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Abstract—The formation of social groups is defined by the interactions among the group members. Studying this group formation

process can be useful in understanding the status of members, decision-making behaviors, spread of knowledge and diseases, and

much more. A defining characteristic of these groups is the pecking order or hierarchy the members form which help groups work

towards their goals. One area of social science deals with understanding the formation and maintenance of these hierarchies, and in

our work we provide social scientists with a visual analytics tool - PeckVis - to aid this process. While online social groups or social

networks have been studied deeply and lead to a variety of analyses and visualization tools, the study of smaller groups in the field of

social science lacks the support of suitable tools. Domain experts believe that visualizing their data can save them time as well as

reveal findings they may have failed to observe. We worked alongside domain experts to build an interactive visual analytics system to

investigate social hierarchies. Our system can discover patterns and relationships between the members of a group as well as compare

different groups. The results are presented to the user in the form of an interactive visual analytics dashboard. We demonstrate that

domain experts were able to effectively use our tool to analyze animal behavior data.

Index Terms—Visual analytics, interaction sequence, dynamic graphs, time series, dominance hierarchy

Ç

1 INTRODUCTION

SOCIAL behavior in animals and humans is inferred from
how individuals interact with each other. Some animals

are reclusive while others are highly social and form complex
social organizations through a diverse set of interactions. The
formation of organizations or groups is important as a group
can accomplish objectives that an individual cannot and that
help the species as a group survive and reproduce. Under-
standing a group’s objectives in most cases can be relatively
easy through direct observation. But understanding the for-
mation of a group is a more difficult task. By studying the
social interactions experts can infer the causes for actions and
evolution of a species.

Social groups vary in size and can contain as few as two
members or be extremely large containing millions of mem-
bers. Regardless of the size, the group members in most
species tend to form hierarchies by competing with each
other for rank. The ranking they form is called a dominance
hierarchy. These hierarchies are important as they define the
roles of the group members which in turn help domain
experts understand a group’s decision-making process, the
spread of knowledge and diseases, and other phenomena.
Our work focuses on the formation of these dominance
hierarchies as they are informative of the dynamics within a
group.

We worked with a social scientist who was interested in
analyzing the formation of dominance hierarchies in small

animal groups. In this domain, the size of small groups is
defined to be three to twelvemembers as this size range is rep-
resentative of naturally occurring groups. As groups get
larger, animals are unable to recognize other members and
are therefore unable to maintain a stable hierarchy [29]. The
expert’s team collected data by observing groups from three
species - chickens, mice, and fish. Each group consisted of
four subjects and produced a dataset that contains a sequence
of time-stamped interactions between two members. These
datasets contain hundreds to tens of thousands of interactions
over a two day period and are almost impossible to analyze
by just inspecting the rawdata.

To simplify the analysis, the interaction sequences are
reduced to a series of time-varying networks where members
are the nodes and their interactions are represented as
directed links between the nodes. These network sequences
represent the different hierarchies formed over time. Experts
run statistical analyses on these network sequences to extract
information about the hierarchy formation, however, these
analyses only provide summaries and do not communicate
the nuances of the hierarchy formation. Specifically, they do
not show how hierarchies change or repeat over time. Using a
visual analytics approach can speed up the analysis process
and provide insights that may have otherwise been over-
looked. Unfortunately, most available network visualization
tools are designed to analyze large online social networks
which are unsuitable for analyzing the small animal networks
or hierarchies. This is primarily due to the tools only visualiz-
ing the networks without the context of the interaction
sequences which provide details about how the networks
were formed.Additionally, social scientists were able to better
understand simple node-link representations with minimalis-
tic enhancements over the advance techniques available in
existing tools.
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We address this issue with PeckVis, an interactive visual
analysis system for social scientists to analyze the formation
of pecking orders in small groups consisting of up to six
subjects. The system integrates domain-specific algorithms
and metrics with a visual analytics dashboard that allows
users to interactively explore and investigate the formation
and maintenance of dominance hierarchies. The visual rep-
resentations employed by PeckVis adapts existing network
and sequence visualization techniques to the needs of social
scientists. PeckVis also enables users to compare different
groups for commonalities and differences in their hierarchy
formation using these visual representations. Finally, we
demonstrate our system’s capabilities by having domain
experts use PeckVis to analyze animal interaction data they
have collected. Additionally, we demonstrate how our sys-
tem can be applied to other situations in which hierarchies
are formed such as debates.

2 RELATED WORK

PeckVis uses graphs to represent and analyze the influence
of temporal relationships among group members on their
hierarchy. Our system represents interaction sequences as a
sequence of networks with nodes representing the actors
and edges representing the interactions. Hence, most rele-
vant to our work is the visual analysis of dynamic networks.

Most of the work on visualizing networks has focused on
the analysis of large networks. Landesberger et al. [37] provide
a good review of these works. Their review shows that cou-
pled with a variety of interaction techniques, the most fre-
quently used representations in prior graph visualization
work have been node-link diagrams [24], [31], adjacency
matrices [1], [15], or a combination of both [25]. Works such

that of Gou et al. [23] have created dashboards that use these
representations supported by other charts to explore net-
works. Both representations have their advantages; the node-
link diagrams are intuitive and better suited for path following
tasks whereas the adjacencymatrix avoids edge crossings and
node overlapping which leads to better readability of large
graphs. The properties of these representations have been con-
firmed in studies byGhoniem et al. [21] andAlper et al. [3].

While the representations discussed are sufficient on
their own for network exploration, the task of comparing
different networks needs more sophisticated techniques.
Metrics can be computed over graphs to describe their dif-
ferences. These metrics can then be used to analyze and
guide the visual comparison of graphs as shown by Kairam
et al. [26], and Freire et al. [18]. Alper et al. [3] studied the
use of node-link and an adjacency matrix to compare net-
works describing brain connectivity and reinforced the fact
that node-link representations are better for comparing
small graphs. Furthermore, similarity metrics can be com-
puted over a larger number of graphs or sub-graphs which
then help the user in selecting similar or dissimilar graphs
for comparison as in Landesberger et al. [36].

