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1. Introduction

Fix s € (0,00] U {w} and let M be a ¢**2 manifold, where ** denotes the Zygmund
space” of order s, € denotes C°°, ¥ denotes the space of real analytic functions, and
we use the convention co +2 =00 +1=o0cand w+2 =w + 1 = w. Let £ be a ¢**!
complex elliptic structure on M; in particular, .Z is a complex sub-bundle of CT M, is
formally integrable, and . satisfies %, + %, = CT; M, V¢ € M. See Sections 2 and 3
for the full definitions. Set n+7 := dim .%; and r := dim % N.%; (by hypothesis, n and
r do not depend on (; see Section 3). For a Banach space ¥, let By () denote the ball
of radius § > 0, centered at 0, in #". The main theorem of this paper is:

Theorem 1.1. For all { € M, there exists an open neighborhood V.C M of ¢ and a €*12
diffeomorphism ® : Brrycn (1) = V such that ¥(t, z) € Brrxcn(1):

0 0 .
spang {(q)*%) (®(t, 2)), <(I)*3_EJ) (P(t,2):1<k<r1<j< n} = La,2)
Here, we have given R" x C™ coordinates (t1,...,tr, 21, ., 2n).

See Theorem 4.18 for a more abstract version of Theorem 1.1.

When s = w, Theorem 1.1 is classical. When s = oo, Theorem 1.1 is a result of
Nirenberg [7]; and the goal of this paper is to achieve the sharp regularity for ® in
terms of the regularity of M and . When r = 0, £ is a complex structure, and
Theorem 1.1 was proved by Malgrange [5]-in this case, the result gives the sharp reg-
ularity for the Newlander-Nirenberg Theorem [8].> One standard way to prove results
like Theorem 1.1 for > 0 is to reduce the claim to the setting of r = 0, and apply
the Newlander-Nirenberg Theorem, where sharp regularity is known due to Malgrange’s
result. Unfortunately, this reduction loses a derivative (i.e., only proves Theorem 1.1
with @ a ¢! diffeomorphism). Instead, we proceed by adapting Malgrange’s proof to
directly prove Theorem 1.1.

This paper is outlined as follows. In Section 2 we introduce the basic function spaces
we need. In Section 3 we give all the relevant (standard) definitions for bundles and
structures. In Section 4 we define a category of manifolds in which our results are natu-
rally stated: this is the category of manifolds endowed with an “elliptic” structure. This
category contains both real and complex manifolds as full sub-categories. We use this
to state a more abstract version of our main result (Theorem 4.18). In Section 7 we
state and prove the main technical result of this paper. As discussed in Section 1.2, with

2 For non-integer exponents, the Zygmund space agrees with the classical Hélder space. More precisely, for
m € N, a € (0,1), the Zygmund space €™ 1 is locally the same as the Hélder space C™ *—see Remark 2.3.
However, for a € {0, 1}, these spaces differ: C™ 10 C ™! C g™+,

3 Another proof of the case r = 0 was later given by Webster [18]. Both [5] and [18] state results for Holder
spaces and avoid integer exponents. As is well-known, and described in the case » = 0 of Theorem 1.1, the
results extend to integer exponents by using Zygmund spaces.
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future applications in mind we keep careful track of what all the constants in Section 7
depend on. This is the heart of this paper. In Section 8 we prove the main result; i.e.,
Theorem 1.1 and more generally Theorem 4.18.

1.1. Some further comments
Results like Theorem 1.1 (in the smooth case, s = 0o) were introduced by Nirenberg

to prove his more general Complex Frobenius Theorem [7]. There, one starts with a
C* formally integrable structure .2 on M (see Section 3). The classical (real) Frobenius

Theorem applies to the essentially real sub-bundle £ +.Z to foliate the ambient manifold
into leaves, and .Z is an elliptic structure on each leaf. Then one can apply a result like
Theorem 1.1* to each leaf. In this way, one can achieve a result which has the real
Frobenius theorem, the Newlander-Nirenberg Theorem, and the integrability of elliptic
structures as special cases (at least in the smooth setting).

In Theorem 1.1, the coordinate chart ® is one derivative better than the bundle .
(i.e., @ is €2, while . is €’**1). This is the best one can hope for, since the hypotheses
of Theorem 1.1 are invariant under €**? diffeomorphisms. However, even in the classical
real Frobenius theorem, one cannot obtain appropriate coordinate charts which are one
derivative better than the underlying vector fields: see [2, Example 4.5] for a very simple
example involving only one vector field. Thus, we restrict attention to the setting of
Theorem 1.1 (which does not involve any kind of foliation) because this seems to be a
natural generality in which we can achieve this level of regularity.

As mentioned above, one common way of proving results like Theorem 1.1 is to reduce
them to the Newlander-Nirenberg theorem; though this reduction unnecessarily costs a
derivative. One can do this without losing a derivative by assuming the existence of some
sufficiently regular vector fields which commute. This is the approach taken in [3] where
results are proved for Lipschitz bundles. With our approach, we do not need to assume
the existence of such vector fields (and in fact, their existence is a consequence of our
result). It is possible that the methods of this paper combined with the methods of [3]
could be used to prove results like the ones in that paper, without assuming the existence
of such commuting vector fields.

1.2. A main motivation

A simple consequence of Theorem 1.1 is the following:

Corollary 1.2. Fiz s € (0,00] U {w} and let M be a ¢°? manifold. Let Li,..., Ly,
be €T complex vector fields on M and X1,...,X, be €Tt real vector fields on M.
Suppose:

4 One needs a version of Theorem 1.1 with a parameter, which can be achieved with a similar proof in
the smooth case.
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o Forall( e M,

spangc {Ll(C)’ . -7Lm(g)7L1<<)7 s 7m(<)’X1(C)’ s 7XQ(<)} = (CTCM'

o Forall¢e M, 1<j,j1,jo <m, 1 <k ki, ks <gq,

[le ) Lj2](<)7 [LJ" Xk](C)7 [Xk1 ’ sz](C)
€ spanc {L1(Q), - -, Lin(€), X1(¢), - .-, Xq(Q)} -

For all( € M,

spalgc {Ll(g)’ . '7Lm(<)vX1(<)a oo ,Xq(o}
Mspane {Tr(Q)s- ., T Xa(O)s - Xo(O))

= spang {X1(0).-.., X4(0)} -

o The map ( — dimspanc {L1(¢), ..., Lm(¢), X1({), ..., Xq({)} is constant in (.

Set n+r = dimspanc {L1(C), ..., Lin((), X1(C), ..., X4(¢)} (which does not depend on
¢ by hypothesis) and set r := dimspang {X1(¢), ..., X4({)} (which also does not depend
on (-see Lemma 3.6). Then, ¥ € M, there exists a neighborhood V of ¢ and a €52
diffeomorphism ® : Brrycn(1) = V such that V€ € Brrycn (1)

spanc {®* L1 (), ..., 2" Ly (), D" X1(E),..., 2" X, (&)}
0

0 0 0
= Spall Oy 0t Y A= vttty a0
PRC\ ot o, 07 07,
where we have given R™ x C™ coordinates (t1,...,try 21, -+, 2n)-

Proof. Apply Theorem 1.1 (see, also, Theorem 4.18) to the bundle

gC ‘= Spallc {Ll(c)v .- '7LM(C)’X1(C)a <o ’XQ(c)};

Z is easily seen to be a @' elliptic structure on M. See Section 3 for this terminol-
ogy. O

We now consider a harder question. Let M be a C? manifold, and let Ly,..., L,, be
C' complex vector fields on M and X1,..., X, be C! real vector fields on M.

Question 1.3. Fix ( € M and s € (0, 00]U{w}. When is there a neighborhood V of ¢ and
a C? diffeomorphism ® : Bgrycn(1) = V such that ®*Ly,...,®*L,,, ®*X1,...,* X,
are ¢ *T1 vector fields on Brrxc»(1) and
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spanc {®*L1(§), ..., "L (§), " X1(8), ..., 2" Xy (&)}
Spanc{a N 23
oty ot 0z 0z

When the vector fields are already known to be ¥*1!, Question 1.3 is answered by
Corollary 1.2. But Question 1.3 asks more: it asks when one can pick the coordinate
system @ so that the vector fields are more regular than they were originally. It is not
always possible to do this, but in a companion paper [14] we give necessary and sufficient
conditions under which it is possible (for s € (1, 00] U {w}). By answering this question
in a quantitative way we provide scaling maps adapted to sub-Riemannian geometries,
which strengthen and generalize previous results in the case m = 0 (i.e., all the vector
fields are real) by Nagel, Stein, and Wainger [9], Tao and Wright [17], and the author
[11]. The case when m = 0 was covered in the series [10,12,13].

The case when ¢ = 0 of Question 1.3 is particularly interesting. In this case, the
coordinate chart ® can be thought of as a holomorphic coordinate system. When one
turns to the quantitative theory discussed above, this allows us to create holomorphic
analogs of the sub-Riemannian scaling maps introduced by Nagel, Stein, and Wainger
[9]. In this way we can study sub-Riemannian geometries on complex manifolds, which
are adapted to the complex structure. We call these sub-Hermitian geometries.

The main technical result of this paper (Theorem 7.3) is a key step in developing
the theory in the companion work [14]. Because of this, it is important for our future
applications that we keep track of the dependance various constants in Theorem 7.3.
For this purpose we introduce several function spaces and definitions that we would
not otherwise have to. This makes the statement of Theorem 7.3 a bit more involved
than it would have to be to prove the main results of this paper; though, other than
some bookkeeping, the proof is no more difficult. Because of its quantitative nature, it is
possible Theorem 7.3 will be more useful in future applications than the “main results”
of this paper.

2. Function spaces

Let Q@ C R™ be a connected, open set (we will almost always be considering the case
when 2 is a ball in R™). We have the following classical spaces of functions on )

CO)=C’Q):={f:Q—=C | f is continuous and bounded},
[fllcw) = Ifllco) = sup | f(z)].
zeQ

For m € N, (we use the convention 0 € N)

C™Q) = {feC(Q)]05fcC@). Vo] <m}, |fllcne = > 02flcw-

|a|<m

Next we define the classical Holder spaces. For s € [0, 1],
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Il fllcos) =l fllcw@) + SUEPQ lz —y|~*|f(z) = f(y)l,
x,y
TH#Y

CO(Q) = {f € C(Q) : [|fllen ey < o). (2.1)

For m € N, s € [0, 1],

flleme =D 102 fllcos, C™*(Q) = {f € C™(Q) : || fllome@) < oo}.

lal<m

Next, we turn to the classical Zygmund spaces. Given h € R™ define Q;, := {z € R :
x,x + h,z + 2h € Q}. For s € (0,1] set

11

e+ = [fllcoerz@ + sup [h]7°|f(z +2h) = 2f(x +h) + f(2)],
O;éhse)]R"
zeldy

T Q) = {f € CQ): |fllg-y < o0}

For m € N, s € (0,1], set

I lgmrey = D 108 fllesy,  €"7°(Q) = {f € C™(Q) : If lgm+e() < 00}

lal<m

We set

¢2(Q) =€), C®Q):= ) C™(Q).

s>0 meN

It is straightforward to verify that for a ball B, ¥°(B) = C*>(B).

Finally, we let €“(€2) be the space of real analytic functions on €.

If ¥ is a Banach space, we define the same spaces taking values in ¥ in the obvi-
ous way, and denote these spaces by C(; %), C™(;¥), C™5(;¥), €°(Q; V), and
¢ (Q; 7). Given a complex vector field X on €, we identify X = >°7_ aj(x)a%,- with
the function (ag,...,a,) : @ — C™. It therefore makes sense to consider quantities like
| X |l %s ;cny- When 7 is clear from context, we sometimes suppress it and write, e.g.,
| flls () instead of || f||4s ;) for readability considerations.

Remark 2.1. The term || f||go.s/2 in the definition of || f]
is usually replaced by || f|lco. However, if Q is a bounded Lipschitz domain these two

@s is somewhat unusual, and

choices yield equivalent norms: this is a simple consequence of [16, Theorem 1.118 (i)].
The definition we have chosen is somewhat more convenient to work with.

Definition 2.2. For s € (0, 00] U {w}, we say f € 65.(Q) if Vo € Q, there exists an open
ball B C Q, centered at x, with f‘B € ¢*(B).
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Remark 2.3. If ) is a bounded Lipschitz domain, m € N, s € (0, 1), the spaces C"™*(Q)
and ™14 (Q) are the same-see [16, Theorem 1.118 (i)]. However, if s € {0,1}, these
spaces differ. As a consequence for any open set Q C R™, for m € N, s € (0, 1), we have

‘KIZ?'S(Q) equals the space of functions which are locally in C"%.

Remark 2.4. €% and €. denote the same thing. However, for s € (0,00], €* and €},

are not the same. Since for any ball B we have €°°(B) = C°(B), the space 62(Q2)
corresponds with the usual space of smooth functions on 2.

2.1. Manifolds

In this paper we use %° manifolds; the definition is exactly what one would expect,

though a little care is needed due to the subtleties of Zygmund spaces.” We present the
relevant (standard) definitions here.

Definition 2.5. Let U; C R™ and Uy C R™ be open sets. For s € (0,00] U {w}, we say
f:U1 = Usisa 6, map if f € 6. (Ur; R™).

Lemma 2.6. Let U; C R™, Uy C R™2, and Us C R™ be open sets. For sy € (0,00]U{w},
Sg > s1, 52 € (Lol U{w}, if f1 : U = Uz is a €L map and fo : Uy — Us is a 62
map, then fyo fi : Uy — Us is a 6., map.

Proof. When s; € {oo,w}, the result is obvious. For s; € (0, 00), because the notion of
being a %5, map is local, it suffices to check fi o fs is in €' on sufficiently small balls.
This is described in Lemma 5.3, below. O

Lemma 2.7. For s € (1,00]U{w} if f : Uy — Uz is a 6,
diffeomorphism, then f~' : Uy — Uy 45 a 6

loc

map which is also a C*
map.

Proof. For s € {oo,w} this is standard. For s € (1,00) it suffices to check f~! is in €*
when restricted to sufficiently small balls, because the result is local. This is described
in Lemma 5.4, below. O

Definition 2.8. Fix s € (1,00]U{w} and let M be a topological space. We say {(¢q, Va) :
a € I} (where 7 is some index set) is a ¢”° atlas of dimension n if {V,, : & € Z} is an
open cover for M, ¢, : V,, = U, is a homeomorphism where U, C R™ is open, and
¢pg o (;5;1 : (ba(Vg NV, — Us is a 6

loc ap.

5 For example, one must define the Zygmund maps in the right way to ensure that the composition of two
Zygmund maps is again a Zygmund map.
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Definition 2.9. For s € (1,00] U {w} a %* manifold of dimension n is a paracompact®
topological space M endowed with a ¢° atlas of dimension n.

Remark 2.10. Let U C R” be an open set. U is naturally a “ manifold of dimension
n; where we take the atlas consisting of a single coordinate chart (namely, the identity
map U — U). We henceforth give open sets this manifold structure.

Remark 2.11. In particular, a ¥® manifold is a C™ manifold, for any m < s. In light of
Remark 2.4, €°° and C'°° manifolds are the same.

Definition 2.12. For s € (0,00] U {w} and let M and N be €**! manifolds with ¢!
atlases {(Ga, Va)} and {(5, Ws)}, respectively. We say f : M — N is a 55" map if
Yo fogrtisad ! map, Va,s.

Lemma 2.13. For s € (0,00] U {w}, suppose My, My, and M3 are €' manifolds and
fi: My — My and fo : My — My are €571 maps. Then, foo fi1: My — Ms is a €°*

loc loc
map.

