

1 **Investigations of Aerobic Methane Oxidation in Two Marine Seep**
2 **Environments Part 1: Chemical Kinetics**

3

4 **E. W. Chan^{1,6}, A. M. Shiller², D. J. Joung², E. C. Arrington³, D. L. Valentine⁴, M. C.**
5 **Redmond⁵, J. A. Breier⁶, S. A. Socolofsky⁷, J. D. Kessler¹**

6 ¹Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA

7 ²Division of Marine Science, University of Southern Mississippi, Stennis Space Center,
8 MS 39529, USA

9 ³Interdepartmental Graduate Program in Marine Science, University of California – Santa
10 Barbara, Santa Barbara, CA 93106, USA

11 ⁴Dept. of Earth Science and Marine Science Institute, University of California – Santa
12 Barbara, Santa Barbara, CA 93106, USA

13 ⁵Dept. of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC
14 28223, USA

15 ⁶School of Earth, Environment, and Marine Sciences, University of Texas Rio Grande
16 Valley, Brownsville, TX 78597 USA

17 ⁷Zachry Dept. of Civil Engineering, Texas A&M University, College Station, TX 77843
18 USA

19

20 **Key Points:**

21 • Aerobic methane oxidation was investigated and showed that two moles of
22 oxygen are not required to oxidize one mole of methane.

23 • After a lag time lasting days to weeks, methane was rapidly oxidized in a few
24 days following first-order chemical kinetics.

25 • These results appear consistent between different oceanic environments, despite
26 regional variabilities.

27

28 **Abstract**

29 Microbial aerobic oxidation is known to be a significant sink of marine methane (CH_4),
30 contributing to the relatively minor atmospheric release of this greenhouse gas over vast
31 stretches of the ocean. However, the chemical kinetics of aerobic CH_4 oxidation are not
32 well established, making it difficult to predict and assess the extent that CH_4 is oxidized
33 in seawater following seafloor release. Here we investigate the kinetics of aerobic CH_4
34 oxidation using mesocosm incubations of fresh seawater samples collected from seep
35 fields in Hudson Canyon, US Atlantic Margin and MC118, Gulf of Mexico to gain a
36 fundamental chemical understanding of this CH_4 sink. The goals of this investigation
37 were to determine the response or lag time following CH_4 release until more rapid
38 oxidation begins, the reaction order, and the stoichiometry of reactants utilized (i.e., CH_4 ,
39 oxygen, nitrate, phosphate, trace metals) during CH_4 oxidation. The results for both
40 Hudson Canyon and MC118 environments show that CH_4 oxidation rates sharply
41 increased within less than one month following the CH_4 inoculation of seawater.
42 However, the exact temporal characteristics of this more rapid CH_4 oxidation varied
43 based on location, possibly dependent on the local circulation and biogeochemical
44 conditions at the point of seawater collection. The data further suggests that methane
45 oxidation behaves as a first-order kinetic process and that the reaction rate constant
46 remains constant once rapid CH_4 oxidation begins.

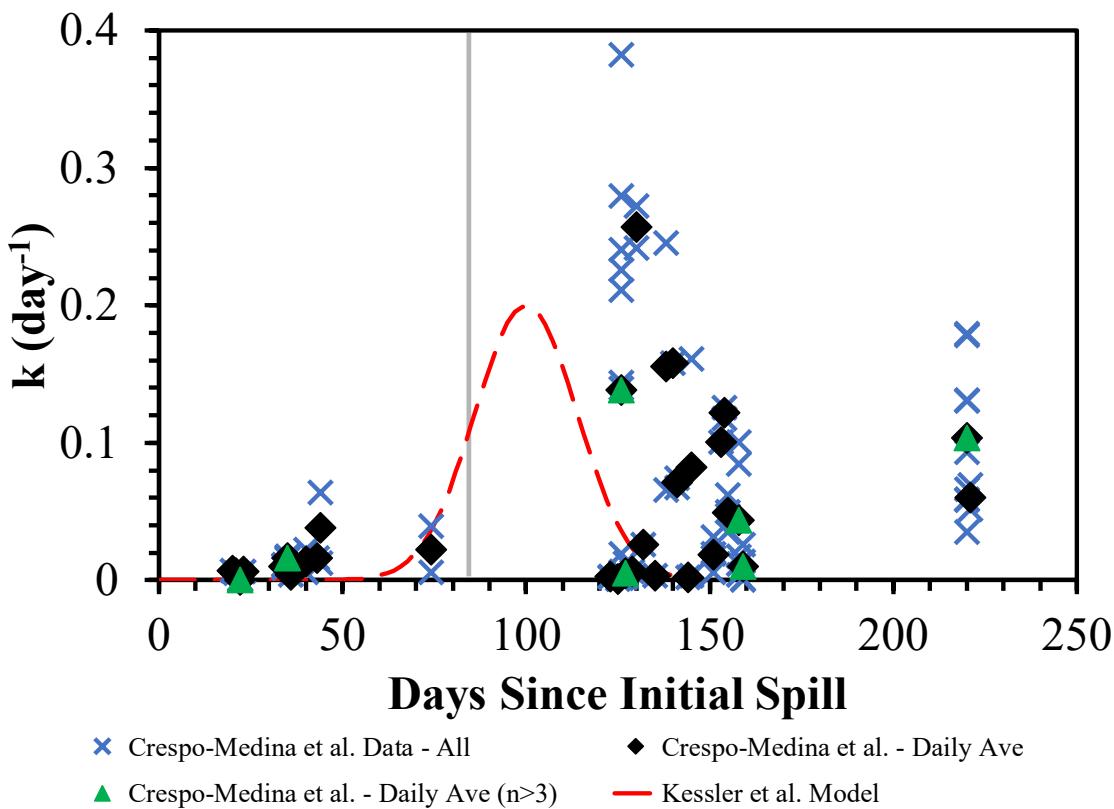
47

48 **Plain Language Summary**

49 In and below the seafloor resides the largest global reservoir of methane, a potent
50 greenhouse gas. Following the release of methane from the seafloor, a significant fraction
51 dissolves in the overlying seawater and is oxidized by indigenous microorganisms,
52 helping to prevent its atmospheric release. However, the timing and chemical
53 requirements for this process to occur are not well established, making it difficult to
54 predict and assess the efficiency of methane oxidation following seafloor release. This
55 study systematically measured the chemical changes that are associated with aerobic
56 methane oxidation in seawater using water collected from regions of active seafloor
57 methane release along the U.S. Atlantic margin and the Gulf of Mexico. These results
58 help to refine our understanding of how quickly and how much methane can typically be
59 oxidized in seawater.