A special case of graph comparison related to our work is
that of dynamic graphs, where changes in a graph’s structure
are compared over time. Beck et al. [8] provide a very recent
review of the techniques used to visualize dynamic graphs.
Of particular interest is work that juxtaposes different states
of a network over time representing them as small multiples
[5], [17], [33], [35]. Farrugia et al. [33] use a small multiples dis-
play to both show the evolution of an egocentric network and
to compare different egocentric networks. In DiffAni [33] and
SmallMultiPiles [5] dynamic graphswere aggregated and dis-
played as small multiples. This approach of aggregation into

Fig. 1. The PeckVis interface for analyzing dominance hierarchies formed by a single group of subjects. At the top is a control panel to select a group
for analysis, here chicken group 10 (blue color) is selected. Below this are two panels on the left that include a heatmap table to summarize hierar-
chies formed and a balloon plot below it to summarize the interactions in the group. To the right of these panels (from top to bottom) is the state
sequence and state variant sequence that represent the hierarchies formed and below these is the music notation and rank evolution chart that
shows the raw interaction data and how the ranks of subjects change with every interaction. Here, the user selected state 38 and 39 for inspection
via the heatmap. The corresponding states, state variants, and interactions were highlighted in the charts to the right of the heatmap. Further, the
user deselected a state variant (second to last in the variant sequence) which causes the partial highlight in last state of the state sequence. Sec-
tion 6.1 details this group’s analysis.
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intermediate graphs over time inspired techniques used in
our system. Most similar to our work is that of Velhow et al.
[35] who visualized dynamic hierarchies in graph sequences
by using an adjacency matrix that integrates hierarchical
group structure along with icicle plots. Additionally, they use
a flow metaphor and color encoding to visualize changes.
Archambault et al. [4] create difference maps of a network at
two time slices in a single graph encoding the differences with
color. Analogous to this approach we compute differences
and use markings and color to highlight differences in conse-
cutive graphs.

Most of the network visualizationwork discussed has been
applied to large social networks, computer networks, or bio-
logical structures. Our work focuses on interactions between
individuals in small groups and specifically targets animal
behavior, an area that has received little attention in the visu-
alization field. However, there are some relatable works
which we discuss here. DiMicco et al. [13] used visualizations
to review the turn-taking patterns in face-to-face meetings.
They can deduce social trends such as dominance, extrover-
sion, and endorsements but have no procedure to inform a
concrete reasoning into the formation of these trends. Alallah
et al. [2] also visualized face-to-face meetings to review the
decision-making process. They used a Gantt chart-like repre-
sentation to plot and compare a user’s behavior. Cao et al. [10]
supports the exploration and summarization of user interac-
tions with an interactive visualization. They represent time
for a particular user with a horizontal axis with vertical lines
representing the user’s interactions much like Chase’s music
notation [11]. Recently, Fu et al. [19] devised a visual analytics
system to interactively explore, compare, and track conversa-
tion groups in online forums; their work demonstrates the
usefulness of glyphs to represent groups.

While social scientists have developed a variety of mathe-
matical models and analyses to investigate hierarchy forma-
tions, they have very few suitable visual analytics tools to aid
their efforts. We believe that aspects of the works discussed
here can be adapted with modifications to help other scien-
tists, as predicted by Beck et al. [8]. Specifically, the use of
node-link and adjacency matrix representations arranged in a
small multiples display is generally useful to compare net-
work structures. In addition, we were inspired by the dash-
board approach of incorporating connected displays of
timelines and other metrics to support the graph analysis. In
the remainder of this paper, we discuss our approach of com-
bining these techniques into a single system and the evalua-
tion of this system.

3 MECHANISMS AND METRICS

FOR DOMINANCE ANALYSIS

Dominance is a very important concept in the study of
social behavior, and dominant behaviors form dominance
hierarchies within a group. Work by social scientists has led
to a variety of analysis techniques that quantify these hierar-
chies. We introduce these methods and algorithms, that we
further adapted for PeckVis, below.

3.1 Ranking

Avariety of ranking algorithmshave been proposed that place
individuals at different levels in a hierarchy. Unfortunately,

these algorithms are not universally accepted as they all have
some limitations [7], [20]. For this reason, PeckVis provides the
user with two widely used ranking algorithms - Davids Score
[12] and Elo ranking [16] - each with their own benefits and
allows the user to interactively switch between them.

David’s score is an interaction matrix based method for
computing rank in social science. It has been shown to over-
come problems with other interaction matrix based ranking
methods in the field [20]. David’s score measures the overall
success of an individual by weighting each dyadic success
measured by the unweighted estimate of the other individu-
als’ overall success, thus taking into account the relative
strengths of the other individuals. The Elo-ranking method
was initially generated to rank chess players, but it has
gained popularity and is now used to compute rankings in
a variety of fields. Neumann et. al. have adapted it to com-
pute the ranks in a dominance hierarchy [32]. They show
that the Elo-ranking has benefits over matrix based meth-
ods. They include the elimination of certain data limitations
such as a lower-bound on the number of interactions and
the flexibility to extract scores at any point in time, thus
making it easier to visualize.

Additionally, we provide users with naive ranking meth-
ods, such as the cumulative sum of interactions initiated,
the cumulative sum of interactions received and a combina-
tion of both over time. These do not accurately represent the
social rank of an individual but they do provide useful
information, they give users a general idea about an indi-
viduals activity over time.