Proof. This follows from Lemma 2.6. O

Lemma 2.14. Suppose s € (0,00] U {w}, My and My are €51 manifolds, and f : My —
Ms is a ‘Klf;l map which is also a C' diffeomorphism. Then f~1: My — M, is a ‘ﬁiﬁl
map.

Proof. This follows from Lemma 2.7. O

Definition 2.15. Suppose s € (0, 00] U {w}, and M; and M, are €*T* manifolds. We say
f:M; — M, is a €t diffeomorphism if f : My — My is invertible and f : M; — My
and f~1: My — My are 51" maps.

Remark 2.16. For s € (0, 00] U {w}, if M is a €*T! manifold with ¢! atlas {(da, Va)},
as described in Definition 2.8, then the maps ¢, : Vo, — U, are €' diffeomorphisms,
where U, is given the “ manifold structure described in Remark 2.10. This follows
from Lemma 2.14.

Because a €*t! manifold is a C'' manifold, it makes sense to talk about vector fields
on such a manifold.

Definition 2.17. For s € (0,00] U {w} let M be a €*™! manifold of dimension n with
¢t atlas {(da, Va)}; here ¢y 1 Vo — U, is a €°+! diffeomorphism and U, C R" is
open. We say a vector field X on M is a €* vector field if (¢q)«X € 6. (Ua; R™), Vau.

loc

6 We do not use paracompactness in this paper, so the reader who wishes to define manifolds without
requiring paracompactness is free to do this throughout this paper.
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3. Bundles

In this section, we include the standard definitions we use concerning bundles. In the
smooth case, these definitions are contained in [15,1], and we follow these sources. Fix
s € (0,00] U {w}, and let M be a €*T2 manifold. We let CT'M denote the complexified
tangent bundle of M: CTM := TM ®r C (see Appendix A for some comments on the
complexification of real vector spaces).

Definition 3.1. A ¥**! sub-bundle . of CTM of rank m € N is a disjoint union

<= ) ZLccrm
ceM

such that:

o V(€ M, % is an m-dimensional vector subspace of CT:M.
e Yy € M, there exists an open neighborhood U C M of {, and a finite collection of
complex €*+! vector fields L1,..., Lg on U, such that V¢ € U,

spanc{L1(¢),..., Lx({)} = Z.

Definition 3.2. For a ¢**! sub-bundle . of CTM, we define & by £ = {z: 2 € £}
It is easy to see that .Z is a €**! sub-bundle of CTM.

Definition 3.3. Let W C M be open, L a complex vector field on W, and ¥ a €°*!
sub-bundle of CTM. We say L is a section of . over W if V¢ € W, L(¢) € Z. We
say L is a €571 section of £ over W is if L is a section of .Z over W and L is a ¢**!
complex vector field on W.

Definition 3.4. Let . be a €*t! sub-bundle of CTM. We say .Z is a €°*! formally
integrable structure if the following holds. For all W C M open, and all €t sections
Ly and Lo of £ over W, we have [Lq, Ls] is a section of £ over W.

Definition 3.5. Let . be a €**! formally integrable structure on M. We say .Z is a
€=+ elliptic structure if £ + £ = CT; M, V¢ € M.

Lemma 3.6. Let .Z be an elliptic structure on M. Then, the map ¢ — dim(Z; HZ) 18
constant, M — N.

Proof. By Lemma A.1, dim(%; N.%) = 2dim(%;) — dim(Z; + % ). The definition of a
sub-bundle implies ¢ — dim(.Z) is constant, and the definition of an elliptic structure
implies dim(.%; + .%;) = dim CT; M = dim M, ¥¢ € M. The result follows. O



10 B. Street / Journal of Functional Analysis 278 (2020) 108290

Let . be an elliptic structure on M. Set r := dim(Z N %) and n + 7 := dim(%).
By the definition of a sub-bundle and Lemma 3.6, n and r are constant in (.

Definition 3.7. Let .Z be a elliptic structure on M and let n and r be as above. We say
Z is an elliptic structure of dimension (r,n).

Remark 3.8. Let ¢ be an elliptic structure of dimension (r,n). Then, dim M =
dim CT; M = dim(Z;+.%;) = 2n-+r, where in the last equality we have used Lemma A.1.

4. E-manifolds

It is convenient to state our results in a category of manifolds which contain real
manifolds and complex manifolds as full sub-categories. We define these manifolds here,
and call them E-manifolds.”

Remark 4.1. “E” in the name E-manifolds stands for “elliptic”. Indeed, using the termi-
nology of [15, Definition I.2.3], a complex manifold is a manifold endowed with a complex
structure, a CR-manifold is a manifold endowed with a CR structure, and (as we will
see in Theorem 4.18) an E-manifold is a manifold endowed with an elliptic structure;
see Definition 4.16. Unfortunately, the name “elliptic manifold” is already taken by an
unrelated concept.

Definition 4.2. Let U; CR™ x C™ and Uy C R™ x C™2 be open sets. We give R™ x C™
coordinates (t,z) and R"2 x C"2 coordinates (u,w). We say a C! map f : Uy — Us is an
E-map if

df(t,z)i,df(t,z)gespanc{ 0 o 0 p }

ity 0z Ouy’ " Buy, 0wy 0wy,
V(t,z)EUl,lﬁkgrl,lgjgnl.
For s € (0,00]U{w}, we say f: Uy — U is a 6%, E-map if it is an E-map which is also

loc
a %’

loc Map.

Remark 4.3. Suppose U1, Us C R” x C™ and f : Uy — U, is an E-map which is also a
C'-diffeomorphism. Then, f~! : Uy — U, is an E-map.

Remark 4.4. Note that when r; =75 =0, if U; C RYxC™ =2 C™, U, C ROxC™ =2 C"=,
then f:U; — Us is an E-map if and only if it is holomorphic.

7 The manifold structure we discuss here is well-known to experts, but we could not find a name for the
category of such manifolds, and decided to call them E-manifolds for lack of a better name.
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Lemma 4.5. Let Uy C R™ x C™, Uy C R™ x C"2, and U3 C R"™ x C™ be open sets,
and let s € (0,00] U {w}. Suppose f1 : Uy — Uz and fo : Uy — Us are ‘KIZ‘CH E-maps.
Then fao f1: U — Us is a ‘51‘;1'1 E-map.

Proof. That fyo fi isa Cﬁlf)‘gl map follows from Lemma 2.6. That it is an E-map follows

from the chain rule. O

Definition 4.6. Let M be a topological space and fix n,r € N, s € (1,00] U {w}. We
say {(¢a,Va) : @ € I} (where Z is some index set) is a € E-atlas of dimension (r,n)
it {V,, : « € T} is an open cover for M, ¢, : V, — U, is a homeomorphism where
Uy, CR" x C™ is open, and ¢go ¢ ' : 9o (Vs NVy) — Up is a 6, E-map, Va, .

Definition 4.7. A 4° E-manifold M of dimension (r,n) is a paracompact® topological
space M endowed with a ¥° E-atlas of dimension (r,n).

Remark 4.8. One may analogously define C™ E-manifolds in the obvious way. C*° E-
manifolds and ¥°° E-manifolds are the same.

Definition 4.9. For s € (0,00] U {w}, let M and N be ¥*™! E-manifolds with ¢!
E-atlases {(¢a, Va)} and {(¢¥3, W3)}, respectively. We say f: M — N is a ‘61;1'1 E-map
if ygo foprlisa ‘5{?{1 E-map, Va, S.

Lemma 4.10. For s € (0,00] U {w}, let My, My, and Mz be €°T' E-manifolds and
f1: My — Ms and fy : My — M3 be %lf;l E-maps. Then, faoo f1: My — Mz is a ‘51301'1

E-map.
Proof. This follows from Lemma 4.5. O

Lemma 4.11. For s € (0,00] U {w}, let My and My be €1 E-manifolds and let f :
M; — Ms be a ‘ﬁiﬁl E-map which is also a C* diffeomorphism. Then, f~': My — M
is a €S E-map.

loc

Proof. That f~!: My — My is a €°! map follows from Lemma 2.14. That f~' : My —

loc

M is an E-map follows from Remark 4.3. O

Definition 4.12. Suppose s € (0,00] U {w}, M; and My are €**! E-manifolds. We say
f: My — My is a @t E-diffeomorphism if f : My — My is invertible and f : M7 — My
and f~': M, — M, are %IZJCA E-maps.

Remark 4.13. For s > 1, the category of ¥° E-manifolds, whose objects are ° E-

manifolds and morphisms are %;° . E-maps, contains both % real manifolds and complex

loc

& We do not use paracompactness in this paper; so the reader who does not require that manifolds be
paracompact is free to do so in this paper.
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manifolds as full subcategories. The real manifolds of dimension r are those with E-
dimension (r,0), while the complex manifolds of complex dimension n are those with
E-dimension (0,n). That complex manifolds (with morphisms given by holomorphic
maps) embed as a full subcategory follows from Remark 4.4. The isomorphisms in the
category of ¥° E-manifolds are the ¥° E-diffeomorphisms.

Remark 4.14. Note that open subsets of R" x C™ are ¥* E-manifolds of dimension (r, n),
by using the atlas consisting of one coordinate chart (the identity map). Henceforth, we
give such sets this E-manifold structure.

Remark 4.15. An E-manifold of dimension (r,n) has an underlying manifold structure
of dimension 2n + r, and it therefore makes sense to talk about any of the usual objects
on manifolds with respect to an E-manifold.

For s € (0,00] U {w}, on a ¥**2? E-manifold M of dimension (r,n), there is a natu-
rally associated €11 elliptic structure on M of dimension (r,n) defined as follows. Let
(da, Vo) be an E-atlas for M. For ( € M, we have ¢ € V,, for some a. We set:

0 0
e = spanc {9 (B () 502 (@)
0 0
A3 (@0(0) gt 03 (B0(O) - |

It is straightforward to check that #; C CT; M is well-defined” and & = J, ), Z is a
¢ elliptic structure on M of dimension (r,n).

Definition 4.16. We call .Z the elliptic structure associated to the E-manifold M.
Lemma 4.17. Suppose M and M are €5+2 E-manifolds with associated elliptic structures
.i/’iand ZL. Then a €55° map f: M — M is a 651* E-map if and only if df ()% C
ff((), V(e M.

Proof. This follows immediately from the definitions. O

The main result of this paper (Theorem 1.1) can be rephrased as follows.

Theorem 4.18. Let s € (0,00 U{w} and let M be a €+ manifold. For each ( € M, let
Z¢ be a vector subspace of CT M, and let £ = UceM Z¢. The following are equivalent:

(i) There is a €572 E-manifold structure on M, compatible with its €72 structure,
such that £ is the €11 elliptic structure associated to M.

9 ILe., Z¢ does not depend on which a we pick with ¢ € V.
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(i) & is a €T elliptic structure.

Moreover, under these conditions, the E-manifold structure given in (i) is unique in the
sense that if M is given another €°*% E-manifold structure, compatible with its €52
structure, with respect to which £ is the associated elliptic sub-bundle, then the identity
map M — M is a €°2 E-diffeomorphism, between these two €°T2 E-manifold structures
on M.

This paper is devoted to proving Theorem 4.18.

Remark 4.19. In Theorem 4.18, following standard terminology, we have used the word
“structure” in two different ways. When we speak of a ¢*T2 E-manifold “structure” on M
we mean the equivalence class of €*72 E-atlases (where two atlases on M are equivalent
if the identity map M — M is a ¢*T2 E-diffeomorphism). When we speak of an elliptic
“structure,” we are referring to Definition 3.5. This double use of terminology is justified
by Theorem 4.18 which shows that giving an E-manifold structure is equivalent to giving
an elliptic structure.

Remark 4.20. When s € {oco,w}, Theorem 4.18 is well-known. Our proof yields these
cases as simple corollaries, so we include them.

Remark 4.21. In the special case .Z:N.Z; = {0}, V¢ € M, Theorem 4.18 is the Newlander-
Nirenberg Theorem [8], with sharp regularity as proved by Malgrange [5]. In this case
E-manifolds are complex manifolds—see Remark 4.13.

5. Function spaces revisited

In this section we present some basic properties of the function spaces introduced in
Section 2. Fix Q C R™ an open set.

Proposition 5.1. For s € (0,00l U {w}, €°() is an algebra: if f,g € €°(V), then fg €
€*(Q). Moreover, for s € (0,00) and f,g € €°(Q),

[ falle=0) < Csll flle= gl
For s € (0,00] U {w}, these spaces have multiplicative inverses for functions which are

bounded away from zero: if f € €°(Q) with inf, |f(z)| > co > 0, then f(z)~! = ﬁ €
€° (). Moreover if s € (0,00) and inf, |f(x)] > co > 0 then

I1f (@) M=) < C,

where C' can be chosen to depend only on s, n, co, and an upper bound for || f|l4s(q)-
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Proof. For s = w, this is standard. For s € (0, 00], this is standard and contained in [10,
Proposition 8.3]. O

Remark 5.2. For s € (0,00] U {w}, suppose A € &*(Q;M**F) is such that
infycq | det A(t)| > 0. Then it follows that A~! € €’*(Q; M**¥). Indeed, this follows from
Proposition 5.1 using the cofactor representation of A=, When s € (0,00), [[A7! 4= (q)
can be bounded in terms of s, k, n, a lower bound for inf;cq | det A(¢)| > 0, and an upper
bound for ||A

Lemma 5.3. Let D1,D2 > 0, s1 € (0,00), s3 > $1, s2 € (1,00), f € €°*(Brn(D1)),
g € €%2(Brm (D2); R™) with g(Brm (D2)) C Brn(D1). Then, fog € €°* (Brm(D2)) and
I1f 0 glles1 (Bgm (Da)) < CIIf]
sa, D1, Do, m, n, and an upper bound for ||g||s2 (Brm (D3))-

=1 (Brn (D1)), where C' can be chosen to depend only on s,

Proof. This is standard and proved in [12]. O

Lemma 5.4. Fiz s € (1,00), D1,Dy > 0. Suppose H € €*(Brn(D1);R"™) is such
that Brn(D2) € H(Bgr~(D1)), H : Bgrn(D1) — H(Bgrn(D1)) is a homeomor-
phism, and inficpg, (p,)|detdH(t)] > ¢ > 0. Then H™' € €*(Bgrn(D2);R™), with
||H71||<gs(BRn(D2);]Rn) < C, where C can be chosen to depend only on n, s, D1, D, cg,

and an upper bound for ||H||4s(Bgn(D)R")-

Proof. This is standard and proved in [12]. O
5.1. Spaces of real analytic functions

For the proofs that follow, it is convenient to introduce two, closely related, Banach
spaces of real analytic functions. For s > 0, we define &/™* to be the space of those
f € C(Brn(s)) such that f(t) =3 cnn 5t%, Vt € Brn(s), where

c
||fH£¢n,.s = Z @Sla\ < 0.
al

aeN”

We now turn to the other Banach space of real analytic functions we use. Let Q ¢ CV
be a bounded, open set, and let m € N. We set

oyt () = { f:Q->acm ] f is holomorphic and f extends to a continuous function
E(f) e Cc()}.

With the norm

/]

o) = [1€()llew:
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o7 () is a Banach space. We set, for n > 0,

@év M= { f:Br~n(n) = C™ | f is real analytic and extends to a holomorphic function
&(f) € 07" (Bewn (n))}-

With the norm

[fll g = 1€ (Nl o (B (m))»

%,]]V '™ is a Banach space. Sometimes we wish to replace C™ in the above definitions with
a more general complex Banach space #. We write this space as %7]7\[ "7 and define the
norm in the obvious way.

