s+1 vector fields on BRr×Cn(1) and
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spanC {Φ∗L1(ξ), . . . ,Φ∗Lm(ξ),Φ∗X1(ξ), . . . ,Φ∗Xq(ξ)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

When the vector fields are already known to be C s+1, Question 1.3 is answered by 
Corollary 1.2. But Question 1.3 asks more: it asks when one can pick the coordinate 
system Φ so that the vector fields are more regular than they were originally. It is not 
always possible to do this, but in a companion paper [14] we give necessary and sufficient 
conditions under which it is possible (for s ∈ (1, ∞] ∪ {ω}). By answering this question 
in a quantitative way we provide scaling maps adapted to sub-Riemannian geometries, 
which strengthen and generalize previous results in the case m = 0 (i.e., all the vector 
fields are real) by Nagel, Stein, and Wainger [9], Tao and Wright [17], and the author 
[11]. The case when m = 0 was covered in the series [10,12,13].

The case when q = 0 of Question 1.3 is particularly interesting. In this case, the 
coordinate chart Φ can be thought of as a holomorphic coordinate system. When one 
turns to the quantitative theory discussed above, this allows us to create holomorphic 
analogs of the sub-Riemannian scaling maps introduced by Nagel, Stein, and Wainger 
[9]. In this way we can study sub-Riemannian geometries on complex manifolds, which 
are adapted to the complex structure. We call these sub-Hermitian geometries.

The main technical result of this paper (Theorem 7.3) is a key step in developing 
the theory in the companion work [14]. Because of this, it is important for our future 
applications that we keep track of the dependance various constants in Theorem 7.3. 
For this purpose we introduce several function spaces and definitions that we would 
not otherwise have to. This makes the statement of Theorem 7.3 a bit more involved 
than it would have to be to prove the main results of this paper; though, other than 
some bookkeeping, the proof is no more difficult. Because of its quantitative nature, it is 
possible Theorem 7.3 will be more useful in future applications than the “main results” 
of this paper.

2. Function spaces

Let Ω ⊂ Rn be a connected, open set (we will almost always be considering the case 
when Ω is a ball in Rn). We have the following classical spaces of functions on Ω:

C(Ω) = C0(Ω) := {f : Ω → C
∣∣ f is continuous and bounded},

‖f‖C(Ω) = ‖f‖C0(Ω) := sup
x∈Ω

|f(x)|.

For m ∈ N, (we use the convention 0 ∈ N)

Cm(Ω) := {f ∈ C(Ω)
∣∣ ∂α

x f ∈ C(Ω), ∀|α| ≤ m}, ‖f‖Cm(Ω) :=
∑

|α|≤m

‖∂α
x f‖C(Ω).

Next we define the classical Hölder spaces. For s ∈ [0, 1],
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‖f‖C0,s(Ω) := ‖f‖C(Ω) + sup
x,y∈Ω
x�=y

|x− y|−s|f(x) − f(y)|,

C0,s(Ω) := {f ∈ C(Ω) : ‖f‖C0,s(Ω) < ∞}. (2.1)

For m ∈ N, s ∈ [0, 1],

‖f‖Cm,s :=
∑

|α|≤m

‖∂α
x f‖C0,s , Cm,s(Ω) := {f ∈ Cm(Ω) : ‖f‖Cm,s(Ω) < ∞}.

Next, we turn to the classical Zygmund spaces. Given h ∈ Rn define Ωh := {x ∈ Rn :
x, x + h, x + 2h ∈ Ω}. For s ∈ (0, 1] set

‖f‖C s(Ω) := ‖f‖C0,s/2(Ω) + sup
0�=h∈Rn

x∈Ωh

|h|−s|f(x + 2h) − 2f(x + h) + f(x)|,

C s(Ω) := {f ∈ C(Ω) : ‖f‖C s(Ω) < ∞}.

For m ∈ N, s ∈ (0, 1], set

‖f‖Cm+s(Ω) :=
∑

|α|≤m

‖∂α
x f‖C s(Ω), Cm+s(Ω) := {f ∈ Cm(Ω) : ‖f‖Cm+s(Ω) < ∞}.

We set

C∞(Ω) :=
⋂
s>0

C s(Ω), C∞(Ω) :=
⋂

m∈N
Cm(Ω).

It is straightforward to verify that for a ball B, C∞(B) = C∞(B).
Finally, we let C ω(Ω) be the space of real analytic functions on Ω.
If V is a Banach space, we define the same spaces taking values in V in the obvi-

ous way, and denote these spaces by C(Ω; V ), Cm(Ω; V ), Cm,s(Ω; V ), C s(Ω; V ), and 
C ω(Ω; V ). Given a complex vector field X on Ω, we identify X =

∑n
j=1 aj(x) ∂

∂xj
with 

the function (a1, . . . , an) : Ω → Cn. It therefore makes sense to consider quantities like 
‖X‖C s(Ω;Cn). When V is clear from context, we sometimes suppress it and write, e.g., 
‖f‖C s(Ω) instead of ‖f‖C s(Ω;V ) for readability considerations.

Remark 2.1. The term ‖f‖C0,s/2 in the definition of ‖f‖C s is somewhat unusual, and 
is usually replaced by ‖f‖C0 . However, if Ω is a bounded Lipschitz domain these two 
choices yield equivalent norms: this is a simple consequence of [16, Theorem 1.118 (i)]. 
The definition we have chosen is somewhat more convenient to work with.

Definition 2.2. For s ∈ (0, ∞] ∪ {ω}, we say f ∈ C s
loc(Ω) if ∀x ∈ Ω, there exists an open 

ball B ⊆ Ω, centered at x, with f
∣∣
B
∈ C s(B).
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Remark 2.3. If Ω is a bounded Lipschitz domain, m ∈ N, s ∈ (0, 1), the spaces Cm,s(Ω)
and Cm+s(Ω) are the same–see [16, Theorem 1.118 (i)]. However, if s ∈ {0, 1}, these 
spaces differ. As a consequence for any open set Ω ⊆ Rn, for m ∈ N, s ∈ (0, 1), we have 
Cm+s

loc (Ω) equals the space of functions which are locally in Cm,s.

Remark 2.4. C ω and C ω
loc denote the same thing. However, for s ∈ (0, ∞], C s and C s

loc
are not the same. Since for any ball B we have C∞(B) = C∞(B), the space C∞

loc(Ω)
corresponds with the usual space of smooth functions on Ω.

2.1. Manifolds

In this paper we use C s manifolds; the definition is exactly what one would expect, 
though a little care is needed due to the subtleties of Zygmund spaces.5 We present the 
relevant (standard) definitions here.

Definition 2.5. Let U1 ⊆ Rn1 and U2 ⊆ Rn2 be open sets. For s ∈ (0, ∞] ∪ {ω}, we say 
f : U1 → U2 is a C s

loc map if f ∈ C s
loc(U1; Rn2).

Lemma 2.6. Let U1 ⊆ Rn1 , U2 ⊆ Rn2 , and U3 ⊆ Rn3 be open sets. For s1 ∈ (0, ∞] ∪{ω}, 
s2 ≥ s1, s2 ∈ (1, ∞] ∪ {ω}, if f1 : U1 → U2 is a C s1

loc map and f2 : U2 → U3 is a C s2
loc

map, then f2 ◦ f1 : U1 → U3 is a C s1
loc map.

Proof. When s1 ∈ {∞, ω}, the result is obvious. For s1 ∈ (0, ∞), because the notion of 
being a C s

loc map is local, it suffices to check f1 ◦ f2 is in C s1 on sufficiently small balls. 
This is described in Lemma 5.3, below. �
Lemma 2.7. For s ∈ (1, ∞] ∪ {ω} if f : U1 → U2 is a C s

loc map which is also a C1

diffeomorphism, then f−1 : U2 → U1 is a C s
loc map.

Proof. For s ∈ {∞, ω} this is standard. For s ∈ (1, ∞) it suffices to check f−1 is in C s

when restricted to sufficiently small balls, because the result is local. This is described 
in Lemma 5.4, below. �
Definition 2.8. Fix s ∈ (1, ∞] ∪{ω} and let M be a topological space. We say {(φα, Vα) :
α ∈ I} (where I is some index set) is a C s atlas of dimension n if {Vα : α ∈ I} is an 
open cover for M , φα : Vα → Uα is a homeomorphism where Uα ⊆ Rn is open, and 
φβ ◦ φ−1

α : φα(Vβ ∩ Vα) → Uβ is a C s
loc map.

5 For example, one must define the Zygmund maps in the right way to ensure that the composition of two 
Zygmund maps is again a Zygmund map.
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Definition 2.9. For s ∈ (1, ∞] ∪ {ω} a C s manifold of dimension n is a paracompact6
topological space M endowed with a C s atlas of dimension n.

Remark 2.10. Let U ⊆ Rn be an open set. U is naturally a C ω manifold of dimension 
n; where we take the atlas consisting of a single coordinate chart (namely, the identity 
map U → U). We henceforth give open sets this manifold structure.

Remark 2.11. In particular, a C s manifold is a Cm manifold, for any m < s. In light of 
Remark 2.4, C∞ and C∞ manifolds are the same.

Definition 2.12. For s ∈ (0, ∞] ∪ {ω} and let M and N be C s+1 manifolds with C s+1

atlases {(φα, Vα)} and {(ψβ , Wβ)}, respectively. We say f : M → N is a C s+1
loc map if 

ψβ ◦ f ◦ φ−1
α is a C s+1

loc map, ∀α, β.

Lemma 2.13. For s ∈ (0, ∞] ∪ {ω}, suppose M1, M2, and M3 are C s+1 manifolds and 
f1 : M1 → M2 and f2 : M2 → M3 are C s+1

loc maps. Then, f2 ◦ f1 : M1 → M3 is a C s+1
loc

map.

Proof. This follows from Lemma 2.6. �
Lemma 2.14. Suppose s ∈ (0, ∞] ∪ {ω}, M1 and M2 are C s+1 manifolds, and f : M1 →
M2 is a C s+1

loc map which is also a C1 diffeomorphism. Then f−1 : M2 → M1 is a C s+1
loc

map.

Proof. This follows from Lemma 2.7. �
Definition 2.15. Suppose s ∈ (0, ∞] ∪ {ω}, and M1 and M2 are C s+1 manifolds. We say 
f : M1 → M2 is a C s+1 diffeomorphism if f : M1 → M2 is invertible and f : M1 → M2
and f−1 : M2 → M1 are C s+1

loc maps.

Remark 2.16. For s ∈ (0, ∞] ∪{ω}, if M is a C s+1 manifold with C s+1 atlas {(φα, Vα)}, 
as described in Definition 2.8, then the maps φα : Vα → Uα are C s+1 diffeomorphisms, 
where Uα is given the C ω manifold structure described in Remark 2.10. This follows 
from Lemma 2.14.

Because a C s+1 manifold is a C1 manifold, it makes sense to talk about vector fields 
on such a manifold.

Definition 2.17. For s ∈ (0, ∞] ∪ {ω} let M be a C s+1 manifold of dimension n with 
C s+1 atlas {(φα, Vα)}; here φα : Vα → Uα is a C s+1 diffeomorphism and Uα ⊆ Rn is 
open. We say a vector field X on M is a C s vector field if (φα)∗X ∈ C s

loc(Uα; Rn), ∀α.

6 We do not use paracompactness in this paper, so the reader who wishes to define manifolds without 
requiring paracompactness is free to do this throughout this paper.
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3. Bundles

In this section, we include the standard definitions we use concerning bundles. In the 
smooth case, these definitions are contained in [15,1], and we follow these sources. Fix 
s ∈ (0, ∞] ∪ {ω}, and let M be a C s+2 manifold. We let CTM denote the complexified 
tangent bundle of M : CTM := TM ⊗R C (see Appendix A for some comments on the 
complexification of real vector spaces).

Definition 3.1. A C s+1 sub-bundle L of CTM of rank m ∈ N is a disjoint union

L =
⋃
ζ∈M

Lζ ⊆ CTM

such that:

• ∀ζ ∈ M , Lζ is an m-dimensional vector subspace of CTζM .
• ∀ζ0 ∈ M , there exists an open neighborhood U ⊆ M of ζ0 and a finite collection of 

complex C s+1 vector fields L1, . . . , LK on U , such that ∀ζ ∈ U ,

spanC{L1(ζ), . . . , LK(ζ)} = Lζ .

Definition 3.2. For a C s+1 sub-bundle L of CTM , we define L by Lζ = {z : z ∈ Lζ}. 
It is easy to see that L is a C s+1 sub-bundle of CTM .

Definition 3.3. Let W ⊆ M be open, L a complex vector field on W , and L a C s+1

sub-bundle of CTM . We say L is a section of L over W if ∀ζ ∈ W , L(ζ) ∈ Lζ . We 
say L is a C s+1 section of L over W is if L is a section of L over W and L is a C s+1

complex vector field on W .

Definition 3.4. Let L be a C s+1 sub-bundle of CTM . We say L is a C s+1 formally 
integrable structure if the following holds. For all W ⊆ M open, and all C s+1 sections 
L1 and L2 of L over W , we have [L1, L2] is a section of L over W .

Definition 3.5. Let L be a C s+1 formally integrable structure on M . We say L is a 
C s+1 elliptic structure if Lζ + Lζ = CTζM , ∀ζ ∈ M .

Lemma 3.6. Let L be an elliptic structure on M . Then, the map ζ 
→ dim(Lζ ∩ Lζ) is 
constant, M → N.

Proof. By Lemma A.1, dim(Lζ ∩Lζ) = 2 dim(Lζ) −dim(Lζ +Lζ). The definition of a 
sub-bundle implies ζ 
→ dim(Lζ) is constant, and the definition of an elliptic structure 
implies dim(Lζ + Lζ) = dimCTζM = dimM , ∀ζ ∈ M . The result follows. �
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Let L be an elliptic structure on M . Set r := dim(Lζ ∩ Lζ) and n + r := dim(Lζ). 
By the definition of a sub-bundle and Lemma 3.6, n and r are constant in ζ.

Definition 3.7. Let L be a elliptic structure on M and let n and r be as above. We say 
L is an elliptic structure of dimension (r, n).

Remark 3.8. Let L be an elliptic structure of dimension (r, n). Then, dimM =
dimCTζM = dim(Lζ+Lζ) = 2n +r, where in the last equality we have used Lemma A.1.

4. E-manifolds

It is convenient to state our results in a category of manifolds which contain real 
manifolds and complex manifolds as full sub-categories. We define these manifolds here, 
and call them E-manifolds.7

Remark 4.1. “E” in the name E-manifolds stands for “elliptic”. Indeed, using the termi-
nology of [15, Definition I.2.3], a complex manifold is a manifold endowed with a complex 
structure, a CR-manifold is a manifold endowed with a CR structure, and (as we will 
see in Theorem 4.18) an E-manifold is a manifold endowed with an elliptic structure; 
see Definition 4.16. Unfortunately, the name “elliptic manifold” is already taken by an 
unrelated concept.

Definition 4.2. Let U1 ⊆ Rr1 ×Cn1 and U2 ⊆ Rr2 ×Cn2 be open sets. We give Rr1 ×Cn1

coordinates (t, z) and Rr2 ×Cn2 coordinates (u, w). We say a C1 map f : U1 → U2 is an 
E-map if

df(t, z) ∂

∂tk
, df(t, z) ∂

∂zj
∈ spanC

{
∂

∂u1
, . . . ,

∂

∂ur2

,
∂

∂w1
, . . . ,

∂

∂wn2

}
,

∀(t, z) ∈ U1, 1 ≤ k ≤ r1, 1 ≤ j ≤ n1.

For s ∈ (0, ∞] ∪ {ω}, we say f : U1 → U2 is a C s
loc E-map if it is an E-map which is also 

a C s
loc map.

Remark 4.3. Suppose U1, U2 ⊆ Rr × Cn and f : U1 → U2 is an E-map which is also a 
C1-diffeomorphism. Then, f−1 : U2 → U1 is an E-map.

Remark 4.4. Note that when r1 = r2 = 0, if U1 ⊆ R0×Cn1 ∼= Cn1 , U2 ⊆ R0×Cn2 ∼= Cn2 , 
then f : U1 → U2 is an E-map if and only if it is holomorphic.

7 The manifold structure we discuss here is well-known to experts, but we could not find a name for the 
category of such manifolds, and decided to call them E-manifolds for lack of a better name.



B. Street / Journal of Functional Analysis 278 (2020) 108290 11
Lemma 4.5. Let U1 ⊆ Rr1 × Cn1 , U2 ⊆ Rr2 × Cn2 , and U3 ⊆ Rr3 × Cn3 be open sets, 
and let s ∈ (0, ∞] ∪ {ω}. Suppose f1 : U1 → U2 and f2 : U2 → U3 are C s+1

loc E-maps. 
Then f2 ◦ f1 : U1 → U3 is a C s+1

loc E-map.

Proof. That f2 ◦ f1 is a C s+1
loc map follows from Lemma 2.6. That it is an E-map follows 

from the chain rule. �
Definition 4.6. Let M be a topological space and fix n, r ∈ N, s ∈ (1, ∞] ∪ {ω}. We 
say {(φα, Vα) : α ∈ I} (where I is some index set) is a C s E-atlas of dimension (r, n)
if {Vα : α ∈ I} is an open cover for M , φα : Vα → Uα is a homeomorphism where 
Uα ⊆ Rr ×Cn is open, and φβ ◦ φ−1

α : φα(Vβ ∩ Vα) → Uβ is a C s
loc E-map, ∀α, β.

Definition 4.7. A C s E-manifold M of dimension (r, n) is a paracompact8 topological 
space M endowed with a C s E-atlas of dimension (r, n).

Remark 4.8. One may analogously define Cm E-manifolds in the obvious way. C∞ E-
manifolds and C∞ E-manifolds are the same.

Definition 4.9. For s ∈ (0, ∞] ∪ {ω}, let M and N be C s+1 E-manifolds with C s+1

E-atlases {(φα, Vα)} and {(ψβ, Wβ)}, respectively. We say f : M → N is a C s+1
loc E-map 

if ψβ ◦ f ◦ φ−1
α is a C s+1

loc E-map, ∀α, β.

Lemma 4.10. For s ∈ (0, ∞] ∪ {ω}, let M1, M2, and M3 be C s+1 E-manifolds and 
f1 : M1 → M2 and f2 : M2 → M3 be C s+1

loc E-maps. Then, f2 ◦ f1 : M1 → M3 is a C s+1
loc

E-map.