60 **1 Introduction**

61 The atmospheric concentration of methane (CH_4) has increased by a factor of 2.5 from
62 preindustrial levels of ~ 700 ppb to 1850 ppb today, showing the importance of
63 determining the sources and sinks of this greenhouse gas (Dlugokencky et al., 2011).
64 While the oceans account for only ~ 1 to 3% ($4\text{-}15 \text{ Tg yr}^{-1}$) of all atmospheric sources of
65 CH_4 today (Dlugokencky et al., 2011), the CH_4 sequestered in and below the seafloor
66 forms the largest CH_4 reservoir on Earth, whose stability is in part controlled by
67 temperature and pressure (Ruppel and Kessler, 2017). The oceanic CH_4 system is


dynamic with formation mechanisms of CH₄ including thermogenic, biogenic, and abiogenic processes (e.g., Karl et al., 2008; Kelley and Früh-Green, 1999; Sherwood Lollar et al., 2002; Oremland and Taylor, 1978). While seafloor emissions are capable of releasing CH₄ from all of these sources to the overlying waters, the depth below the sea surface, the temperature of the surrounding water, and total CH₄ concentration can cause CH₄ to be trapped in sediments as ice-like clathrate hydrates (Ruppel and Kessler, 2017). Nonetheless, globally significant releases of CH₄ carbon from the seafloor have been hypothesized to have occurred during the geologic past, influencing past climate, and possibly occur today (Ruppel and Kessler, 2017). For example, seafloor CH₄ releases are one possible explanation for the global change in carbon cycle dynamics at the Paleocene-Eocene Thermal Maximum (PETM) (Dickens, 2011; Dickens et al., 1995; Higgins and Schrag, 2006; Zeebe et al., 2016). This hypothesis postulates that CH₄ hydrates were destabilized through deep-ocean warming and that the newly released CH₄ was oxidized in sediments and the overlying water column, injecting globally significant amounts of carbon into the active global carbon system (Dickens et al., 1995). In the modern ocean, seafloor CH₄ releases are likely not insignificant (Ruppel and Kessler, 2017), yet the relatively minimal emission of oceanic CH₄ to the atmosphere indicates active CH₄ oxidation in seawater (Reeburgh, 2007; Valentine, 2011).

The single largest seafloor CH₄ release that was directly observed occurred during the 2010 Deepwater Horizon (DWH) well blowout. In addition to oil, large quantities of CH₄ were emitted into the deep waters of the Gulf of Mexico during this incident, and measurements suggest that the released CH₄ was contained in intrusion layers in the deep Gulf waters (800–1100 m) with minimal direct emission to the atmosphere (Camilli et al., 2010; Crespo-Medina et al., 2014; Kessler et al., 2011; Ryerson et al., 2012; Socolofsky et al., 2011; Valentine et al., 2010; Yvon-Lewis et al., 2011). Several studies investigated the microbial oxidation of released CH₄ in the Gulf waters during and following this release (Crespo-Medina et al., 2014; Du and Kessler, 2012; Dubinsky et al., 2013; Kessler et al., 2011; Rogener et al., 2018; Shiller et al., 2017; Valentine et al., 2010), as other work has shown aerobic CH₄ oxidation to be a substantial removal mechanism for CH₄ entering the ocean water column (e.g. Leonte et al., 2017; de Angelis et al., 1993; Mau et al., 2013; Pack et al., 2015; Valentine et al., 2001). Metatranscriptomes showed a clear increase in hydrocarbon monooxygenase gene expression in late May 2010, providing evidence that the oxidation of CH₄ and another low-molecular-weight alkane had already commenced at 30 days after the onset of the spill (Rivers et al., 2013), while Valentine et al. (2010) suggested that the oxidation of ethane and propane was occurring more rapidly than CH₄ in early June. Also, stable isotope probing experiments were carried out with DWH samples, indicating that methanotrophs responded more slowly compared to other organisms responsible for the oxidation of ethane, propane, and some higher molecular weight hydrocarbons (Redmond and Valentine, 2012).

Kessler et al. (2011) and Du and Kessler (2012) used the decrease in dissolved oxygen (DO) in the deepwater CH₄ and hydrocarbon intrusion layers as a tracer of CH₄ oxidation during the DWH incident and determined that the DO loss integrated over the entire