Lemma 5.5. Let ¥ be a Banach space. Then &/™"(¥) C 277" and ||f||%nw <
[ llrmn () -

Proof. This follows immediately from the definitions. O

Lemma 5.6. Let % be a Banach algebra. Then o/™*(%) and 93,]7\”] are Banach algebras.
Indeed, if V' denotes either of these spaces, then if f,g € ¥, we have fg € ¥ and

1Fglly < 1F1» Mgl

Proof. This follows easily from the definitions. O
Lemma 5.7. Fiz 0 < < no. If f € &/™" with f(0) =0, then
1l < 2 Fllgmn (5.1)
2
Similarly, if f € %%’m with f(0) =0, then
m
[ T (52)

The same results hold (with the same proofs) for functions taking values in Banach
spaces.

Proof. Suppose f € &/ with f(0) = 0. Then, f(t) = ¥\as0 cat® With [[f[lanm =
Z|oe\>0 |Ca|77|2a|- We have

m m
1 fllrmm =3 lealnt™ <23 Jealns™ = [ fllanns,
la|>0 72550 2

completing the proof of (5.1).
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Let g S 6!7 (B(( (772)) Wilh g(O) — 0« vwe Clalm
|| || b 1 <— b 2 5 3

Indeed, we may write g(z) = zg1(2), where g1 € 07" (B¢ (12)). We have, by the Maximum
Modulus Principle:

m
l9lle(Br(n)y < mllgillep Bemy) <m sup |gi(2)] = — sup |g(z)|
|z|=n2 N2 |z|=n>

m
= E”gHﬁg”(Bl(nz))v

completing the proof of (5.3).
Let h € 07" (B (n2)) with h(0) = 0. We claim

15|

m
o7 (Ben (m)) < gIIhI O (Ben (n2)- (5.4)

Indeed, for 0 # w € Bgn(n1), apply (5.3) to g(z) = h(zw/|w|), to see |h(w)| <
Z—; Al g (87 (ny))- Taking the supremum over all such w yields (5.4).
(5.2) is an immediate consequence of (5.4). O

Lemma 5.8. Fiz 0 < 11 < n2. Then %,72’1 C ™M and for f € %’;‘2’1,

[l < Cllfll gyt

where C' can be chosen to depend only on n, 12, and n;.
Similarly for s € (0,00), &' C €*(B™(m)) and for f € €°(B"(m)),

1fllg (B < Cllfll gy

where C' can be chosen to depend only on s, n, 12, and 1.

Proof. Tt suffices to prove both results for 7o = 1 and 1, € (0, 1), by rescaling. When 7o =
1, we extend f to a holomorphic function &(f) € 0} (Bcn(1)), and use the well-known
representation:
! 1-z-¢
s10) =" [ 0 do(0),

¢ — z[*
O0Bcn (1)

where o denotes the surface area measure on B¢ (1). From here, the results follows
easily. O

Lemma 5.9. Fiz gy > 0, D > 0. For 0 < v < & and f : B"(m) — C, define f, :
B™(D) — C by f,(t) = f(v1).
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(i) Let m € N with m > 1 and s € (0,1]. Then, for 0 < v < min{’5,1}, we have for
feem=(B"(m)) with f(0) =0,

£l () < Y(ABD + 1)+ Dl fllgne (5
(i) For 0 <~ <L, we have for f € &/™™M with f(0) =0,
vD
[ fsllamp < == fllarmm .
M

Proof. We begin with (i). Using 0 < v < min{’5,1}, it follows immediately from the
definitions that

Y lagsl

oy = >, YO

¢*(B™(D))
1<al<m 1<]al<m 55)
< D AN s Brimy < A Fllgmrsnim))-
1<]al<m
Since f,(0) = f(0) = 0, we have (using the Fundamental Theorem of Calculus)
I lcr o)) = I fyllcoEn oy + Y 108 fyllcon (o))
lee|=1
: (5.6)
<(D+1) Y 108 fylleosn oy < (D + DY fller 0 me))-

laj=1

It is easy to see, directly from the definitions, that (for any function g on any ball B),"

9l By < 5llgllcos(m) < 15|lgllcor(my < 15|lgllcr(my < 15|gllgm+s(m).- (5.7)

Thus, using (5.6), we have

1 f1lles (B (py) < 15[ fyllcrr(py) < 15(D + Dl fllor (B m))
< 15(D + 1)7lf]

€m+s(Bn(n1))-

Combining this with (5.5) completes the proof of (i).
We turn to (ii). Let f € &/™™ with f(0) = 0, so that f(t) = > ;50 cat®, and

| fllazmm = Z‘a|>0|ca|n‘1a|. For 0 < v < 5 we have f,(t) = > 550 caylt, and
therefore f, € &/ 7D and we have

10 See [10, Lemma 8.1] for a result like (5.7)—in the proof of that result, one can see how the constants 5
and 15 arise. However, these particular constants are not essential for what follows.
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[
1sllmo = 3 Jeal D) = 37 Jealn)® (37—D) < <j7—D> 1o

|a|>0 la|>0
completing the proof of (ii). O

Lemma 5.10. Let n1,1m2 > 0, n1,ny € N, and let ¥ be a Banach space. Suppose f €
A (Y, g € ™22 (R™) with ||| gname@n) < m. Then, fog e @m>(V) with
1£ 0 gllagmama < 1 lamioms-

Proof. This is immediate from the definitions. O

Lemma 5.11. Fiz 0 < e < 11, and suppose f € /™M (¥), where ¥ is a Banach space.
Then, for each j =1,...,n, a%J_f(t) e A (Y) and ||8%jf||g¢n,n2(7/) S CN fllaznm vy,
where C can be chosen to depend only on m and ns.

Proof. Without loss of generality, we prove the result for j = 1. We let e; denote the
first standard basis element: e; = (1,0,...,0) € R™. Suppose f(t) = an%a' Then,

o /(1) = 0,50 Cata—eyy- Hence,

]

9 _ llcally el _ HCaII"V |a< ) o
‘atlfH L T2 )

/mn2 a1 >0

||
M2 a1
<sup () ) T
o m m

IN

completing the proof. O
6. Some additional notation

If f : M — N isa C! map between C'! manifolds, we write df (x) : T, M — T, N for the
usual differential. We extend this to be a complex linear map df (z) : CT,M — CT,N,
where CT,M = T, M ®r C denotes the complexified tangent space. Even if the manifold
M has additional structure (e.g., in the case of a complex manifold), df (z) is defined in
terms of the underlying real manifold structure.

When working on R” x C™ we will often use coordinates (¢, z) where t = (t1,...,t,) €
R™ and z = (#1,...,2,) € C". We write

0 e 9

8t1 821 831

o) Is) o
9 _ o, 9 _|o= 9 _ |
ot T 0z : b0z

el o 0
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At times we will instead use coordinates (u,w) where u € R” and w € C™ and define

0 o 0 irni
Fos 5> and g= similarly.

For a function F(t,z) = (Fi(t, 2),..., Fn(t, 2)) : R" x C™ — C™ we write

oF, .. O& oF, ... 9H ok .. 9R

oty oty 0z1 Ozn, 0z1 OZn,
th: . . 7sz: N N ,dEF: N . .

oty ot Oz1 Ozn 0z1 IZn

We identify R” x R?2" = R” x C" via the map (t1,...,t,,1,...,T2n) = (t1,. .., tr, 21 +
iTpi1,- .-, Ty +1iT2,). Thus, given a function G(t, z) : R" x C™ — R® x C™, we may also
think of F' as function G(¢,z) = (G1(t,2),...,Gsiam(t,x)) : R" x R?" — R* x R*™. For
such a function, we write

0G1 . 0G1 0G1 . 0G4
Oty ot,. Oxq OTan
dy,z)G =
0Gsqom . 9Gst2m 0Gsqom . 0Gsi2m
oty ot oz 0xan

We write Inyxny € MV*N to denote the N x N identity matrix, and Ogxp € M**? to
denote the a x b zero matrix.

7. The main technical result

In this section, we state and prove the main technical result needed to prove Theo-

rem 4.18.
Fix s € (0,00) U {w} and let X;,..., X, Lq,...,L, be complex vector fields on

Brrycn (1) with:

o If 50 € (0,00), Xy, Lj € G (Brrycn (1); CH27).
o If 5 = w, Xy, L; € /7 H201(CrH2m),

We suppose:

. Xk(())za%,Lj(O):%.
® VC € BRTX(C”(l)a [Xk17Xk2](<)?[XkﬂLj](C)?[L_h?LjQ](C) € SpanC{Xl(C)v'“a
XT(<)7L1(C>77LTL(<)}

Under these hypotheses, Nirenberg’s theorem on the integrability of elliptic struc-
tures'! implies that there exists a map ®, : Brrxcn (1) = Brrycn (1), with ®4(0) = 0,

1 Originally, Nirenberg considered only the case of C° vector fields and worked in the case when
X1,...,X, were real.
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4 is a diffeomorphism onto its image (which is an open neighborhood of 0 € Brrxcn (1)),
and such that ®;Xy(u,w),®iL;(u,w) € spanc{a%l, ce aiur, 81;%17 R aqim}’ V(u, w)
(here we are giving the domain space R™ x C™ coordinates (u,w)). Our goal in this
section is to give a quantitative version of this result which gives ®, the optimal regu-
larity (namely, when sq € (0,00), ®4 is in €*°*2 and when sy = w, @4 is real analytic).

As discussed in Section 1.2, for future applications we need keep track of what the
constants depend on in this section, and need to make the statement of the results more
precise than would be required just for the main results of this paper. To ease notation,
we introduce notions of “admissible” constants. These are constants which only depend
on certain parameters. The use of these constants greatly simplifies notation in both the

statements of the results and the proofs.

Definition 7.1. If 5o € (0,00), for s > s¢ if we say C is an {s}-admissible constant, it
means that we assume X, L; € €5 (Brrxcn(1); C™"2"), Vj, k. C can then be cho-

sen to depend only on n, 7, s, so, and upper bounds for || Xp||¢s+1(Brr, cn(1)) and

xCn

| Ljllgst1(Brryen()y, 1 <k <7, 1 < j < n. For s < 59, we define {s}-admissible
constants to be {sg}-admissible constants.

Definition 7.2. If sy = w, we say C is an {w}-admissible constant if C' can be chosen
to depend only on n, r, and upper bounds for || Xg||gzntr1, ||Lj|laznsri, 1T < k <1,
1<j<n

We write A Sg) B to mean A < OB, where C' is a positive {s}-admissible constant.
We write A (s} B for A 5{5} B and B S{s} A.

Theorem 7.3. There exists an {so}-admissible constant Ky > 1 and a map P4
BRT‘XC"(]-) — B]R“"X(C“(]-) such that

(i) o Ifsge (0,00), P, € %SO+2(BR’V'XC7L(1);RTX(Cjn) and H(I)4||‘€S+2(BR"'><C"(1)) 5{3}

1, Vs > 0.
o If sop = w, &y € F*EHR" x C") and ||y w2n+re < 1. In particular, ®4

extends to a real analytic function on Brrycn(2).

(ii) ®4(0) = 0 and d( ) P4(0) = K{ll(r+2n)x(r+2n). See Section 6 for the notation

d(t,x)'
(iii) V(¢ e BR'r‘XC'rL(1)7 det d(t)m)q)4(<) R {s0} 1.
(iv) ®4(Brrxcn(1)) C Brrxcn(1) is an open set and @4 : Brrxcn (1) = ®4(Brrxcn (1))

is a diffeomorphism.'?

12 Here, and in the rest of the paper, we say F' : Uy — Usz is a diffeomorphism if F is a bijection and dF
is everywhere nonsingular.
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2 PEX
[%?] KA 3 |

ow

where A : Brrycn (1) — MOH)X040)(C) | A(0) = 0 and
. If So € (0, OO), ||.AH<€5+1(BRTXCW(1);M(n+7*)><(n+r)) 5{5} 1, Vs >0 and

N

||A||3§SO+1(BTR{7‘ xCn (1);M(”+T)X("+7‘)) S

o Ifsp=w, ||v4||g;/2n+r,1(M(n+r>x<n+r>) < i-

In either case, note that this implies (I + A) is an invertible matriz on Brrxcn(1).
(vi) Suppose Z is another complex vector field on Brrwcn(1). Then,

o Ifs9 € (0,00), ||®ZZ||<€S+1(BRT><<CTL(1)) SJ{S} HZ||<‘gﬂs+l(BRrch(1)), Vs > 0.

o Ifso =w, |1 Z]|ar2ntr1 Sty 1 2] arznsra.

Remark 7.4. In Theorem 7.3 (and in the rest of this section), we have written s > 0 to
mean s € (0,00) and similarly for other such inequalities. For example if sq € (0, 00) and
we write s > sg, it means s € [sg, 00).

Remark 7.5. Proofs of results like Theorem 7.3 in the literature only prove that ®4 is
@011 (instead of €’*012); and each of the estimates is similarly off by a derivative.'
Remark 7.6. When sy = w, the hypothesis X, L; € &/""21(C""2") can be replaced
with the slightly weaker hypothesis Xy, L; € ;7" 72" one can achieve the same
result with the same proof. However, our applications use Xy, L; € &/"T2™(C"+2"), so
we use this space instead. In any case, it is straightforward to see (using Lemmas 5.5
and 5.8) that either choice yields an equivalent theorem.

7.1. A reduction

To prove Theorem 7.3, we prove the following proposition. For it we use the same
notation and setting as Theorem 7.3.

Proposition 7.7. There exist {so}-admissible constants K1 > 1 and ns € (0,1] and a map
3 : Brrycn (7]3) — BRT'X(C'rL(l) such that:

(i) o If sy € (0,00), P53 € %SO+Z(B]RTXCn(773);RT X Cn) and ||<I>3H<gs+2(BRT
S{s} 1, Vs > 0.

xcn(n3))

13 However, the results in this section concerning real analytic vector fields are standard.
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o Ifso =w, 3 € F2F213(R" x C") and || P3| m2n+r2ms < 1. In particular, ®3
extends to a real analytic function on Brrxcn(213).
(il) ®5(0) =0 and d ) ®3(0) = K ' I(ri0n)x(rt2n)-
(iii) ®3(Brrxcn(n3)) € Brrxcn(1) is open and @3 : Brrycn(n3) = P3(Brrxcn(13))
is a diffeomorphism.

(iv)
= 53X
lg] = K H(I + As) [(I%L] ;
ow

where As : Brrycn(13) — MOH)x047)(C) | A5(0) = 0 and
o If sg € (0,00), ||A3‘|<55+1(BR7'><C71(773)) S{S} 1, Vs > 0.
. IfSO = Ww, H.Ag”dm% S{w} 1.

First we see how Theorem 7.3 follows from Proposition 7.7.

Proof of Theorem 7.3. Let @3, K1, n3, and A3 be as in Proposition 7.7. It follows from
Proposition 7.7 (ii) that det d(;,.)®3(0) ~{s,} 1. Next we claim that if /) =4,y 1 is chosen
sufficiently small (with 7 < n3), then det d ,)®3(C) ~sy} 1, V¢ € Brrxcn (7). Indeed:

 Suppose so € (0,00). Note [[®3]lc2(Brrycnms)) < I1P3llesot2(Bar,cn(ng) Stso} 1-
Using the fact that det d(; ) ®3(0) ~qs3 1, if ) =4, 1 is chosen sufficiently small
(with 7 < n3), we have det d(; ;) P3(() (s, 1, V¢ € Brrycn ().