3.2 State Sequence Analysis

The ranking methods inform us of the hierarchy established
by the subjects in a group. However, they do not explain
what led to the formation of the hierarchy. Addressing this
issue, researchers have analyzed the interaction data by
modeling them as a dominance network. A review of these
methods was presented by Doreian [14]. In our work, we
extend the methodology of Lindquist et al. [30] who com-
bined the ranking techniques and network analysis to
model hierarchy formation. They trace a group’s hierarchy
development by inspecting intermediate dominance config-
urations that subjects in the group form over time. These
configurations are aggregations of a set of interactions and
long interaction sequences are aggregated into a sequence
of configurations. In their work, Lindquist et al. only ana-
lyzed the structure of hierarchies, that they call “states”,
while ignoring the identities of the subjects that formed the
hierarchy. In our work, we include the identities as well
and call these identity dependent hierarchies “state var-
iants”. The remainder of this subsection discusses the proce-
dure followed to aggregate interaction sequences into
configurations and how these configurations are annotated
to convey important information to the analyst.

3.2.1 States and State Variants

A group’s interactions can be aggregated to form multiple
dominance configurations called “state variants”. The struc-
turally unique configurations that groups form are called
“states”. More specifically, a “state” refers to the structural
form of the configuration while ignoring the identities of
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the subjects whereas a “state variant” is more specific and
considers these identities. Thus two state variants that only
differ in vertex labeling map to a single state. It should be
noted that the vertex labeling cannot be arbitrary, it must be
consistent and comparable across groups. To achieve this
we label subjects by their eventual ranks, i.e., their ranks
after their group’s last recorded interaction. Thus subjects
labeled ‘1’ in different groups are the eventually highest
ranked subjects in their groups.

Interaction sequences are aggregated into a sequence of
state variants which are further aggregated into a sequence of
states. Each state variant is essentially a directed graph with
nodes representing the subjects in a group and links repre-
senting interactions between subjects. A new state variant is
added to the sequencewhen an unobserved interaction occurs
or an existing interaction is reversed. When a new state vari-
ant is created, the relationships from the prior state variant are
propagated to it, new relationships are added, and reversed
relationships are replaced. Consider the example shown in
Figure 2; there are three individuals labeled a, b, and c. In the
first interaction a dominates b, creating the state variant in
Figure 2a which continues to exist while a keeps attacking b.
When a new interaction bdominates c occurs, a new state vari-
ant is created and the relationship a dominates b is carried
over to it as shown in Figure 2b. Similarly new state variants
are created when a dominates c in Figure 2c and c dominates b
in Figure 2d. It should be noted that reversed relationships are
replaced as in the last state variant where b dominates c was
replaced by c dominates b. Additionally, the last two state var-
iants map to a single state as they are structurally identical -
they both have one subject dominating the other two and one
of those two dominate the other. A more detailed example of
how interaction sequences map to state variant sequences
which in turn map to state sequences is illustrated in the sup-
plementarymaterial.

States and state variants allow the experts to split their
analysis into two main stages. States allow experts to first
identify different types of hierarchies or states such as states
where one subject is dominated by all others or states with
graph cycles. By analyzing these states, experts can make
judgments about the stability or competition within a group.
Additionally, these states serve as a high-level feature for
comparing multiple groups. State variants allow the expert to
dig deeper into the states, they show which subjects form a
hierarchy based on their eventual rank. For example, experts
find that in some groups the second ranked individual was at
top of a one dominate all state but as time progressed the first
ranked individual was at the top in that state.

3.2.2 State Annotation

States represent the different types of hierarchies a group can
form and the number of possible hierarchies exponentially

increases with the number of subjects. To ease the process of
analyzing these large numbers of hierarchies, we precompute
all possible states an N member group can form and build a
lookup table for future use.Due to the combinatorial complex-
ity of generating the lookup tables, we limit group size to six
subjectswhich can form 21,479 different states.We then anno-
tate these states based on their structural characteristics, these
annotations are described as follows.

Linear States: A linear state is one in which a subject is
not attacked by any subject it attacks. In other words, the
most dominant individual is never attacked, the second
most dominant is attacked only by the first and so on. For
example, states in Figure 2c and 2d are linear states. Linear
states tend to be the most common state and inform domain
experts of clear hierarchies where no subject is competing
with a more dominant subject.

One Dominate All: States in which one subject in a
group is dominating all other active subjects are called One
Dominate All (ODA) states. The states in Figure 2c and 2d
are examples of ODA states with subjects a and c being the
most dominant respectively. An observation of a large num-
ber of specific ODA state variants informs experts of groups
with very dominant individuals.

All Dominate One: States in which one subject in a
group is dominated by all other active subjects are called All
Dominate One (ADO) states. The states in Figure 2c and 2d
are also ADO states with subjects c and b being the domi-
nated subjects respectively. An observation of a large num-
ber of specific ADO state variants informs experts of groups
with very submissive individuals.

Intransitive States: In most cases, subjects tend to form
transitive or linear hierarchies. But occasionally the subjects
or a subgroup of subjects form a cyclic relationship known
as intransitive relationships. For example, if the relationship b
attacks c in the state shown in Figure 2d were to be reversed
it would form an intransitive relationship among the sub-
jects with actor a dominating b, b dominating c, and then c
dominating a. Intransitive states are also non-linear states
and are indicative of competition and instability of rank
among subjects.

Occurrence and Stability: In addition to labeling the
type of states, we compute two important metrics for each
state and state variant - Class Occurrence Frequency (COF)
and Class Stability Factor (CSF) - to perform the comparison.
The COF measures the occurrence of states across groups in
a species. It is the fraction of groups that formed a specific
hierarchy during the interactions. For example, if a state
occurs in 6 of 10 groups it would have a COF of 0.6. A value
of 1 indicates that every group forms that hierarchy and 0
indicates that the hierarchy is never formed. The CSF
informs us of the stability of states that occur versus other
states in an N-link class. It is the ratio of time spent in a par-
ticular N-Link hierarchy to the time spent in all N-Link hier-
archies. For example, if groups had 85% their interactions in
3-Link configurations belonging to a particular hierarchy
then the CSF for that hierarchy would be 0.85.