110 plume area was sufficient to account for complete oxidation of released CH₄. The Kessler
111 et al. (2011) study also assembled a pseudo-first-order model to predict that the greatest
112 amount of CH₄ oxidation (averaged over the entire deep-water plume) occurred ~60-120
113 days from the start of the spill, and the more comprehensive DO anomaly data set
114 presented in Du and Kessler (2012) supported the timing of the predicted rapid CH₄
115 oxidation. Crespo-Medina et al. (2014) presented numerous measurements of CH₄
116 oxidation rates spanning this entire event, from spring through winter of 2010. The first-
117 order oxidation rate constants produced from their CH₄ oxidation rate measurements
118 (Crespo-Medina et al., 2014) generally support the predicted average values for first-
119 order CH₄ oxidation rate constants (Kessler et al., 2011) up to 70 days after the start of
120 the spill (Figure 1). However, many measured CH₄ oxidation rate constants do not agree
121 with the model for times greater than 120 days after the spill when the dissolved CH₄
122 concentrations decreased significantly below values measured during active emission
123 from the well. The model implicitly assumed that CH₄ oxidation rate constants were
124 proportional to cell density or the activity of the microbial population involved in aerobic
125 CH₄ oxidation, and thus would increase following CH₄ injection and decrease as the new
126 microbial population was remineralized when CH₄ concentrations decreased (Kessler et
127 al., 2011). However, the measurements suggested that the rate constants remain high
128 following rapid CH₄ oxidation and only decrease over longer timescales (Crespo-Medina
129 et al., 2014; Rogener et al., 2018) (Figure 1). Unfortunately, only two CH₄ oxidation rate
130 measurements were reported in the deep intrusion layer (800-1100 m) during the ~60 to
131 120-day window when Kessler et al. (2011) predicted that the highest average amounts of
132 CH₄ oxidation would occur, and the dates of collection for those two samples are
133 uncertain (Crespo-Medina et al., 2014). Thus, the investigation presented here was
134 initially motivated by the DWH blowout to provide empirical biogeochemical data to
135 thoroughly characterize the temporal changes in microbial oxidation following a CH₄
136 release. However, these experiments were designed to not only help interpret the fate of
137 CH₄ following the DWH blowout but also to provide more general information on the
138 chemical kinetics of aerobic CH₄ oxidation.

139

140
141 **Figure 1.** Predicted and measured first-order rate constants for the oxidation of CH₄
142 released during the Deepwater Horizon blowout (DWH) in the Gulf of Mexico. Here we
143 assume that CH₄ oxidation rate constants vary proportionally to the cell density or
144 activity of the microbial population involved in aerobic CH₄ oxidation. Red dashed line =
145 modeled change in CH₄ oxidation rate constants averaged over the entire deepwater
146 plume from Kessler et al. (2011). Blue \times = individual rate constants reported in Crespo-
147 Medina et al. (2014) in the deep plume (800-1100 m water depth). Black Diamond = rate
148 constants, averaged daily, reported in Crespo-Medina et al. (2014) in the deep plume
149 (800-1100 m water depth). Green Triangle = rate constants, averaged daily when the
150 number of data points in a specific day is >3 , reported in Crespo-Medina et al. (2014) in
151 the deep plume (800-1100 m water depth). The vertical gray line represents the day the
152 blowout was stopped and no longer emitting CH₄. The lack of empirical data is apparent
153 between 60-120 days after the initiation of the spill when Kessler et al. (2011) predicted
154 the greatest change in methane oxidation rate constants averaged over the entire
155 deepwater plume.

156
157 Here we conducted mesocosm experiments with CH₄-laden seawater while measuring the
158 chemical changes over time during CH₄ oxidation events. To assess regional variability
159 in CH₄ oxidation kinetics, seawater was collected in two different locations where CH₄

160 bubbles were escaping the seafloor: a) Hudson Canyon off the coast of New York and
161 New Jersey near the upper limit of CH₄ hydrate stability and b) the deep Gulf of Mexico
162 near waters once impacted by the DWH blowout (Figure 2). Two goals guided this
163 investigation. The first goal was to determine the chemical kinetics for this oxidation
164 reaction, which included the lag time, or the time between CH₄ exposure and the onset of
165 rapid consumption, and the reaction order. The second goal was to determine the
166 stoichiometry of reactants utilized (i.e., CH₄, oxygen, nitrate, phosphate, trace metals)
167 during CH₄ removal from seawater. The results of these studies can be used to predict the
168 timing of and limitations on CH₄ oxidation following natural or anthropogenic release
169 based on the ambient concentrations of bioactive compounds.

170 **2 Materials and Methods**

171 Waters influenced by known CH₄ seep activity were chosen to examine CH₄ oxidation
172 kinetics. The first research expedition was aboard the R/V *Endeavor* on the North
173 Atlantic Bight from 7-12 July 2014 (Table 1, Figure 2). The recently discovered CH₄
174 seeps off the coast of New York and New Jersey in Hudson Canyon (HC) (Rona et al.,
175 2015; Skarke et al., 2014; Weinstein et al., 2016) provided an appropriate site for these
176 experiments. Water samples were collected both inside the seep field as well as outside of
177 HC in waters not directly impacted by CH₄ seeps, as determined by the presence or
178 absence of acoustically detected bubbles (Leonte et al., 2017; Weinstein et al., 2016). The
179 second research expedition was from 9-20 April 2015 aboard the E/V *Nautilus* at the
180 Sleeping Dragon seep field site (MC118) in the Gulf of Mexico (Table 1, Figure 2).
181 MC118 is 17 km from the Deepwater Horizon wellhead and provided physical-chemical
182 conditions similar to what may have been experienced during the DWH blowout in 2010.
183 The results obtained from HC and MC118 were analyzed to determine regional
184 similarities and variabilities in CH₄ oxidation kinetics.

185

186

187 **Figure 2.** Study locations (A) Hudson Canyon and (B) a gas seep atop Woolsey Mound
188 (a.k.a. Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of
189 Mexico. Seawater samples in Hudson Canyon were collected with Niskin bottles cleaned
190 for trace metal analysis and were used to sample waters that were both directly impacted
191 and not directly impacted by CH₄ seepage. Water from MC118 was collected via ROV in
192 locations visibly impacted by seafloor bubble emissions. On the left are the Mesocosm
193 Incubation System (MIS) cartridges mounted to the chassis of ROV *Hercules*. On the
194 right is the Suspended-Particle Rosette (SUPR) sampler inlet mounted to the starboard
195 manipulator of ROV *Hercules* and methane bubbling upward from the seep site. A
196 bubble-deflecting shield (red disk) was attached to the inlet of the SUPR sampler to
197 collect seawater without collecting gas bubbles.