+ Suppose 59 = w. By Lemmas 5.5 and 5.8, ||®s]|c2(Bgr , cn (1)) Sso} ||@3||%§:7L;—7‘,2n+7‘ <
| @3] cr2ntrms Sysey 1. Thus, using the fact that det d(; ,)P3(0) ~gs0y 1, if 7 503 1
is chosen sufficiently small (with 7 < 53), we have detdy ,)®3(() =~y 1, V¢ €
BRTX(C"(ﬁ)-

For v < ), define ¥, : Brrycn(1l) = Brrxcn (1) by ¥, (¢) = 7(. We will set &4 :=
®3 o W, for appropriately chosen . Consider,

Ll on o o e3X] (@30 0,)"X
— | =0 | | =K =K (I v .
~ [a% Y 3% ¥l ( +"43) ¢§L 1 ( +A3 © ’Y) (@30\117)*‘[/

Since A3(0) = 0, using Proposition 7.7 (iv) and Lemma 5.9, we have:

° If S0 € (0700)3 ||A3 © \IJ’Y||<KSO+1(BRTX(C‘7L(1)) S{So} 7‘|A3||%50+1(BR""><C"(773)) S{So} ’y
Thus, by taking v to be a sufficiently small {so}-admissible constant, we have || A3 o
U,y [leg20+1 (Baryen (1) < 1-

o If s = w, we have ||Az o Uy g2nir1 < %||A3||d2n+r,n3 Sqwy 7. Also, set
R(t,z) == d®s(t,z) — Kfll(gnJrT)X(gnJrr), so that R(0,0) = 0, and by Lemma 5.11,
R € gr2ntrms (M(2n+r)><(2n+r)) and ||R|| or2n+r.ns S{w} 1. We have ||Ro \IJ,Y||£¢zn+r,1 <
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LR rzntrms Sqwy - Thus, by taking + to be a sufficiently small {w}-admissible
constant, we have [|A3 0 ¥, || y2ntra < 1 and |[Ro W, || gznsra < (2K7) 7L

Taking « as above and setting ®4 = ®3 o ¥.,, Theorem 7.3 (i), (ii), (iii), (iv), and (v)
follow with Ko =y 'K; and A= A3 0 V..
We turn to (vi). Recall,

57 (u,w) = d®y(u,w) tZ(Py(u, w)). (7.1)

If so € (0,00), we have from (i) and Lemma 5.3 that ||Z o ®4ll¢s+1(Brr cn(1)) Sqs}
| Z|4¢5+1(Bgr con (1))- Also, by (i), (iii), and Remark 5.2 we have || (d®4) |4 s+1(Bgr .on (1))
Stsy 1. Using these estimates, (7.1), and Proposition 5.1, (vi) follows in the case so €
(0, 00).

If 5o = w, (i) and Lemma 5.10 show [|Z o ®y||sr2ntr1 Squy | 2] ar2ntr1. Letting R be as
above, we have d®y = yK; (I + K1RoW.)). Since | K1 R o Uy || grzntra (M@ntr x@nan) <
1/2, and since o727+ (M (2n+7)x(2n47)) 5 4 Banach Algebra (Lemma 5.6), it follows (by
using the Neumann series for (I + K1 Ro W)~ ") that ||(d®4) | z2ntr1 < 2K177 Spuy
1. Using these estimates, (7.1), and Proposition 5.1, (vi) follows in the case sy = w,
completing the proof. O

We now turn to the proof of Proposition 7.7, which encompasses the rest of Section 7.
We do this by presenting a series of increasingly general versions of the proposition, and
reducing each to the previous; eventually culminating with the full Proposition 7.7. The
outline of this proof is:

e In Section 7.2 we present a quantitative version of the holomorphic Frobenius theo-
rem; this result is standard.

e In Section 7.3 we prove the special case of Proposition 7.7 when the vector fields
are all assumed to be real analytic and commute. We do this by reducing it to the
holomorphic case. This procedure is standard.

e In Section 7.4 we present an easily checkable special case of the real analytic setting
using elliptic PDEs. This is a generalization of part of Malgrange’s approach [5].

e In Section 7.5 we use elliptic PDEs to reduce the case of vector fields which are a
small perturbation of % and % to the previous case. This is a generalization of part
of Malgrange’s approach [5].

e In Section 7.6 we use a simple scaling argument to study vector fields which might

9
ot

e In Section 7.7 we complete the proof by using some simple linear algebra.

be a large perturbation of % and %; we do this by reducing to the previous case.

Remark 7.8. In each subsection which follows we use notions of admissible constants
which are specific to that section; we are explicit about what we mean in each subsection.
In each subsection, we prove progressively stronger results, eventually culminating in the
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proof of Proposition 7.7; we do this by reducing each result to the weaker results which
proceed it. The admissible constants in each result are defined so that constants which
are admissible in the result we are proving are admissible in the weaker results which
we reduce it to. So that, for example, the main result in Section 7.5 is reduced to the
main result in Section 7.4; and in this application of the main result in Section 7.4, each
constant which is admissible in the sense of Section 7.4 is admissible in the sense of
Section 7.5. Thus the various notions of admissible constants seamlessly glue together to
yield Proposition 7.7.

7.2. The holomorphic Frobenius theorem

Fix 19 > 0. In this section we work on C” x C?" with complex coordinates (o, () =
(01y...,07,C1y. .., Con). We are given holomorphic vector fields:

0 9 r l P
Xi= 5 +;b k(0 03@ +;b2’k(07 Oggr 1Sk<r

1/ 0 0
_ (9 o
b 2 <8CJ o aCJ+n>+Z 3.7 UC +Zb4u UC I<j<n,

where bf ; € O} (Bgr+2n(M0)), Ve,d,e (see Section 5.1 for the definition of the space
Oy (Bcr+2n(10))). We also assume b, 4(0,0) = 0, Ve, d, e.

We assume [L;,, L;,] =0, [L;, Xi] =0, [Xk,, Xi,] =0, Vi1, j2, k1, ko, j, k. Take Cy so
that Hbg,d‘lﬁg(BCr+2n(no)) S Cl, VC, d, €.
Definition 7.9. We say C' is an admissible constant if C' can be chosen to depend only on
No, N, 7, and C1.

We write A < B for A < CB, where C is an admissible constant. We write A ~ B
for A< Band B < AM

Proposition 7.10. There exists an admissible constant 17, > 0 and wy,...,w, €
O} (Bgr2n (1)) such that:

. wl(O) =0 and dwl(O) =d(; + 1dC4n.
o willopBerionmy S 1, VI

i ijl = 0, kal = 0, V],k,l

In what follows, we use the exponentiation of holomorphic vector fields. So that if
V is a holomorphic vector field on an open set Q C C¥, it makes sense to define

14 We use similar notation in the following sections without explicitly defining it.



B. Street / Journal of Functional Analysis 278 (2020) 108290 25

(t,2) = etVz, for € Q and t in a neighborhood of 0 € C (depending on z). If Q' € Q
is a relatively compact open set, then the map eV z exists for 2 € Q' and t € Bc/(9),
where § can be chosen to depend only on upper bounds for dist(2’, 92) 1, 1Z]l g (c2)»
and N. Furthermore, [e!%z — 2| om (B (5)x ) can be bounded in terms of upper bounds
for | Z ||@>é\7(9), 0, and N. This is all proved using the standard Contraction Mapping
Principle argument. See Chapter I, Section 1 of [4] for a proof of this standard fact.

Proof of Proposition 7.10. Let Z1,...,Z, be given by Z; = % ( 9

0 ;8
G ZBC,-+7L)’ and set

\Il(tlw"7tr7u1""7unavla"'avn)

— et1X1 et2X2 . etTXTeulLleUQLQ . eunLnelee’UzZz . e’UnZnO'

By the above discussion, there exists an admissible constant n’ > 0 with ¥ €

O3+ (Bersan (1)) and 18] om0 () S 1
. B = = 5or Ba N -
Since 57- [, y—pueo U 0) = Xk(0) = 52, g |i—0umo.0mo ¥t us0) = Li(0) =

1(.0 ) ) - 7. =1(90 _,; 08
2 (f +Z@Cj+n)’ and [‘)_vj‘t:O,uzo,'u:O\Ij(t’u’ U) - ZJ(O) 2 (6@- ZaCjJrn)’ we have

(where Iy, denotes the a x a identity matrix and 0, denotes the a x b zero matrix):

ITXT OTX’ﬂ OTX’ﬂ

dt’“vv\ll(07070) = Onxr %Inxn %Inxn

i i
0n><r §In><n _§In><n

In particular, d; . ,%(0,0,0) is invertible and

I’I"X’l‘ O’I”XTL O’I"X’ﬂ

(dtu0(0,0,0) " = | 0

(7.2)

nxr In><n _ZIan

OTLXT ITLX?’L ZI?’LXTL

Since ¥(0,0,0) = (0,0,0), the holomorphic Inverse Function Theorem applies to show
that there exist admissible constants 1", n; > 0 such that

v B(CT+271 (7’]”) — \I/(B(Cr+2n (77”))
is a biholomorphism, Bcr+2n(11) C W(Bcr+2n(n")), and ‘|W71‘|ﬁ§n,+r(BCT+2n my S 1
We give Bgr+2n(n') holomorphic coordinates (f1,...,tm, U1, ., Up, V1 ..., Up). Set

Viti, oo sty Uiy ey U, V1, ..., 0y) = vj. Define, for 1 < j <n, w; € O} (Bcr+2a(m1)) by

wj (07 Q)= Vjo \Il_l(o-a C)
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Note [[w;ll g1 (Beysan(m)) S 1 and w;(0) =0.

Because the Xps and L;s commute, we have v, 2 e = = X} and \Il*aiuj = L;. Thus,
since at V}—Oand Vl—O we have Xpw; = 0 and L;w; = 0.

Finally, we Compute dw;(0) = dV;(0)d¥~*(0). dV;(0) is the row vector which has 1
in the r +n + j component and 0 in all other components and d¥~1(0) is given in (7.2).
Thus, dw;(0) is the vector which equals 1 in the r + j component, ¢ in the r +n + j

component, and 0 in all other components. Le., dw;(0) = d¢; + id(j1,. O
7.8. Real analytic vector fields

Fix no > 0. Let X1,...,X,, L1,..., L, be real analytic vector fields on R" x C™ &
R"2" of the form

0 0 0 0
X, = — + A, B FE.— 1<k<
k 3tk+ 8+ L + ko5 <k<r,
0 0 0 0
o 2 <j<n.
L, a__—!—C']at-I-Da +FJ8§’ 1<j<n

Here we are thinking of Ay, By, C;, D;, Ey, and F} as real analytic row vectors: Ay, C; €
By 2" By, Dj, Ey, Fj € B12™" (see Section 5.1 for the definition of ;™). We
assume Ay (0) = 0, Bi(0) = 0, C;(0) = 0, D;(0) = 0, Ex(0) = 0, and F;(0) = 0, and
we assume the Xs and Ls all commute: [Xg,, Xg,] = 0, [X&, L;] = 0, [Lj,, L;,] = 0,
Vi1, J2. k1, ke, g, k.

Definition 7.11. We say K is an admissible constant if K can be chosen to depend only
on 1, n, r, and upper bounds for ||Ak||g%,%rzn,w-, ||Bk||%%+zn,n, ||C’j|\@;0+zn,r, ||Dj||33(777-0+2n,n7
1Bl g 2nm and |yl znn, Vi,

Proposition 7.12. There exists an admissible constant ne > 0 and a map

<I)1 : BRTx(Cn (7’]2) — BRTch (770)

such that:

.« B, c %;j2n,r+2n with ||(b1||'%1;~2|»2n,r+2n S 1.

®1(Brrxcn(n2)) € Brrxcn (m0) is open and @1 : Brrycn (12) = ®1(Brrxcn (12)) 48
a real analytic diffeomorphism.

(1)1(0) =0 and dt,xq)l(o) = I(r+2n)><(r+2n)-

3] [2)

ow

(n4r)x (n+r)
where A,(0) = 0, Ay € ZrF2M™ 7 ang M 2 parr sty < 1.
n2
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To prove Proposition 7.12 we start with a conditional lemma.

Lemma 7.13. We take the same setting as Proposition 7.12. Suppose there is an ad-
massible constant 1 > 0 and functions wy,...,w, € @;j%’l such that: w;(0) = 0,
dw;(0) = dz, le”ggzirzn,l S 1, end Lyw; =0, Xpw; =0, Vj, k, 1. Then, the conclusions
of Proposition 7.12 hold.

Proof. We define ¥ : Bgrycn (1) = R” x C™ by
U(t,z) = (t,wi(t, 2), ..., wp(t, 2)).

Le., by identifying R?" 2 C” via the map (z1,...,%2,) > (T1 + iTpi1, ..., Tn + iT2p),
we have

U(t,z) = (t,Re(wr)(t, z),...,Re(wy)(t, z), Im(wy)(t, x), ..., Im(w,)(t, x)).

Note that ¥(0,0) = 0. Since dw;(0) = dz; it follows that d;,W(0) = I(r12n)x (r+2n)-
Thus, the Inverse Function Theorem applies to ¥ to show that there exists admissible
constants ', 7" > 0 such that ¥ : Brrycn (') = U(Brrxcn (1)) is a real analytic diffeo-
morphism, Brrycn (17”) € ¥(Brrxcn (1)), and @1 := =1 : Bprycn(n”) = Brrxcn (1)
satisfies @, € 93;:'72"’”2" with ||®1||@;x2n,r+2n <1

Using coordinates (u,w) on R” x C™, since L;w; = 0 and Xpw; = 0, V7, k, I, we have

« " 0 0 0 0
‘I)lxk(uyw)a(ble(va) € spang {%w-wauv 57@"”’(’“)@ },

V(u,w) € Brrxcn(1').

Since dy x®1(0) = di 2 ¥(0) ™! = I(ryom)x(r2n) and Xi(0) = 5=

iy’
0
ou
9 )
ow

where M is a real analytic matrix, M (0) = 0, and ||M||‘@2n+,‘M<n+r>x(n+r) <1 (here ' /2
n

~
/2

can be replaced with any fixed number in (0,7")). Since M (0) = 0, for 72 € (0,7" /2] we

{qﬁ;x

‘If{L} =+ M)

have, using Lemma 5.7,
”M” 2n4r,M(n+7) X (n471) 5 2.
'%7]2

By taking 12 > 0 to be a sufficiently small admissible constant, we have

N~

||M||%%;+T,M<n+r>x<n+r> <
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We define I + A; := (I + M)~!. Then we have 4;(0) = 0, HA1H%MMM(HTM(HT-) <1
n2

. (ntr) X (nr) .
(since %’5;”‘“M is a Banach algebra and we have used the Neumann series for
(1+ M)~1), and

o

o > X
FIRGRG!
ow

as desired, completing the proof. 0O

Proof of Proposition 7.12. We need to show that there exist functions wy,...,w, as in
Lemma 7.13. By the definition of %, 2", the functions A, By, Cj, Dj, Ej, and F}
extend to holomorphic functions &(Ay), &(C;) € OF(Bgr+2n(10)), &(Bk), E(D;), & (Ex),
éa(F]) € ﬁgl(BCT+2n (770)), with

1€(AR)l o7, 1€(C)) ey 16(Br)llop, [|€(Di)ll o7 16 (Ek) | o 16(F) o S 1.
We give C” x C2" coordinates (o, (). Let
r 9
9 B 3'4‘1 9 B BCT.L+1
a¢. 5 It s
OCn 0Can

We extend X and L; to holomorphic vector fields on C” x C?", by setting

é’(Xk):i+£’(Ak)a Jré"(Bk)1 (ai 0 >+£’(Ek); <8+z' 0 ),

do; do 2\9C  OCin C. " OCoin
1/ 0 .0 0 170 . 0
0 =3 (o, + i) + 40+ 5003 (3 - 1)

1/ 0 0

Le., we have extended each t; to the complex variable o} and each x; to the complex
variable ¢;. Since the X's and Ls commute, the same is true of the &(X)s and &(L)s by
analytic continuation: [&(Xy, ), &(Xk,)] =0, [6(L;,),E(L;,)] =0, [6(Xk),E(L;)] =0,
Vk1, k2, j1, j2, J, k-

Proposition 7.10 applies to &(X1),...,8(X,),&(L1),...,&(Ly,) and each constant
which is admissible in the sense of Proposition 7.10 is admissible in the sense of this
section. This shows that there exists an admissible constant 77; > 0 and functions
Wy, ..., € O (Berizn(m)), with [[@rllgr S 1, @(0) = 0, dy(0) = d¢ + idGyn,
and g(Lj)ﬁ][ = 07 g(Xk)ﬁ}l = 07 Vj,k‘,l.