Proof. This follows from Lemma 4.5. �
Lemma 4.11. For s ∈ (0, ∞] ∪ {ω}, let M1 and M2 be C s+1 E-manifolds and let f :
M1 → M2 be a C s+1

loc E-map which is also a C1 diffeomorphism. Then, f−1 : M2 → M1
is a C s+1

loc E-map.

Proof. That f−1 : M2 → M1 is a C s+1
loc map follows from Lemma 2.14. That f−1 : M2 →

M1 is an E-map follows from Remark 4.3. �
Definition 4.12. Suppose s ∈ (0, ∞] ∪ {ω}, M1 and M2 are C s+1 E-manifolds. We say 
f : M1 → M2 is a C s+1 E-diffeomorphism if f : M1 → M2 is invertible and f : M1 → M2
and f−1 : M2 → M1 are C s+1

loc E-maps.

Remark 4.13. For s > 1, the category of C s E-manifolds, whose objects are C s E-
manifolds and morphisms are C s

loc E-maps, contains both C s real manifolds and complex 

8 We do not use paracompactness in this paper; so the reader who does not require that manifolds be 
paracompact is free to do so in this paper.
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manifolds as full subcategories. The real manifolds of dimension r are those with E-
dimension (r, 0), while the complex manifolds of complex dimension n are those with 
E-dimension (0, n). That complex manifolds (with morphisms given by holomorphic 
maps) embed as a full subcategory follows from Remark 4.4. The isomorphisms in the 
category of C s E-manifolds are the C s E-diffeomorphisms.

Remark 4.14. Note that open subsets of Rr×Cn are C ω E-manifolds of dimension (r, n), 
by using the atlas consisting of one coordinate chart (the identity map). Henceforth, we 
give such sets this E-manifold structure.

Remark 4.15. An E-manifold of dimension (r, n) has an underlying manifold structure 
of dimension 2n + r, and it therefore makes sense to talk about any of the usual objects 
on manifolds with respect to an E-manifold.

For s ∈ (0, ∞] ∪ {ω}, on a C s+2 E-manifold M of dimension (r, n), there is a natu-
rally associated C s+1 elliptic structure on M of dimension (r, n) defined as follows. Let 
(φα, Vα) be an E-atlas for M . For ζ ∈ M , we have ζ ∈ Vα for some α. We set:

Lζ := spanC
{
dΦ−1

α (Φα(ζ)) ∂

∂t1
, . . . , dΦ−1

α (Φα(ζ)) ∂

∂tr
,

dΦ−1
α (Φα(ζ)) ∂

∂z1
, . . . , dΦ−1

α (Φα(ζ)) ∂

∂zn

}
.

It is straightforward to check that Lζ ⊆ CTζM is well-defined9 and L =
⋃

ζ∈M Lζ is a 
C s+1 elliptic structure on M of dimension (r, n).

Definition 4.16. We call L the elliptic structure associated to the E-manifold M .

Lemma 4.17. Suppose M and M̂ are C s+2 E-manifolds with associated elliptic structures 
L and L̂ . Then a C s+2

loc map f : M → M̂ is a C s+2
loc E-map if and only if df(ζ)Lζ ⊆

L̂f(ζ), ∀ζ ∈ M .

Proof. This follows immediately from the definitions. �
The main result of this paper (Theorem 1.1) can be rephrased as follows.

Theorem 4.18. Let s ∈ (0, ∞] ∪ {ω} and let M be a C s+2 manifold. For each ζ ∈ M , let 
Lζ be a vector subspace of CTζM , and let L =

⋃
ζ∈M Lζ . The following are equivalent:

(i) There is a C s+2 E-manifold structure on M , compatible with its C s+2 structure, 
such that L is the C s+1 elliptic structure associated to M .

9 I.e., Lζ does not depend on which α we pick with ζ ∈ Vα.
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(ii) L is a C s+1 elliptic structure.

Moreover, under these conditions, the E-manifold structure given in (i) is unique in the 
sense that if M is given another C s+2 E-manifold structure, compatible with its C s+2

structure, with respect to which L is the associated elliptic sub-bundle, then the identity 
map M → M is a C s+2 E-diffeomorphism, between these two C s+2 E-manifold structures 
on M .

This paper is devoted to proving Theorem 4.18.

Remark 4.19. In Theorem 4.18, following standard terminology, we have used the word 
“structure” in two different ways. When we speak of a C s+2 E-manifold “structure” on M
we mean the equivalence class of C s+2 E-atlases (where two atlases on M are equivalent 
if the identity map M → M is a C s+2 E-diffeomorphism). When we speak of an elliptic 
“structure,” we are referring to Definition 3.5. This double use of terminology is justified 
by Theorem 4.18 which shows that giving an E-manifold structure is equivalent to giving 
an elliptic structure.

Remark 4.20. When s ∈ {∞, ω}, Theorem 4.18 is well-known. Our proof yields these 
cases as simple corollaries, so we include them.

Remark 4.21. In the special case Lζ∩Lζ = {0}, ∀ζ ∈ M , Theorem 4.18 is the Newlander-
Nirenberg Theorem [8], with sharp regularity as proved by Malgrange [5]. In this case 
E-manifolds are complex manifolds–see Remark 4.13.

5. Function spaces revisited

In this section we present some basic properties of the function spaces introduced in 
Section 2. Fix Ω ⊆ Rn an open set.

Proposition 5.1. For s ∈ (0, ∞] ∪ {ω}, C s(Ω) is an algebra: if f, g ∈ C s(Ω), then fg ∈
C s(Ω). Moreover, for s ∈ (0, ∞) and f, g ∈ C s(Ω),

‖fg‖C s(Ω) ≤ Cs‖f‖C s(Ω)‖g‖C s(Ω).

For s ∈ (0, ∞] ∪ {ω}, these spaces have multiplicative inverses for functions which are 
bounded away from zero: if f ∈ C s(Ω) with infx |f(x)| ≥ c0 > 0, then f(x)−1 = 1

f(x) ∈
C s(Ω). Moreover if s ∈ (0, ∞) and infx |f(x)| ≥ c0 > 0 then

‖f(x)−1‖C s(Ω) ≤ C,

where C can be chosen to depend only on s, n, c0, and an upper bound for ‖f‖C s(Ω).
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Proof. For s = ω, this is standard. For s ∈ (0, ∞], this is standard and contained in [10, 
Proposition 8.3]. �
Remark 5.2. For s ∈ (0, ∞] ∪ {ω}, suppose A ∈ C s(Ω; Mk×k) is such that
inft∈Ω | detA(t)| > 0. Then it follows that A−1 ∈ C s(Ω; Mk×k). Indeed, this follows from 
Proposition 5.1 using the cofactor representation of A−1. When s ∈ (0, ∞), ‖A−1‖C s(Ω)
can be bounded in terms of s, k, n, a lower bound for inft∈Ω | detA(t)| > 0, and an upper 
bound for ‖A‖C s(Ω).

Lemma 5.3. Let D1, D2 > 0, s1 ∈ (0, ∞), s2 ≥ s1, s2 ∈ (1, ∞), f ∈ C s1(BRn(D1)), 
g ∈ C s2(BRm(D2); Rn) with g(BRm(D2)) ⊆ BRn(D1). Then, f ◦g ∈ C s1(BRm(D2)) and 
‖f ◦ g‖C s1 (BRm (D2)) ≤ C‖f‖C s1 (BRn (D1)), where C can be chosen to depend only on s1, 
s2, D1, D2, m, n, and an upper bound for ‖g‖C s2 (BRm (D2)).

Proof. This is standard and proved in [12]. �
Lemma 5.4. Fix s ∈ (1, ∞), D1, D2 > 0. Suppose H ∈ C s(BRn(D1); Rn) is such 
that BRn(D2) ⊆ H(BRn(D1)), H : BRn(D1) → H(BRn(D1)) is a homeomor-
phism, and inft∈BRn (D1) | det dH(t)| ≥ c0 > 0. Then H−1 ∈ C s(BRn(D2); Rn), with 
‖H−1‖C s(BRn (D2);Rn) ≤ C, where C can be chosen to depend only on n, s, D1, D2, c0, 
and an upper bound for ‖H‖C s(BRn (D1);Rn).

Proof. This is standard and proved in [12]. �
5.1. Spaces of real analytic functions

For the proofs that follow, it is convenient to introduce two, closely related, Banach 
spaces of real analytic functions. For s > 0, we define A n,s to be the space of those 
f ∈ C(BRn(s)) such that f(t) =

∑
α∈Nn

cα
α! t

α, ∀t ∈ BRn(s), where

‖f‖A n,s :=
∑

α∈Nn

|cα|
α! s|α| < ∞.

We now turn to the other Banach space of real analytic functions we use. Let Ω ⊂ CN

be a bounded, open set, and let m ∈ N. We set

Om
b (Ω) :=

{
f : Ω → Cm

∣∣ f is holomorphic and f extends to a continuous function

E (f) ∈ C(Ω)
}
.

With the norm

‖f‖Om(Ω) := ‖E (f)‖C(Ω),
b
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Om
b (Ω) is a Banach space. We set, for η > 0,

BN,m
η :=

{
f : BRN (η) → Cm

∣∣ f is real analytic and extends to a holomorphic function

E (f) ∈ Om
b (BCN (η))

}
.

With the norm

‖f‖BN,m
η

:= ‖E (f)‖Om
b (BCN (η)),

BN,m
η is a Banach space. Sometimes we wish to replace Cm in the above definitions with 

a more general complex Banach space V . We write this space as BN,V
η and define the 

norm in the obvious way.

Lemma 5.5. Let V be a Banach space. Then A n,η(V ) ⊆ Bn,V
η and ‖f‖Bn,V

η
≤

‖f‖A n,η(V ).

Proof. This follows immediately from the definitions. �
Lemma 5.6. Let Y be a Banach algebra. Then A n,s(Y ) and BN,Y

η are Banach algebras. 
Indeed, if V denotes either of these spaces, then if f, g ∈ V , we have fg ∈ V and 
‖fg‖V ≤ ‖f‖V ‖g‖V .

Proof. This follows easily from the definitions. �
Lemma 5.7. Fix 0 < η1 < η2. If f ∈ A n,η2 with f(0) = 0, then

‖f‖A n,η1 ≤ η1

η2
‖f‖A n,η2 . (5.1)

Similarly, if f ∈ BN,m
η2

with f(0) = 0, then

‖f‖BN,m
η1

≤ η1

η2
‖f‖BN,m

η2
. (5.2)

The same results hold (with the same proofs) for functions taking values in Banach 
spaces.

Proof. Suppose f ∈ A n,η2 with f(0) = 0. Then, f(t) =
∑

|α|>0 cαt
α with ‖f‖A n,η2 =∑

|α|>0 |cα|η
|α|
2 . We have

‖f‖A n,η1 =
∑
|α|>0

|cα|η|α|1 ≤ η1

η2

∑
|α|>0

|cα|η|α|2 = η1

η2
‖f‖A n,η2 ,

completing the proof of (5.1).
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Let g ∈ Om
b (BC(η2)) with g(0) = 0. We claim

‖g‖Om
b (B1(η1)) ≤

η1

η2
‖g‖Om

b (BC(η2)). (5.3)

Indeed, we may write g(z) = zg1(z), where g1 ∈ Om
b (BC(η2)). We have, by the Maximum 

Modulus Principle:

‖g‖Om
b (B1(η1)) ≤ η1‖g1‖Om

b (BC(η1)) ≤ η1 sup
|z|=η2

|g1(z)| = η1

η2
sup

|z|=η2

|g(z)|

= η1

η2
‖g‖Om

b (B1(η2)),

completing the proof of (5.3).
Let h ∈ Om

b (BCn(η2)) with h(0) = 0. We claim

‖h‖Om
b (BCn (η1)) ≤

η1

η2
‖h‖Om

b (BCn (η2)). (5.4)

Indeed, for 0 �= w ∈ BCn(η1), apply (5.3) to g(z) := h(zw/|w|), to see |h(w)| ≤
η1
η2
‖h‖Om

b (Bn(η2)). Taking the supremum over all such w yields (5.4).
(5.2) is an immediate consequence of (5.4). �

Lemma 5.8. Fix 0 < η1 < η2. Then Bn,1
η2

⊆ A n,η1 and for f ∈ Bn,1
η2

,

‖f‖A n,η1 ≤ C‖f‖Bn,1
η2

,

where C can be chosen to depend only on n, η2, and η1.
Similarly for s ∈ (0, ∞), Bn,1

η2
⊆ C s(Bn(η1)) and for f ∈ C s(Bn(η1)),

‖f‖C s(Bn(η1)) ≤ C‖f‖Bn,1
η2

,

where C can be chosen to depend only on s, n, η2, and η1.

Proof. It suffices to prove both results for η2 = 1 and η1 ∈ (0, 1), by rescaling. When η2 =
1, we extend f to a holomorphic function E (f) ∈ O1

b (BCn(1)), and use the well-known 
representation:

E f(z) = (n− 1)!
2πn

∫
∂BCn (1)

E f(ζ) 1 − z · ζ
|ζ − z|2n dσ(ζ),

where σ denotes the surface area measure on ∂BCn(1). From here, the results follows 
easily. �
Lemma 5.9. Fix η1 > 0, D > 0. For 0 < γ ≤ η1

D and f : Bn(η1) → C, define fγ :
Bn(D) → C by fγ(t) = f(γt).
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(i) Let m ∈ N with m ≥ 1 and s ∈ (0, 1]. Then, for 0 < γ ≤ min{η1
D , 1}, we have for 

f ∈ Cm+s(Bn(η1)) with f(0) = 0,

‖fγ‖Cm+s(Bn(D)) ≤ γ(15(D + 1) + 1)‖f‖Cm+s(Bn(η1)).

(ii) For 0 < γ ≤ η1
D , we have for f ∈ A n,η1 with f(0) = 0,

‖fγ‖A n,D ≤ γD

η1
‖f‖A n,η1 .

Proof. We begin with (i). Using 0 < γ ≤ min{η1
D , 1}, it follows immediately from the 

definitions that ∑
1≤|α|≤m

‖∂α
x fγ‖C s(Bn(D)) =

∑
1≤|α|≤m

γ|α|‖(∂α
x f)(γ·)‖C s(Bn(D))

≤
∑

1≤|α|≤m

γ|α|‖∂α
x f‖C s(Bn(η1)) ≤ γ‖f‖Cm+s(Bn(η1)).

(5.5)

Since fγ(0) = f(0) = 0, we have (using the Fundamental Theorem of Calculus)

‖fγ‖C1(Bn(D)) = ‖fγ‖C0(Bn(D)) +
∑
|α|=1

‖∂α
x fγ‖C0(Bn(D))

≤ (D + 1)
∑
|α|=1

‖∂α
x fγ‖C0(Bn(D)) ≤ (D + 1)γ‖f‖C1(Bn(η1)).

(5.6)

It is easy to see, directly from the definitions, that (for any function g on any ball B),10

‖g‖C s(B) ≤ 5‖g‖C0,s(B) ≤ 15‖g‖C0,1(B) ≤ 15‖g‖C1(B) ≤ 15‖g‖Cm+s(B). (5.7)

Thus, using (5.6), we have

‖fγ‖C s(Bn(D)) ≤ 15‖fγ‖C1(Bn(D)) ≤ 15(D + 1)γ‖f‖C1(Bn(η1))

≤ 15(D + 1)γ‖f‖Cm+s(Bn(η1)).

Combining this with (5.5) completes the proof of (i).
We turn to (ii). Let f ∈ A n,η1 with f(0) = 0, so that f(t) =

∑
|α|>0 cαt

α, and 

‖f‖A n,η1 =
∑

|α|>0 |cα|η
|α|
1 . For 0 < γ ≤ η1

D we have fγ(t) =
∑

|α|>0 cαγ
|α|tα, and 

therefore fγ ∈ A n,D and we have

10 See [10, Lemma 8.1] for a result like (5.7)–in the proof of that result, one can see how the constants 5
and 15 arise. However, these particular constants are not essential for what follows.
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‖fγ‖A n,D =
∑
|α|>0

|cα|(γD)|α| =
∑
|α|>0

|cα|(η1)|α|
(
γD

η1

)|α|
≤

(
γD

η1

)
‖f‖A n,η1 ,

completing the proof of (ii). �
Lemma 5.10. Let η1, η2 > 0, n1, n2 ∈ N, and let V be a Banach space. Suppose f ∈
A n1,η1(V ), g ∈ A n2,η2(Rn1) with ‖g‖A n2,η2 (Rn1 ) ≤ η1. Then, f ◦ g ∈ A n2,η2(V ) with 
‖f ◦ g‖A n2,η2 ≤ ‖f‖A n1,η1 .

Proof. This is immediate from the definitions. �
Lemma 5.11. Fix 0 < η2 < η1, and suppose f ∈ A n,η1(V ), where V is a Banach space. 
Then, for each j = 1, . . . , n, ∂

∂tj
f(t) ∈ A n,η2(V ) and ‖ ∂

∂tj
f‖A n,η2 (V ) ≤ C‖f‖A n,η1 (V ), 

where C can be chosen to depend only on η1 and η2.

Proof. Without loss of generality, we prove the result for j = 1. We let e1 denote the 
first standard basis element: e1 = (1, 0, . . . , 0) ∈ Rn. Suppose f(t) =

∑
cα

tα

α! . Then, 
∂
∂tj

f(t) =
∑

α1>0 cα
tα−e1

(α−e1)! . Hence,

∥∥∥∥ ∂

∂t1
f

∥∥∥∥
A n,η2

=
∑
α1>0

‖cα‖V

(α− e1)!
η
|α−e1|
2 =

∑
α

‖cα‖V

α! η
|α|
1

(
η2

η1

)|α|
α1

η1

≤
(

sup
α

(
η2

η1

)|α|
α1

η1

)
‖f‖A n,η1 ,

completing the proof. �
6. Some additional notation

If f : M → N is a C1 map between C1 manifolds, we write df(x) : TxM → TxN for the 
usual differential. We extend this to be a complex linear map df(x) : CTxM → CTxN , 
where CTxM = TxM⊗RC denotes the complexified tangent space. Even if the manifold 
M has additional structure (e.g., in the case of a complex manifold), df(x) is defined in 
terms of the underlying real manifold structure.