4 VISUAL REPRESENTATIONS IN PECKVIS

The data analysesmethods yield a rich set of results, but they
can be overwhelming for the user to review, especially when

Fig. 2. The progression of a state variant sequence based on four inter-
actions: a dominates b, b dominates c, a dominates c and finally a rever-
sal c dominates b.
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dealing with a large number of groups and interactions. To
efficiently communicate this information to the users, we
extended existing visualization techniques as described
below.

4.1 Visualizing Hierarchy Sequences

The state and state variant sequence is the sequence of hierar-
chies derived from a group’s interaction sequence. These
hierarchies or states are essentially graphs that can be visual-
ized with a variety of existing techniques. We experimented
withmultiple techniques such as node-link diagrams, matrix
representations, and chord diagrams. The existing approach
by Vehlow et al. [35], who used a matrix representation com-
plemented by icicle plots, can be applied to our problem but
the domain experts were not comfortable with the represen-
tation for multiple reasons. First, the experts preferred a
node-link representation as they previously worked with
this representation and found it more difficult to follow
changes across adjacency matrices. Second, Vehlow et al.
used a single representation to represent the topology (state)
and the hierarchy structure (state variant), the experts found
this representation to be overloaded and preferred it split
into two parts - one to analyze states and one to analyze state
variants. Finally, Vehlow et al. only show the instantaneous
hierarchy in each matrix, the experts we work with wanted
both the instantaneous and eventual hierarchies encoded.
Additionally, our task involved visualizing small groups
and based on previous studies node-link diagramswere suit-
able. Thus we represent the state and state variant sequence
as a sequence of node-link diagrams with additional visual
encodings that communicate various characteristics of the
hierarchy at a particular point in time.

State Variant Sequences: The domain expert we work
with represents state variant sequences with hand-drawn
directed node-link diagrams similar to those in Figure 2.
This representation only encodes the structure of the cur-
rent hierarchy and identity of subjects, however, we update
the node-link representation with additional visual encod-
ings to represent the current and eventual rank of the sub-
jects, the newest link, and a reversed link. Additionally, we
label each state with its ID, variant and the total number of
interactions it represents. An example of a single state vari-
ant is shown in Figure 3 and a state variant sequence is
shown in Figure 1.

The current and eventual rank of the subjects is encoded
with color and node placement respectively, this allows
the experts to view the current hierarchy in the context
of the eventual hierarchy. In our design the eventual rank

decreases from left to right and top to bottom, thus in the
example, the two nodes at the top represent individuals
with an eventual rank of 1 (left) and 2 (right) and nodes at
the bottom represent rank 3 (left) and 4 (right). The nodes
are colored with a sequential red color scale to represent
current rank. The subject with the highest rank at the end of
the current state is assigned a dark red color and the lowest
ranking subject is assigned a light red color. This encoding
allows the user to easily track the evolution of the group
member’s ranks as well as identify states where ranks have
changed. For example, in Figure 1 we see that in the first
state shown the subject eventually ranked 3rd (shown with
node position) is ranked the highest (shown with node
color) in the first state. Over the next six states the subject
eventually ranked 2 takes over the highest rank. And in the
remaining states, the subject eventually ranked 1 dominates
all other subjects with some competition from the 2nd
ranked subject. As the state space grows users can observe
the ranks and the distance between ranks changing by visu-
ally comparing the node colors. When used in conjunction
with the ranking chart (discussed below) users can get a
finer view of the distances between ranks.

The links between nodes represent relationships between
individuals and states are created when a new relationship
occurs or an existing relationship is reversed. Initially, we
used color to mark new interactions and reversals but users
found the representation to be too confusing. Instead, we
chose to indicate the newest interaction in a state with a
dashed line and reversals were indicated by placing a double
slash marker at the middle of a dashed line. We also encode
the number of interactions between individuals with line
thickness. This is shown in Figure 3.We allow the user to tog-
gle this weighting of links as it overloads the representation
and this information was rarely required by the experts. This
approach follows the juxtaposition combined with explicit
encoding as described in Gleicher et al. [22] by sequentially
presenting the different configurations over time and explic-
itlymarking the differences between them.

Finally, the experts wanted to easily locate the cycles or
intransitive triads in the states as they are indicative of rank
contention. We show these cycles by graying out non-con-
tributing edges and filling the space between contributing
edges with a green highlight as shown in Figure 3b. This
was helpful for the user when scrolling through large state
spaces as it revealed trends such as the same cycle being
formed repetitively which experts found to be interesting
behavior. The user is allowed to toggle this functionality as
well since it can be distracting when examining at other fea-
tures of the state variant sequence.

State Sequences: As described previously, states repre-
sent the structural form of dominance hierarchies while
ignoring the identities of the subjects in those hierarchies.
Thus the representation for states is identical to that of
state variants with the only difference being that the nodes
and their positions do not encode any information and
new interactions and reversals are not marked. However,
we do keep the node positions consistent for node-link dia-
grams representing the same state. We also use labels
above states to indicate the type of hierarchy (ODA, ADO,
cyclic and linear). An example of a state sequence is shown
in Figure 1.

Fig. 3. The state variant representation in its basic form (a) where node
positions indicate a subject’s eventual rank (decreasing from left to right
and top to bottom), node color indicates instantaneous rank, links repre-
sent relations where dashed links represent new relations and the //
marker indicates a reversal. Users can toggle the highlights of cycles (b)
and edge weighting for interaction count (c).
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4.2 Visualizing Interactions

The state variant sequences inform us of the different hierar-
chies formed and the order in which they were formed.
However, they do not inform us of the way in which they
were formed, that is, what sequence of interactions led to a
given hierarchy. This information can be obtained by
inspecting the interaction sequences. We use two visual rep-
resentations to assist experts in exploring the interactions
among subjects. The first is a music notation that is a visual
encoding of the raw interaction data and the second is a bal-
loon plot that provides an overview of all the interactions in
a group.