Define, for (¢,2) € Brrxr2 (1),

wl(tl,...,t,«,.ﬁl,...,xgn) = Qf)l(tl +10,...,t,. +10, 2 +i0,...,$2n+i0).
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Note that ; is the analytic extension of w; and therefore le||@r+2n 1 S 1. Also, dw;(0) =
dx; + idz;4n, = dz;, w(0) = w;(0) = 0. Finally, since éa(Xk)wl =0and &(L;j)w =0
we have Xpw; = 0 and Ljw; = 0, Vj,k,l. Thus Lemma 7.13 applies, completing the
proof. 0O

7.4. Vector fields satisfying an additional equation

Fix s9 € (0,00). We let X1,...,X,,Lq,...,L, be €%+l complex vector fields on
Brrxcn (1) of the following form:

0 0 0 0 0 0 0
X=—+4+A—-+B—-—+E—, L= C D F—.
it Ag Bt e L= O D F
Here we are using matrix notation; so that X is the column vector [ X7, ... ,XT]T7 % =
[6%1’ ceey %]T similarly for L, -2 55, and 6 ,and A, B, C, D, E, and F are matrices of

the appropriate size. Thus, if we let Ay denote the kth row of A, and similarly for B, C,
D, E, and F we have

) B ) B 9 ) o 0
Xp = — + Ay B E Li=— Dj—+ Fj—.
b= g, kg T By Thgs Li= g T i T Digo g

We assume:

e A€ %so—i_l(BRrx(C"(l);err((c)x B,E € Cgso-‘rl(B]RTx(C"(l);MTX”(C)% ¢ €
€50t (Brrxcn (1); M 7 (C)), D, F € €*°T(Brrxcn(1); M"*"(C)).

o A(0) = Orxr, B(0) = 0pxn, C(0) = Operry D(0) = Opsenn, E(0) = 0y50pp, and F(0) =
Onxn-

e The Xs and Ls commute: [X,,Xy,] = 0, [L;,,L;,] = 0, and [Xy,L;] = 0,
Vi1, 72, k1, k2, J, k-

OA, aC OBy, oD; OE), =~ OF;
Z@tk 2 kza— Za— 0 la— *2g, =0 )

Definition 7.14. We say K is an admissible constant if K can be chosen to depend only
on n, r, and sg.

Proposition 7.15. There exists an admissible constant v > 0 such that if

| Alls0+1(Bgrycn (1)) 1Bllgsot1(Brrcon 1))s 1Cl€50+1 (Brr won (1))
1D

@20+1(Brryon (1)) [ Ell €041 (Bron (1))s 1 F lgs0+1 (Bgrycn (1)) <7

then there exists an admissible constant ny > 0 and a map ®; : Brrxcn(n2) —
BRTX(Cn(l) such that:
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.« O, € %;;&-211,7”-&-211 with ||®1||@;;2n,r+2n <1.

o ®1(Brrxcn(n2)) C Brrxcn(l) is open and @1 : Brrycn(n2) = ©1(Brrxcn(2)) is
a real analytic diffeomorphism.

L4 (1)1(0) =0 and dt,x‘bl(O) = I(r+2n)><(r+2n)-

o)
Fon drX
HEEE]

(n4r)x (n+r)
where A,(0) = 0, Ay € ZrF2M™ 7 ang M 2 parerxtny < 1.
n2

Proof. To prove the proposition, we will show that if v > 0 is a sufficiently small ad-
missible constant, then A, B, C, D, E, and F are real analytic, and there exists an
admissible constant 79 > 0 such that

||Ak||gg;3»2n,'r, |Bk ||'%z§2n,n, ||C] ||(@Zé~2n,7', ||D] H@;O#»Zn,n’ ||Ek ||'%56#2n,n, ||F] ||L@;3»2n,n 5 1’
Vj, k. (7.4)
The result will then follow immediately from Proposition 7.12.
The equation [Xj,, Xi,] = 0 can be equivalently rewritten as the following three
equations:
0Ar, 0Ag 0 0 0 0
— L= A, — Ay, — A, —A By, —Ai, — By, —A
O, Oy, R T gyt Bl T Bhi g Ak
0 0
Ey,—Ag, — Ex, —A .
+ Lok, Iz k1 k1 oz k2> (7 5)
0By, 0By, 0 0 0 0
— = Ay, — By, — Ay, —B By,— By, — By, =—B
Otn,  Otp, ke g Phn — Ak gy B Do 5 By = B 5 B
0 0
FEy,—By, — Ex, —B .
+ L, oz k1 k1 0z ka2 (7 6)
0E,, O0F, 0 0 0 0
— = Ak, —Ey, — A, = FE By,—FEi, — By, —F
Dty Oy, g T kg T kg B T Bl Bk
0 0
FEy,—Fx, — Ex, —FEy,. 7.7
+ L, oz el (7.7)

We write (7.5), (7.6), and (7.7) as the following equation:

(GAk2 B 8Ak1> <8Bk2 _ 8Bk1) (aEkg _ 8Ek1>
Oty Otk 1Sk1<kzﬁr’ Oty Ot 1§k1<k2§r’ Ot Ot 1<ky <ko<r

=T1((A,B,E),V(A, B, E)),

(7.8)
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where I'; is an explicit constant coefficient bilinear form depending only on n and r.
Similarly, [L;,, Lj,] = 0 can be written as:

<80j2 _ aCh) <8Dj2 _ 8Dj1> (8Fj2 _ th)
0Zj,  0Zj, ) icjicipen \OZii 0% ) iciicivan \OZj  0Zj ) 1o cincn

=T2((C,D,F),V(C,D,F)). (7.9)

Finally, [X4, L;] = 0 can be written as:

(ac 8Ak> <8D aBk) (%_%)
Oty 32'] 1Ziin Oty 8Zj 12%27; Oty 3,2] 12%2" (7.10)

= F?’((A?B? C? D7 E7 F)7 V(A7B7 C? D7 E7 F))'

Combining (7.8), (7.9), (7.10), and (7.3) we see that (A, B,C, D, E, F) satisfies the
following equation:

E(A,B,C,D,E,F)=T((A,B,C,D,E,F),V(A,B,C,D,E, F)), (7.11)

where I is an explicit constant coefficient, bilinear form, depending only on n and r, and
£ is the following explicit operator (which depends only on n and r):

E(A,B,C,D,E,F) = (aAk2 - 0Ak1> ,<_8Cj2 _ 9%,
1<ki<ko<r

9z 0z ) 1<j1<ja<n

Otg, Oti, ’
0C; A g0k | 590
Oty 6Ej 1<j<n 8tk aZj ’

1<k<r k=1 j=1

9

OBx, 0By, ) (aDj2 oD;,
1<ki<ko<r

(
(8% - _
(
(

9z 0z, )1<j1<j2<n
oD, 0B, 0B,
oty 0% )}2]<n Z Oty Z 87;]

OFk, 8Ek1> <8sz 8Fjl)
Oty Ot 1<k <ka<r 9z, 0zj, 1<j1<j2<n

Oty 07 J1<j<n’ &= Oty = 9z '

Lemma B.5 shows that & is elliptic.

Proposition B.1, applied to (7.11), shows that there is an admissible v > 0 such that
if

)
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[Allgs0 1 [|Bllgso+ss [Cllgeots, [ Dllgeotss [[Ellgeots, [Fllgeots <,

then there exists an admissible 7y > 0 such that (7.4) holds. Now the result follows from
Proposition 7.12. 0O

Remark 7.16. We only use Proposition 7.15 in the special case A =0, C =0, E = 0,
and F' = 0; however the proof in this special case is no easier than the more general case
covered in Proposition 7.15.

7.5. Vector fields with small error

Fix s € (0,00). We consider ¢*°*! complex vector fields, X1,..., X, L1,..., Ly,, on
Brrxcn(2) of the following form:
0 0 0 7 0

X=g T8 =gt

Here we are again using the matrix notation from Section 7.4.
We assume:

(I) E € €5+ (Breycn (2); MPX(C)), F € €501 (Bgexcn (2); MP*7(C)).
(H) E(O) =0, F(O) =0.
(HI) V¢ € B]RTX(C"(Q)v [ansz](C)’[ijsz](C)’[Xk’Lj](C) € Span(C{X1<<>7"'7
Xr(()v Ll(C)a SRR Ln(C)L V.77 k>l

Remark 7.17. Assumption (III) is equivalent to assuming Xi,..., X, Ly,..., L, com-
mute. Indeed, under (III) and because of the form of X and L, we have V( € Brrxc»(2),

[Xk1 ) sz](()’ [L]d ) sz](<)7 [ka LJ](C)

€ spanc (X620 X,(0) La(€) - L) (spane { o7 b = 103

Definition 7.18. For s > s¢ if we say C' is an {s}-admissible constant, it means that we
assume E € €T (Brrycn (2); M™"(C)) and F € €* Y (Brrxcn(2); M™*"(C)). C can

be chosen to depend only on n, r, so, s, and upper bounds for ||E|¢s+1(pg., cn(2)) and

xCn
| F s+ (Brrwon (2))- For 0 < s < s we say C is an {s}-admissible constant if C' can be

chosen to depend only on n, r, and sq.

Proposition 7.19. There evists 0 = o(n,r,s0) > 0 such that if ||E|lxs0+1(Brr cn(2))s
| Fllgs0+1(Brryon(2)) < 0, then there exists an {so}-admissible constant n3 > 0 and a
map Po : Brrxcn(n3) = Brrxcn(2) such that:

. (DQ S %SO—FQ(BRTXCTL(U:{);RT X Cn) and H(D2||<gs+2(Ber><<Cn(773)) 5{5} 1, Vs > 0.
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° (1)2 (0) = 0! dt,Iq)Q (0) = I(T+2n)><(r+2n) .
o Oy(Brrycn(n3)) C Brrxcn(2) is open and ®g : Brrycn(n3) = Po(Brrxcn(ns)) is
a €502 diffeomorphism.

3] l2].

ow

where Ay : Brrycn(n3) — MOHX0+0)(C) 0 A5(0) = 0, and || A
<is1 L.
~{s}

@t (Brrxcn (n3))

To prove Proposition 7.19, we prove the following lemma.

Lemma 7.20. Fix v > 0. There exists 0 = o(n,r so,y) > 0 such that if
| Ellgs0+1 (Brrcn 2))> | Ell@0t1(Brryon(2)) < 0, there exists H € €502 (Brrxcn (2); R” X
C™) such that

(i> H(t7 Z) = (t, Z) + R(t, Z)’ R(07 0) =0, dt,zR(07O) = O(r+2n)><(r+2n)~

(i) || H| €5+2(Brrxcn (3/2)) S{s} 1, Vs > 0.

(iii) H : Brrxcn(2) — Brrxcn(3) is injective, H(Bgrrxcn(2)) € Brrxcn(3) is open,
and H : Brrycn(2) = H(Brrxcn(2)) s a diffeomorphism.

(iv) Brrxcn(1) € H(Brrxcn(3/2)).

(v) ||H_1||‘€5+2(3Rrxcn(1)) Sqsp 1, Vs > 0.

(vi) Let Vi, = H.X, and W; = H,L;. Then there exists a matric M €
€0t (Brrxcn (1); MOTX0+0)(C)) with M(0) = 0 and such that:
Y
o If

G (Brrwon (1)) S{s} 1, Vs > 0.

then

_ 9 9 -~ 9 P
X =5 Baw 7w " ow

where we are using the matrix notation from Section 7./. We have

| Bllgso+1(Brrren (1)) 1Pllgso+1(Brrwen (1)) < Vs

[ Bll#s+1(Brrxen (1)) [ Dllgs+1(Brren 1)) Sgsp 1, V5 >0,

and B(0) = 0, D(0) = 0. Finally, if we let By denote the kth row of B, and
similarly for D;, we have
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Z 0B 5~ 0D;

=0. 12
aUk —1 ﬁwj 0 (7 )

e X1,...,X,,L1,...,L, commute on Brrxcn(1).
First we see why Lemma 7.20 gives Proposition 7.19

Proof of Proposition 7.19. Take v = v(n,r,s9) > 0 as in Proposition 7.15. We take
o =o(n,r,s0,7) > 0 as in Lemma 7.20. With this choice of o and 7, Lemma 7.20 shows
that Proposition 7.15 applies to the vector fields X17 e Xr7 L1, ..., L, from Lemma 7.20
(and constants which are admissible in the sense of Proposition 7.15 are {sg }-admissible
in the sense of this section)-here we are taking A =0,C =0, E =0, and FF =0 in
Proposition 7.15.

Thus, we obtain an {so}-admissible constant 72 > 0 and a map ®; : Brrxcn(12) —
Brrxcn(1) as in Proposition 7.15. Set n3 := 12/2. For each s > 0, we have, using
Lemma 5.8,

1®1]lg5+2(Brrwen (ns)) < Comall 1l grgznrran Stso} Comas

where C ,, can be chosen to depend only on s and n2. We conclude,

@1l +2(Brrronme)) Sgsp 1, Vs> 0.

Similarly, if A; is as in Proposition 7.15, we have 4;(0) = 0, and using Lemma 5.8,
[ALll+1(Bar cen (me)) Stst IALl yriznmtnx@en <1, Vs >0, and
n2
o * Y
= dr X
6; = (I + ./41) . ~ |-
w ®IL

We have, with M and H as in Lemma 7.20,

% T (H lo®)*X
[z%] =T+ A)(I+ Mo®) [@%W] =T+ A)I +Mod) [(H1O¢,11)*L]
= (I +Ay) [((}f;g}

where ® = H 1o ®; and I + Ay = (I + A))(I + M o ®;). Since we have al-
ready noted Hq)l||<55+2(BR7-X«:7L(773)) ,S{S} 1 and HA1 €s+1(Brrycn(n3)) 5{5} 1, Vs > 07
and Lemma 7.20 gives ||[M||¢s+1(Byr, cn(1)) Stsy 1, V8 > 0, it follows from Proposi-
tion 5.1 and Lemma 5.3 that ‘A2||<gs+1(BRrch(n3)) S{S} 1, ¥s > 0. Since A;(0) = 0,
M(0) = 0, and ®1(0) = 0, we have A3(0) = 0. Since [|H |l gar2(Bur cn 1)) Sqst 1 (by
Lemma 7.20) and [|®1|¢s+2(pg.

cen(ne) Stsy 1, for all s > 0, it follows from Lemma 5.3
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that ||<I>2| ©5+2(Brrxcn (13)) S,{s} 1, Vs > 0. @2(0) = H_l((Pl(O)) = H_l(O) = 0, since
H(0) = 0. d; ;®2(0) = (d¢ . H(0))"1d; . ®1(0) = I -1 = I. Finally, that ®5 is a diffeomor-
phism onto its image follows from the corresponding results for H and ®; in Lemma 7.20

and Proposition 7.15. O

Proof of Lemma 7.20. Let o¢p = og(n,r,s0,7) > 0 be a small constant (depending only
onn, r, sp, and ), to be chosen later. We will find H of the form H (¢, z) = (¢, 2)+ R(t, 2),
where R(t,2) = (0, Ra(t, 2)), Ra € €*°T2(Brrxc»(2); C"), R3(0,0) = 0, dR2(0,0) = 0,
and || Rz|
only on n and r), (iii) and (iv) follow immediately from the inverse function theorem.