198
199

200 **Table 1.** Hudson Canyon and Sleeping Dragon (MC118) characteristics

Site	Hudson Canyon	Sleeping Dragon (MC118)
Approximate Coordinates	39° 33'N 72° 24'W	28° 51'N 88° 29.5'W
Topography	Semi-enclosed	Open
Sampling Depths (m)	482 – 515	794, 888
Bottom Temperature (°C)	5.25° – 6.24°	5.31° – 8.79°
Sampling Dates	10 July 2014	13-17 April 2015
Sampling Method	Niskin bottles	ROV (SUPR Sampler)
Presence of Oil	No	Yes
Salinity (ppt)	35.01 – 35.05	34.91 – 35.04
<i>In Situ</i> Dissolved Oxygen Concentration Range (µM)	201 – 232	141 – 198
<i>In Situ</i> CH ₄ Concentration range (nM)	2.94 – 78.8	51,000 – 221,000
Additional CH ₄ Added for Incubation	Yes	No

201

202 **2.1. Incubation and Analysis System**

203 A dissolved gas analyzer system (DGAS) and mesocosm incubation system (MIS) were
 204 recently developed (Chan et al., 2016) and were used here to measure the concentration
 205 and natural stable isotopes of gases dissolved in seawater throughout mesocosm
 206 incubation experiments. (The natural stable isotope results are presented in a companion
 207 paper.) In brief, the DGAS unit was developed for the automated analysis of seawater
 208 incubations at user-defined intervals, allowing for the relatively high temporal resolution
 209 analysis of biochemical changes associated with aerobic CH₄ oxidation. The MIS was
 210 developed to house large mesocosm samples in a temperature controlled and clean
 211 manner that did not allow gases to diffuse between the sample and the outside
 212 environment over the timeframe of this experiment. The MIS contains custom 15 L
 213 sample bags that were tested for their cleanliness (i.e., no leaching of trace metals and
 214 nutrients) and gas impermeability over time (Chan et al., 2016). They were determined to
 215 be a better alternative than borosilicate glass as sample containers for these experiments
 216 because the bag material does not leach trace metals, is impermeable to gas exchange,
 217 and is of sufficient strength to house sample volumes >10 L. Additionally, since the bags
 218 are flexible, aliquots can be periodically removed without contaminating the mesocosm
 219 by introducing a headspace for displacement. Since the DWH CH₄ oxidation event
 220 occurred over approximately 80 days, mesocosm incubations were designed to contain
 221 enough seawater to provide the necessary aliquots for analysis over that same time. To

222 protect the bags from physical harm and provide a storage solution inside the incubator,
223 the bags were housed in custom-made polycarbonate protective cartridges. In addition,
224 the cartridges provide an easier way to carry the bags during sampling. Once the
225 mesocosms were collected, the DGAS and MIS were connected to analyze the
226 mesocosms based on set intervals thus allowing near real-time dissolved gas
227 concentration and stable isotope measurements (Chan et al., 2016). The dissolved gas
228 concentrations of CH₄, O₂, and CO₂ were measured every few seconds during each
229 mesocosm analysis, and the individual measurements were averaged over a two-minute
230 window. After analysis of the data, it was determined that the DO analyzer manifold
231 malfunctioned during the HC mesocosm incubations, resulting in the DO data from this
232 experiment being sporadically unusable. For this reason, none of the DO data for HC was
233 considered in the biogeochemical analyses. The DO analyzer manifold was redesigned
234 before the MC118 experiments, resulting in usable DO data.

235 **2.2. Mesocosm collection**

236 HC mesocosm experiments were initiated aboard the R/V *Endeavor* from 7 - 12 July
237 2014. Seawater was collected using trace metal cleaned Niskin bottles with external
238 springs mounted to a CTD rosette (Figure 2; Shiller et al., 2017). Once the samples were
239 back on the ship's deck, two 10 L Niskin bottles were connected to a MIS cartridge to fill
240 with 15 L of seawater. The bags were acid cleaned, rinsed with distilled water, and rinsed
241 with the sample seawater before filling to 15 L with seawater. Water samples were
242 collected from inside the seep field (39° 32.705'N, 72° 24.259'W) and from outside HC
243 in waters not directly influenced by CH₄ seeps (39° 17.236'N 72° 12.080'W). Due to the
244 spatial variance of the seafloor seeps, the initial CH₄ concentrations ranged from 2.94 –
245 78.8 nM. Therefore, a measured amount (150 ± 1.5 mL) of isotopically standardized CH₄
246 ($\delta^{13}\text{C-CH}_4 = -20\text{‰}$; Kessler and Reeburgh (2005)) was systemically added to each
247 sample using a mass flow controller and gas filter apparatus to increase dissolved CH₄
248 concentrations to ca. 300 μM CH₄. These samples were allowed 24 hours to mix and
249 equilibrate inside the MIS before the headspace was removed prior to long-term
250 incubation.

251 The MC118 mesocosms in the Gulf of Mexico were collected 12 - 17 April 2015 aboard
252 the E/V *Nautilus* located at 28° 51.129'N, 88° 29.51'W directly from seeps at the
253 seafloor between 794 and 888 m depth (Table 1, Figure 2). This experiment was carried
254 out using the Suspended-Particle Rosette (SUPR) sampler (Breier et al., 2009) mounted
255 to the Remotely Operated Vehicle (ROV) *Hercules*. The SUPR sampler is an *in situ*
256 seawater pumping system and was developed to sample dynamic, high gradient, ocean
257 geochemical features at areas such as seep sites. The inlet attached to the ROV arm
258 pumps the seawater into bottles mounted to the SUPR sampler chassis. However, for this
259 study, the system was adapted to pump directly into three of the MIS cartridges mounted
260 to the ROV chassis, which improved the sampling precision substantially (Figure 2).
261 Since samples were taken directly at the seafloor from waters visibly impacted by CH₄
262 bubbles, the natural dissolved CH₄ concentrations were high (51 to 221 μM); thus it was

263 not necessary to add additional CH₄ to these mesocosms. This simplified the procedure to
264 incubate the MC118 mesocosms as there was no added headspace equilibration time, in
265 contrast to the HC samples.