When working on Rr×Cn we will often use coordinates (t, z) where t = (t1, . . . , tr) ∈
Rr and z = (z1, . . . , zn) ∈ Cn. We write

∂

∂t
=

⎡⎢⎢⎢⎢⎣
∂
∂t1
∂
∂t2
...
∂

⎤⎥⎥⎥⎥⎦ ,
∂

∂z
=

⎡⎢⎢⎢⎢⎣
∂

∂z1
∂

∂z2
...
∂

⎤⎥⎥⎥⎥⎦ ,
∂

∂z
=

⎡⎢⎢⎢⎢⎣
∂

∂z1
∂

∂z2
...
∂

⎤⎥⎥⎥⎥⎦ .
∂tr ∂zn ∂zn
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At times we will instead use coordinates (u, w) where u ∈ Rr and w ∈ Cn and define 
∂
∂u , ∂

∂w , and ∂
∂w similarly.

For a function F (t, z) = (F1(t, z), . . . , Fm(t, z)) : Rr ×Cn → Cm we write

dtF =

⎡⎢⎣
∂F1
∂t1

· · · ∂F1
∂tr

...
. . .

...
∂Fm

∂t1
· · · ∂Fm

∂tr

⎤⎥⎦ , dzF =

⎡⎢⎣
∂F1
∂z1

· · · ∂F1
∂zn

...
. . .

...
∂Fm

∂z1
· · · ∂Fm

∂zn

⎤⎥⎦ , dzF =

⎡⎢⎣
∂F1
∂z1

· · · ∂F1
∂zn

...
. . .

...
∂Fm

∂z1
· · · ∂Fm

∂zn

⎤⎥⎦ .

We identify Rr ×R2n ∼= Rr ×Cn via the map (t1, . . . , tr, x1, . . . , x2n) 
→ (t1, . . . , tr, x1 +
ixn+1, . . . , xn + ix2n). Thus, given a function G(t, z) : Rr ×Cn → Rs×Cm, we may also 
think of F as function G(t, x) = (G1(t, x), . . . , Gs+2m(t, x)) : Rr ×R2n → Rs×R2m. For 
such a function, we write

d(t,x)G =

⎡⎢⎢⎢⎢⎣
∂G1
∂t1

· · · ∂G1
∂tr

∂G1
∂x1

· · · ∂G1
∂x2n

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

∂Gs+2m
∂t1

· · · ∂Gs+2m
∂tr

∂Gs+2m
∂x1

· · · ∂Gs+2m
∂x2n

⎤⎥⎥⎥⎥⎦ .

We write IN×N ∈ MN×N to denote the N × N identity matrix, and 0a×b ∈ Ma×b to 
denote the a × b zero matrix.

7. The main technical result

In this section, we state and prove the main technical result needed to prove Theo-
rem 4.18.

Fix s0 ∈ (0, ∞) ∪ {ω} and let X1, . . . , Xr, L1, . . . , Ln be complex vector fields on 
BRr×Cn(1) with:

• If s0 ∈ (0, ∞), Xk, Lj ∈ C s0+1(BRr×Cn(1); Cr+2n).
• If s0 = ω, Xk, Lj ∈ A r+2n,1(Cr+2n).

We suppose:

• Xk(0) = ∂
∂tk

, Lj(0) = ∂
∂zj

.
• ∀ζ ∈ BRr×Cn(1), [Xk1 , Xk2 ](ζ), [Xk, Lj ](ζ), [Lj1 , Lj2 ](ζ) ∈ spanC{X1(ζ), . . . ,

Xr(ζ), L1(ζ), . . . , Ln(ζ)}.

Under these hypotheses, Nirenberg’s theorem on the integrability of elliptic struc-
tures11 implies that there exists a map Φ4 : BRr×Cn(1) → BRr×Cn(1), with Φ4(0) = 0, 

11 Originally, Nirenberg considered only the case of C∞ vector fields and worked in the case when 
X1, . . . , Xr were real.
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Φ4 is a diffeomorphism onto its image (which is an open neighborhood of 0 ∈ BRr×Cn(1)), 
and such that Φ∗

4Xk(u, w), Φ∗
4Lj(u, w) ∈ spanC{ ∂

∂u1
, . . . , ∂

∂ur
, ∂
∂w1

, . . . , ∂
∂wr

}, ∀(u, w)
(here we are giving the domain space Rr × Cn coordinates (u, w)). Our goal in this 
section is to give a quantitative version of this result which gives Φ4 the optimal regu-
larity (namely, when s0 ∈ (0, ∞), Φ4 is in C s0+2, and when s0 = ω, Φ4 is real analytic).

As discussed in Section 1.2, for future applications we need keep track of what the 
constants depend on in this section, and need to make the statement of the results more 
precise than would be required just for the main results of this paper. To ease notation, 
we introduce notions of “admissible” constants. These are constants which only depend 
on certain parameters. The use of these constants greatly simplifies notation in both the 
statements of the results and the proofs.

Definition 7.1. If s0 ∈ (0, ∞), for s ≥ s0 if we say C is an {s}-admissible constant, it 
means that we assume Xk, Lj ∈ C s+1(BRr×Cn(1); Cr+2n), ∀j, k. C can then be cho-
sen to depend only on n, r, s, s0, and upper bounds for ‖Xk‖C s+1(BRr×Cn (1)) and 
‖Lj‖C s+1(BRr×Cn (1)), 1 ≤ k ≤ r, 1 ≤ j ≤ n. For s ≤ s0, we define {s}-admissible 
constants to be {s0}-admissible constants.

Definition 7.2. If s0 = ω, we say C is an {ω}-admissible constant if C can be chosen 
to depend only on n, r, and upper bounds for ‖Xk‖A 2n+r,1 , ‖Lj‖A 2n+r,1 , 1 ≤ k ≤ r, 
1 ≤ j ≤ n.

We write A �{s} B to mean A ≤ CB, where C is a positive {s}-admissible constant. 
We write A ≈{s} B for A �{s} B and B �{s} A.

Theorem 7.3. There exists an {s0}-admissible constant K2 ≥ 1 and a map Φ4 :
BRr×Cn(1) → BRr×Cn(1) such that

(i) • If s0 ∈ (0, ∞), Φ4 ∈ C s0+2(BRr×Cn(1); Rr×Cn) and ‖Φ4‖C s+2(BRr×Cn (1)) �{s}
1, ∀s > 0.

• If s0 = ω, Φ4 ∈ A 2n+r,2(Rr × Cn) and ‖Φ4‖A 2n+r,2 ≤ 1. In particular, Φ4

extends to a real analytic function on BRr×Cn(2).
(ii) Φ4(0) = 0 and d(t,x)Φ4(0) = K−1

2 I(r+2n)×(r+2n). See Section 6 for the notation 
d(t,x).

(iii) ∀ζ ∈ BRr×Cn(1), det d(t,x)Φ4(ζ) ≈{s0} 1.
(iv) Φ4(BRr×Cn(1)) ⊆ BRr×Cn(1) is an open set and Φ4 : BRr×Cn(1) → Φ4(BRr×Cn(1))

is a diffeomorphism.12

12 Here, and in the rest of the paper, we say F : U1 → U2 is a diffeomorphism if F is a bijection and dF
is everywhere nonsingular.
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(v) [
∂
∂u
∂
∂w

]
= K−1

2 (I + A)
[
Φ∗

4X

Φ∗
4L

]
,

where A : BRr×Cn(1) → M(n+r)×(n+r)(C), A(0) = 0 and
• If s0 ∈ (0, ∞), ‖A‖C s+1(BRr×Cn (1);M(n+r)×(n+r)) �{s} 1, ∀s > 0 and

‖A‖C s0+1(BRr×Cn (1);M(n+r)×(n+r)) ≤
1
4 .

• If s0 = ω, ‖A‖A 2n+r,1(M(n+r)×(n+r)) ≤ 1
4 .

In either case, note that this implies (I + A) is an invertible matrix on BRr×Cn(1).
(vi) Suppose Z is another complex vector field on BRr×Cn(1). Then,

• If s0 ∈ (0, ∞), ‖Φ∗
4Z‖C s+1(BRr×Cn (1)) �{s} ‖Z‖C s+1(BRr×Cn (1)), ∀s > 0.

• If s0 = ω, ‖Φ∗
4Z‖A 2n+r,1 �{ω} ‖Z‖A 2n+r,1 .

Remark 7.4. In Theorem 7.3 (and in the rest of this section), we have written s > 0 to 
mean s ∈ (0, ∞) and similarly for other such inequalities. For example if s0 ∈ (0, ∞) and 
we write s ≥ s0, it means s ∈ [s0, ∞).

Remark 7.5. Proofs of results like Theorem 7.3 in the literature only prove that Φ4 is 
C s0+1 (instead of C s0+2); and each of the estimates is similarly off by a derivative.13

Remark 7.6. When s0 = ω, the hypothesis Xk, Lj ∈ A r+2n,1(Cr+2n) can be replaced 
with the slightly weaker hypothesis Xk, Lj ∈ Br+2n,r+2n

1 ; one can achieve the same 
result with the same proof. However, our applications use Xk, Lj ∈ A r+2n,1(Cr+2n), so 
we use this space instead. In any case, it is straightforward to see (using Lemmas 5.5
and 5.8) that either choice yields an equivalent theorem.

7.1. A reduction

To prove Theorem 7.3, we prove the following proposition. For it we use the same 
notation and setting as Theorem 7.3.

Proposition 7.7. There exist {s0}-admissible constants K1 ≥ 1 and η3 ∈ (0, 1] and a map 
Φ3 : BRr×Cn(η3) → BRr×Cn(1) such that:

(i) • If s0 ∈ (0, ∞), Φ3 ∈ C s0+2(BRr×Cn(η3); Rr × Cn) and ‖Φ3‖C s+2(BRr×Cn (η3))
�{s} 1, ∀s > 0.

13 However, the results in this section concerning real analytic vector fields are standard.
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• If s0 = ω, Φ3 ∈ A 2n+r,2η3(Rr × Cn) and ‖Φ3‖A 2n+r,2η3 ≤ 1. In particular, Φ3
extends to a real analytic function on BRr×Cn(2η3).

(ii) Φ3(0) = 0 and d(t,x)Φ3(0) = K−1
1 I(r+2n)×(r+2n).

(iii) Φ3(BRr×Cn(η3)) ⊆ BRr×Cn(1) is open and Φ3 : BRr×Cn(η3) → Φ3(BRr×Cn(η3))
is a diffeomorphism.

(iv) [
∂
∂u
∂
∂w

]
= K−1

1 (I + A3)
[Φ∗

3X

Φ∗
3L

]
,

where A3 : BRr×Cn(η3) → M(n+r)×(n+r)(C), A3(0) = 0 and
• If s0 ∈ (0, ∞), ‖A3‖C s+1(BRr×Cn (η3)) �{s} 1, ∀s > 0.
• If s0 = ω, ‖A3‖A n,η3 �{ω} 1.

First we see how Theorem 7.3 follows from Proposition 7.7.

Proof of Theorem 7.3. Let Φ3, K1, η3, and A3 be as in Proposition 7.7. It follows from 
Proposition 7.7 (ii) that det d(t,x)Φ3(0) ≈{s0} 1. Next we claim that if η̂ ≈{s0} 1 is chosen 
sufficiently small (with η̂ ≤ η3), then det d(t,x)Φ3(ζ) ≈{s0} 1, ∀ζ ∈ BRr×Cn(η̂). Indeed:

• Suppose s0 ∈ (0, ∞). Note ‖Φ3‖C2(BRr×Cn (η3)) ≤ ‖Φ3‖C s0+2(BRr×Cn (η3)) �{s0} 1. 
Using the fact that det d(t,x)Φ3(0) ≈{s0} 1, if η̂ ≈{s0} 1 is chosen sufficiently small 
(with η̂ ≤ η3), we have det d(t,x)Φ3(ζ) ≈{s0} 1, ∀ζ ∈ BRr×Cn(η̂).

• Suppose s0 = ω. By Lemmas 5.5 and 5.8, ‖Φ3‖C2(BRr×Cn (η3)) �{s0} ‖Φ3‖B2n+r,2n+r
2η3

≤
‖Φ3‖A 2n+r,η3 �{s0} 1. Thus, using the fact that det d(t,x)Φ3(0) ≈{s0} 1, if η̂ ≈{s0} 1
is chosen sufficiently small (with η̂ ≤ η3), we have det d(t,x)Φ3(ζ) ≈{s0} 1, ∀ζ ∈
BRr×Cn(η̂).

For γ ≤ η̂, define Ψγ : BRr×Cn(1) → BRr×Cn(η̂) by Ψγ(ζ) = γζ. We will set Φ4 :=
Φ3 ◦ Ψγ for appropriately chosen γ. Consider,

1
γ

[
∂
∂u
∂
∂w

]
= Ψ∗

γ

[
∂
∂u
∂
∂w

]
= Ψ∗

γK
−1
1 (I + A3)

[Φ∗
3X

Φ∗
3L

]
= K−1

1 (I + A3 ◦ Ψγ)
[(Φ3 ◦ Ψγ)∗X

(Φ3 ◦ Ψγ)∗L

]
.

Since A3(0) = 0, using Proposition 7.7 (iv) and Lemma 5.9, we have:

• If s0 ∈ (0, ∞), ‖A3 ◦ Ψγ‖C s0+1(BRr×Cn (1)) �{s0} γ‖A3‖C s0+1(BRr×Cn (η3)) �{s0} γ. 
Thus, by taking γ to be a sufficiently small {s0}-admissible constant, we have ‖A3 ◦
Ψγ‖C s0+1(BRr×Cn (1)) ≤ 1

4 .
• If s0 = ω, we have ‖A3 ◦ Ψγ‖A 2n+r,1 ≤ γ

η3
‖A3‖A 2n+r,η3 �{ω} γ. Also, set 

R(t, z) := dΦ3(t, z) −K−1
1 I(2n+r)×(2n+r), so that R(0, 0) = 0, and by Lemma 5.11, 

R ∈ A 2n+r,η3(M(2n+r)×(2n+r)) and ‖R‖A 2n+r,η3 �{ω} 1. We have ‖R◦Ψγ‖A 2n+r,1 ≤
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γ
η3
‖R‖A 2n+r,η3 �{ω} γ. Thus, by taking γ to be a sufficiently small {ω}-admissible 

constant, we have ‖A3 ◦ Ψγ‖A 2n+r,1 ≤ 1
4 and ‖R ◦ Ψγ‖A 2n+r,1 ≤ (2K1)−1.

Taking γ as above and setting Φ4 = Φ3 ◦ Ψγ , Theorem 7.3 (i), (ii), (iii), (iv), and (v) 
follow with K2 = γ−1K1 and A = A3 ◦ Ψγ .

We turn to (vi). Recall,

Φ∗
4Z(u,w) = dΦ4(u,w)−1Z(Φ4(u,w)). (7.1)

If s0 ∈ (0, ∞), we have from (i) and Lemma 5.3 that ‖Z ◦ Φ4‖C s+1(BRr×Cn (1)) �{s}
‖Z‖C s+1(BRr×Cn (1)). Also, by (i), (iii), and Remark 5.2 we have ‖(dΦ4)−1‖C s+1(BRr×Cn (1))
�{s} 1. Using these estimates, (7.1), and Proposition 5.1, (vi) follows in the case s0 ∈
(0, ∞).

If s0 = ω, (i) and Lemma 5.10 show ‖Z ◦Φ4‖A 2n+r,1 �{ω} ‖Z‖A 2n+r,1 . Letting R be as 
above, we have dΦ4 = γK−1

1 (I + K1R ◦ Ψγ). Since ‖K1R ◦ Ψγ‖A 2n+r,1(M(2n+r)×(2n+r)) ≤
1/2, and since A 2n+r,1(M(2n+r)×(2n+r)) is a Banach Algebra (Lemma 5.6), it follows (by 
using the Neumann series for (I +K1R ◦Ψγ)−1) that ‖(dΦ4)−1‖A 2n+r,1 ≤ 2K1γ

−1 �{ω}
1. Using these estimates, (7.1), and Proposition 5.1, (vi) follows in the case s0 = ω, 
completing the proof. �

We now turn to the proof of Proposition 7.7, which encompasses the rest of Section 7. 
We do this by presenting a series of increasingly general versions of the proposition, and 
reducing each to the previous; eventually culminating with the full Proposition 7.7. The 
outline of this proof is:

• In Section 7.2 we present a quantitative version of the holomorphic Frobenius theo-
rem; this result is standard.

• In Section 7.3 we prove the special case of Proposition 7.7 when the vector fields 
are all assumed to be real analytic and commute. We do this by reducing it to the 
holomorphic case. This procedure is standard.

• In Section 7.4 we present an easily checkable special case of the real analytic setting 
using elliptic PDEs. This is a generalization of part of Malgrange’s approach [5].

• In Section 7.5 we use elliptic PDEs to reduce the case of vector fields which are a 
small perturbation of ∂

∂t and ∂
∂z to the previous case. This is a generalization of part 

of Malgrange’s approach [5].
• In Section 7.6 we use a simple scaling argument to study vector fields which might 

be a large perturbation of ∂
∂t and ∂

∂z ; we do this by reducing to the previous case.
• In Section 7.7 we complete the proof by using some simple linear algebra.

Remark 7.8. In each subsection which follows we use notions of admissible constants 
which are specific to that section; we are explicit about what we mean in each subsection. 
In each subsection, we prove progressively stronger results, eventually culminating in the 
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proof of Proposition 7.7; we do this by reducing each result to the weaker results which 
proceed it. The admissible constants in each result are defined so that constants which 
are admissible in the result we are proving are admissible in the weaker results which 
we reduce it to. So that, for example, the main result in Section 7.5 is reduced to the 
main result in Section 7.4; and in this application of the main result in Section 7.4, each 
constant which is admissible in the sense of Section 7.4 is admissible in the sense of 
Section 7.5. Thus the various notions of admissible constants seamlessly glue together to 
yield Proposition 7.7.