Music Notation: The music notation was developed by
Chase [11] for social scientists to view raw interaction data.
The representation helps users to quickly identify patterns
in the data, the most important being bursts. Bursts are sub-
sequences in which one subject continuously dominates one
or more subjects in a group. Additionally, the chart can indi-
cate the distribution of interactions among subjects. The
chart represents each subject in a group with a horizontal
line or axis. For every interaction, an arrow is drawn from
the actor’s horizontal line to the recipient’s line. The arrows
are colored based on the color assigned to an actor. The user
is allowed to choose between positioning the arrows based
on clock-time or by their count. Positioning by time allows
users to see if the time of day had an effect on the actors.
Positioning by interaction count keeps the space between
the arrows constant and positions them in the order they
occurred. This makes it easier for users to observe bursting
behaviors. The horizontal axes are ordered from top to bot-
tom based on the eventual rank of the actor determined by
the ranking algorithm selected by the user.

We further build upon the music notation developed by
Chase. We emphasize bursts by using edge bundling and
we indicate positions at which new state variants were
formed with markers above the top axis. An example is
shown in Figure 4. The edge bundling cause bursts to look
like hourglasses, with wider hourglasses indicating larger
bursts. In addition to indicating where states are formed,
the number of markers and the distance between them is
indicative of the stability in the group. Fewer markers with
large distances between them indicate that the group and
the hierarchies it forms is stable.

Balloon Plot: The interactions in a group can be summa-
rized with an interaction matrix which informs users of the
total number of interactions between any two subjects in a

group. We chose to use a balloon plot over a stacked bar
chart and adjacency matrix to represent the interaction
matrix. An example is shown in Figure 1 in the bottom left
panel. We did not consider the use of a node-link diagram
here as users may overlook missing relationships [34]. The
domain expert preferred this representation over a tradi-
tional adjacency matrix and heatmap representation used
for large networks as the expert felt the circle size was easier
to compare instead of color intensity (although we believe
that this may change as the network size grows). The bal-
loon chart rows represent actors and the columns represent
recipients. There is an additional disjoint row and column
which represent the totals of each column and row. Each
cell contains a circle whose size represents the number of
interactions between the corresponding actor and recipient.
The representation allows the user to quickly gain insight
into the distribution of interactions among group members.
Users can easily identify which actor initiates the most inter-
actions and howmany individuals it interacts with thus giv-
ing them a summary of the interactions.

4.3 Other Representations

In addition to visualizing the state and interaction sequen-
ces, we provide experts with visual representations that
support their analyses. The representations are used to keep
the expert aware of subjects ranks, group similarity, and to
communicate other informative statistics.

Rank Evolution Chart: We represent the ranks com-
puted by the selected ranking algorithm after every interac-
tion with a multi-line plot as shown in Figure 1 in the
bottom right panel. Lines are plotted with a step-function
and colored based on the color assigned to the actors. The
lines tend to diverge quickly when hierarchies form at a fast
pace within a group. However, if actors compete for rank
then the lines intersect or follow an alternatively diverging
and converging path. Users can configure this chart to pres-
ent ranks from the desired ranking algorithm which is also
reflected with node colors in the state space.

MDS Plot: It is difficult for users to gauge the similarity
of groups based on their state space or other metrics com-
puted for each group such as the counts of different states
or the time spent in these different states. To address this
issue we used multidimensional scaling [28] to represent
each state or state variant sequence as a point in 2-dimen-
sional space. The method shows sequences that are similar
closer together; the results for our animal datasets are
shown in Figure 5 in the bottom left panel. To compute the
distance between the sequences we used the dynamic time
warping (DTW) distance [9] which measures the similarity
between time sequences. Here we represent each sequence
as a time series by giving each state or configuration a value
and plotting this value at every timestamp the group is
observed in a particular configuration. This process allows
us to account for the duration a group remains in a particu-
lar configuration. Some groups form their hierarchies at dif-
ferent speeds and DTW accounts for this and measures
similarities even though time series have different speeds
and levels of acceleration and decelerations. Sometimes,
however, the expert may want to disregard the order in
which states occur and measure similarity purely based on
the occurrence of states and the number of interactions in

Fig. 4. The original music notation developed by Chase (a) and the
enhanced version (b) that adds edge bundling to emphasize bursts and
markers at the top to indicate the formation of new states.
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each state. In this case, we create a multidimensional dataset
where each column represents a state or state variant and
for each group, we record the amount of time spent in each
state and record it in the appropriate column. We then com-
pute the similarity between groups using the Euclidean dis-
tance measure and show it in an MDS plot.

Summary Statistics: Finally, we compute certain sum-
mary statistics for each group which we communicate to
the user with bar charts. These statistics are computed over
the state sequences and are useful for comparing groups.
Most important to the expert were the COF and CSF values
of states and state variants for each species and each group.
We communicate these values to the expert with a heatmap
table as shown in Figure 1 in the middle panel on the left.
As the number of subjects increases, the number of states
exponentially increases and the heatmap allows users to
quickly learn about the kind of states and the time spent in
them, within and across groups. Additionally, statistics
such as the number and percentage of states categorized by
their annotations, for example, the counts of ADO, ODA,
and intransitive states are communicated with bar charts.

5 THE PECKVIS INTERFACE

The visual representations discussed in the previous section
are individually very effective at communicating hierarchies
and interactions. However, combining and linking these rep-
resentations into a single interactive interface allows the user
to gain finer insights into a group’s hierarchy formation and
maintenance. The experts weworkedwithwanted to perform
two main tasks - (1) analyze how individual groups form and
maintain hierarchies, and (2) compare multiple groups to
learn about similarities in hierarchy formation. To achieve
this, we provide expertswith twodashboards to analyze a sin-
gle group and to compare multiple groups. The dashboards
and supported interactions are discussed as follows.

5.1 Analyzing a Single Group

Analyzing a single group involves the tasks of identifying
the different hierarchy structures, how subjects are posi-
tioned or ranks change in these structures and the character-
istics of interactions within these structures. We enable such
analyses by laying out the state and state variant sequence
representation, the music notation, rank evolution, and bal-
loon plot into a dashboard as shown in Figure 1.