©50+2(Brrycn(2)) < 00. Note that if o > 0 is sufficiently small (depending
Moreover, we will also have

inf |det dH (t, z)| >

. (7.13)
(t,2)€BRrrxcn(2)

DN | =

Henceforth, we take o9 > 0 so small that these consequences hold.

We begin by studying an arbitrary H (¢, z2) of the form H(t,z) = (¢, 2) + (0, Ra(t, 2))
wen(2)) < 00, R2(0,0) = 0, dR2(0,0) = 0 (we will later specialize to
a specific choice of Rs). In what follows, for s > 0 if we write A <, B, it means that we
assume Ry € €°72(Brrxcn(3/2); C") and A < C'B where C is a positive {s}-admissible
constant which is also allowed to depend on an upper bound for || Rzl s+2(Bgr, cn (3/2))-

With ”RQH%SO*?(BRT

At the end of the proof, we will choose a particular Ry with || Ra||¢st+2(Brr  cn (3/2)) Stst 1
once we do this, Ss and Sy will denote the same thing.

For such H, by the above remarks, it makes sense to consider H~! : Bgrycn(1) —
Brrxcn(3/2). Moreover, it follows from Lemma 5.4 (using (7.13)) that

||H71||<€S+2(BR7~XC”(1)) Ss L (7.14)

Set Hq(t,z) =t, Hao(t,z) = z+ Ra(t, z) so that H(¢t,z) = (H1(t, z), H2(t, 2)). We have
the following obvious equalities:

diHy =1,d.H, =0,dzH, = 0,dyHy = dyRy,d.Hy = I + d. Ry,

e e e - (7.15)
dzHy = dzRy,diHy = di Ry, d.Hy = d,Ro,dzHy = I + dzR».

Using the notation from Section 6, we have (thinking of H mapping the (¢, z) variable
to the (u,w) variable):

)

0 0 0 - 0
H.— = (diHi(t,2))" = + (dHa(t,2)) = + (deHa(t, 2)) T —
! ou ! ow ' (t,z2)=H 1 (u,w)

ot ow

o ) I

H*@ = (d.H1(t, 2)) 7t (d.Ha(t, 2)) 90 T (d-Hz(t, 2)) 7T U
o ) _ 9 L

H*& = (dzH1(t, 2)) 90 T (d=H>(t, 2)) 90 (dzH»(t, 2)) | 1)ty
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Thus, if V= H,X and W = H,L, using (7.15) we have

V(U7W) = % + |:(dtR2(t7 Z))T =+ E(t’ Z)(I + dsz(t, Z))T:| %
B R R IO e

W(u,w) = a% + {(dzR2(t7 )T+ F(t,2)(I + d. Ry(t, z))T:| a%
o

+ (@R, )T + Pl )R

(t,z)=H 1 (u,w)

Our goal is to pick ¢ = a(n,r, sg,y) > 0 so that the conclusions of the lemma hold
for

[E g0+t (Brrcen @) 1 F @041 (Bar cn (2)) < 0

We will choose o at the end of the proof; but we will ensure o < 1, so that we may

henceforth assume || El[so+1 (B 9o I1E @041 (Brr cn(2)) < 1. Using this and the

XC"(2

assumption ||Ra|lgso+2(Bgr, cn(2)) < 00, We have, by taking oo > 0 sufficiently small

(depending only on n and r),

inf

i >
(t,2)€EBRrrxcn (2)

N =

det {1 + (d=R2(t, 2)) T + F(t,2)(d. Ra(t, z))—j

Thus, I + ng_QT + FclzR_gT is invertible on Brrxc»(2) and Remark 5.2 implies

< 1 (7.16)

~

. o —1
H (1 +d:Ry + FdzR2T>
Cst1(Brr xcn (3/2);Mnxn)

We define a matrix M (u,w) : H(Brryxcn(2)) — M+mx(+0)(C) by

IT‘XT’

I+ MoH := - (thZT +Esz2T> (I+ dE}TQT " FdZET>_1

)

Oner (1+am +FLR,T)
where each part of the above equation is evaluated at (¢,z) and we are using notation
like d; Ry | to mean (diRa(t, 2)) 7. In particular, since Brrxcn (1) € H(Brrxcn(2)) (by
(iv) which we have already verified), M is defined on Brrycn(1).

By (7.16) and Proposition 5.1, we have [[I+M o H | gs+1(Brr . cn (3/2)) Ss 1. Combining
this with (7.14), Lemma 5.3 shows

||M||%S+1(BRT><C’!L(1)) Ss 1, Vs > 0.
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Also, since dR2(0) = 0 and H(0) = 0, we have M(0) = 0. Set

X %
S -
Note that
S R I
X=% P T wm P (7.18)

where B and D depend on E, F, and Ry, and (in what follows each function is evaluated
at (t,z) unless otherwise mentioned):

B(u,w) = B[E, F, Rs](u,w)
= (diRy + E(I+d.Rj]))

— (dRy' + Ed.Ry )(I +d:Ry + Fd.Ry') ' (d=R) + F(I + d.R])) :

(t,z)=H 1 (u,w)
(7.19)

D(u,w) = D[E, F, Ry (u,w)

- - —1
= (I +d-Ry + FdzRQT) (d=R; + F(I +d.R;)) (7:20)

(t,z)=H 1 (u,w)

Note that since E(0) = 0, F(0) = 0, dR2(0) = 0, and H~1(0) = 0, we have
B(0) = 0 and D(0) = 0. Let 01 = o1(n,r,s0,7) € (0,1] be a small constant to
be chosen later. At the end of the proof, we will take ¢ < o7 so we may assume
| Bl 5041 (Brrycon 2))s | Flgs0t1(Brr ocn(2)) < 01. We have, using (7.14), (7.16), Propo-
sition 5.1, and Lemma 5.3,

| Dlgs0+1(Brrywen (1) S{so} |d=Ry + F(I+d.Ry)

€501 (Brrycn (2)) S{so} 00 + 01,

and

Dl ¢s+1 (Brrven 1)) Ss [dzRs + F(I 4+ do Ry )l|go+1(Bgryon (3/2)) Ss 1, Vs > 0.
Similarly, we have

1B

@01 (Brcn (1) S{so} 00 01, ||Bllgs+1(Bar en(1)) Ss 1, Vs> 0.

In particular, if we take oo and o7 sufficiently small (depending only on n, r, sg, and 7),
we have

18]

@0+1 (Byron (1)) [ D@01 (Bryon (1)) < 7-
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Next we claim that )Z'l, .. ,)NCT, fl, ce Zn commute. We are given that Xi,..., X,
Ly,..., L, commute (see Remark 7.17), and it follows that Vi,..., V., Wy,..., W, com-
mute. Since I + M (u,w) is clearly an invertible matrix by its definition, (7.17) shows
V(u, ’LU) S H(BRTXCn(l)), Vi, k, g1, 92, k1, ko,

Xy X (), (L, Ly ) (w, w), (K, L))
€ spanci%(u,w),... Vi (u, w), Wl( w), . ..LWn(u,w)}
= spanc{ X1 (v, w), ..., Xp(u,w), L (u,w),. .., Lp(u, w)}.

Because of the form of X and L given in (7.18) this implies Xi,..., X, L1,..., Ly,
commute (just as in Remark 7.17).

So far we have shown that if we have Ry as above with R3(0) = 0, dR2(0) = 0,
||R2H<gs0+2(BRT><<cn(2)) < 09, and have ||R2||ggs+2(BRTch(3/2)) g{s} 1, then all of the
conclusions of the lemma hold, except possibly for (7.12). Thus all that remains to show
is that we can pick such an Ry so that (7.12) holds (provided o is small enough). To do
this we use Proposition B.4.

Given E, F, and Rs, we define B = B[E, F, Ry] and D = D[E, F, Ry] by (7.19) and
(7.20). We let By denote the (k,1) component of the matrix B, and similarly for D. For

(t,z) € Brrxcn(2) and 1 <m < n,

r OB m(u,w n 8D-mu,w
VB, F R 2) = Y Py D)
k=1 J=1 !

(u,w)=H (t,z)

Set W(E,F,Ry) := (V1(E,F,Ry),...,V,(E, F,Ry)). Note that (7.12) follows from
U(E,F,Ry) = 0, so our goal is to solve for Ry (in terms of E and F) so that
U(E, F,Ry) = 0.
Letting R(¢,z) = (0, Ra(t, 2)), for any function K (¢, x) we have
9 -1
5'—ukK(H Yu, w)) B =dK(t,z)(I + dR(t,2))” e,
(w,w)=H(t,2)
where e is the kth standard basis element—what is important is that the right hand
side is a function of dK (t, z) and dRy(t, z). Similar comments hold for - ‘9 7y K (H™ L(s,w))
where w; = y; + 1yj4n. Thus, using the formulas for B and D in (7 1‘)) and (7.20),
using the notation of Proposition B.4, and writing z; = x; 4 iz, we see that there is
a smooth function g, taking values in C™, which vanishes at the origin, such that

U(E, F,Ry)(t,x) = g(2'E(t,x), 2'F(t,z), 2’ Rs(t, x)).

Furthermore, the function g depends only on n and r. Also it is easy to see that g is
quasi-linear in Ry in the sense of (B.3).1°

15 Tt is not necessary for what follows that g be quasi-linear; though the proof of Proposition B.4 is simpler
in the quasi-linear case.
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To apply Proposition B.4, we wish to show that g is elliptic in Ry at £ =0, F' = 0,
R =0, in the sense of that proposition. L.e., define & as in Proposition B.4; we wish to
show &, is elliptic. Note the map

Ry — 4 U (0,0,eRs)
de | _,
is a second order, constant coefficient differential operator acting on Ry whose principal
symbol is &. Thus we wish to show that this operator is elliptic.

To make the dependance of H on Ry explicit, we write Hg, in place of H. Le.,
Hpg,(t,z) = (t,2) + (0, Ra(t, 2)). It suffices to compute < —oY(0,0,€R2) in the case
Ry € C*. In that case, we have He_Rlz(u,w) = (u,w) — €(0, Ra(u,w)) + O(e?), and for
example,

e(dth)(H;B}2 (u,w)) = €(dsRa)(u, w) + O(e?) and

(7.21)
e(diRo)(Hep, (. 2)) = e(diRo) (1, 2) + O(€?),

and similarly for d; replaced by dz. Here, O(e?) it denotes a term which is C™ in the
variables (t,z) or (u,w) and every derivative, of every order > 0, in these variables is
O(€%) as e = 0.

Thus, using the formulas (7.19) and (7.20), we have

B[0,0,€Rs](s,w) = edyRa(s,w) " + O(e?), D[0,0,€eRs](s,w) = edzRy(s,w)" + O(e?).
(7.22)

We write Ro(t, 2) = (R21(t, 2), ..., Ran(t,2)). We also write dyRa(s,w); for the (I, k)
component of the matrix d; Ry, and similarly for dzRs (see the discussion of this notation
in Section 6). Using this notation, plugging (7.22) into the definition of ¥, and using
(7.21), we have for 1 <m < n,

U,,(0,0,eRs)(t, 2)

_eza (diR2)( uwmk—i—eza (dzR2)(u, w)pm,; + O(e %)

(u,w):HeR2 (t,z)

2 2

0 0
= —R27m(t, z)+ € —_Rg,m(t, 2) + O(e?).
We conclude

d

de

U (0,0, eRy) = Z o Z azja— Ry,

e=0

and is therefore elliptic, as desired.
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We apply Proposition B.4 with D = 2, n = 3/2, and
N = {Rg S <gso—H(B]RrXCn (2), (Cn) : ||R2||<gsg+2(BRTX(C”(2);Cn) < 0’0}.

We conclude that there exists 09 > 0 (depending only on n, 7, sg, and og—since g depends
only on n and r) so that if || El|¢so+1(Bgr, cn (2))> |Fll€0t1(Brr o (2)) < 02, then we may
find Ry = Ro(E,F) € N so that U(E, F, Rs) = 0. The conclusions of Proposition B.4
show that this Ry satisfies R2(0) = 0, dR2(0) = 0, and ||Rz|@s+2(Bgron(3/2)) Stst 1s
Vs > 0. Setting o := min{o, 02} completes the proof. O

7.6. Commuting vector fields

Fix ng > 0, sg € (0,00)U{w}, and let X1,..., X,, L1, ..., L, be complex €*° ! vector
fields on Brrxcn(10) of the form

0 0 0 0
ea e et e

where E(0) =0, F(0) = 0, we are using the matrix notation from Section 7.4, and:

o If 59 € (0,00), E € €% (Brrxcn(n0);M™"(C)) and F € €T (Brrxcn(m0);
e I so=w, E €™ 2mm (M *(C)) and F € o™ (M*"(C)).

We suppose V¢ € Brexcn (1),
[Xkl ) sz](<)7 [le ) sz](C)v [Xka LJ](C) € SpanC{Xl(C)a s ,Xr(g), L1(<)7 R Ln(C)}v
Vi kg, Jo, ku, k.
As in Remark 7.17, this is the same as assuming the vector fields commute.

Definition 7.21. If so € (0, 00), for s € [sg, 00), if we say C'is an {s}-admissible constant, it
means that we assume E, F € €51 (Bgrrxcn(n0)). C can then be chosen to depend only
on s, s, 1, T, Mo, and upper bounds for || Ell¢s+1(Bgr, cn(no)) a0 || Fllgst1(Ber, cn (10))-
For s € (0, sg), we define {s}-admissible constants to be {sg}-admissible constants.

Definition 7.22. If s) = w, we say C is an {w}-admissible constant if C' can be chosen to
depend only on n, r, no, and upper bounds for | E|| zr+2n.mo and || F|| gr+2n.mo .

Proposition 7.23. There exist {so}-admissible constants n3 > 0, K1 > 1 and a map
®3 : Brrxcn(ns) = Brrxcn (o) such that:

(i) o If sy € (0,00), P53 € %SO+Q<BRT><CTL<773);RT X (Cn> and H(I)?)H%“Jr?(BRr
S./{s} 1, Vs > 0.

xcn (13))
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o Ifsp=w, ®3 € o/ 2213 (RT X (Cn) and ||¢3||d7‘+2n,2n3 <.

(ii) ®35(0) =0 and d; P3(0) = K; "I(;i2n)x (r+2n)-

(ili) ®3(Brrxcn(n3)) € Brrxcn(no) is open and @3 : Brryxcn(n3) = P3(Brrxcn(n3))
is a diffeomorphism.

(iv)

o 5X
ou _ K71 I + A |: 11 :| ,
[ o ] 1 ( 2) (I)BL

ow
where As : Brrycn(n3) — MOTXT+En)(C) | 45(0) = 0, and:
o If 50 €(0,00), [[A2llgs+1(Brryen (s)) Sqsp L, V8 > 0.

° IfSO =w, HA2|‘£{2H+T,713 < 1

~

Remark 7.24. If sy € (0,00) we will show 73 depends only on n, 7, and sq. For sg = w,
we will take K7 = 1. This is not important in the sequel, however.

Proof of Proposition 7.23 when sy = w. Since E € /"m0 (M"™") C %,TIOH”’MTX",
F € o/ (Mn7n) C ggrk2nM™™" and
- o

||E||=93;0+2"'MTXW S HEH'Q{rJr%L,NO(MTXn) S{w} ].7 and

[F[| grsznanxn < |LF || grrtanno vnxny Sqwy 1,
no

we see that Proposition 7.12 applies to the vector fields X4,..., X, L1,..., L, and every
constant which is admissible in the sense of that proposition is {w}-admissible here.