7.2. The holomorphic Frobenius theorem

Fix η0 > 0. In this section we work on Cr × C2n with complex coordinates (σ, ζ) =
(σ1, . . . , σr, ζ1, . . . , ζ2n). We are given holomorphic vector fields:

Xk = ∂

∂σk
+

2n∑
l=1

bl1,k(σ, ζ)
∂

∂ζl
+

r∑
l=1

bl2,k(σ, ζ)
∂

∂σl
, 1 ≤ k ≤ r,

Lj = 1
2

(
∂

∂ζj
+ i

∂

∂ζj+n

)
+

2n∑
l=1

bl3,j(σ, ζ)
∂

∂ζl
+

r∑
l=1

bl4,j(σ, ζ)
∂

∂σl
, 1 ≤ j ≤ n,

where bec,d ∈ O1
b (BCr+2n(η0)), ∀c, d, e (see Section 5.1 for the definition of the space 

O1
b (BCr+2n(η0))). We also assume bec,d(0, 0) = 0, ∀c, d, e.
We assume [Lj1 , Lj2 ] = 0, [Lj , Xk] = 0, [Xk1 , Xk2 ] = 0, ∀j1, j2, k1, k2, j, k. Take C1 so 

that ‖bec,d‖O1
b (BCr+2n (η0)) ≤ C1, ∀c, d, e.

Definition 7.9. We say C is an admissible constant if C can be chosen to depend only on 
η0, n, r, and C1.

We write A � B for A ≤ CB, where C is an admissible constant. We write A ≈ B

for A � B and B � A.14

Proposition 7.10. There exists an admissible constant η1 > 0 and w1, . . . , wn ∈
O1

b (BCr+2n(η1)) such that:

• wl(0) = 0 and dwl(0) = dζl + idζl+n.
• ‖wl‖O1

b (BCr+2n (η1)) � 1, ∀l.
• Ljwl = 0, Xkwl = 0, ∀j, k, l.

In what follows, we use the exponentiation of holomorphic vector fields. So that if 
V is a holomorphic vector field on an open set Ω ⊆ CN , it makes sense to define 

14 We use similar notation in the following sections without explicitly defining it.
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(t, z) 
→ etV z, for z ∈ Ω and t in a neighborhood of 0 ∈ C (depending on z). If Ω′ � Ω
is a relatively compact open set, then the map etV z exists for z ∈ Ω′ and t ∈ BC(δ), 
where δ can be chosen to depend only on upper bounds for dist(Ω′, ∂Ω)−1, ‖Z‖ON

b (Ω), 
and N . Furthermore, ‖etZz− z‖ON

b (BC(δ)×Ω′) can be bounded in terms of upper bounds 
for ‖Z‖ON

b (Ω), δ, and N . This is all proved using the standard Contraction Mapping 
Principle argument. See Chapter I, Section 1 of [4] for a proof of this standard fact.

Proof of Proposition 7.10. Let Z1, . . . , Zn be given by Zj = 1
2

(
∂

∂ζj
− i ∂

∂ζj+n

)
, and set

Ψ(t1, . . . , tr, u1, . . . , un, v1, . . . , vn)

:= et1X1et2X2 · · · etrXreu1L1eu2L2 · · · eunLnev1Z1ev2Z2 · · · evnZn0.

By the above discussion, there exists an admissible constant η′ > 0 with Ψ ∈
Or+2n

b (BCr+2n(η′)) and ‖Ψ‖Or+2n
b (BCr+2n (η′)) � 1.

Since ∂
∂tk

∣∣
t=0,u=0,v=0Ψ(t, u, v) = Xk(0) = ∂

∂σk
, ∂

∂uj

∣∣
t=0,u=0,v=0Ψ(t, u, v) = Lj(0) =

1
2

(
∂

∂ζj
+ i ∂

∂ζj+n

)
, and ∂

∂vj

∣∣
t=0,u=0,v=0Ψ(t, u, v) = Zj(0) = 1

2

(
∂

∂ζj
− i ∂

∂ζj+n

)
, we have 

(where Ia×a denotes the a × a identity matrix and 0a×b denotes the a × b zero matrix):

dt,u,vΨ(0, 0, 0) =

⎡⎢⎢⎢⎢⎣
Ir×r 0r×n 0r×n

0n×r
1
2In×n

1
2In×n

0n×r
i
2In×n − i

2In×n

⎤⎥⎥⎥⎥⎦ .

In particular, dt,u,vΨ(0, 0, 0) is invertible and

(dt,u,vΨ(0, 0, 0))−1 =

⎡⎢⎢⎢⎢⎣
Ir×r 0r×n 0r×n

0n×r In×n −iIn×n

0n×r In×n iIn×n

⎤⎥⎥⎥⎥⎦ . (7.2)

Since Ψ(0, 0, 0) = (0, 0, 0), the holomorphic Inverse Function Theorem applies to show 
that there exist admissible constants η′′, η1 > 0 such that

Ψ : BCr+2n(η′′) → Ψ(BCr+2n(η′′))

is a biholomorphism, BCr+2n(η1) ⊆ Ψ(BCr+2n(η′′)), and ‖Ψ−1‖O2n+r
b (BCr+2n (η1)) � 1.

We give BCr+2n(η′′) holomorphic coordinates (t1, . . . , tr, u1, . . . , un, v1 . . . , vn). Set 
Vj(t1, . . . , tr, u1, . . . , un, v1, . . . , vn) = vj . Define, for 1 ≤ j ≤ n, wj ∈ O1

b (BCr+2n(η1)) by

wj(σ, ζ) := Vj ◦ Ψ−1(σ, ζ).
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Note ‖wj‖O1
b (BCr+2n (η1)) � 1 and wj(0) = 0.

Because the Xks and Ljs commute, we have Ψ∗
∂

∂tk
= Xk and Ψ∗

∂
∂uj

= Lj . Thus, 
since ∂

∂tk
Vl = 0 and ∂

∂uj
Vl = 0, we have Xkwl = 0 and Ljwl = 0.

Finally, we compute dwj(0) = dVj(0)dΨ−1(0). dVj(0) is the row vector which has 1
in the r+n + j component and 0 in all other components and dΨ−1(0) is given in (7.2). 
Thus, dwj(0) is the vector which equals 1 in the r + j component, i in the r + n + j

component, and 0 in all other components. I.e., dwj(0) = dζj + idζj+n. �
7.3. Real analytic vector fields

Fix η0 > 0. Let X1, . . . , Xr, L1, . . . , Ln be real analytic vector fields on Rr × Cn ∼=
Rr+2n of the form

Xk = ∂

∂tk
+ Ak

∂

∂t
+ Bk

∂

∂z
+ Ek

∂

∂z
, 1 ≤ k ≤ r,

Lj = ∂

∂zj
+ Cj

∂

∂t
+ Dj

∂

∂z
+ Fj

∂

∂z
, 1 ≤ j ≤ n.

Here we are thinking of Ak, Bk, Cj , Dj , Ek, and Fj as real analytic row vectors: Ak, Cj ∈
Br+2n,r

η0
, Bk, Dj , Ek, Fj ∈ Br+2n,n

η0
(see Section 5.1 for the definition of Br+2n,·

η0
). We 

assume Ak(0) = 0, Bk(0) = 0, Cj(0) = 0, Dj(0) = 0, Ek(0) = 0, and Fj(0) = 0, and 
we assume the Xs and Ls all commute: [Xk1 , Xk2 ] = 0, [Xk, Lj ] = 0, [Lj1 , Lj2 ] = 0, 
∀j1, j2, k1, k2, j, k.

Definition 7.11. We say K is an admissible constant if K can be chosen to depend only 
on η0, n, r, and upper bounds for ‖Ak‖Br+2n,r

η0
, ‖Bk‖Br+2n,n

η0
, ‖Cj‖Br+2n,r

η0
, ‖Dj‖Br+2n,n

η0
, 

‖Ek‖Br+2n,n
η0

, and ‖Fj‖Br+2n,n
η0

, ∀j, k.

Proposition 7.12. There exists an admissible constant η2 > 0 and a map

Φ1 : BRr×Cn(η2) → BRr×Cn(η0)

such that:

• Φ1 ∈ Br+2n,r+2n
η2

with ‖Φ1‖Br+2n,r+2n
η2

� 1.
• Φ1(BRr×Cn(η2)) ⊆ BRr×Cn(η0) is open and Φ1 : BRr×Cn(η2) → Φ1(BRr×Cn(η2)) is 

a real analytic diffeomorphism.
• Φ1(0) = 0 and dt,xΦ1(0) = I(r+2n)×(r+2n).
• [

∂
∂u
∂
∂w

]
= (I + A1)

[Φ∗
1X

Φ∗
1L

]
,

where A1(0) = 0, A1 ∈ Br+2n,M(n+r)×(n+r)

η2
, and ‖A1‖ r+2n,M(n+r)×(n+r) ≤ 1.
Bη2
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To prove Proposition 7.12 we start with a conditional lemma.

Lemma 7.13. We take the same setting as Proposition 7.12. Suppose there is an ad-
missible constant η1 > 0 and functions w1, . . . , wn ∈ Br+2n,1

η1
such that: wl(0) = 0, 

dwl(0) = dzl, ‖wl‖Br+2n,1
η1

� 1, and Ljwl = 0, Xkwl = 0, ∀j, k, l. Then, the conclusions 
of Proposition 7.12 hold.

Proof. We define Ψ : BRr×Cn(η1) → Rr ×Cn by

Ψ(t, z) = (t, w1(t, z), . . . , wn(t, z)).

I.e., by identifying R2n ∼= Cn via the map (x1, . . . , x2n) 
→ (x1 + ixn+1, . . . , xn + ix2n), 
we have

Ψ(t, x) = (t,Re(w1)(t, x), . . . ,Re(wn)(t, x), Im(w1)(t, x), . . . , Im(wn)(t, x)).

Note that Ψ(0, 0) = 0. Since dwj(0) = dzj it follows that dt,xΨ(0) = I(r+2n)×(r+2n). 
Thus, the Inverse Function Theorem applies to Ψ to show that there exists admissible
constants η′, η′′ > 0 such that Ψ : BRr×Cn(η′) → Ψ(BRr×Cn(η′)) is a real analytic diffeo-
morphism, BRr×Cn(η′′) ⊆ Ψ(BRr×Cn(η′)), and Φ1 := Ψ−1 : BRr×Cn(η′′) → BRr×Cn(η′)
satisfies Φ1 ∈ Br+2n,r+2n

η′′ with ‖Φ1‖Br+2n,r+2n
η′′

� 1.
Using coordinates (u, w) on Rr ×Cn, since Ljwl = 0 and Xkwl = 0, ∀j, k, l, we have

Φ∗
1Xk(u,w),Φ∗

1Lj(u,w) ∈ spanC
{

∂

∂u1
, . . . ,

∂

∂ur
,

∂

∂w1
, . . . ,

∂

∂wn

}
,

∀(u,w) ∈ BRr×Cn(η′′).

Since dt,xΦ1(0) = dt,xΨ(0)−1 = I(r+2n)×(r+2n) and Xk(0) = ∂
∂tk

, Lj(0) = ∂
∂wj

we have

[Φ∗
1X

Φ∗
1L

]
= (I + M)

[
∂
∂u
∂
∂w

]
,

where M is a real analytic matrix, M(0) = 0, and ‖M‖
B2n+r,M(n+r)×(n+r)

η′′/2
� 1 (here η′′/2

can be replaced with any fixed number in (0, η′′)). Since M(0) = 0, for η2 ∈ (0, η′′/2] we 
have, using Lemma 5.7,

‖M‖
B2n+r,M(n+r)×(n+r)

η2
� η2.

By taking η2 > 0 to be a sufficiently small admissible constant, we have

‖M‖ 2n+r,M(n+r)×(n+r) ≤ 1
.

Bη2 2
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We define I + A1 := (I + M)−1. Then we have A1(0) = 0, ‖A1‖
B2n+r,M(n+r)×(n+r)

η2
≤ 1

(since B2n+r,M(n+r)×(n+r)

η2
is a Banach algebra and we have used the Neumann series for 

(1 + M)−1), and [
∂
∂u
∂
∂w

]
= (I + A1)

[
Φ∗

1X
Φ∗

1L

]
,

as desired, completing the proof. �
Proof of Proposition 7.12. We need to show that there exist functions w1, . . . , wn as in 
Lemma 7.13. By the definition of Br+2n,·

η0
, the functions Ak, Bk, Cj , Dj , Ek, and Fj

extend to holomorphic functions E (Ak), E (Cj) ∈ Or
b (BCr+2n(η0)), E (Bk), E (Dj), E (Ek),

E (Fj) ∈ On
b (BCr+2n(η0)), with

‖E (Ak)‖Or
b
, ‖E (Cj)‖Or

b
, ‖E (Bk)‖On

b
, ‖E (Dj)‖On

b
, ‖E (Ek)‖On

b
, ‖E (Fj)‖On

b
� 1.

We give Cr ×C2n coordinates (σ, ζ). Let

∂

∂ζ·
:=

⎡⎢⎣
∂

∂ζ1
...
∂

∂ζn

⎤⎥⎦ ,
∂

∂ζ·+n
:=

⎡⎢⎣
∂

∂ζn+1
...
∂

∂ζ2n

⎤⎥⎦ .

We extend Xk and Lj to holomorphic vector fields on Cr ×C2n, by setting

E (Xk) = ∂

∂σj
+ E (Ak)

∂

∂σ
+ E (Bk)

1
2

(
∂

∂ζ·
− i

∂

∂ζ·+n

)
+ E (Ek)

1
2

(
∂

∂ζ·
+ i

∂

∂ζ·+n

)
,

E (Lj) =1
2

(
∂

∂ζj
+ i

∂

∂ζj+n

)
+ E (Cj)

∂

∂σ
+ E (Dj)

1
2

(
∂

∂ζ·
− i

∂

∂ζ·+n

)
+ E (Fj)

1
2

(
∂

∂ζ·
+ i

∂

∂ζ·+n

)
.

I.e., we have extended each tk to the complex variable σk and each xj to the complex 
variable ζj . Since the Xs and Ls commute, the same is true of the E (X)s and E (L)s by 
analytic continuation: [E (Xk1), E (Xk2)] = 0, [E (Lj1), E (Lj2)] = 0, [E (Xk), E (Lj)] = 0, 
∀k1, k2, j1, j2, j, k.

Proposition 7.10 applies to E (X1), . . . , E (Xr), E (L1), . . . , E (Ln) and each constant 
which is admissible in the sense of Proposition 7.10 is admissible in the sense of this 
section. This shows that there exists an admissible constant η1 > 0 and functions 
ŵ1, . . . , ŵn ∈ O1

b (BCr+2n(η1)), with ‖ŵl‖O1
b

� 1, ŵl(0) = 0, dŵl(0) = dζl + idζl+n, 
and E (Lj)ŵl = 0, E (Xk)ŵl = 0, ∀j, k, l.

Define, for (t, x) ∈ BRr×R2n(η1),

wl(t1, . . . , tr, x1, . . . , x2n) := ŵl(t1 + i0, . . . , tr + i0, x1 + i0, . . . , x2n + i0).
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Note that ŵl is the analytic extension of wl and therefore ‖wl‖Br+2n,1
η1

� 1. Also, dwl(0) =
dxl + idxl+n = dzl, wl(0) = ŵl(0) = 0. Finally, since E (Xk)ŵl = 0 and E (Lj)ŵl = 0
we have Xkwl = 0 and Ljwl = 0, ∀j, k, l. Thus Lemma 7.13 applies, completing the 
proof. �
7.4. Vector fields satisfying an additional equation

Fix s0 ∈ (0, ∞). We let X1, . . . , Xr, L1, . . . , Ln be C s0+1 complex vector fields on 
BRr×Cn(1) of the following form:

X = ∂

∂t
+ A

∂

∂t
+ B

∂

∂z
+ E

∂

∂z
, L = ∂

∂z
+ C

∂

∂t
+ D

∂

∂z
+ F

∂

∂z
.

Here we are using matrix notation; so that X is the column vector [X1, . . . , Xr ]	, ∂
∂t =[

∂
∂t1

, . . . , ∂
∂tr

]	, similarly for L, ∂
∂z , and ∂

∂z , and A, B, C, D, E, and F are matrices of 
the appropriate size. Thus, if we let Ak denote the kth row of A, and similarly for B, C, 
D, E, and F we have

Xk = ∂

∂tk
+ Ak

∂

∂t
+ Bk

∂

∂z
+ Ek

∂

∂z
, Lj = ∂

∂zj
+ Cj

∂

∂t
+ Dj

∂

∂z
+ Fj

∂

∂z
.

We assume:

• A ∈ C s0+1(BRr×Cn(1); Mr×r(C)), B, E ∈ C s0+1(BRr×Cn(1); Mr×n(C)), C ∈
C s0+1(BRr×Cn(1); Mn×r(C)), D, F ∈ C s0+1(BRr×Cn(1); Mn×n(C)).

• A(0) = 0r×r, B(0) = 0r×n, C(0) = 0n×r, D(0) = 0n×n, E(0) = 0r×n, and F (0) =
0n×n.

• The Xs and Ls commute: [Xk1 , Xk2 ] = 0, [Lj1 , Lj2 ] = 0, and [Xk, Lj ] = 0, 
∀j1, j2, k1, k2, j, k.

•
r∑

k=1

∂Ak

∂tk
+

n∑
j=1

∂Cj

∂zj
= 0,

r∑
k=1

∂Bk

∂tk
+

n∑
j=1

∂Dj

∂zj
= 0,

r∑
k=1

∂Ek

∂tk
+

n∑
j=1

∂Fj

∂zj
= 0. (7.3)

Definition 7.14. We say K is an admissible constant if K can be chosen to depend only 
on n, r, and s0.

Proposition 7.15. There exists an admissible constant γ > 0 such that if

‖A‖C s0+1(BRr×Cn (1)), ‖B‖C s0+1(BRr×Cn (1)), ‖C‖C s0+1(BRr×Cn (1)),

‖D‖C s0+1(BRr×Cn (1)), ‖E‖C s0+1(BRr×Cn (1)), ‖F‖C s0+1(BRr×Cn (1)) ≤ γ,

then there exists an admissible constant η2 > 0 and a map Φ1 : BRr×Cn(η2) →
BRr×Cn(1) such that:
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• Φ1 ∈ Br+2n,r+2n
η2

with ‖Φ1‖Br+2n,r+2n
η2

� 1.
• Φ1(BRr×Cn(η2)) ⊆ BRr×Cn(1) is open and Φ1 : BRr×Cn(η2) → Φ1(BRr×Cn(η2)) is 

a real analytic diffeomorphism.
• Φ1(0) = 0 and dt,xΦ1(0) = I(r+2n)×(r+2n).
• [

∂
∂u
∂
∂w

]
= (I + A1)

[
Φ∗

1X
Φ∗

1L

]
,

where A1(0) = 0, A1 ∈ Br+2n,M(n+r)×(n+r)

η2
, and ‖A1‖

Br+2n,M(n+r)×(n+r)
η2

≤ 1.