266 **2.3. Dissolved Gas Concentration Calculations**

267 The dissolved concentrations of CH₄ measured with the DGAS system give units of ppm
268 (Chan et al., 2016), and it was preferred to convert this into units of μmol of CH₄ L⁻¹.
269 Two independent methods were used to convert the measured ppm concentrations into
270 the molar concentrations of dissolved CH₄. The first method prepared dissolved CH₄
271 standards by filling mesocosm incubation bags with sterile water containing known
272 concentrations of dissolved CH₄. These CH₄ standards were also stored in the MIS and
273 analyzed with the DGAS system during the mesocosm experiments at sea. Standard
274 calibration curves were determined for each experiment and were used to convert
275 measured ppm units into units of μmol of CH₄ L⁻¹. A second independent technique used
276 the solubility of CH₄ (Wiesenburg and Guinasso, 1979) along with the known volumes of
277 the liquid aliquot and the gaseous headspace being analyzed with the DGAS system to
278 convert the measured ppm concentrations into units of μmol of CH₄ L⁻¹. Both techniques
279 produced similar results. The measured CO₂ concentration values were converted from
280 ppm to μmol of CO₂ L⁻¹ following the second technique, but by incorporating the
281 solubility for CO₂ at a salinity of 35 and 5°C (53350 $\mu\text{M atm}^{-1}$) (Weiss, 1974).

282 **2.4. Microbial community analyses**

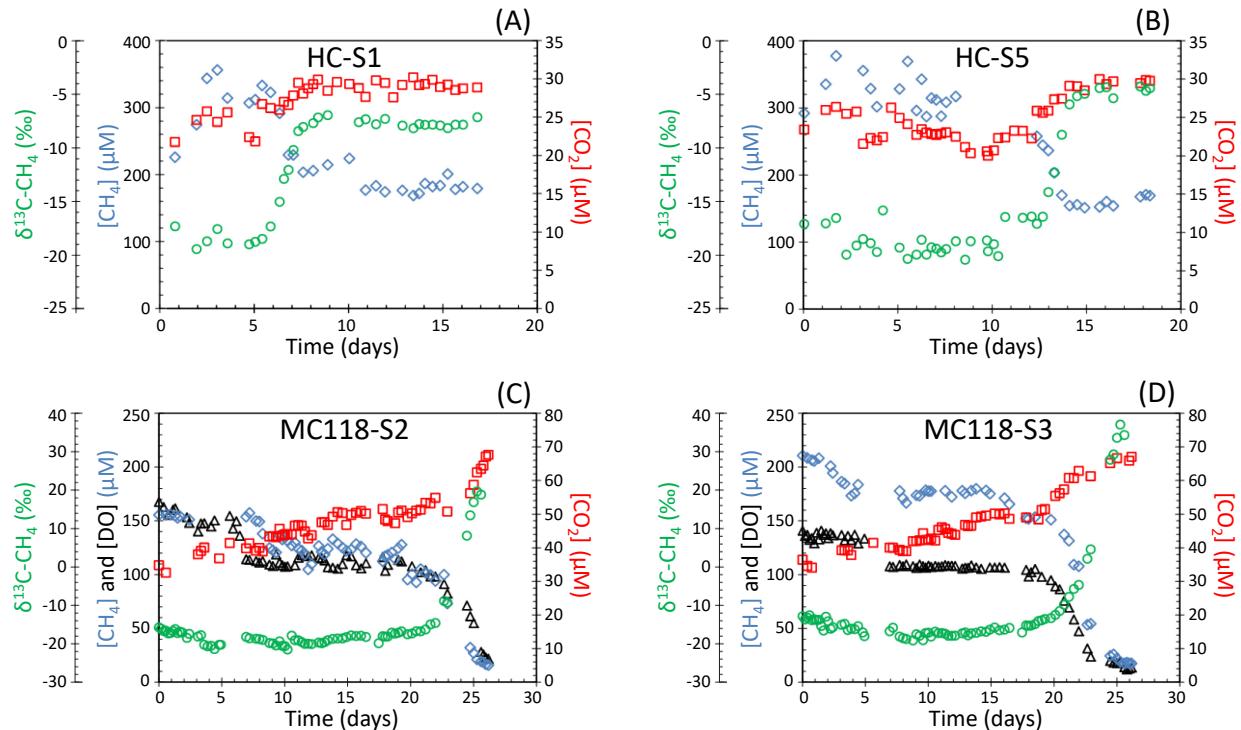
283 Samples for DNA analysis were collected by removing 1 L aliquots from the mesocosm
284 experiments at several time intervals and filtering them through 0.22 μm Sterivex filters
285 (Millipore). The filters were stored at -80°C until analysis. DNA was extracted with the
286 FastDNA SPIN Kit for Soil (MP Biomedicals). DNA was quantified with a Qubit 2.0
287 fluorometer (Life Technologies) and the Qubit dsDNA HS Assay Kit (Thermo Fisher
288 Scientific). Amplification and sequencing of the V4 region of the 16S rRNA gene was
289 done by Seqmatic with the Illumina MiSeq platform (2 x 250 bp), following the protocol
290 described by Caporaso et al. (2011). Sequence analysis was conducted with Mothur
291 version 1.36.0 as described in the MiSeq SOP (Kozich et al., 2013), except that the
292 SILVA (version 123) reference taxonomy was used for classification. This resulted in an
293 average of 149,373 reads per sample. Sequences are available in the Sequence Read
294 Archive under BioProject number PRJNA311933.

295 Aliquots were taken to detect bacterial cell abundance at various time points throughout
296 both HC and MC118 mesocosms and were enumerated using flow cytometry following
297 the protocol of Wear et al. (2015). Samples were collected in sterile cryovials, preserved
298 with 0.2% final concentration of paraformaldehyde (Electron Microscopy Sciences,
299 Hatfield, Pennsylvania), flash frozen in liquid nitrogen, and stored frozen until analysis.
300 Bacteria were stained with SYBR Green I (Molecular Probes) and enumerated with a BD
301 LSRII flow cytometer (Becton Dickinson, San Jose, California) with an autosampler

302 attachment. Measurement of bacterial abundances for the HC samples was not successful
303 due to technical failure with the flow cytometer after the preserved samples had already
304 been thawed. However, the MC118 samples were analyzed successfully.