At the top is a panel containing circles that represent each
group for a particular species and below each circle is a label
communicating a group statistic such as the total number of
states or interactions in a group. The species and the statistic
can be changed using the drop-down menus at the left end of
the panel and clicking circles selects the group to be inspected.
The space below this panel is split horizontally into two sec-
tions. The left section contains two panels, the first is a heat-
map table that communicates a summary of the states such as
their occurrences and stability (top panel) and the second is a
balloon plot communicating the summary of interactions. In
the right section, we stack the selected group’s state sequence,
state variant sequence, music notation and rank evolution
chart from top to bottom. This stacking order allows the user
to analyze the data with an overview to detail approach by
moving from the state sequence which shows the types of
hierarchies to the more detailed state variant sequence which
showshow subjects are ranked in those hierarchies and finally
to the music notation that communicates the sequence of
interactions in the hierarchies.

Every representation in the dashboard is linked to each
other. If a user selects a state, all state variants thatwere aggre-
gated into it are highlighted. The corresponding interactions
are also highlighted in themusic notation and the correspond-
ing range is highlighted in the rank evolution chart. This is
reflected in Figure 1 where the states 38 and 39 were selected
from the state summary panel on the left. This led to the
corresponding states, state variants and interactions being

Fig. 5. The PeckVis interface for comparing dominance hierarchies between multiple groups of a species. On the left, we have two panels - a sum-
mary panel and an MDS plot below it. Here, with the MDS plot the user has selected four similar groups (1, 12, 13, and 8) highlighted at the center
and an outlier group (group 5) highlighted at the top left of the plot. The summary panel above the MDS plot displays a list of the common state sub-
sequences across all selected groups. The user can change it to show the COF and CSF heatmap. The panel on the right contains a small multiples
display of the user choice of visual representation, in this case the user has selected the state sequence. To investigate the similarities between the
sequences, the user selects the sub-sequences in the list which in turn highlight the corresponding states in the small multiples display. Now compar-
ing the highlighted states, the user can investigate the similarities as discussed in Section 6.2
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highlighted. It should be noted that states may be partially
highlighted if some of the state variants they encompass are
deselected. For example, the last state in Figure 1 is partially
highlighted as a state variant (the second last in the state vari-
ant sequence) it encompasses is deselected. A selection can be
made from any chart with ranges corresponding to that selec-
tion highlighted in other charts. Left clicking a state or state
variant selects that particular item in the respective sequences,
but right clicking selects all identical state or state variants in
the sequence. For example right clicking a state labeled 38will
highlight all states labeled 38 in the sequence. To differentiate
states, we use different colors to highlight them based on the
state label. For example in Figure 1 state 38 and 39 are
highlighted with green and orange, respectively. A large
number of states can occur in a sequence and we may not
have enough colors to represent them. In this case we reuse
colors. Theoretically, this can mislead the user however we
ensure that two consecutive states do not use the same color.
Thuswhen the same color is seen in consecutive state variants,
it indicates that it maps to the same state. Additionally, each
state is labeledwith its state and variant above it.

We also provide controls to toggle options for each visual
representation in the dashboard. For example, users may
want to zoom into the music notation or deactivate its edge
bundling. The state variant sequence encodes a lot of infor-
mation and may be overloaded. Thus we allow the user to
toggle the encodings such as the edge weighting, intransi-
tive triads, and state type labels. We also allow the user to
switch between ranking algorithms.

5.2 Comparing Multiple Groups

In addition to analyzing the behavior of a single group,
experts also need to compare groups. They compare groups
to find commonalities and differences in the types of hierar-
chies formed, the amount of rank contention and the num-
ber of interactions and how they occur. We support such
analyses through a second dashboard that uses a small mul-
tiples display of the various visual representations previ-
ously discussed. Additionally, the dashboard includes a set
of tools and an MDS plot in the panel on the left which help
in selecting similar or dissimilar groups. An example the
dashboard with a small multiples display of the state
sequences is shown in Figure 5.

To compare interactions and rankings between groups, the
user can use a small multiple display of the balloon plots,
rank evolution charts, and the music notations. Through the
balloon plots users can identify groups that are either com-
mon in nature such as thosewhere the top ranked subject per-
forms the most interactions followed by the second ranked
subject and so on. They can also find unusual groups such as
those where the second-ranked individual performs the most
interactions but the highest ranked subject earned its rank by
dominating this second-ranked dominant subject with fewer
interactions. Comparing multiple rank evolution charts in a
single display allows the user to differentiate between groups
based on rank contention. For example, in some groups rank
is determined early indicated by a clear separation among
subjects at the start, while other groups display continuous
rank contention among a subgroup of subjects. Finally, com-
paring music notations allows the user to first compare the

number of interactions that occur in each group. Users can
either compare the density of the chart if local scaling is
selected or the length of the chart if global scaling is selected.
The music notations also allow users to visually compare
bursting behaviors such as burst frequency and duration.

To compare the different hierarchies groups form and the
sequence in which they were formed, users employ a small
multiples layout of the state and state variant sequence. We
provide users with tools to highlight a state in one group
and check if it is highlighted or occurs in other groups. We
also compute common sequences of user-specified lengths
and highlight them across groups. By using the same color-
ing strategy used in the single group analysis, users were
able to quickly recognize repeating patterns within and
across groups. Repeated observations of two distinct colors
appearing consecutively across states is indicative of fre-
quent state or hierarchy transitions. Users can then further
inspect these transitions with the state variant sequence to
see if they are being caused by similarly ranked individuals
or if it is different across groups. For example, users found
that some state transitions that were common across groups
usually occur due to subjects ranked 2 and 3 competing
with each other. Additionally, we provide supporting tools
to explore these state and state variant sequences. As in the
single group analysis, we provide a heatmap of the COF
and CSF for all groups and we also provide a list of common
state transitions of a user specified length. These tools can
be used to highlight states across multiple groups that can
be further inspected by the user.