Proof. To prove the proposition, we will show that if γ > 0 is a sufficiently small ad-
missible constant, then A, B, C, D, E, and F are real analytic, and there exists an 
admissible constant η0 > 0 such that

‖Ak‖Br+2n,r
η0

, ‖Bk‖Br+2n,n
η0

, ‖Cj‖Br+2n,r
η0

, ‖Dj‖Br+2n,n
η0

, ‖Ek‖Br+2n,n
η0

, ‖Fj‖Br+2n,n
η0

� 1,
∀j, k. (7.4)

The result will then follow immediately from Proposition 7.12.
The equation [Xk1 , Xk2 ] = 0 can be equivalently rewritten as the following three 

equations:

∂Ak2

∂tk1

− ∂Ak1

∂tk2

= Ak2

∂

∂t
Ak1 −Ak1

∂

∂t
Ak2 + Bk2

∂

∂z
Ak1 −Bk1

∂

∂z
Ak2

+ Ek2

∂

∂z
Ak1 −Ek1

∂

∂z
Ak2 , (7.5)

∂Bk2

∂tk1

− ∂Bk1

∂tk2

= Ak2

∂

∂t
Bk1 −Ak1

∂

∂t
Bk2 + Bk2

∂

∂z
Bk1 −Bk1

∂

∂z
Bk2

+ Ek2

∂

∂z
Bk1 −Ek1

∂

∂z
Bk2 , (7.6)

∂Ek2

∂tk1

− ∂Ek1

∂tk2

= Ak2

∂

∂t
Ek1 −Ak1

∂

∂t
Ek2 + Bk2

∂

∂z
Ek1 −Bk1

∂

∂z
Ek2

+ Ek2

∂

∂z
Ek1 −Ek1

∂

∂z
Ek2 . (7.7)

We write (7.5), (7.6), and (7.7) as the following equation:((
∂Ak2

∂tk1

− ∂Ak1

∂tk2

)
1≤k1<k2≤r

,

(
∂Bk2

∂tk1

− ∂Bk1

∂tk2

)
1≤k1<k2≤r

,

(
∂Ek2

∂tk1

− ∂Ek1

∂tk2

)
1≤k1<k2≤r

)
= Γ1((A,B,E),∇(A,B,E)),

(7.8)
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where Γ1 is an explicit constant coefficient bilinear form depending only on n and r. 
Similarly, [Lj1 , Lj2 ] = 0 can be written as:((

∂Cj2

∂zj1
− ∂Cj1

∂zj2

)
1≤j1<j2≤n

,

(
∂Dj2

∂zj1
− ∂Dj1

∂zj2

)
1≤j1<j2≤n

,

(
∂Fj2

∂zj1
− ∂Fj1

∂zj2

)
1≤j1<j2≤n

)
= Γ2((C,D, F ),∇(C,D, F )). (7.9)

Finally, [Xk, Lj ] = 0 can be written as:

⎛⎝(
∂Cj

∂tk
− ∂Ak

∂zj

)
1≤j≤n
1≤k≤r

,

(
∂Dj

∂tk
− ∂Bk

∂zj

)
1≤j≤n
1≤k≤r

,

(
∂Fj

∂tk
− ∂Ek

∂zj

)
1≤j≤n
1≤k≤r

⎞⎠
= Γ3((A,B,C,D,E, F ),∇(A,B,C,D,E, F )).

(7.10)

Combining (7.8), (7.9), (7.10), and (7.3) we see that (A, B, C, D, E, F ) satisfies the 
following equation:

E(A,B,C,D,E, F ) = Γ((A,B,C,D,E, F ),∇(A,B,C,D,E, F )), (7.11)

where Γ is an explicit constant coefficient, bilinear form, depending only on n and r, and 
E is the following explicit operator (which depends only on n and r):

E(A,B,C,D,E, F ) =
( (

∂Ak2

∂tk1

− ∂Ak1

∂tk2

)
1≤k1<k2≤r

,

(
∂Cj2

∂zj1
− ∂Cj1

∂zj2

)
1≤j1<j2≤n

,

(
∂Cj

∂tk
− ∂Ak

∂zj

)
1≤j≤n
1≤k≤r

,

r∑
k=1

∂Ak

∂tk
+

n∑
j=1

∂Cj

∂zj
,

(
∂Bk2

∂tk1

− ∂Bk1

∂tk2

)
1≤k1<k2≤r

,

(
∂Dj2

∂zj1
− ∂Dj1

∂zj2

)
1≤j1<j2≤n

,

(
∂Dj

∂tk
− ∂Bk

∂zj

)
1≤j≤n
1≤k≤r

,

r∑
k=1

∂Bk

∂tk
+

n∑
j=1

∂Dj

∂zj
,

(
∂Ek2

∂tk1

− ∂Ek1

∂tk2

)
1≤k1<k2≤r

,

(
∂Fj2

∂zj1
− ∂Fj1

∂zj2

)
1≤j1<j2≤n

,

(
∂Fj

∂tk
− ∂Ek

∂zj

)
1≤j≤n
1≤k≤r

,

r∑
k=1

∂Ek

∂tk
+

n∑
j=1

∂Fj

∂zj

)
.

Lemma B.5 shows that E is elliptic.
Proposition B.1, applied to (7.11), shows that there is an admissible γ > 0 such that 

if
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‖A‖C s0+1 , ‖B‖C s0+1 , ‖C‖C s0+1 , ‖D‖C s0+1 , ‖E‖C s0+1 , ‖F‖C s0+1 ≤ γ,

then there exists an admissible η0 > 0 such that (7.4) holds. Now the result follows from 
Proposition 7.12. �
Remark 7.16. We only use Proposition 7.15 in the special case A ≡ 0, C ≡ 0, E ≡ 0, 
and F ≡ 0; however the proof in this special case is no easier than the more general case 
covered in Proposition 7.15.

7.5. Vector fields with small error

Fix s0 ∈ (0, ∞). We consider C s0+1 complex vector fields, X1, . . . , Xr, L1, . . . , Ln, on 
BRr×Cn(2) of the following form:

X = ∂

∂t
+ E

∂

∂z
, L = ∂

∂z
+ F

∂

∂z
.

Here we are again using the matrix notation from Section 7.4.
We assume:

(I) E ∈ C s0+1(BRr×Cn(2); Mr×n(C)), F ∈ C s0+1(BRr×Cn(2); Mn×n(C)).
(II) E(0) = 0, F (0) = 0.

(III) ∀ζ ∈ BRr×Cn(2), [Xk1 , Xk2 ](ζ), [Lj1 , Lj2 ](ζ), [Xk, Lj ](ζ) ∈ spanC{X1(ζ), . . . ,
Xr(ζ), L1(ζ), . . . , Ln(ζ)}, ∀j, k, l.

Remark 7.17. Assumption (III) is equivalent to assuming X1, . . . , Xr, L1, . . . , Ln com-
mute. Indeed, under (III) and because of the form of X and L, we have ∀ζ ∈ BRr×Cn(2),

[Xk1 , Xk2 ](ζ), [Lj1 , Lj2 ](ζ), [Xk, Lj ](ζ)

∈ spanC {X1(ζ), . . . , Xr(ζ), L1(ζ), . . . , Ln(ζ)}
⋂

spanC
{

∂

∂z1
, . . . ,

∂

∂zn

}
= {0}.

Definition 7.18. For s > s0 if we say C is an {s}-admissible constant, it means that we 
assume E ∈ C s+1(BRr×Cn(2); Mr×n(C)) and F ∈ C s+1(BRr×Cn(2); Mn×n(C)). C can 
be chosen to depend only on n, r, s0, s, and upper bounds for ‖E‖C s+1(BRr×Cn (2)) and 
‖F‖C s+1(BRr×Cn (2)). For 0 < s ≤ s0 we say C is an {s}-admissible constant if C can be 
chosen to depend only on n, r, and s0.

Proposition 7.19. There exists σ = σ(n, r, s0) > 0 such that if ‖E‖C s0+1(BRr×Cn (2)),

‖F‖C s0+1(BRr×Cn (2)) ≤ σ, then there exists an {s0}-admissible constant η3 > 0 and a 
map Φ2 : BRr×Cn(η3) → BRr×Cn(2) such that:

• Φ2 ∈ C s0+2(BRr×Cn(η3); Rr ×Cn) and ‖Φ2‖C s+2(BRr×Cn (η3)) �{s} 1, ∀s > 0.
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• Φ2(0) = 0, dt,xΦ2(0) = I(r+2n)×(r+2n).
• Φ2(BRr×Cn(η3)) ⊆ BRr×Cn(2) is open and Φ2 : BRr×Cn(η3) → Φ2(BRr×Cn(η3)) is 

a C s0+2 diffeomorphism.
• [

∂
∂u
∂
∂w

]
= (I + A2)

[Φ∗
2X

Φ∗
2L

]
,

where A2 : BRr×Cn(η3) → M(r+n)×(r+n)(C), A2(0) = 0, and ‖A‖C s+1(BRr×Cn (η3))
�{s} 1.

To prove Proposition 7.19, we prove the following lemma.

Lemma 7.20. Fix γ > 0. There exists σ = σ(n, r, s0, γ) > 0 such that if
‖E‖C s0+1(BRr×Cn (2)), ‖F‖C s0+1(BRr×Cn (2)) ≤ σ, there exists H ∈ C s0+2(BRr×Cn(2); Rr×
Cn) such that

(i) H(t, z) = (t, z) + R(t, z), R(0, 0) = 0, dt,xR(0, 0) = 0(r+2n)×(r+2n).
(ii) ‖H‖C s+2(BRr×Cn (3/2)) �{s} 1, ∀s > 0.
(iii) H : BRr×Cn(2) → BRr×Cn(3) is injective, H(BRr×Cn(2)) ⊆ BRr×Cn(3) is open, 

and H : BRr×Cn(2) → H(BRr×Cn(2)) is a diffeomorphism.
(iv) BRr×Cn(1) ⊆ H(BRr×Cn(3/2)).
(v) ‖H−1‖C s+2(BRr×Cn (1)) �{s} 1, ∀s > 0.
(vi) Let Vk := H∗Xk and Wj = H∗Lj. Then there exists a matrix M ∈

C s0+1(BRr×Cn(1); M(r+n)×(r+n)(C)) with M(0) = 0 and such that:
• ‖M‖C s+1(BRr×Cn (1)) �{s} 1, ∀s > 0.
• If [

X̃

L̃

]
:= (I + M)

[
V
W

]
,

then

X̃ = ∂

∂u
+ B

∂

∂w
, L̃ = ∂

∂w
+ D

∂

∂w
,

where we are using the matrix notation from Section 7.4. We have

‖B‖C s0+1(BRr×Cn (1)), ‖D‖C s0+1(BRr×Cn (1)) ≤ γ,

‖B‖C s+1(BRr×Cn (1)), ‖D‖C s+1(BRr×Cn (1)) �{s} 1, ∀s > 0,

and B(0) = 0, D(0) = 0. Finally, if we let Bk denote the kth row of B, and 
similarly for Dj , we have
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r∑
k=1

∂Bk

∂uk
+

n∑
j=1

∂Dj

∂wj
= 0. (7.12)

• X̃1, . . . , X̃r, L̃1, . . . , L̃n commute on BRr×Cn(1).

First we see why Lemma 7.20 gives Proposition 7.19

Proof of Proposition 7.19. Take γ = γ(n, r, s0) > 0 as in Proposition 7.15. We take 
σ = σ(n, r, s0, γ) > 0 as in Lemma 7.20. With this choice of σ and γ, Lemma 7.20 shows 
that Proposition 7.15 applies to the vector fields X̃1, . . . , X̃r, L̃1, . . . , L̃n from Lemma 7.20
(and constants which are admissible in the sense of Proposition 7.15 are {s0}-admissible 
in the sense of this section)–here we are taking A ≡ 0, C ≡ 0, E ≡ 0, and F ≡ 0 in 
Proposition 7.15.

Thus, we obtain an {s0}-admissible constant η2 > 0 and a map Φ1 : BRr×Cn(η2) →
BRr×Cn(1) as in Proposition 7.15. Set η3 := η2/2. For each s > 0, we have, using 
Lemma 5.8,

‖Φ1‖C s+2(BRr×Cn (η3)) ≤ Cs,η2‖Φ1‖Br+2n,r+2n
η2

�{s0} Cs,η2 ,

where Cs,η2 can be chosen to depend only on s and η2. We conclude,

‖Φ1‖C s+2(BRr×Cn (η3)) �{s} 1, ∀s > 0.

Similarly, if A1 is as in Proposition 7.15, we have A1(0) = 0, and using Lemma 5.8, 
‖A1‖C s+1(BRr×Cn (η3)) �{s} ‖A1‖

Br+2n,M(n+r)×(n+r)
η2

≤ 1, ∀s > 0, and

[
∂
∂u
∂
∂w

]
= (I + A1)

[
Φ∗

1X̃

Φ∗
1L̃

]
.

We have, with M and H as in Lemma 7.20,[
∂
∂u
∂
∂w

]
= (I + A1)(I + M ◦ Φ1)

[ Φ∗
1V

Φ∗
1W

]
= (I + A1)(I + M ◦ Φ1)

[(H−1 ◦ Φ1)∗X
(H−1 ◦ Φ1)∗L

]

=: (I + A2)
[Φ∗

2X

Φ∗
2L

]
,

where Φ2 = H−1 ◦ Φ1 and I + A2 = (I + A1)(I + M ◦ Φ1). Since we have al-
ready noted ‖Φ1‖C s+2(BRr×Cn (η3)) �{s} 1 and ‖A1‖C s+1(BRr×Cn (η3)) �{s} 1, ∀s > 0, 
and Lemma 7.20 gives ‖M‖C s+1(BRr×Cn (1)) �{s} 1, ∀s > 0, it follows from Proposi-
tion 5.1 and Lemma 5.3 that ‖A2‖C s+1(BRr×Cn (η3)) �{s} 1, ∀s > 0. Since A1(0) = 0, 
M(0) = 0, and Φ1(0) = 0, we have A2(0) = 0. Since ‖H−1‖C s+2(BRr×Cn (1)) �{s} 1 (by 
Lemma 7.20) and ‖Φ1‖C s+2(BRr×Cn (η3)) �{s} 1, for all s > 0, it follows from Lemma 5.3
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that ‖Φ2‖C s+2(BRr×Cn (η3)) �{s} 1, ∀s > 0. Φ2(0) = H−1(Φ1(0)) = H−1(0) = 0, since 
H(0) = 0. dt,xΦ2(0) = (dt,xH(0))−1dt,xΦ1(0) = I · I = I. Finally, that Φ2 is a diffeomor-
phism onto its image follows from the corresponding results for H and Φ1 in Lemma 7.20
and Proposition 7.15. �
Proof of Lemma 7.20. Let σ0 = σ0(n, r, s0, γ) > 0 be a small constant (depending only 
on n, r, s0, and γ), to be chosen later. We will find H of the form H(t, z) = (t, z) +R(t, z), 
where R(t, z) = (0, R2(t, z)), R2 ∈ C s0+2(BRr×Cn(2); Cn), R2(0, 0) = 0, dR2(0, 0) = 0, 
and ‖R2‖C s0+2(BRr×Cn (2)) ≤ σ0. Note that if σ0 > 0 is sufficiently small (depending 
only on n and r), (iii) and (iv) follow immediately from the inverse function theorem. 
Moreover, we will also have

inf
(t,z)∈BRr×Cn (2)

| det dH(t, z)| ≥ 1
2 . (7.13)

Henceforth, we take σ0 > 0 so small that these consequences hold.
We begin by studying an arbitrary H(t, z) of the form H(t, z) = (t, z) + (0, R2(t, z))

with ‖R2‖C s0+2(BRr×Cn (2)) ≤ σ0, R2(0, 0) = 0, dR2(0, 0) = 0 (we will later specialize to 
a specific choice of R2). In what follows, for s > 0 if we write A �s B, it means that we 
assume R2 ∈ C s+2(BRr×Cn(3/2); Cn) and A ≤ CB where C is a positive {s}-admissible 
constant which is also allowed to depend on an upper bound for ‖R2‖C s+2(BRr×Cn (3/2)). 
At the end of the proof, we will choose a particular R2 with ‖R2‖C s+2(BRr×Cn (3/2)) �{s} 1; 
once we do this, �s and �{s} will denote the same thing.

For such H, by the above remarks, it makes sense to consider H−1 : BRr×Cn(1) →
BRr×Cn(3/2). Moreover, it follows from Lemma 5.4 (using (7.13)) that

‖H−1‖C s+2(BRr×Cn (1)) �s 1. (7.14)

Set H1(t, z) = t, H2(t, z) = z+R2(t, z) so that H(t, z) = (H1(t, z), H2(t, z)). We have 
the following obvious equalities:

dtH1 = I, dzH1 = 0, dzH1 = 0, dtH2 = dtR2, dzH2 = I + dzR2,

dzH2 = dzR2, dtH2 = dtR2, dzH2 = dzR2, dzH2 = I + dzR2.
(7.15)

Using the notation from Section 6, we have (thinking of H mapping the (t, z) variable 
to the (u, w) variable):

H∗
∂

∂t
= (dtH1(t, z))	

∂

∂u
+ (dtH2(t, z))	

∂

∂w
+ (dtH2(t, z))	

∂

∂w

∣∣∣∣
(t,z)=H−1(u,w)

,

H∗
∂

∂z
= (dzH1(t, z))	

∂

∂u
+ (dzH2(t, z))	

∂

∂w
+ (dzH2(t, z))	

∂

∂w

∣∣∣∣
(t,z)=H−1(u,w)

,

H∗
∂

∂z
= (dzH1(t, z))	

∂

∂u
+ (dzH2(t, z))	

∂

∂w
+ (dzH2(t, z))	

∂

∂w

∣∣∣∣
−1

.

(t,z)=H (u,w)
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Thus, if V = H∗X and W = H∗L, using (7.15) we have

V (u,w) = ∂

∂u
+

[
(dtR2(t, z))	 + E(t, z)(I + dzR2(t, z))	

]
∂

∂w

+
[
(dtR2(t, z))	 + E(t, z)(dzR2(t, z))	

]
∂

∂w

∣∣∣∣
(t,z)=H−1(u,w)

,

W (u,w) = ∂

∂w
+

[
(dzR2(t, z))	 + F (t, z)(I + dzR2(t, z))	

]
∂

∂w

+
[
(dzR2(t, z))	 + F (t, z)(dzR2(t, z))	

]
∂

∂w

∣∣∣∣
(t,z)=H−1(u,w)

.