305 **2.5. Macronutrient and Trace Metal Analyses**

306 For each macronutrient analysis, 20 mL of seawater were removed from the mesocosm
307 and passed through a 33 mm diameter syringe filter with a 0.45 μm pore size PVDF
308 membrane (EMD Millipore) and stored frozen in HDPE scintillation vials until analysis.
309 A Lachat Instruments QuikChem 8500 Series 2 Automated Ion Analyzer (Hach) was
310 used by the UCSB Marine Science Institute Analytical Laboratory to obtain nutrient
311 concentrations. Detection limits for nitrate+nitrite ($\text{NO}_3^- + \text{NO}_2^-$), ortho-phosphate
312 (PO_4^{3-}), and ammonium (NH_4^+) are 0.20 μM , 0.10 μM , and 0.10 μM , respectively.


313 Water samples were isolated at interspersed time intervals to quantify the concentration
314 of trace metals in the incubations. The specific trace metals targeted were Mn, Fe, Cu,
315 Zn, Mo, La, Ce, Pr, Nd, Sm, and Eu. For analysis of dissolved trace elements, 7 mL of
316 sample was spiked with a mixture of isotopically-enriched Fe-57, Cu-65, Zn-68, Nd-145,
317 Sm-149, and Eu-153 (Oak Ridge National Labs). Samples were then extracted/pre-
318 concentrated using a SeaFAST system (Elemental Scientific, Inc) operated in offline
319 mode. A similar online SeaFAST extraction procedure is described by Hathorne et al.,
320 (2012). The extracted samples were subsequently analyzed using a Thermo-Fisher high-
321 resolution ICP-MS (Element XR) with an Apex-FAST high-efficiency sample
322 introduction system including a Spiro desolvator (Elemental Scientific, Inc.). The
323 enriched isotope spikes allowed for isotope dilution quantification of the spiked elements
324 and also served to provide counts/sec calibration factors for elements that were not spiked
325 with enriched isotopes (Mn, Mo, La, Ce, and Pr). This calibration was also examined
326 with a standard made in dilute nitric acid. Precision and recovery were checked by
327 analysis of a large-volume composite North Atlantic surface seawater sample. Spiked
328 (with a natural isotopic abundance elemental spike) and unspiked aliquots of this sample
329 were analyzed twice in each analytical run. A Ba standard was also run to check for BaO^+
330 interference on several isotopes and Ba in the extracted samples was also monitored. Due
331 to the extraction resin in the SeaFAST system (Nobias PA-1) discriminating against Ba,
332 in addition to the reduction of the BaO^+ interference by the desolvation system, BaO^+ was
333 less than 0.1% of the counts in Eu-151 and Eu-153. A detailed description of the methods
334 can be found in Shiller et al. (2017) and Ho et al. (2018). Detection limits were typically
335 $<1\%$ of the concentrations reported here except for Ce and Eu, where detection limits
336 were $<5\%$ of the reported concentrations. Precision (1 σ) was typically $\pm 2\%$ and
337 recoveries were typically $102 \pm 3\%$.

338 All data and descriptions of the analyses from these experiments are available through the
339 Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) (Kessler
340 and Chan, 2017).

342 **3. Results**343 **3.1. Chemical Kinetics for Aerobic CH₄ Oxidation**

344 Each incubation was monitored for unambiguous indications of aerobic CH₄ oxidation by
 345 assessing changes in dissolved gas concentrations, isotope composition, microbial
 346 community composition, cell densities, and micro- and macro-nutrients and this
 347 information was used to determine the beginning and ending of more rapid CH₄
 348 oxidation. While all experiments appeared to support microbial growth based on the
 349 microbial community composition and changes in cell density, partial blockages in some
 350 of the 1/8" tubing used to remove water from the MIS for chemical analysis caused
 351 variable results in several specific mesocosms. (To avoid this potential complication,
 352 future experiments are advised to insulate the 1/8" tubing when working at temperatures
 353 approaching 0°C.) Considered here are the experiments that did not experience such
 354 analytical variabilities. Six of the ten mesocosms with waters collected inside and
 355 adjacent to HC displayed clear biogeochemical signs of CH₄ oxidation (Figures 3A-B and
 356 S1). Four of the ten mesocosms collected with waters at MC118 displayed clear
 357 characteristics of CH₄ oxidation (Figures 3C-D and S3-S4).

358

359 **Figure 3.** Dissolved concentrations of CH₄ (blue diamonds), CO₂ (red squares), and DO
 360 (black triangles), as well as $\delta^{13}\text{C-CH}_4$ (green circles) over the course of the incubations.
 361 (A) HC-S1 (on seep), (B) HC-S5 (off seep), (C) MC118-S2 (on seep) and (D) MC118-S3

362 (on seep). All data in these figures is available through the Gulf of Mexico Research
 363 Initiative Information & Data Cooperative (GRIIDC) (Kessler and Chan, 2017).

364

365

366

367

368

369

370

371

372 **Table 2.** The characteristics for chemical kinetics determined in Hudson Canyon (HC)
 373 and MC118. The units for lag time and duration are days, DO:CH₄ is unitless ($\mu\text{M}/\mu\text{M}$),
 374 and first-order oxidation rate constants (k) is day⁻¹.