6 CASE STUDY: ANALYZING DOMINANCE

IN ANIMALS

To evaluate PeckVis we had two experts in the social science
domain analyze their data with our tool. Both experts were
social science professors and one of them was the expert we
worked with to design the tool. Their goal was to analyze
the formation of dominance hierarchies in three animals:
mice, chicken, and fish. They had 14 groups of mice, 14
groups of chickens, and 17 groups of fish, each consisting of
4 subjects. The experts had three main tasks - exploring the
formation of a hierarchy within a group, comparing groups
of the same species and comparing the behaviors between
two species.

6.1 Analyzing a Single Group

A user typically starts off the analysis of a single group by
first inspecting the heatmap table showing the COF and
CSF values of the hierarchies or states. There he or she can
quickly receive an overview of the occurrence of different
states or state variants and their stability in the group. Now
if the user is interested in exploring highly stable states he
or she may select states or variants with high CSF values.
On the other hand, selecting states with low CSF values
highlights unstable states that are indicative of rank conten-
tion. For example, in Figure 1 the expert selected chicken
group 10 for examination as every subject in the group
changed rank during the course of the interactions. Next, he
selected state 38 and 39 as he was interested in complete
hierarchies which are six link states where every subject
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interacts with every other subject and he wanted to inspect
the maintenance of these states.

Digging deeper, he inspected the state and state variant
sequence. Through the state sequence, he observed that state
38 appears to encompassmost of the interactions although the
group forms state 39 for a brief duration. Upon further investi-
gation, he learned through the state variant sequence that in
fact two variants of state 38 - 38-1 and 38-7 - were formedwith
38-1 being more stable. By inspecting the node colors he
learned that subject one was gaining rank over subject two.
But subject two fights back by attacking one and causes the
creation of states 38-7. There was also some retaliation from
subject four against two in state 39-2. Upon toggling the edge
weighting, the expert found that the retaliatory actions did
not seem to contribute too much to the state variants. To learn
more about these interactions, the expert selected the states
with retaliations. He then inspected themusic notation for the
corresponding interactions. Here he saw that in each state the
retaliation occurs only once, this led him to believe that if these
interactions did not occur, the group would have formed an
extremely stable six-link hierarchy in state 38-1. Additionally,
he saw that the retaliatory states highlighted portions of the
rank evolution chart in which lines intersect, that is rank con-
tention occurs.

The experts analyzed groups from several species follow-
ing a similar procedure and made multiple findings. They
found that in mice and fish groups the top-ranked subject
committed a bulk of the interactions but in the case of chicken,
some groups had the second-ranked subject committing the
most interactions but the top-ranked subject in these groups
was actually dominating this second-ranked subject. They
also found that chicken committed very few retaliatory inter-
actions and formed stable hierarchies without much competi-
tion, the micewere a little more competitive but formed stable
hierarchies as time progressed. On the other hand, fish were
very active and competitive. The experts made the findings by
examining the state variant sequence in conjunction with the
music notation and rank evolution chart. They also used the
state sequence to help navigate the state variant sequence.
The state variant sequences for fish were extremely long and
formed hundreds of state variants, however, the experts were
engaged in the analysis and readily spent long periods of time
exploring entire sequences in detail. They found that except
for the most dominant fish, the other subjects kept competing
with each other. This was evident through the rank evolution
chart with the lines for these subjects constantly crossing each
other. But on deeper inspection of the state variants, they
found that these competing fish actually formed intermediate
stable hierarchies for certain periods of timewith eachfish tak-
ing turns dominating the others for extended periods of time.

6.2 Comparing Multiple Groups

After investigating the individual groups and developing a
hypothesis about the formation of hierarchies, the experts
used the inter-group analysis tools to compare groups and
validate their hypotheses. They started by selecting groups
from the MDS plot for display in the small multiples layout.
The experts first selected groups that were clustered
together in the MDS plot and later moved to the outliers to
investigate what was different in their hierarchy evolution.
The experts first investigated the groups’ balloon plots to

check for similarities between groups based on the number
of interaction by subject rank. They then moved to the rank
evolution charts to check for similarities in rank contention,
for example, in the case of chicken most groups formed
clear hierarchies early on but some outliers had subjects
that were interchanging ranks.

Next, the experts compared the groups based on the
states they formed. Using the small multiples display of
state sequences the experts were quickly able to identify
common states among groups and what states made a
group an outlier. For example Figure 5 shows four similar
chicken groups (1, 8, 12. and 13) and one outlier (5), selected
through the MDS plot based on DTW distance between the
state sequences. Among the similar groups, all of them have
a majority of their interactions in state 38. They also have
common state transitions such as in groups 1 and 12 which
have identical sequences except for the last two states in
group 1. Additionally, groups 1 and 8 have the state transi-
tion 38-40-38 while groups 13 and 8 have transition 38-39-38
in common. On the other hand, group 5 was an outlier as it
had a longer state sequence which contained many states of
which some were never formed by any other group, this
was also confirmed by investigating the state’s COF values
and not having it sub-sequences appear in the panel on the
left. Experts explored the state variant sequence in a similar
manner. They also used the music notation but only superfi-
cially to explore bursting behaviors and compare the fre-
quency of state formations by concentrating on the markers
at the top of the music notation.

7 CASE STUDY: ANALYZING DEBATE DATA

While our system is primarily designed to investigate hierar-
chies in animal groups,we can apply it to analyze dominance
hierarchies in other situations just as well. One such situation
is debates. To demonstrate this, we used our system to ana-
lyze aggressive behaviors in the 2016 U.S. presidential
debates. For the purpose of this demonstration, we only cate-
gorized interrupts during debates as aggressive behavior.
We used the transcribed debate data and interruption extrac-
tion technique from Stephanie Kirmer’s post on Kaggle
(https://www.kaggle.com/skirmer/interruptions-at-the-
first-presidential-debate). With a more sophisticated analy-
sis, one could extract aggressive statements by the candi-
dates as well. For this analysis, we had two groups, the
presidential debate with Donald Trump, Hilary Clinton, the
moderator, and the audience, and the vice-presidential
debate with Mike Pence, Tim Kaine, the moderator, and the
audience.