Our goal is to pick σ = σ(n, r, s0, γ) > 0 so that the conclusions of the lemma hold 
for

‖E‖C s0+1(BRr×Cn (2)), ‖F‖C s0+1(BRr×Cn (2)) ≤ σ.

We will choose σ at the end of the proof; but we will ensure σ ≤ 1, so that we may 
henceforth assume ‖E‖C s0+1(BRr×Cn (2)), ‖F‖C s0+1(BRr×Cn (2)) ≤ 1. Using this and the 
assumption ‖R2‖C s0+2(BRr×Cn (2)) ≤ σ0, we have, by taking σ0 > 0 sufficiently small 
(depending only on n and r),

inf
(t,z)∈BRr×Cn (2)

∣∣∣∣det
[
I + (dzR2(t, z))	 + F (t, z)(dzR2(t, z))	

]∣∣∣∣ ≥ 1
2 .

Thus, I + dzR2
	 + FdzR2

	 is invertible on BRr×Cn(2) and Remark 5.2 implies∥∥∥∥(I + dzR2
	 + FdzR2

	)−1
∥∥∥∥

Cs+1(BRr×Cn (3/2);Mn×n)
�s 1. (7.16)

We define a matrix M(u, w) : H(BRr×Cn(2)) → M(r+n)×(r+n)(C) by

I + M ◦H :=

⎡⎢⎣ Ir×r −
(
dtR2

	 + EdzR2
	)(

I + dzR2
	 + FdzR2

	)−1

0n×r

(
I + dzR2

	 + FdzR2
	)−1

⎤⎥⎦ ,

where each part of the above equation is evaluated at (t, z) and we are using notation 

like dtR2
	 to mean (dtR2(t, z))	. In particular, since BRr×Cn(1) ⊆ H(BRr×Cn(2)) (by 

(iv) which we have already verified), M is defined on BRr×Cn(1).
By (7.16) and Proposition 5.1, we have ‖I+M ◦H‖C s+1(BRr×Cn (3/2)) �s 1. Combining 

this with (7.14), Lemma 5.3 shows

‖M‖C s+1(BRr×Cn (1)) �s 1, ∀s > 0.
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Also, since dR2(0) = 0 and H(0) = 0, we have M(0) = 0. Set

[
X̃

L̃

]
:= (I + M)

[
V
W

]
. (7.17)

Note that

X̃ = ∂

∂u
+ B

∂

∂w
, L̃ = ∂

∂w
+ D

∂

∂w
, (7.18)

where B and D depend on E, F , and R2, and (in what follows each function is evaluated 
at (t, z) unless otherwise mentioned):

B(u,w) = B[E,F,R2](u,w)

=
(
dtR

	
2 + E(I + dzR

	
2 )

)
−

(
dtR2

	 + EdzR2
	)(

I + dzR2
	 + FdzR2

	)−1(
dzR

	
2 + F (I + dzR

	
2 )

)∣∣∣∣
(t,z)=H−1(u,w)

,

(7.19)

D(u,w) = D[E,F,R2](u,w)

=
(
I + dzR2

	 + FdzR2
	)−1 (

dzR
	
2 + F (I + dzR

	
2 )

) ∣∣∣∣
(t,z)=H−1(u,w)

.
(7.20)

Note that since E(0) = 0, F (0) = 0, dR2(0) = 0, and H−1(0) = 0, we have 
B(0) = 0 and D(0) = 0. Let σ1 = σ1(n, r, s0, γ) ∈ (0, 1] be a small constant to 
be chosen later. At the end of the proof, we will take σ ≤ σ1 so we may assume 
‖E‖C s0+1(BRr×Cn (2)), ‖F‖C s0+1(BRr×Cn (2)) ≤ σ1. We have, using (7.14), (7.16), Propo-
sition 5.1, and Lemma 5.3,

‖D‖C s0+1(BRr×Cn (1)) �{s0} ‖dzR	
2 + F (I + dzR

	
2 )‖C s0+1(BRr×Cn (2)) �{s0} σ0 + σ1,

and

‖D‖C s+1(BRr×Cn (1)) �s ‖dzR	
2 + F (I + dzR

	
2 )‖C s+1(BRr×Cn (3/2)) �s 1, ∀s > 0.

Similarly, we have

‖B‖C s0+1(BRr×Cn (1)) �{s0} σ0 + σ1, ‖B‖C s+1(BRr×Cn (1)) �s 1, ∀s > 0.

In particular, if we take σ0 and σ1 sufficiently small (depending only on n, r, s0, and γ), 
we have

‖B‖C s0+1(B r n (1)), ‖D‖C s0+1(B r n (1)) ≤ γ.

R ×C R ×C
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Next we claim that X̃1, . . . , X̃r, L̃1, . . . , L̃n commute. We are given that X1, . . . , Xr,

L1, . . . , Ln commute (see Remark 7.17), and it follows that V1, . . . , Vr, W1, . . . , Wn com-
mute. Since I + M(u, w) is clearly an invertible matrix by its definition, (7.17) shows 
∀(u, w) ∈ H(BRr×Cn(1)), ∀j, k, j1, j2, k1, k2,

[X̃k1 , X̃k2 ](u,w), [L̃j1 , L̃j2 ](u,w), [X̃k, L̃j ](u,w)
∈ spanC{V1(u,w), . . . , Vr(u,w),W1(u,w), . . . ,Wn(u,w)}

= spanC{X̃1(u,w), . . . , X̃r(u,w), L̃1(u,w), . . . , L̃n(u,w)}.

Because of the form of X̃ and L̃ given in (7.18) this implies X̃1, . . . , X̃r, L̃1, . . . , L̃n

commute (just as in Remark 7.17).
So far we have shown that if we have R2 as above with R2(0) = 0, dR2(0) = 0, 

‖R2‖C s0+2(BRr×Cn (2)) ≤ σ0, and have ‖R2‖C s+2(BRr×Cn (3/2)) �{s} 1, then all of the 
conclusions of the lemma hold, except possibly for (7.12). Thus all that remains to show 
is that we can pick such an R2 so that (7.12) holds (provided σ is small enough). To do 
this we use Proposition B.4.

Given E, F , and R2, we define B = B[E, F, R2] and D = D[E, F, R2] by (7.19) and 
(7.20). We let Bk,l denote the (k, l) component of the matrix B, and similarly for D. For 
(t, z) ∈ BRr×Cn(2) and 1 ≤ m ≤ n,

Ψm(E,F,R2)(t, z) :=
r∑

k=1

∂Bk,m(u,w)
∂uk

+
n∑

j=1

∂Dj,m(u,w)
∂wj

∣∣∣∣
(u,w)=H(t,z)

.

Set Ψ(E, F, R2) := (Ψ1(E, F, R2), . . . , Ψn(E, F, R2)). Note that (7.12) follows from 
Ψ(E, F, R2) = 0, so our goal is to solve for R2 (in terms of E and F ) so that 
Ψ(E, F, R2) = 0.

Letting R(t, z) = (0, R2(t, z)), for any function K(t, x) we have

∂

∂uk
K(H−1(u,w))

∣∣∣∣
(u,w)=H(t,z)

= dK(t, z)(I + dR(t, z))−1ek,

where ek is the kth standard basis element–what is important is that the right hand 
side is a function of dK(t, z) and dR2(t, z). Similar comments hold for ∂

∂yl
K(H−1(s, w))

where wj = yj + iyj+n. Thus, using the formulas for B and D in (7.19) and (7.20), 
using the notation of Proposition B.4, and writing zj = xj + ixj+n we see that there is 
a smooth function g, taking values in Cn, which vanishes at the origin, such that

Ψ(E,F,R2)(t, x) = g(D1E(t, x),D1F (t, x),D2R2(t, x)).

Furthermore, the function g depends only on n and r. Also it is easy to see that g is 
quasi-linear in R2 in the sense of (B.3).15

15 It is not necessary for what follows that g be quasi-linear; though the proof of Proposition B.4 is simpler 
in the quasi-linear case.
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To apply Proposition B.4, we wish to show that g is elliptic in R2 at E = 0, F = 0, 
R2 = 0, in the sense of that proposition. I.e., define E2 as in Proposition B.4; we wish to 
show E2 is elliptic. Note the map

R2 
→ d

dε

∣∣∣∣
ε=0

Ψ(0, 0, εR2)

is a second order, constant coefficient differential operator acting on R2 whose principal 
symbol is E2. Thus we wish to show that this operator is elliptic.

To make the dependance of H on R2 explicit, we write HR2 in place of H. I.e., 
HR2(t, z) = (t, z) + (0, R2(t, z)). It suffices to compute d

dε

∣∣
ε=0Ψ(0, 0, εR2) in the case 

R2 ∈ C∞. In that case, we have H−1
εR2

(u, w) = (u, w) − ε(0, R2(u, w)) + O(ε2), and for 
example,

ε(dtR2)(H−1
εR2

(u,w)) = ε(dtR2)(u,w) + O(ε2) and

ε(dtR2)(HεR2(t, z)) = ε(dtR2)(t, z) + O(ε2),
(7.21)

and similarly for dt replaced by dz. Here, O(ε2) it denotes a term which is C∞ in the 
variables (t, z) or (u, w) and every derivative, of every order ≥ 0, in these variables is 
O(ε2) as ε → 0.

Thus, using the formulas (7.19) and (7.20), we have

B[0, 0, εR2](s, w) = εdtR2(s, w)	 + O(ε2), D[0, 0, εR2](s, w) = εdzR2(s, w)	 + O(ε2).

(7.22)

We write R2(t, z) = (R2,1(t, z), . . . , R2,n(t, z)). We also write dtR2(s, w)l,k for the (l, k)
component of the matrix dtR2, and similarly for dzR2 (see the discussion of this notation 
in Section 6). Using this notation, plugging (7.22) into the definition of Ψ, and using 
(7.21), we have for 1 ≤ m ≤ n,

Ψm(0, 0, εR2)(t, z)

= ε

r∑
k=1

∂

∂uk
(dtR2)(u,w)m,k + ε

n∑
j=1

∂

∂wj
(dzR2)(u,w)m,j + O(ε2)

∣∣∣∣
(u,w)=HεR2 (t,z)

= ε

r∑
k=1

∂2

∂t2k
R2,m(t, z) + ε

n∑
j=1

∂2

∂zj∂zj
R2,m(t, z) + O(ε2).

We conclude

d

dε

∣∣∣∣
ε=0

Ψ(0, 0, εR2) =

⎛⎝ r∑
k=1

∂2

∂t2k
+

n∑
j=1

∂2

∂zj∂zj

⎞⎠R2,

and is therefore elliptic, as desired.
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We apply Proposition B.4 with D = 2, η = 3/2, and

N = {R2 ∈ C s0+1(BRr×Cn(2);Cn) : ‖R2‖C s0+2(BRr×Cn (2);Cn) < σ0}.

We conclude that there exists σ2 > 0 (depending only on n, r, s0, and σ0–since g depends 
only on n and r) so that if ‖E‖C s0+1(BRr×Cn (2)), ‖F‖C s0+1(BRr×Cn (2)) ≤ σ2, then we may 
find R2 = R2(E, F ) ∈ N so that Ψ(E, F, R2) = 0. The conclusions of Proposition B.4
show that this R2 satisfies R2(0) = 0, dR2(0) = 0, and ‖R2‖C s+2(BRr×Cn (3/2)) �{s} 1, 
∀s > 0. Setting σ := min{σ1, σ2} completes the proof. �
7.6. Commuting vector fields

Fix η0 > 0, s0 ∈ (0, ∞) ∪{ω}, and let X1, . . . , Xr, L1, . . . , Ln be complex C s0+1 vector 
fields on BRr×Cn(η0) of the form

X = ∂

∂t
+ E

∂

∂z
, L = ∂

∂z
+ F

∂

∂z
,

where E(0) = 0, F (0) = 0, we are using the matrix notation from Section 7.4, and:

• If s0 ∈ (0, ∞), E ∈ C s0+1(BRr×Cn(η0); Mr×n(C)) and F ∈ C s0+1(BRr×Cn(η0);
Mn×n(C)).

• If s0 = ω, E ∈ A r+2n,η0(Mr×n(C)) and F ∈ A r+2n,η0(Mn×n(C)).

We suppose ∀ζ ∈ BRr×Cn(η0),

[Xk1 , Xk2 ](ζ), [Lj1 , Lj2 ](ζ), [Xk, Lj ](ζ) ∈ spanC{X1(ζ), . . . , Xr(ζ), L1(ζ), . . . , Ln(ζ)},
∀j, k, j1, j2, k1, k2.

As in Remark 7.17, this is the same as assuming the vector fields commute.

Definition 7.21. If s0 ∈ (0, ∞), for s ∈ [s0, ∞), if we say C is an {s}-admissible constant, it 
means that we assume E, F ∈ C s+1(BRr×Cn(η0)). C can then be chosen to depend only 
on s, s0, n, r, η0, and upper bounds for ‖E‖C s+1(BRr×Cn (η0)) and ‖F‖C s+1(BRr×Cn (η0)). 
For s ∈ (0, s0), we define {s}-admissible constants to be {s0}-admissible constants.

Definition 7.22. If s0 = ω, we say C is an {ω}-admissible constant if C can be chosen to 
depend only on n, r, η0, and upper bounds for ‖E‖A r+2n,η0 and ‖F‖A r+2n,η0 .

Proposition 7.23. There exist {s0}-admissible constants η3 > 0, K1 ≥ 1 and a map 
Φ3 : BRr×Cn(η3) → BRr×Cn(η0) such that:

(i) • If s0 ∈ (0, ∞), Φ3 ∈ C s0+2(BRr×Cn(η3); Rr × Cn) and ‖Φ3‖C s+2(BRr×Cn (η3))
�{s} 1, ∀s > 0.



B. Street / Journal of Functional Analysis 278 (2020) 108290 41
• If s0 = ω, Φ3 ∈ A r+2n,2η3(Rr ×Cn) and ‖Φ3‖A r+2n,2η3 ≤ η0.
(ii) Φ3(0) = 0 and dt,xΦ3(0) = K−1

1 I(r+2n)×(r+2n).
(iii) Φ3(BRr×Cn(η3)) ⊆ BRr×Cn(η0) is open and Φ3 : BRr×Cn(η3) → Φ3(BRr×Cn(η3))

is a diffeomorphism.
(iv) [

∂
∂u
∂
∂w

]
= K−1

1 (I + A2)
[Φ∗

3X

Φ∗
3L

]
,

where A2 : BRr×Cn(η3) → M(r+n)×(r+n)(C), A2(0) = 0, and:
• If s0 ∈ (0, ∞), ‖A2‖C s+1(BRr×Cn (η3)) �{s} 1, ∀s > 0.
• If s0 = ω, ‖A2‖A 2n+r,η3 � 1.

Remark 7.24. If s0 ∈ (0, ∞) we will show η3 depends only on n, r, and s0. For s0 = ω, 
we will take K1 = 1. This is not important in the sequel, however.

Proof of Proposition 7.23 when s0 = ω. Since E ∈ A r+2n,η0(Mr×n) ⊆ Br+2n,Mr×n

η0
, 

F ∈ A r+2n,η0(Mn×n) ⊆ Br+2n,Mn×n

η0
, and

‖E‖
Br+2n,Mr×n

η0
≤ ‖E‖A r+2n,η0 (Mr×n) �{ω} 1, and

‖F‖
Br+2n,Mn×n

η0
≤ ‖F‖A r+2n,η0 (Mn×n) �{ω} 1,

we see that Proposition 7.12 applies to the vector fields X1, . . . , Xr, L1, . . . , Ln and every 
constant which is admissible in the sense of that proposition is {ω}-admissible here.

Thus, we obtain an {ω}-admissible constant η2 > 0 and a map Φ1 : BRr×Cn(η2) →
BRr×Cn(η0) as in that proposition. Letting A1 be the matrix from that proposition, and 
setting η3 := η2/4, we have (using Lemma 5.8)

‖Φ1‖A r+2n,2η3 �{ω} ‖Φ1‖Br+2n,r+2n
η2

�{ω} 1,

‖A1‖A r+2n,η3 �{ω} ‖A1‖
Br+2n,M(n+r)×(n+r)

η2
≤ 1.

Taking Φ3 := Φ1, A2 := A1, and K1 := 1, all of the conclusions of Proposition 7.23
now follow from the corresponding conclusions in Proposition 7.12. �

We now turn to the proof of Proposition 7.23 when s0 ∈ (0, ∞). Because of the 
definition of {s}-admissible constants, it suffices to prove the result just for s ∈ [s0, ∞), 
and that is how we will proceed. We begin with a lemma.

Lemma 7.25. Define for γ > 0, Ψγ : BRr×Cn(η0/γ) → BRr×Cn(η0) by Ψγ(t, z) =
(γt, γz). Let Xγ

k := γΨ∗
γXk and Lγ

j := γΨ∗
γLj. Then,
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Xγ = ∂

∂t
+ Eγ

∂

∂z
, Lγ = ∂

∂z
+ Fγ

∂

∂z
, (7.23)

where Eγ(0) = 0, Fγ(0) = 0, and for 0 < γ ≤ min{η0/2, 1}, s ∈ [s0, ∞),

‖Eγ‖C s+1(BRr×Cn (2);Mr×n), ‖Fγ‖C s+1(BRr×Cn (2);Mn×n) �{s} γ. (7.24)

Finally, Xγ
1 , . . . , X

γ
r , L

γ
1 , . . . , L

γ
n commute.

Proof. That Xγ
1 , . . . , X

γ
r , L

γ
1 , . . . , L

γ
n commute follows immediately from the same prop-

erty of X1, . . . , Xr, L1, . . . , Ln. Note that (7.23) holds with Eγ(t, z) = E(γt, γz) and 
Fγ(t, z) = F (γt, γz). Thus, since E(0) = 0 and F (0) = 0, the same is true for Eγ and 
Fγ , and we have for 0 < γ ≤ min{η0/2, 1}, using Lemma 5.9,

‖Eγ‖C s+1(BRr×Cn (2)) ≤ 46γ‖E‖C s+1(BRr×Cn (η0)) �{s} γ,

and similarly for Fγ . This completes the proof. �
Proof of Proposition 7.23 when s0 ∈ (0,∞). Let σ = σ(n, r, s0) > 0 be the constant 
from Proposition 7.19. For γ ≤ η0/2, define Ψγ , Xγ , Lγ , Eγ , and Fγ as in Lemma 7.25. 
By (7.24), if γ ∈ (0, η0/2] is a sufficiently small {s0}-admissible constant (without loss 
of generality, γ ≤ 1), we have

‖Eγ‖C s0+1(BRr×Cn (2)), ‖Fγ‖C s0+1(BRr×Cn (2)) ≤ σ.