375

Sample	Location	Lag Time (d)	Duration (d)	DO:CH ₄ (molar ratio)	k (day ⁻¹)
HC-S1	On seep	5.42	2.17	ND	0.25 ± 0.03
HC-S2	On seep	5.43	1.9	ND	0.18 ± 0.04
Ave and Std Dev	On seep	5.43 ± 0.01	2.0 ± 0.2		0.22 ± 0.05
HC-S3	Off seep	14.09	4.05	ND	0.054 ± 0.004
HC-S4	Off seep	12.64	3.05	ND	0.12 ± 0.01
HC-S5	Off seep	12.37	2.53	ND	0.24 ± 0.03
HC-S6	Off seep	8.85	6.34	ND	0.061 ± 0.003
Ave and Std Dev	Off seep	12 ± 2	4 ± 2		0.12 ± 0.09
MC118-S1	On seep	9.60	6.06	0.77	0.107 ± 0.005
MC118-S2	On seep	19.28	5.99	0.81	0.26 ± 0.04
MC118-S3	On seep	18.49	6.78	0.60	0.36 ± 0.04
MC118-S4	On seep	9.82	11.04	0.59	0.20 ± 0.02
Ave and Std Dev	On seep	14 ± 5	7.5 ± 2.4	0.7 ± 0.1	0.2 ± 0.1

376

377 3.1.1. Time to Onset of Rapid CH₄ Oxidation

378 For the Hudson Canyon experiments, seawater was collected from waters impacted by
379 known CH₄ seeps as well as waters outside of Hudson Canyon, not directly impacted by
380 seeps. All samples were incubated at the same near *in situ* temperature (6°C) to determine
381 whether the presence of natural CH₄ seepage influenced methanotrophy. The mesocosms
382 collected at the seep site (samples HC-S1 to -S2) initiated CH₄ oxidation approximately
383 one week faster than the off-seep mesocosms (samples HC-S3 to -S6; Figures 3A-B and
384 S1; Table 2). After the onset of rapid methane oxidation, the on-seep mesocosms
385 depleted their nutrient and trace metal resources and thus completed oxidation in two
386 days on average, whereas the off-seep mesocosms completed oxidation in four days on
387 average (Figure S1 and Table 2). The results from the Atlantic margin suggest that CH₄
388 oxidation can occur in waters with and without the direct influence of CH₄ seeps.
389 However, seeps in a partially enclosed environment such as a submarine canyon, likely
390 keep the waters with a higher starting density of methanotrophic bacteria and thus
391 “primed” for a faster methanotrophic response. This finding appears consistent with
392 previous studies (Leonte et al., 2017; Weinstein et al., 2016).

393 At MC118, since the mesocosms were collected directly from the seep site with an ROV,
394 the waters all contained naturally high concentrations of CH₄ leading us to the hypothesis
395 that CH₄ oxidation would occur more rapidly than in Hudson Canyon. However, this was
396 not the case, with the mesocosms taking 14 days on average to initiate rapid CH₄
397 oxidation and an additional 7.5 days on average until oxidation became limited by a
398 reactant (Figures 3C-D; Figures S3-S4; Table 2). We suspect that the less
399 topographically-restricted MC118 seep field results in more rapid replacement of the
400 ambient waters likely leading to a lower resident methanotrophic population than HC.

401

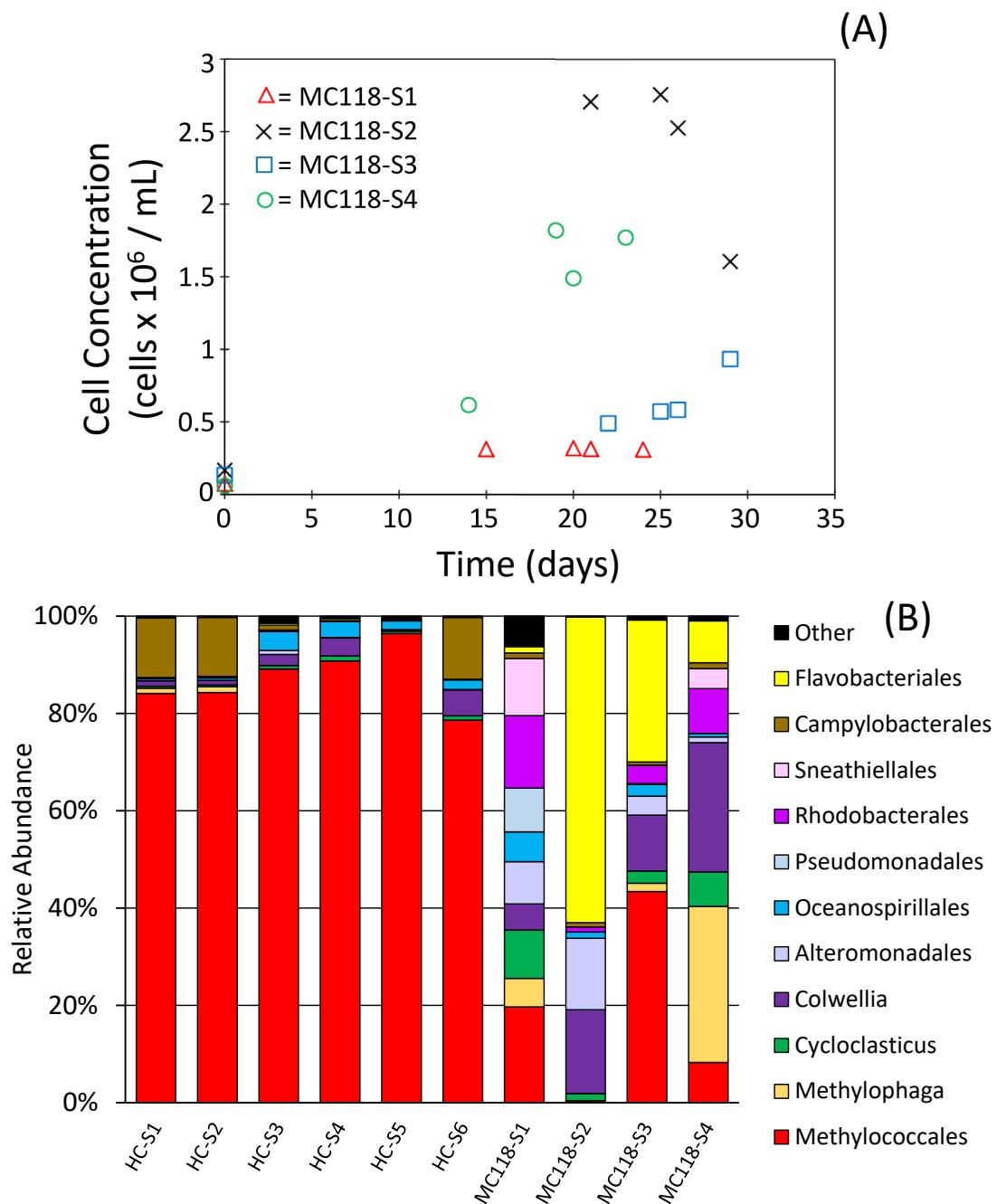
402 3.1.2. Rate Constants for CH₄ Oxidation