Thus, we obtain an {w}-admissible constant 17, > 0 and a map ®; : Brrxcn(2) —
Brrxcn (o) as in that proposition. Letting .A; be the matrix from that proposition, and
setting n3 := 72 /4, we have (using Lemma 5.8)

[ @1l arrromzms Sty 1Pl gptonrtan Squy 1,
||A1||d7‘+2n,ng ,S{w} ||.A1||@T+2,LM(n+r)x<n+r> <1.
Bpd

Taking ®3 := &1, As := Ay, and K; := 1, all of the conclusions of Proposition 7.23
now follow from the corresponding conclusions in Proposition 7.12. O

We now turn to the proof of Proposition 7.23 when sq € (0,00). Because of the
definition of {s}-admissible constants, it suffices to prove the result just for s € [sg, 00),
and that is how we will proceed. We begin with a lemma.

Lemma 7.25. Define for v > 0, U, : Brrycn(no/v) — Brrxcn(mo) by ¥, (t,2) =
(vt,72). Let X} := vV X}, and L; ==VIL;. Then,
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0 0 0 0

x =242 -2 p< 7.23
ot ez 5 oz (7.23)
where E,(0) =0, F,(0) =0, and for 0 <~y < min{ny/2,1}, s € [sg, 00),
1B lgo41(Brrcon@imrxm)s |1 By lgot1 (B con @)imnrm) Sis) 7- (7.24)
Finally, X7,..., XY, L],..., L) commute.
Proof. That X7,..., X7, L],..., L) commute follows immediately from the same prop-

erty of Xi1,...,X,,L1,...,L,. Note that (7.23) holds with E,(t,z) = E(yt,vz) and
F,(t,z) = F(yt,7%z). Thus, since E(0) = 0 and F(0) = 0, the same is true for £, and
F,, and we have for 0 < v < min{no/2,1}, using Lemma 5.9,

185 [l¢s+1(Barcen (@) < A6V Ellgsti(Brrcn o)) Sts} 7
and similarly for F,. This completes the proof. O

Proof of Proposition 7.23 when sy € (0,00). Let ¢ = o(n,r,s9) > 0 be the constant
from Proposition 7.19. For v < 19/2, define ¥, X7, L7, E,, and F, as in Lemma 7.25.
By (7.24), if v € (0,70/2] is a sufficiently small {s¢}-admissible constant (without loss
of generality, v < 1), we have

1By lgs0+1(Brcn 2)): 5 €041 (Barcn (2)) < 0

With this choice of 7, Proposition 7.19 applies to the vector fields X7 and L” to yield
a constant n3 = n3(n,r, s9) > 0 and a map P : Brrycn(n3) = Brrxcn(2) as in that
result, and any constant which is {s}-admissible in that proposition is {s}-admissible
in the sense of this section. Set ®3 := ¥, 0 @y : Brrycn(n3) = Brrxcn (o). We take
Ky := v~ > 1. Since v is {so}-admissible and || ®z|s+2(Bp,, con(ns)) st 1, Vs (by
Proposition 7.19), we have ||®3||4s+2(Bgrcn (1s)) S{s} 1, V8. Also, @3(0) = ¥, (P2(0)) =
,(0) = 0, and dy ;P3(0) = vdy ;P2(0) = K ' I(2n4r)x(2n+r)- That @3 is a diffeomor-
phism onto its image follows from the corresponding result about ®5 in Proposition 7.19.

Finally, if A5 is as in Proposition 7.19, we have,

D305 X

A Pr X7
ou | _ 2 _ —1

5 X
5L ]_(I+A2)Kll[ : ]
2

5L

All of the desired estimates for Ay are stated in Proposition 7.19 and this completes the
proof. O
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7.7. Proof of Proposition 7.7

Using the matrix notation of Section 7.4 we may write

0 0 0 0 0 0 0 0
X:§+31§+B2&+B3£’ L:£+B4E+BS&+B6£7

where each B; takes values in matrices of an appropriate size, B;(0) = 0 for each [, and

o If 59 € (0,00), ||Bl||<gs+1(BRTch(1)) §{5} 1, Vs > 0.
o If Sp = W, HBlHdern,l ,S{w} 1.

Define M to be the (r +n) x (r + n) matrix:

M = B1|Bs .
B4|Bg
We have
X 2 B,] @
_ t o
HECHEAE
and M (0) = 0.

o If 59 € (0,00), we have || M||gs0+1(Bgr,cn(1)) S{so 1. Thus, by taking 79 > 0 to be
a sufficiently small {sg}-admissible constant and using that M (0) = 0, we have

inf det(f + M >
CeBRrxcn(no)| ( )

N | =

Remark 5.2 shows that [|(I + M) |lg+1(Bar, cn(m0) Sisy 1-

o If 59 = w, we have [|[M|yzn+r1 Sqoy 1. Since M(0) = 0, Lemma 5.7 implies
| M]| cr2ntrmo Sgwy Mo, for no € (0,1]. Thus, by taking no > 0 to be a sufficiently
small {w}-admissible constant we have

||M\|@¢2n+r,n0(M(7-+n>x<7-+n>) < 9

Since o727+ 0 (M(r+7)x(r+1) i 3 Banach algebra (Proposition 5.1) it follows that
(I + M) gy2ntrno M+ xiny < 2; here we have used the Neumann series for
(14 M)~L

In either case we have an {sg}-admissible constant 19 > 0 so that (I + M)~! satisfies
good estimates on Brrxcn (10)-
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Define vector fields )Afl, cey )A(m Zl, ... ,En on Brrxcn (1) by

E] = +M)"! [ﬂ = j;:; + T+ M) [gj 682.

Thus, we have

~ 0 ~ 0 0 ~ 0
X="P% a=tla

where E(0) = 0, F(0) = 0 and using Proposition 5.1 and the bounds for (I + M)™!,

o 1t 50 € (0,00), [Ellg=+1(Barccn o)) [Fle++1 (Baren (o) Stsy 1, Vs > 0.
o If S = W, ||E||‘Q{2n+r‘n07 ||FH£{2TL+7‘,U0 5{00} 1.

Furthermore, we have V¢ € Bgrrxcn(10),

~ ~ ~ ~

[Xns X1 )(€), (L)1, L) (), [Xk, L](C) € spang {X1(C), -+, X (€), L1 (Q)s - -, Lu(O)},

which follows from the corresponding assumption on the Xs and Ls (and the fact that
(I + M)~! is an invertible matrix).

Proposition 7.23 applies to the vector fields X , E, and any constant which is
{s}-admissible in the sense of that proposition is {s}-admissible in the sense of this
section. We obtain {sg}-admissible constants n3 > 0, K1 > 1, a map ®3 : Brrxcn(13) —
Brrxcn(10), and a matrix As : Brrycn(13) — MT+H)XT+7)(C) as in that proposition.
(i), (ii), and (iii) follow immediately from the corresponding results in Proposition 7.23.

Next we establish (iv). We have, from Proposition 7.23,

~
o *

9

d5X

Ol =K' (I +A) | 27 :K11(1+A2)(I+Mo@3)_1{

2 5L
DX

BIL |

5X
1L

= KNI+ A3) {

where I + Az := (I + A2)(I + M o ®3)~ L. Since M (0) = 0, ®3(0) = 0, and A2(0) = 0,
we have A3(0) = 0. Also, we have

* If 59 € (0,00), since [|(1+M) " g1 (Brrcon (o)) Stsp L 1@3llw+2(Barcen (ma)) Sts)
1, and ®3(Brrxcn(n3)) € Brrxcn (1), it follows from Lemma 5.3 that ||(I + M o
@3)71| €5+ (Brrxcn (13)) S,{s} 1. Combining this with ||A2‘ €=+ (Brrycn (n3)) g{s} 1
(see Proposition 7.23), Proposition 5.1 implies || As3|lgs+1 (Bgr o (ns)) Ss} 1-

o If 59 = w, since ||(I + M)~ y2ntrn < 2 and since || @3 r+2nms < 1o, it follows
from Lemma 5.10 that [|(I + M o ®3)7 || srs2nms < 2. Since [|Ag||grt2nms Sgoy 1
(see Proposition 7.23), Proposition 5.1 implies || As|| gr+2nns Sqwy 1.
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The above comments complete the proof.
8. Proof of the main result

In this section, we prove Theorem 4.18; Theorem 1.1 is an immediate consequence
of Theorem 4.18. Throughout this section, fix s € (0,00] U {w} and let M be a €**2
manifold. As in the rest of the paper, we give R” x C™ coordinates (t1,...,tr, 21, .., 2n)-

Lemma 8.1. Let . be a ¢t elliptic structure on M of dimension (r,n). Then, ¥(y € M,
there exists a neighborhood Vi of (o, €t sections L1, ..., Lp, X1,..., X, of £ over Vp,
and a €572 diffeomorphism Vo : Brrwcn (1) — Vo such that:

(i) ¥o(0) = Co-

(ii) VC € Vo, Li(€), .-, Ln(€), X1(C), - .., X (C) is a basis for 2.
(iii) W§L,(0) = az,\I/Xk(O):ai 1<]<n 1<k<r.

(iv) F07’1<]<n 1<k<r,

o Ifs e (0, OO], WEL;, UiX;, € %S+1(BRT><(CH(1);C2’”+T).
o Ifs=w, U5L;, V5 X}, € /21 (C2FT),
(V) vj1?j27k17k27.jak; v§ 6 B]R"XC"(I);

[\II LJN \II L ](5)7 [\Ilana \IJSLJ](g)v [\IISXkl? \IIEF)sz](g)
€ SpanC{\IIOLl(g)a R \IJSLn(f), W3X1(£)7 L] \IISXr(g)}

Proof. Note that, by the definition of elliptic structures of dimension (r,n), we have
dim % =n+r, V¢ € M and dimM = 2n + r (see Remark 3.8). By Lemma A.2 we
may pick a basis y1, . ..,y of Ly NZey With yi, ...,y € T, M (ie., y1,...,y, are real).
Extend yi,...,y, to a basis l1,...,ln, y1,...,Yr of Z,.

By the definition of a ¥**! bundle, we may find a neighborhood U; of ¢y and €*+!
sections Zi,...,Zk of £ over Uy such that V¢ € Uy, spanc{Zi(¢),..., Zx({)} = Z.
Without loss of generality, reorder Z71, ..., Zx so that Z1(o), .- ., Zntr(Co) form a basis
of Z,. By continuity, there exists a neighborhood Us C U; of (y such that V¢ € Us,
Z1(C)y ...y Zntr(C€) are linearly independent. We conclude V¢ € Us, Z1((),. .., Zn+r(C)
forms a basis for .Z.

Let M € M+7)x(+7)(C) be the invertible matrix such that

Y1

Z1(Go) :

M : — |
: I

Zn+r(CO) .
_ln_

For ¢ € U, set
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[X1(0)]
~ : 7
z0| [
Ll (C) Zn+.7“(<)
_Enkc)_

Since M is a (constant) invertible matrix, we have V¢ € Uy, L1(C) ..L, €), )?1(()

)? (¢) forms a basis for %, and Ll, .. Ln, Xl, .. X are €*+! sections of .Z over U2
By the definition of a €512 mamfold (see also Remark 2.16) there exists a €2

diffeomorphism W¥; : Bgran+r (61) — V4, where Vi C Uy, is a neighborhood of ¢y, ¥1(0) =

o. Since )/51((0) =Y (Co) = y, are real, since %, + %, = CT;,M, and since
X1(¢0)s- -+, X (C0)s L1(Co)s - - - » Ln(Co) forms a basis for .2, we have
spang {2Re(L1)(Co), - - -, 2Re(Ln ) (Co), 2Im(L1) (Co), - - -, 2Im(Ly,) (Co), ©.1)

X1(Go)s -+ +s Xn(Go)} = Te, M.

Pulling (8.1) back via ¥; we have

2Re(UiL1)(0), ..., 2Re(U;L,)(0), 2Im(¥;L1)(0), .. ., 2Im(¥:L,,)(0),
VI (0), ..., UiX,.(0)
forms a basis for TyR2"*7.

We give R?"t7 =~ R" x R?™ coordinates (ti,...,t,,T1,...,%9,). Let C €
M (r+20)x(r+2n)(R) denote the (constant) invertible matrix such that

U1 X1 (0)
- i -
oty ~
) Vi X, (0)
o 2Re(W¥1L1)(0)
cl% | = :
o 2Re(¥]L,)(0)
; 2Im (¥4 L,)(0)
L Oxoy .
2Im (W L,,)(0) |

Set A = CT and we identify A with the corresponding invertible linear transforma-
tion R™27 — R"™27, Then for e; > 0 sufficiently small, we set ¥y := ¥; 0 A :
Brr+2n(€2) — V1. Then, U5(0) = ¥1(0) = (o, Vs is a €*™2 diffeomorphism onto its
image (which is a neighborhood of (p), and if we identify R"T2" 2 R" x C" via the map
(t1yeostry @1y ey Tan) = (b1, ooy tey @1 + g, . .o, Ty + 12y, then,
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~ 0 o 0
J

\II;EMLI/;)?k €6’ s+1 (BR'rXCTL(EQ);C2n+T).

loc

Take €3 € (0, €2) such that, V1 < j <n,1 <k <r,

» If 50 € (0, 00], U3 Lm‘I’ Xi € €571 (Brrxcn(€3); C247).
o If 59 = w, W3L;, U5 X} € o/2ntres(C2nr),

Define D, : R”" x C™ — R" x C™ by D, (t, z) = (est, e32), and define ¥y : Brryxcn (1) —
Vi by ¥ := ¥y0 D,,. Letting Vo = Uo(Brrxcn (1)) C Vi we have ¥y : Brrycn (1) = Vo
is a €2 diffeomorphism. Set L; = ngj and Xj := e;:)?k. With these choices, all of
the conclusions of the lemma follow from the above remarks.

We include a few additional comments regarding the proof of (v). Since V¢ € Vy C
Vi C Uy, we have L1(¢), ..., L,(¢), X1(¢), ..., X (¢) form a basis for %, we have V( €
Vo, le,jg, kl, kg,j, k‘,

[L]NL ](C)v [Xka L]](C)’ [Xkusz](C) € D?C
= SpanC{Ll(C)a cey L”L(C)ﬂ Xl(C)v s 7XT(<)}

Pulling this back via ¥, yields (v) and completes the proof. O

Lemma 8.2. Let . be a €T elliptic structure on M of dimension (r,n). Then, ¥y € M,
there exists a neighborhood V' of (o, €°+! sections Ly, ..., Ly, X1,..., X, of £ overV,
and a €572 diffeomorphism V : Brrxcn(1) — V such that

¥(0) = Go-
e V¢ eV, Li(Q),..., Ln(¢), X1(C), ..., X, (C) is a basis for 2.
d vf € BRTXC"(1>7

spanc{W L1 (), ..., U Ln (), U7Xy (§), ..., U X, (E)}

—spaned 2 20 9
TPMC Bz B, o ot [

Proof. Let Ly,...,L,, X3,..., X, and ¥y : Brrxcn(1) — Vp be as in Lemma 8.1.
If s € (0,00) U{w}, set sg := s. If s = o0, set sg := 1. The conclusions of
Lemma 8.1 show that Theorem 7.3 applies (with this choice of sg) to the vector fields
ULy, ..., UL, UiXy, ..., UsX, and yields &4 € €*T2(Brrxcn(1);R” x C") as in
that theorem. In particular, ®,4 is a diffeomorphism onto its image, ®4(0) = 0, and since
I+ A(¢) from Theorem 7.3 (v) is invertible, V¢ € Brryxcn (1), Theorem 7.3 (v) shows
V¢ € Brrxcn (1),
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spanc{®3VGL1(E), ..., @1V LA (), @1V X1(E), ..., 21U Xn(E)}

—spand 22 0 9
= Sbatie 0z1" 0z, 0ty Ot )

Setting U := ¥y o &y, the result follows with V' := ¥(Bgrrycn (1)) C Vp, by using the
above mentioned properties of &4 combined with the conclusions of Lemma 8.1. 0O

Proof of Theorem 4.18. (i)=-(ii): This is obvious.