With this choice of γ, Proposition 7.19 applies to the vector fields Xγ and Lγ to yield 
a constant η3 = η3(n, r, s0) > 0 and a map Φ2 : BRr×Cn(η3) → BRr×Cn(2) as in that 
result, and any constant which is {s}-admissible in that proposition is {s}-admissible 
in the sense of this section. Set Φ3 := Ψγ ◦ Φ2 : BRr×Cn(η3) → BRr×Cn(η0). We take 
K1 := γ−1 ≥ 1. Since γ is {s0}-admissible and ‖Φ2‖C s+2(BRr×Cn (η3)) �{s} 1, ∀s (by 
Proposition 7.19), we have ‖Φ3‖C s+2(BRr×Cn (η3)) �{s} 1, ∀s. Also, Φ3(0) = Ψγ(Φ2(0)) =
Ψγ(0) = 0, and dt,xΦ3(0) = γdt,xΦ2(0) = K−1

1 I(2n+r)×(2n+r). That Φ3 is a diffeomor-
phism onto its image follows from the corresponding result about Φ2 in Proposition 7.19. 
Finally, if A2 is as in Proposition 7.19, we have,

[
∂
∂u
∂
∂w

]
= (I + A2)

[Φ∗
2X

γ

Φ∗
2L

γ

]
= (I + A2)K−1

1

[Φ∗
2Ψ∗

γX

Φ∗
2Ψ∗

γL

]
= (I + A2)K−1

1

[Φ∗
3X

Φ∗
3L

]
.

All of the desired estimates for A2 are stated in Proposition 7.19 and this completes the 
proof. �
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7.7. Proof of Proposition 7.7

Using the matrix notation of Section 7.4 we may write

X = ∂

∂t
+ B1

∂

∂t
+ B2

∂

∂z
+ B3

∂

∂z
, L = ∂

∂z
+ B4

∂

∂t
+ B5

∂

∂z
+ B6

∂

∂z
,

where each Bl takes values in matrices of an appropriate size, Bl(0) = 0 for each l, and

• If s0 ∈ (0, ∞), ‖Bl‖C s+1(BRr×Cn (1)) �{s} 1, ∀s > 0.
• If s0 = ω, ‖Bl‖A r+2n,1 �{ω} 1.

Define M to be the (r + n) × (r + n) matrix:

M :=
[
B1 B3

B4 B6

]
.

We have [
X
L

]
= (I + M)

[
∂
∂t
∂
∂z

]
+

[
B2
B5

]
∂

∂z
,

and M(0) = 0.

• If s0 ∈ (0, ∞), we have ‖M‖C s0+1(BRr×Cn (1)) �{s0} 1. Thus, by taking η0 > 0 to be 
a sufficiently small {s0}-admissible constant and using that M(0) = 0, we have

inf
ζ∈BRr×Cn (η0)

| det(I + M(ζ))| ≥ 1
2 .

Remark 5.2 shows that ‖(I + M)−1‖C s+1(BRr×Cn (η0)) �{s} 1.
• If s0 = ω, we have ‖M‖A 2n+r,1 �{ω} 1. Since M(0) = 0, Lemma 5.7 implies 

‖M‖A 2n+r,η0 �{ω} η0, for η0 ∈ (0, 1]. Thus, by taking η0 > 0 to be a sufficiently 
small {ω}-admissible constant we have

‖M‖A 2n+r,η0 (M(r+n)×(r+n)) ≤
1
2 .

Since A 2n+r,η0(M(r+n)×(r+n) is a Banach algebra (Proposition 5.1) it follows that 
‖(I + M)−1‖A 2n+r,η0 (M(r+n)×(r+n) ≤ 2; here we have used the Neumann series for 
(1 + M)−1.

In either case we have an {s0}-admissible constant η0 > 0 so that (I + M)−1 satisfies 
good estimates on BRr×Cn(η0).
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Define vector fields X̂1, . . . , X̂r, L̂1, . . . , L̂n on BRr×Cn(η0) by

[
X̂

L̂

]
= (I + M)−1

[
X
L

]
=

[
∂
∂t
∂
∂z

]
+ (I + M)−1

[
B2
B5

]
∂

∂z
.

Thus, we have

X̂ = ∂

∂t
+ Ê

∂

∂z
,

∂

∂z
+ F̂

∂

∂z
,

where Ê(0) = 0, F̂ (0) = 0 and using Proposition 5.1 and the bounds for (I + M)−1,

• If s0 ∈ (0, ∞), ‖Ê‖C s+1(BRr×Cn (η0)), ‖F̂‖C s+1(BRr×Cn (η0)) �{s} 1, ∀s > 0.
• If s0 = ω, ‖Ê‖A 2n+r,η0 , ‖F̂‖A 2n+r,η0 �{ω} 1.

Furthermore, we have ∀ζ ∈ BRr×Cn(η0),

[X̂k1 , X̂k2 ](ζ), [L̂j1 , L̂j2 ](ζ), [X̂k, L̂j ](ζ) ∈ spanC{X̂1(ζ), . . . , X̂r(ζ), L̂1(ζ), . . . , L̂n(ζ)},

which follows from the corresponding assumption on the Xs and Ls (and the fact that 
(I + M)−1 is an invertible matrix).

Proposition 7.23 applies to the vector fields X̂, L̂, and any constant which is 
{s}-admissible in the sense of that proposition is {s}-admissible in the sense of this 
section. We obtain {s0}-admissible constants η3 > 0, K1 ≥ 1, a map Φ3 : BRr×Cn(η3) →
BRr×Cn(η0), and a matrix A2 : BRr×Cn(η3) → M(r+n)×(r+n)(C) as in that proposition. 
(i), (ii), and (iii) follow immediately from the corresponding results in Proposition 7.23.

Next we establish (iv). We have, from Proposition 7.23,[
∂
∂u
∂
∂w

]
= K−1

1 (I + A2)
[

Φ∗
3X̂

Φ∗
3L̂

]
= K−1

1 (I + A2)(I + M ◦ Φ3)−1
[Φ∗

3X

Φ∗
3L

]

=: K−1
1 (I + A3)

[Φ∗
3X

Φ∗
3L

]
,

where I + A3 := (I + A2)(I + M ◦ Φ3)−1. Since M(0) = 0, Φ3(0) = 0, and A2(0) = 0, 
we have A3(0) = 0. Also, we have

• If s0 ∈ (0, ∞), since ‖(I+M)−1‖C s+1(BRr×Cn (η0)) �{s} 1, ‖Φ3‖C s+2(BRr×Cn (η3)) �{s}
1, and Φ3(BRr×Cn(η3)) ⊆ BRr×Cn(η0), it follows from Lemma 5.3 that ‖(I + M ◦
Φ3)−1‖C s+1(BRr×Cn (η3)) �{s} 1. Combining this with ‖A2‖C s+1(BRr×Cn (η3)) �{s} 1
(see Proposition 7.23), Proposition 5.1 implies ‖A3‖C s+1(BRr×Cn (η3)) �{s} 1.

• If s0 = ω, since ‖(I + M)−1‖A 2n+r,η0 ≤ 2 and since ‖Φ3‖A r+2n,η3 ≤ η0, it follows 
from Lemma 5.10 that ‖(I + M ◦ Φ3)−1‖A r+2n,η3 ≤ 2. Since ‖A2‖A r+2n,η3 �{ω} 1
(see Proposition 7.23), Proposition 5.1 implies ‖A3‖A r+2n,η3 �{ω} 1.
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The above comments complete the proof.

8. Proof of the main result

In this section, we prove Theorem 4.18; Theorem 1.1 is an immediate consequence 
of Theorem 4.18. Throughout this section, fix s ∈ (0, ∞] ∪ {ω} and let M be a C s+2

manifold. As in the rest of the paper, we give Rr×Cn coordinates (t1, . . . , tr, z1, . . . , zn).

Lemma 8.1. Let L be a C s+1 elliptic structure on M of dimension (r, n). Then, ∀ζ0 ∈ M , 
there exists a neighborhood V0 of ζ0, C s+1 sections L1, . . . , Ln, X1, . . . , Xr of L over V0, 
and a C s+2 diffeomorphism Ψ0 : BRr×Cn(1) → V0 such that:

(i) Ψ0(0) = ζ0.
(ii) ∀ζ ∈ V0, L1(ζ), . . . , Ln(ζ), X1(ζ), . . . , Xr(ζ) is a basis for Lζ .
(iii) Ψ∗

0Lj(0) = ∂
∂zj

, Ψ∗
0Xk(0) = ∂

∂tk
, 1 ≤ j ≤ n, 1 ≤ k ≤ r.

(iv) For 1 ≤ j ≤ n, 1 ≤ k ≤ r,
• If s ∈ (0, ∞], Ψ∗

0Lj , Ψ∗
0Xk ∈ C s+1(BRr×Cn(1); C2n+r).

• If s = ω, Ψ∗
0Lj , Ψ∗

0Xk ∈ A 2n+r,1(C2n+r).
(v) ∀j1, j2, k1, k2, j, k, ∀ξ ∈ BRr×Cn(1),

[Ψ∗
0Lj1 ,Ψ∗

0Lj2 ](ξ), [Ψ∗
0Xk,Ψ∗

0Lj ](ξ), [Ψ∗
0Xk1 ,Ψ∗

0Xk2 ](ξ)

∈ spanC{Ψ∗
0L1(ξ), . . . ,Ψ∗

0Ln(ξ),Ψ∗
0X1(ξ), . . . ,Ψ∗

0Xr(ξ)}.

Proof. Note that, by the definition of elliptic structures of dimension (r, n), we have 
dim Lζ = n + r, ∀ζ ∈ M and dimM = 2n + r (see Remark 3.8). By Lemma A.2 we 
may pick a basis y1, . . . , yr of Lζ0 ∩Lζ0 with y1, . . . , yr ∈ Tζ0M (i.e., y1, . . . , yr are real). 
Extend y1, . . . , yr to a basis l1, . . . , ln, y1, . . . , yr of Lζ0 .

By the definition of a C s+1 bundle, we may find a neighborhood U1 of ζ0 and C s+1

sections Z1, . . . , ZK of L over U0 such that ∀ζ ∈ U0, spanC{Z1(ζ), . . . , ZK(ζ)} = Lζ . 
Without loss of generality, reorder Z1, . . . , ZK so that Z1(ζ0), . . . , Zn+r(ζ0) form a basis 
of Lζ0 . By continuity, there exists a neighborhood U2 ⊆ U1 of ζ0 such that ∀ζ ∈ U2, 
Z1(ζ), . . . , Zn+r(ζ) are linearly independent. We conclude ∀ζ ∈ U2, Z1(ζ), . . . , Zn+r(ζ)
forms a basis for Lζ .

Let M ∈ M(n+r)×(n+r)(C) be the invertible matrix such that

M

⎡⎣ Z1(ζ0)
...

Zn+r(ζ0)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
...
yr
l1
...
ln

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For ζ ∈ U2 set
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂1(ζ)
...

X̂r(ζ)
L̂1(ζ)

...
L̂n(ζ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
:= M

⎡⎣ Z1(ζ)
...

Zn+r(ζ)

⎤⎦ .

Since M is a (constant) invertible matrix, we have ∀ζ ∈ U2, L̂1(ζ), . . . , L̂n(ζ), X̂1(ζ), . . . ,
X̂r(ζ) forms a basis for Lζ , and L̂1, . . . , L̂n, X̂1, . . . , X̂r are C s+1 sections of L over U2.

By the definition of a C s+2 manifold (see also Remark 2.16) there exists a C s+2

diffeomorphism Ψ1 : BR2n+r(ε1) → V1, where V1 ⊆ U2 is a neighborhood of ζ0, Ψ1(0) =
ζ0. Since X̂1(ζ0) = y1, . . . , X̂r(ζ0) = yr are real, since Lζ0 + Lζ0 = CTζ0M , and since 
X̂1(ζ0), . . . , X̂r(ζ0), L̂1(ζ0), . . . , L̂n(ζ0) forms a basis for Lζ0 , we have

spanR{2Re(L̂1)(ζ0), . . . , 2Re(L̂n)(ζ0), 2Im(L̂1)(ζ0), . . . , 2Im(L̂n)(ζ0),
X̂1(ζ0), . . . , X̂n(ζ0)} = Tζ0M.

(8.1)

Pulling (8.1) back via Ψ1 we have

2Re(Ψ∗
1L̂1)(0), . . . , 2Re(Ψ∗

1L̂n)(0), 2Im(Ψ∗
1L̂1)(0), . . . , 2Im(Ψ∗

1L̂n)(0),

Ψ∗
1X̂1(0), . . . ,Ψ∗

1X̂n(0)

forms a basis for T0R2n+r.
We give R2n+r ∼= Rr × R2n coordinates (t1, . . . , tr, x1, . . . , x2n). Let C ∈

M(r+2n)×(r+2n)(R) denote the (constant) invertible matrix such that

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂t1
...
∂

∂tr
∂

∂x1
...
∂

∂x2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ∗
1X̂1(0)

...
Ψ∗

1X̂r(0)
2Re(Ψ∗

1L̂1)(0)
...

2Re(Ψ∗
1L̂n)(0)

2Im(Ψ∗
1L̂1)(0)
...

2Im(Ψ∗
1L̂n)(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Set A = C	 and we identify A with the corresponding invertible linear transforma-
tion Rr+2n → Rr+2n. Then for ε2 > 0 sufficiently small, we set Ψ2 := Ψ1 ◦ A :
BRr+2n(ε2) → V1. Then, Ψ2(0) = Ψ1(0) = ζ0, Ψ2 is a C s+2 diffeomorphism onto its 
image (which is a neighborhood of ζ0), and if we identify Rr+2n ∼= Rr ×Cn via the map 
(t1, . . . , tr, x1, . . . , x2n) 
→ (t1, . . . , tr, x1 + ixn, . . . , xn + ix2n), then,
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Ψ∗
2L̂j(0) = ∂

∂zj
, Ψ∗

2X̂k(0) = ∂

∂tk
, 1 ≤ j ≤ n, 1 ≤ k ≤ r,

Ψ∗
2L̂j ,Ψ∗

2X̂k ∈ C s+1
loc (BRr×Cn(ε2);C2n+r).

Take ε3 ∈ (0, ε2) such that, ∀1 ≤ j ≤ n, 1 ≤ k ≤ r,

• If s0 ∈ (0, ∞], Ψ∗
2L̂j , Ψ∗

2X̂k ∈ C s+1(BRr×Cn(ε3); C2n+r).
• If s0 = ω, Ψ∗

2L̂j , Ψ∗
2X̂k ∈ A 2n+r,ε3(C2n+r).

Define Dε3 : Rr ×Cn → Rr ×Cn by Dε3(t, z) = (ε3t, ε3z), and define Ψ0 : BRr×Cn(1) →
V1 by Ψ0 := Ψ2 ◦Dε3 . Letting V0 = Ψ0(BRr×Cn(1)) ⊆ V1 we have Ψ0 : BRr×Cn(1) → V0

is a C s+2 diffeomorphism. Set Lj := ε3L̂j and Xk := ε3X̂k. With these choices, all of 
the conclusions of the lemma follow from the above remarks.

We include a few additional comments regarding the proof of (v). Since ∀ζ ∈ V0 ⊆
V1 ⊆ U2, we have L1(ζ), . . . , Ln(ζ), X1(ζ), . . . , Xr(ζ) form a basis for Lζ , we have ∀ζ ∈
V0, ∀j1, j2, k1, k2, j, k,

[Lj1 , Lj2 ](ζ), [Xk, Lj ](ζ), [Xk1 , Xk2 ](ζ) ∈ Lζ

= spanC{L1(ζ), . . . , Ln(ζ), X1(ζ), . . . , Xr(ζ)}.

Pulling this back via Ψ0 yields (v) and completes the proof. �
Lemma 8.2. Let L be a C s+1 elliptic structure on M of dimension (r, n). Then, ∀ζ0 ∈ M , 
there exists a neighborhood V of ζ0, C s+1 sections L1, . . . , Ln, X1, . . . , Xr of L over V , 
and a C s+2 diffeomorphism Ψ : BRr×Cn(1) → V such that

• Ψ(0) = ζ0.
• ∀ζ ∈ V , L1(ζ), . . . , Ln(ζ), X1(ζ), . . . , Xr(ζ) is a basis for Lζ .
• ∀ξ ∈ BRr×Cn(1),

spanC{Ψ∗L1(ξ), . . . ,Ψ∗Ln(ξ),Ψ∗X1(ξ), . . . ,Ψ∗Xr(ξ)}

= spanC
{

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂t1
, . . . ,

∂

∂tn

}
.

Proof. Let L1, . . . , Ln, X1, . . . , Xr and Ψ0 : BRr×Cn(1) → V0 be as in Lemma 8.1. 
If s ∈ (0, ∞) ∪ {ω}, set s0 := s. If s = ∞, set s0 := 1. The conclusions of 
Lemma 8.1 show that Theorem 7.3 applies (with this choice of s0) to the vector fields 
Ψ∗

0L1, . . . , Ψ∗
0Ln, Ψ∗

0X1, . . . , Ψ∗
0Xr and yields Φ4 ∈ C s+2(BRr×Cn(1); Rr × Cn) as in 

that theorem. In particular, Φ4 is a diffeomorphism onto its image, Φ4(0) = 0, and since 
I + A(ξ) from Theorem 7.3 (v) is invertible, ∀ξ ∈ BRr×Cn(1), Theorem 7.3 (v) shows 
∀ξ ∈ BRr×Cn(1),
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spanC{Φ∗
4Ψ∗

0L1(ξ), . . . ,Φ∗
4Ψ∗

0Ln(ξ),Φ∗
4Ψ∗

0X1(ξ), . . . ,Φ∗
4Ψ∗

0Xn(ξ)}

= spanC
{

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂t1
, . . . ,

∂

∂tr

}
.