We approached the analysis in amanner similar to that fol-
lowed by the experts as described in Section 6. We first
inspected the state sequence and noticed that in the presiden-
tial debate a complete six-link hierarchy (state) was formed
but in the vice-presidential debate only a three-link hierarchy
was formed. On further inspection, we learned that the reason
for this was that the audience commits an interruption (of
Trump) in the presidential debate but they do not interact in
the vice-presidential debate. The interruption is the 81st inter-
action in the music notation shown in Figure 6 (left). Next, we
inspected the music notations, rank evolution and balloon
plot of the two groups as in Figure 6. Herewe observed that in
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the debatewith the presidential candidates Trump committed
a burst of interrupts at multiple points in the debate. How-
ever, in the vice-presidential debates each candidate commit-
ted a burst of interrupts at the start of the debate after which
the candidates and the moderator never committed more
than two sequential interrupts. The ranking chart and the bal-
loon plot informed us that in the presidential debate Trump
committedmore than half of the total number of interruptions
and interrupted Clinton and the moderator equally. This also
caused Trump to be ranked very highly during the debate.
But towards the end, the ranks of the group members started
to converge as the moderator interrupted Trump more fre-
quently. Finally, the audience which stayed neural through-
out the debate committed an interrupt against Trump. This
event led the ranking algorithm to bump their ranking to the
top spot. In the vice presidential debate the candidates inter-
rupted each other equally and thus no single member was
dominant for a long period of time. The state variant sequence
for both debates was very long with very few stable states
informing us that the groups never achieved a distinct hierar-
chy. This is reflective of highly competitive debates which
these were. Finally, as we had just two groups, comparing
them with the inter-group representations did not reveal any
new information.

8 DISCUSSION

In this work, we presented PeckVis, a visual analytics system
to inspect the formation and maintenance of dominance hier-
archies in small groups. Using our system, experts success-
fully investigated interaction sequences within groups and
the hierarchies these interactions among group members
form. We demonstrated the use of a sequence of node-link
graphs in conjunctionwith amusic notation and ranking chart
in an interactive dashboard to investigate the contribution of
interactions to a dominance hierarchy. Additionally, a small
multiples layout of these representations assisted the experts
in interactively learning about the similarities in hierarchy for-
mationwithin and acrossmultiple species.

The experts whoworkedwith our system stated that it was
intuitive and easy to use. They said that having multiple visu-
alizations of their data interactively linked in a single interface
allowed them to better understand the data and speed up
their analyses. The experts informed us that by explicitly
encoding the instantaneous rank, reversals, intransitive triads
and state types in the state variant sequence, theywere able to
detect and investigate patterns that were hard to find. The

enhancements to the music notation also helped the experts
connect the state and state variant sequence to the interactions
while better highlighting bursts. Additionally, they stated
that using the comparative interface alongwith the user inter-
actions made it easy to inspect the similarity among states.
The experts often switched between the comparative interface
and single group interface. Theywould first use theMDS plot
to select similar and dissimilar groups and extract their differ-
ences in the comparative interface; they then went back to the
single group interface to study the differences. For example, if
a user found a group with a sequence of uncommon states in
the comparative interface, he would investigate this sequence
with the single group interface where he could examine the
formation and stability of uncommon states. The experts
stated that the DTW distance performed well to show groups
that were similar based on their state or state variant sequen-
ces. However, the similarity measures were not able to help
them identify groups that were similar based on their rank
evolution or interactionmatrix.

While our system was primarily designed to investigate
hierarchies in animal groups, we showed that it can be
adapted to analyze hierarchies in other situations just as well.
The prime candidates would be situations involving competi-
tive behavior bymultiple entities such as individuals or teams
competing for positions in a sports tournament and online
games or to debates as demonstrated in Section 7.

9 LIMITATIONS AND FUTURE WORK

PeckVis was designed for social scientists working with small
groups. Hence in its current form it does not scale well to the
analyses of large groups. As group size increases the number
of axes for each subject in themusic notationwould increase as
well making it infeasible to use on a regular computer display.
The state space makes use of node-link diagrams to represent
the interaction networks but this would be inappropriate for
large networks as demonstrated by previous work [21], [27]. A
possible solution would be to use an alternate representation
such as an adjacency matrix [6]. But these representations also
have problems with scaling when comparing extremely large
networks. Addressing the issue usually involves the use of
glyphs or only showing differences between adjacent graphs
both of which can be applied to our system by replacing the
state sequencewith a glyph or diff sequence.

Currently, PeckVis requires the manual selection of a rank-
ing algorithm based on the user’s domain expertise. In the
future, we aim to devise a mechanism to at least suggest if not

Fig. 6. The music notation representation, Elo ranking chart, and the balloon plot for the presidential (left) and vice-presidential (right) debates. In the
presidential debates we see multiple bursts of interrupts from Trump but eventually the two debaters’ ranks converged, it also shows he committed
the most interrupts. But in the vice-presidential debate the candidates each had one burst of interrupts (between interactions 10-20 and 70-80).
However, they both committed a similar number of interrupts and kept interrupting each other thus never creating a clear hierarchy.
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auto-select the most suitable ranking algorithm. We also
believe that group comparison techniques can be improved.
First, we aim to design a better measure of similarity to help
experts find groups that have similar rank evolutions and
interaction matrices. Second, a small multiples layout will be
inefficient for experts to find similarities for a large number of
groups. To address this issue we proposemerging the state or
state variant sequences of similar groups and representing
them as a composite sequence highlighting areas of small dif-
ference much like in DiffAni [33]. We can then use the small
multiples display to compare these composite sequences.
Additionally, our evaluation only involved two users. We
plan to conduct amore detailed evaluation that involvesmore
users to further test our system design and incorporate refine-
ments if necessary.
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