(ii))=(i): Let £ be a €**! elliptic structure on M of dimension (r,n). We wish to
construct a ¢**2 E-atlas on M of dimension (r,n), compatible with its €**2 structure,
such that % is the ¥*+! elliptic structure associated to this E-manifold structure. For
each (o € M, let ¥¢, : Brrxcn(1) = V¢, be the function ¥ from Lemma 8.2 with
this choice of (p; so that V¢, is a neighborhood of (y and ¥, is a ¢**2 diffeomorphism
satisfying the conclusions of that lemma. In particular, it follows from that lemma that
V¢ e Ve,

0 0 0
e = spanc e, (85 (0) - A0 (95 ) 5 ¥ (VG (O s
0
e, (V1) 5 |- (52

loc

We claim {(\11&31, Vo) + Co € M} is the desired atlas. Indeed, that \I/gll oW, isa &1
map follows from Lemmas 2.13 and 2.14. To see that \Ilc_ll o ¥, is an E-map, note that,
for1<k<r,

_ 0 _ 0
4 (U0 W, ) ()5, = AU (e ()i, (€) 5,

(8.2) shows d¥y, (5)% € Ly, ), and applying (8.2) again shows

0 0 o 0 0
-1 s o o0 J 0
dv., (We, (€))d¥e, (&) Bt € spang {3151 SR TR =L = } .

Similarly, for 1 < j <mn,

0 0 o 0 0
-1 : v v o o
d(‘IIQ O\IJ<2> (g)aT_jEbpan(c{8t1,...78tr,azl,...,azn}.

It follows that \I'C_ll o W, is an E-map. Thus, since {V¢, : (o € M} is an open cover
for M we have that {(\Ilg_ol,VCO) : o € M} is a €2 E-atlas on M. Since each ¥, :
Brrycn (1) = Vg, is a €12 diffeomorphism (by Lemma 8.2, where V, C M is given the
original ¢’**2 manifold structure), we see that the ¥**2 E-manifold structure induced by
the above atlas is compatible with the original %**? manifold structure on M. That .#
is the €*T1 elliptic structure associated to this E-manifold structure follows from (8.2).
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Finally, we turn to the uniqueness of this E-manifold structure. Suppose M is given
two €**? E-manifold structures, compatible with the %**2 manifold structure, such
that £ is the €T elliptic structure associated to both of these E-manifold structures.
That the identity map M — M is a €2 diffeomorphism follows immediately because
both copies of M have the same underlying **2 manifold structure. That the identity
map is an E-map follows from Lemma 4.17. This shows that the identity map is a €512
E-diffeomorphism, which completes the proof. O

Appendix A. Linear algebra

Let ¥ be a real vector space and let ¥C = ¥ ®@r C be its complexification. We
consider ¥ — ¥C as a real subspace by identifying v with v ® 1. There are natural
maps:

Re:¥C =¥, Im:7C > v, complex conjugation : yC - yC,

defined as follows. Every v € #C can be written uniquely as v = v; ® 1 4+ vy ® i, with
v1,vg € V. Then, Re(v) := vy, Im(v) :=v9, and 7 :=v1 ® 1 — v3 @ i.

Lemma A.1. Let & C ¥C be a finite dimensional complex subspace. Then, dim(.Z +
L) +dim(ZN.Z) = 2dim(L).

Proof. It is a standard fact that dim(.Z + .Z) + dim(Z %) = dim(Z) + dim(Z).
Using that w — w, . — £ is an anti-linear isomorphism, the result follows. O

Lemma A.2. Let 2 C ¥C be a finite dimensional subspace of dimension r, and suppose
X = 4. Then there exist x1,...,x, € 2 NV such that z1,...,x, is a basis for Z .

Proof. Let [y,...,l, be a basis for 2. Since 2" = 27, Re(l;),Im(l;) € 2, and clearly
Re(ly),...,Re(l;),Im(ly),...,Im(l,) form a spanning set for 2". Extracting a basis from
this spanning set yields the result. O

Appendix B. Elliptic PDEs

In this section, we state quantitative versions of some standard results regarding
nonlinear elliptic PDEs. All of the results in this section are well-known, and we make
no effort to state these results in the greatest possible generality: we content ourselves
with the simplest settings which are sufficient for our purposes.



50 B. Street / Journal of Functional Analysis 278 (2020) 108290

B.1. Real analyticity for a nonlinear elliptic equation

It is a classical result that the solutions to real analytic, nonlinear elliptic PDEs are
themselves real analytic; see, e.g., [6]. We require a quantitative version of (a special case
of) this fact, which follows from standard proofs.

Let £ be a constant coefficient, first order, linear partial differential operator

£: C®(R™;C™) — CX(R";C™),

where msy > m7. We may think of £ as an ms X m; matrix of constant coefficient partial
differential operators of order < 1.

Let ' : C™ x C™ — C™2 be a bilinear map. Fix R > 0 and we consider the
equation for b : Bgra(R) — C™! given by

£b =T(b, Vb). (B.1)

Proposition B.1. Fix so > 1 and suppose & is elliptic. Then, Iy = v(E,T, R, 59) > 0,
no = no(E,T, R, s0) > 0 such that the following holds. If b € €°°(Bgr~(R);C™) is a
solution to (B.1) and [|bll¢=o(Bgn(r)) < 7, then b € By and |[bl| gpm < C, where
C=C(E T, R,s0). See Section 5.1 for the definition of %™ .

We outline a proof of Proposition B.1 by following the proof from [6], which becomes
somewhat simpler in this special case and is therefore easier to extract the needed quan-
titative estimates. In what follows, we write A < B to mean A < CB, where C can be
chosen to depend only on £, I'; R, and sg. Throughout the rest of this section, we take the
setting of Proposition B.1; in particular, we are given a solution b € €°°(Bgrn(R); C™)
to (B.1) as in that proposition. Our goal is to pick v and 7y so that the conclusions of
the proposition hold.

Without loss of generality, by possibly shrinking sg, we may assume sy = 14 pu, where
p € (0,1). Thus, the space €% (B) coincides with the Holder space C'#(B) for any ball
B,'% which allows us to use the results from [6] which deal with Hélder spaces. For the
rest of the section, we continue to use the notation €7*# for j € N, but (just in this
section) the reader is free to interpret it either as €7™# or C7#; indeed in this section
we only deal with u € (0,1) fixed and €7+#(Q), C7#(Q) for bounded Lipschitz domains
Q in which case these two spaces have equivalent norms.

First we need a quantitative version of the classical fact that the solution b is
smooth. This is discussed in an appendix to [12]. There it is shown that 3y; =
71(€,T) > 0 such that if [|b]|¢1+u(Bg.(r)) < 71, then b € €°T#(Brn(R/2); C™) with
bl 20 (Brn (R/2)) S Ibllr+4(Bra(r))- We will choose v < 1, so we may henceforth
assume b € €*H(Brn (R/2); C™) with [|bllg2+u(Bgn (r/2) S V-

16 That €'T*(Q) = CV*(Q) for a bounded, Lipschitz domain Q (and p # 0,1) is classical and follows
easily from [16, Theorem 1.118 (i)].
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For n,h > 0, set D™(n; h) :={z +iy: z,y € R™,|z| <, |y| < h(n —|z|)} and set, for
s> 0,

Dys = {f : Brn() — €™ | f is real analytic and extends to a holomorphic
function E(f) € ¢*(D"(n;h); C™)}.

With the norm

/]

Q= ||E(f)||<€S(D"(n;h);le)7

n.h,s

.4 is a Banach space.

Lemma B.2. There exists a bounded linear map
P : 6" (Bgrn(R/2); C™) — €*(Bgra(R/2); C™)
such that E*EP = I and 3h = h(E, R) > 0 such that P restricts to a bounded map

P gg/gllhﬂ - @Iz’/?,lhﬂ‘F#
and such that if we set Vo := PE*T (b, Vb) and H := b—Vy, then ||[Volg2tu(Bgn (r/2);Cm1)
< Cvy, [|H |20 (Bga(r/2);cm1y < C1y, and H € @}é’&,m with ||H||@;;/’;}h)2+M < C17.
Here, C; = Cl(g,F,R, SO) > 0.

Comments on the proof. This is essentially a special case of Theorems A, B, and C of
[6]; here we are applying these theorems to the elliptic operator £*E and using that
E*EH = 0 by the definitions. In [6], these theorems were stated on the subspace of
functions which vanish at 0, though this is not an essential point. Moreover, in the
special case we are interested in, £*E is essentially the Laplacian (see (B.4) for £*E
in the case we are interested in). In this case, the above result follows from standard
methods. O

Define T(V) := PE'T(H + V,V(H + V)); by the definition of Vy, T(V) = Vp.

Lemma B.3. Let C; > 0 be as in Lemma B.2. If v = v(E,T, R, s0) > 0 is sufficiently
small and ||Vi||g2+u(Bga (r/2):cm), | Vall g2t (Brn (R72):0m1) < Cry then,

||T(‘/1)H<52+“(BRW(R/Z);(le) < 0177
1
T (V1) — T (Va)llg2+n(Bgn (R/2);Cm1) < §||V1 — Vallg24n(Bgn (R/2);Cm1)-

The same results hold for €**(Brn(R/2); C™) replaced by @gﬁfhy%ru’ throughout.



52 B. Street / Journal of Functional Analysis 278 (2020) 108290

Proof. Since ||Vi|l¢2tu(Bgn(r/2);cm1y < C1y and ||H||g2+u(Bgna (r/2);cm1y < C17, it fol-
lows from Proposition 5.1 that ||[T(H + Vi, V(H + V1)) |l1u(Ban (r/2):cm1) S (C17)2.
Lemma B.2 implies |7 (V1)l2+4 (Bgn (r/2);cm1) S (C17)?; and so if 7 is sufficiently small
it follows that || 7 (V)

we have

€244 (Bgn (R/2);Cm1) < C17. Similarly, again using Proposition 5.1,

|IT(VL = Va, V(H + V1)) |16 (Bgn (R/2);cm1ys [[T(H 4+ Vo, V(VI = Va)) 6140 (Brn (R/2):Cm1)

SAIVE = Vallg2tn(Brn (R/2):Cm1)-

Since T (V1) — T (Vo) = PE* (T (VL — Vo, V(H + V1)) — T(H + V2, V(Vh — Va))) it follows
from Lemma B.2 that

[T (V1) = T (Va)llgz+u(Bgn (ry2):cm1) S YIVL = Vallg2tu(Bgn (r/2):0m1)-

Taking v sufficiently small, we have

1
1T (V1) = T(Vo) g2+ (Ban (r2yiema) < 5IV2 = Vellg2en(Ban (r/2)m),
as desired. The same proof works with €7+ (Bg.(R/2); C™) replaced by @g/gnh P
throughout. O

Proof of Proposition B.1. By taking v > 0 sufficiently small, as in Lemma B.3, we see
that V{ is the unique fixed point of the strict contraction 7, acting on the complete metric
space {V : |Vl 2+u(Brn (r/2);cm1) < Crv}. This fixed point agrees with the fixed point
of 7 when acting on the complete metric space {V : ||VH@;§/7;71}“2+“ < C1v} (on which

is it a strict contraction by Lemma B.3). We conclude ||Vp| D e, S Cyy < 1. Since
/20,24

”HHQS}?E ain < C1y £ 1, by Lemma B.2, and since b = H + V}, we have ||b\|9]né,/r;1} e S
shy Jh, n

2C1y < 1. Taking ng = no(R/2, h) > 0 sufficiently small we have Brn(19) € D™(R/2;h)
and therefore,

Il < I6lgnm, ST,

10 R/2,h,24p ~

completing the proof. O
B.2. Existence for a monlinear elliptic equation

Fix D > 0, my1,mg € N. For functions A : Br«(D) — C™ and B : B (D) — C™2
we write

P'A = (02A)\a<1, Z°B = (02B)jaj<2, 2B = (0YB)|a=2,

so that, for example, 22B is the vector of all partial derivatives of B up to order 2, and
P, B is the vector of all partial derivatives of order exactly 2.
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Fix a C* function g. We consider the equation
9(2' A(x), 2°B(x)) = 0. (B.2)

Here, g is a C*° function defined on a neighborhood of the origin, takes values in C™2,
and satisfies g(0,0) = 0. Our goal is to give conditions on g so that given A (sufficiently
small), we can find B = B(A) so that (B.2) holds; and we wish to further understand
how the regularity of B depends on the regularity of A, in a quantitative way.

Though it is not necessary for the results which follow, we assume (B.2) is quasilinear
in B, which is sufficient for our purposes and simplifies the proof. That is, we assume

9(2' A(x), 2°B(2)) = 91(A(2), 2" B(x)) 22 B(2) + g2(2' A(2), 7' B(w)),  (B.3)

where g; and gs are smooth on a neighborhood of the origin, g; takes values in matrices
of an appropriate size, and g2(0,0) = 0.
Finally, let & denote the second order partial differential operator

SQB = gl(O, O)QQB,

so that & is an mg X mo matrix of constant coefficient partial differential operators of
order < 2.

Proposition B.4. Suppose & is elliptic. Fixz sg > 0 and a neighborhood N C
€150 (Bgn (D); C™2) of 0. Then, there exists a neighborhood W C €175 (Bga(D); C™2)
of 0 and a map B : W — N such that g(2'A(z), 2°%B(A)(z)) = 0 for x € B"(D),
A € W. This map satisfies 2*B(A)(0) =0, VA € W, and || B(A)|¢2+:0(Brn (D):Cm2) <
C||All1+50 (Bgn (D);cm1), where C does not depend on A € W. Finally, forn € (0, D), let
R,, denote the restriction map R, : f — f‘BW(n). Then, for s > so, n € (0,D), R,0 % :
G (Bra(D); C™) N W — €2F(Brn (n); C™2), and || Ry © B(A)|lg2+s (Bn (nicrme) <
Cs.n, where Cs ) can be chosen to depend on an upper bound for ||All41+s(Bgn (D);cm1)
and does not depend on A € W in any other way. It can depend on any of the other
ingredients in the problem.

See [12] for a discussion of this proposition.
B.3. An elliptic operator

In this section, we discuss a particular first order, overdetermined, constant coefficient,
linear, elliptic operator which is needed in this paper. For ¢t € R" and z € C™, we consider
functions A(t,z) : R" x C™ — C" and B(t, z) : R" x C™ — C™. We define
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0Ak 0Ag 0A,r 0B
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Lemma B.5. &£ is elliptic.
Proof. It is straightforward to directly compute £*E to see
E*E(A,B) = — — — | (A,B B.4
( Y ) P at% +Z azjazj ( I )? ( )

and the result follows. O

There is another way to interpret (B.4). Indeed, we identify (A, B) with the one
form ¥ := Aydt; + --- + A,dt, + B1dz; + --- + B,dz,. We let d denote the usual
de Rham complex acting in the t variable and 0 denote the usual d-complex acting
in the z variable. We let d* and & denote the adjoints of these two complexes. Then
E(A, B) can be identified with (d + 9, —(d + 9)*)¥. And so £*E can be identified with
(d+0)*(d+0)+ (d+0)(d+0)* = d*d+dd*+9 488 + (@ d+dd )+ (d*0+dd*) =
d*d+dd* +9 9+ 90 .
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