Setting Ψ := Ψ0 ◦ Φ4, the result follows with V := Ψ(BRr×Cn(1)) ⊆ V0, by using the 
above mentioned properties of Φ4 combined with the conclusions of Lemma 8.1. �
Proof of Theorem 4.18. (i)⇒(ii): This is obvious.

(ii)⇒(i): Let L be a C s+1 elliptic structure on M of dimension (r, n). We wish to 
construct a C s+2 E-atlas on M of dimension (r, n), compatible with its C s+2 structure, 
such that L is the C s+1 elliptic structure associated to this E-manifold structure. For 
each ζ0 ∈ M , let Ψζ0 : BRr×Cn(1) → Vζ0 be the function Ψ from Lemma 8.2 with 
this choice of ζ0; so that Vζ0 is a neighborhood of ζ0 and Ψζ0 is a C s+2 diffeomorphism 
satisfying the conclusions of that lemma. In particular, it follows from that lemma that 
∀ζ ∈ Vζ0 ,

Lζ = spanC
{
dΨζ0(Ψ−1

ζ0
(ζ)) ∂

∂t1
, . . . , dΨζ0(Ψ−1

ζ0
(ζ)) ∂

∂tr
, dΨζ0(Ψ−1

ζ0
(ζ)) ∂

∂z1
, . . . ,

dΨζ0(Ψ−1
ζ0

(ζ)) ∂

∂zn

}
. (8.2)

We claim {(Ψ−1
ζ0

, Vζ0) : ζ0 ∈ M} is the desired atlas. Indeed, that Ψ−1
ζ1

◦ Ψζ2 is a C s+2
loc

map follows from Lemmas 2.13 and 2.14. To see that Ψ−1
ζ1

◦Ψζ2 is an E-map, note that, 
for 1 ≤ k ≤ r,

d
(
Ψ−1

ζ1
◦ Ψζ2

)
(ξ) ∂

∂tk
= dΨ−1

ζ1
(Ψζ2(ξ))dΨζ2(ξ)

∂

∂tk
.

(8.2) shows dΨζ2(ξ) ∂
∂tk

∈ LΨζ2 (ξ), and applying (8.2) again shows

dΨ−1
ζ1

(Ψζ2(ξ))dΨζ2(ξ)
∂

∂tk
∈ spanC

{
∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

Similarly, for 1 ≤ j ≤ n,

d
(
Ψ−1

ζ1
◦ Ψζ2

)
(ξ) ∂

∂zj
∈ spanC

{
∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

It follows that Ψ−1
ζ1

◦ Ψζ2 is an E-map. Thus, since {Vζ0 : ζ0 ∈ M} is an open cover 
for M we have that {(Ψ−1

ζ0
, Vζ0) : ζ0 ∈ M} is a C s+2 E-atlas on M . Since each Ψζ0 :

BRr×Cn(1) → Vζ0 is a C s+2 diffeomorphism (by Lemma 8.2, where Vζ0 ⊆ M is given the 
original C s+2 manifold structure), we see that the C s+2 E-manifold structure induced by 
the above atlas is compatible with the original C s+2 manifold structure on M . That L
is the C s+1 elliptic structure associated to this E-manifold structure follows from (8.2).
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Finally, we turn to the uniqueness of this E-manifold structure. Suppose M is given 
two C s+2 E-manifold structures, compatible with the C s+2 manifold structure, such 
that L is the C s+1 elliptic structure associated to both of these E-manifold structures. 
That the identity map M → M is a C s+2 diffeomorphism follows immediately because 
both copies of M have the same underlying C s+2 manifold structure. That the identity 
map is an E-map follows from Lemma 4.17. This shows that the identity map is a C s+2

E-diffeomorphism, which completes the proof. �

Appendix A. Linear algebra

Let V be a real vector space and let V C = V ⊗R C be its complexification. We 
consider V ↪→ V C as a real subspace by identifying v with v ⊗ 1. There are natural 
maps:

Re : V C → V , Im : V C → V , complex conjugation : V C → V C,

defined as follows. Every v ∈ V C can be written uniquely as v = v1 ⊗ 1 + v2 ⊗ i, with 
v1, v2 ∈ V . Then, Re(v) := v1, Im(v) := v2, and v := v1 ⊗ 1 − v2 ⊗ i.

Lemma A.1. Let L ⊆ V C be a finite dimensional complex subspace. Then, dim(L +
L ) + dim(L

⋂
L ) = 2 dim(L ).

Proof. It is a standard fact that dim(L + L ) + dim(L
⋂

L ) = dim(L ) + dim(L ). 
Using that w 
→ w, L → L is an anti-linear isomorphism, the result follows. �
Lemma A.2. Let X ⊆ V C be a finite dimensional subspace of dimension r, and suppose 
X = X . Then there exist x1, . . . , xr ∈ X ∩ V such that x1, . . . , xr is a basis for X .

Proof. Let l1, . . . , lr be a basis for X . Since X = X , Re(lj), Im(lj) ∈ X , and clearly 
Re(l1), . . . , Re(lr), Im(l1), . . . , Im(lr) form a spanning set for X . Extracting a basis from 
this spanning set yields the result. �

Appendix B. Elliptic PDEs

In this section, we state quantitative versions of some standard results regarding 
nonlinear elliptic PDEs. All of the results in this section are well-known, and we make 
no effort to state these results in the greatest possible generality: we content ourselves 
with the simplest settings which are sufficient for our purposes.
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B.1. Real analyticity for a nonlinear elliptic equation

It is a classical result that the solutions to real analytic, nonlinear elliptic PDEs are 
themselves real analytic; see, e.g., [6]. We require a quantitative version of (a special case 
of) this fact, which follows from standard proofs.

Let E be a constant coefficient, first order, linear partial differential operator

E : C∞(Rn;Cm1) → C∞(Rn;Cm2),

where m2 ≥ m1. We may think of E as an m2 ×m1 matrix of constant coefficient partial 
differential operators of order ≤ 1.

Let Γ : Cm1 × Cnm1 → Cm2 be a bilinear map. Fix R > 0 and we consider the 
equation for b : BRn(R) → Cm1 given by

Eb = Γ(b,∇b). (B.1)

Proposition B.1. Fix s0 > 1 and suppose E is elliptic. Then, ∃γ = γ(E , Γ, R, s0) > 0, 
η0 = η0(E , Γ, R, s0) > 0 such that the following holds. If b ∈ C s0(BRn(R); Cm1) is a 
solution to (B.1) and ‖b‖C s0 (BRn (R)) ≤ γ, then b ∈ Bn,m1

η0
and ‖b‖B

n,m1
η0

≤ C, where 
C = C(E , Γ, R, s0). See Section 5.1 for the definition of Bn,m1

η0
.

We outline a proof of Proposition B.1 by following the proof from [6], which becomes 
somewhat simpler in this special case and is therefore easier to extract the needed quan-
titative estimates. In what follows, we write A � B to mean A ≤ CB, where C can be 
chosen to depend only on E , Γ, R, and s0. Throughout the rest of this section, we take the 
setting of Proposition B.1; in particular, we are given a solution b ∈ C s0(BRn(R); Cm1)
to (B.1) as in that proposition. Our goal is to pick γ and η0 so that the conclusions of 
the proposition hold.

Without loss of generality, by possibly shrinking s0, we may assume s0 = 1 +μ, where 
μ ∈ (0, 1). Thus, the space C s0(B) coincides with the Hölder space C1,μ(B) for any ball 
B,16 which allows us to use the results from [6] which deal with Hölder spaces. For the 
rest of the section, we continue to use the notation C j+μ for j ∈ N, but (just in this 
section) the reader is free to interpret it either as C j+μ or Cj,μ; indeed in this section 
we only deal with μ ∈ (0, 1) fixed and C j+μ(Ω), Cj,μ(Ω) for bounded Lipschitz domains 
Ω in which case these two spaces have equivalent norms.

First we need a quantitative version of the classical fact that the solution b is 
smooth. This is discussed in an appendix to [12]. There it is shown that ∃γ1 =
γ1(E , Γ) > 0 such that if ‖b‖C 1+μ(BRn (R)) ≤ γ1, then b ∈ C 2+μ(BRn(R/2); Cm1) with 
‖b‖C 2+μ(BRn (R/2)) � ‖b‖C 1+μ(BRn (R)). We will choose γ ≤ γ1, so we may henceforth 
assume b ∈ C 2+μ(BRn(R/2); Cm1) with ‖b‖C 2+μ(BRn (R/2)) � γ.

16 That C 1+μ(Ω) = C1,μ(Ω) for a bounded, Lipschitz domain Ω (and μ �= 0, 1) is classical and follows 
easily from [16, Theorem 1.118 (i)].
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For η, h > 0, set Dn(η; h) := {x + iy : x, y ∈ Rn, |x| < η, |y| < h(η − |x|)} and set, for 
s > 0,

Dn,m1
η,h,s :=

{
f : BRn(η) → Cm1

∣∣ f is real analytic and extends to a holomorphic

function E(f) ∈ C s(Dn(η;h);Cm1)
}
.

With the norm

‖f‖D
n,m1
η,h,s

:= ‖E(f)‖C s(Dn(η;h);Cm1 ),

Dn,m1
η,h,s is a Banach space.

Lemma B.2. There exists a bounded linear map

P : C μ(BRn(R/2);Cm1) → C 2+μ(BRn(R/2);Cm1)

such that E∗EP = I and ∃h = h(E , R) > 0 such that P restricts to a bounded map

P : Dn,m1
R/2,h,μ → Dn,m1

R/2,h,2+μ

and such that if we set V0 := PE∗Γ(b, ∇b) and H := b −V0, then ‖V0‖C 2+μ(BRn (R/2);Cm1 )
≤ C1γ, ‖H‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ, and H ∈ Dn,m1

R/2,h,2+μ with ‖H‖D
n,m1
R/2,h,2+μ

≤ C1γ. 
Here, C1 = C1(E , Γ, R, s0) > 0.

Comments on the proof. This is essentially a special case of Theorems A, B, and C of 
[6]; here we are applying these theorems to the elliptic operator E∗E and using that 
E∗EH = 0 by the definitions. In [6], these theorems were stated on the subspace of 
functions which vanish at 0, though this is not an essential point. Moreover, in the 
special case we are interested in, E∗E is essentially the Laplacian (see (B.4) for E∗E
in the case we are interested in). In this case, the above result follows from standard 
methods. �

Define T (V ) := PE∗Γ(H + V, ∇(H + V )); by the definition of V0, T (V0) = V0.

Lemma B.3. Let C1 > 0 be as in Lemma B.2. If γ = γ(E , Γ, R, s0) > 0 is sufficiently 
small and ‖V1‖C 2+μ(BRn (R/2);Cm1 ), ‖V2‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ then,

‖T (V1)‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ,

‖T (V1) − T (V2)‖C 2+μ(BRn (R/2);Cm1 ) ≤
1
2‖V1 − V2‖C 2+μ(BRn (R/2);Cm1 ).

The same results hold for C 2+μ(BRn(R/2); Cm1) replaced by Dn,m1
R/2,h,2+μ, throughout.
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Proof. Since ‖V1‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ and ‖H‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ, it fol-
lows from Proposition 5.1 that ‖Γ(H + V1, ∇(H + V1))‖C 1+μ(BRn (R/2);Cm1 ) � (C1γ)2. 
Lemma B.2 implies ‖T (V1)‖C 2+μ(BRn (R/2);Cm1 ) � (C1γ)2; and so if γ is sufficiently small 
it follows that ‖T (V1)‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ. Similarly, again using Proposition 5.1, 
we have

‖Γ(V1 −V2,∇(H +V1))‖C 1+μ(BRn (R/2);Cm1 ), ‖Γ(H +V2,∇(V1 −V2))‖C 1+μ(BRn (R/2);Cm1 )

� γ‖V1 − V2‖C 2+μ(BRn (R/2);Cm1 ).

Since T (V1) − T (V2) = PE∗(Γ(V1 − V2, ∇(H + V1)) − Γ(H + V2, ∇(V1 − V2))) it follows 
from Lemma B.2 that

‖T (V1) − T (V2)‖C 2+μ(BRn (R/2);Cm1 ) � γ‖V1 − V2‖C 2+μ(BRn (R/2);Cm1 ).

Taking γ sufficiently small, we have

‖T (V1) − T (V2)‖C 2+μ(BRn (R/2);Cm1 ) ≤
1
2‖V1 − V2‖C 2+μ(BRn (R/2);Cm1 ),

as desired. The same proof works with C j+μ(BRn(R/2); Cm1) replaced by Dn,m1
R/2,h,j+μ, 

throughout. �
Proof of Proposition B.1. By taking γ > 0 sufficiently small, as in Lemma B.3, we see 
that V0 is the unique fixed point of the strict contraction T , acting on the complete metric 
space {V : ‖V ‖C 2+μ(BRn (R/2);Cm1 ) ≤ C1γ}. This fixed point agrees with the fixed point 
of T when acting on the complete metric space {V : ‖V ‖D

n,m1
R/2,h,2+μ

≤ C1γ} (on which 

is it a strict contraction by Lemma B.3). We conclude ‖V0‖D
n,m1
R/2,h,2+μ

≤ C1γ � 1. Since 

‖H‖D
n,m1
R/2,h,2+μ

≤ C1γ � 1, by Lemma B.2, and since b = H +V0, we have ‖b‖D
n,m1
R/2,h,2+μ

≤
2C1γ � 1. Taking η0 = η0(R/2, h) > 0 sufficiently small we have BRn(η0) ⊆ Dn(R/2; h)
and therefore,

‖b‖B
n,m1
η0

≤ ‖b‖D
n,m1
R/2,h,2+μ

� 1,

completing the proof. �
B.2. Existence for a nonlinear elliptic equation

Fix D > 0, m1, m2 ∈ N. For functions A : BRn(D) → Cm1 and B : BRn(D) → Cm2

we write

D1A = (∂α
xA)|α|≤1, D2B = (∂α

xB)|α|≤2, D2B = (∂α
xB)|α|=2,

so that, for example, D2B is the vector of all partial derivatives of B up to order 2, and 
D2B is the vector of all partial derivatives of order exactly 2.
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Fix a C∞ function g. We consider the equation

g(D1A(x),D2B(x)) = 0. (B.2)

Here, g is a C∞ function defined on a neighborhood of the origin, takes values in Cm2, 
and satisfies g(0, 0) = 0. Our goal is to give conditions on g so that given A (sufficiently 
small), we can find B = B(A) so that (B.2) holds; and we wish to further understand 
how the regularity of B depends on the regularity of A, in a quantitative way.

Though it is not necessary for the results which follow, we assume (B.2) is quasilinear 
in B, which is sufficient for our purposes and simplifies the proof. That is, we assume

g(D1A(x),D2B(x)) = g1(A(x),D1B(x))D2B(x) + g2(D1A(x),D1B(x)), (B.3)

where g1 and g2 are smooth on a neighborhood of the origin, g1 takes values in matrices 
of an appropriate size, and g2(0, 0) = 0.

Finally, let E2 denote the second order partial differential operator

E2B := g1(0, 0)D2B,

so that E2 is an m2 ×m2 matrix of constant coefficient partial differential operators of 
order ≤ 2.

Proposition B.4. Suppose E2 is elliptic. Fix s0 > 0 and a neighborhood N ⊆
C 2+s0(BRn(D); Cm2) of 0. Then, there exists a neighborhood W ⊆ C 1+s0(BRn(D); Cm2)
of 0 and a map B : W → N such that g(D1A(x), D2B(A)(x)) = 0 for x ∈ Bn(D), 
A ∈ W . This map satisfies D1B(A)(0) = 0, ∀A ∈ W , and ‖B(A)‖C 2+s0 (BRn (D);Cm2 ) ≤
C‖A‖C 1+s0 (BRn (D);Cm1 ), where C does not depend on A ∈ W . Finally, for η ∈ (0, D), let 
Rη denote the restriction map Rη : f 
→ f

∣∣
BRn (η). Then, for s ≥ s0, η ∈ (0, D), Rη ◦B :

C 1+s(BRn(D); Cm1) ∩W → C 2+s(BRn(η); Cm2), and ‖Rη ◦ B(A)‖C 2+s(BRn (η);Cm2 ) ≤
Cs,η, where Cs,η can be chosen to depend on an upper bound for ‖A‖C 1+s(BRn (D);Cm1 )
and does not depend on A ∈ W in any other way. It can depend on any of the other 
ingredients in the problem.

See [12] for a discussion of this proposition.

B.3. An elliptic operator

In this section, we discuss a particular first order, overdetermined, constant coefficient, 
linear, elliptic operator which is needed in this paper. For t ∈ Rr and z ∈ Cn, we consider 
functions A(t, z) : Rr ×Cn → Cr and B(t, z) : Rr ×Cn → Cn. We define
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E(A,B) =

(
∂Ak1

∂tk2

− ∂Ak2

∂tk1

)
1≤k1<k2≤r

,

(
∂Ak

∂zj
− ∂Bj

∂tk

)
1≤k≤r
1≤j≤n

,

(
∂Bj1

∂zj2
− ∂Bj2

∂zj1

)
1≤j1<j2≤n

,
r∑

k=1

∂Ak

∂tk
+

n∑
j=1

∂Bj

∂zj

)
.

Lemma B.5. E is elliptic.

Proof. It is straightforward to directly compute E∗E to see

E∗E(A,B) = −

⎛⎝ r∑
k=1

∂2

∂t2k
+

n∑
j=1

∂2

∂zj∂zj

⎞⎠ (A,B), (B.4)

and the result follows. �
There is another way to interpret (B.4). Indeed, we identify (A, B) with the one 

form Ψ := A1dt1 + · · · + Ardtr + B1dz1 + · · · + Bndzn. We let d denote the usual 
de Rham complex acting in the t variable and ∂ denote the usual ∂-complex acting 
in the z variable. We let d∗ and ∂

∗ denote the adjoints of these two complexes. Then 
E(A, B) can be identified with (d + ∂, −(d + ∂)∗)Ψ. And so E∗E can be identified with 
(d + ∂)∗(d + ∂) +(d + ∂)(d + ∂)∗ = d∗d + dd∗ + ∂

∗
∂ + ∂∂

∗ +(∂∗
d + d∂

∗) +(d∗∂ + ∂d∗) =
d∗d + dd∗ + ∂

∗
∂ + ∂∂

∗.
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