403 For the mesocosms that displayed CH₄ oxidation, we determined whether CH₄ oxidation
404 after the onset of rapid CH₄ oxidation followed zeroth-, first-, or second-order kinetic rate
405 laws as well as the rate constants for the resulting rate law throughout this rapid oxidation
406 process. The procedures used for determining the rate constants can be found in the
407 supporting online information. While the concentration data alone did not clearly
408 distinguish between these reaction orders, the isotope data more clearly indicated that
409 methane consumption followed first-order kinetics (see below and the companion paper).
410 This conclusion is congruent with the Kessler et al. (2011) model and the Crespo-Medina
411 et al. (2014) data from the DWH incident (Figure 1). The HC mesocosms exhibited the
412 highest first-order oxidation rate constant from HC-S1 at $0.25 \pm 0.03 \text{ day}^{-1}$ and the lowest
413 from HC-S3 at $0.054 \pm 0.004 \text{ day}^{-1}$, with an on-seep average of $0.22 \pm 0.05 \text{ day}^{-1}$ and an
414 off-seep average of $0.12 \pm 0.09 \text{ day}^{-1}$. The highest first-order oxidation rate constant at
415 MC118 was MC118-S3 at $0.36 \pm 0.04 \text{ day}^{-1}$, the lowest was MC118-S1 at 0.107 ± 0.005
416 day^{-1} , and the average was $0.2 \pm 0.1 \text{ day}^{-1}$ (Table 2). These rate constants are within the
417 range, but occasionally slightly higher than the rate constants predicted in Kessler et al.

418 (2011) (0.0001 – 0.200 day⁻¹) and measured in Crespo-Medina et al. (2014) (0.0001 –
419 0.425 day⁻¹) for CH₄ oxidation in the deepwater plumes during the DWH blowout (Figure
420 1). Since the rate constants reported here were determined in a closed-system without
421 dilution of cells and substrates, it is not surprising that the rate constants are elevated
422 compared to those determined in the natural environment where such dilution was
423 experienced (Crespo-Medina et al., 2014). It is also interesting to note the differences
424 between the observations here and what was assumed in the Kessler et al. (2011) model.
425 The Kessler et al. (2011) model assumed that the rate constants would increase at the start
426 of rapid CH₄ oxidation and decrease as CH₄ concentrations decreased and this process
427 became reactant limited. However, the empirical data here suggests that the rate constants
428 remain invariant for the remainder of this experiment after the onset of rapid CH₄
429 oxidation (Table 2, see “Duration” Column for length of time it was invariant), more
430 similar to the rate constant data reported in Crespo-Medina et al. (2014) for the deepwater
431 plumes (Figure 1).

432 3.1.3. Microbial Community

433 The goal of the biological analyses was to determine what microbial community was
434 supporting CH₄ oxidation and the extent to which this microbial population bloomed
435 during CH₄ oxidation. To accomplish this goal, changes in bacterial abundance were
436 quantified (Figure 4A) and the 16S rRNA gene was sequenced to determine the
437 composition of the microbial communities (Figure 4B). Comparing these microbial
438 analyses can suggest a growing population of specific microbial communities identified
439 by the 16S rRNA analyses. For both the HC and MC118 mesocosms, the overall results
440 suggest a growing population of organisms previously linked to CH₄ oxidation over the
441 course of these incubations. All incubations began with an extended lag period typical for
442 required adaptation and growth of the bacteria.


443 Bacterial abundance measurements for the HC mesocosms were not measured because of
444 the aforementioned technical failure. However, the DNA measurements and the change
445 in respiration rate suggest such a bloom occurred. The DNA samples from the beginning
446 of the incubation had low DNA yields and were difficult to amplify. This contrasts with
447 the DNA samples from the end of the incubation, where the sequencing of the 16S rRNA
448 gene was successful consistent with higher cellular abundances (Table S2).
449 Methylococcales, which have been previously linked to aerobic CH₄ oxidation (e.g.,
450 Redmond and Valentine, 2012; Redmond et al., 2010), constituted 78 – 97% of 16S
451 rRNA genes sequenced in HC (Figure 4B). The dominance of organisms previously
452 linked to CH₄ oxidation in the HC incubations is likely due to CH₄ being the primary
453 substrate in these mesocosms.

454 The MC118 bacterial abundance indicates cellular growth across all mesocosms (Figure
455 4A). Similar to the HC experiments, Methylococcales was also present in MC118
456 experiments, and when considered alongside cell abundance, indicates a growing
457 population of organisms previously linked to CH₄ oxidation. While Methylococcales

458 constituted a lower percentage of the microbial community in the MC118 mesocosms
459 compared to the HC mesocosms, the MC118 mesocosms were collected directly from a
460 seep that also emits other oil and gaseous hydrocarbons. Thus, this smaller fraction of
461 putative methanotrophs is presumably due to concurrent blooms of other hydrocarbon
462 degrading species (Figure 4) (Reddy et al., 2012; Redmond and Valentine, 2012;
463 Redmond et al., 2010). Redmond and Valentine (2012) observed very similar
464 communities in samples collected in this region of the Gulf of Mexico during the DWH
465 oil spill. Overall, in addition to a growing population of organisms previously linked to
466 CH₄ oxidation, this data also suggests that for both HC and MC118, a significant amount
467 of the methanotrophic biomass remained when the mesocosms were terminated that had
468 not been fully remineralized to CO₂.

469

470

471

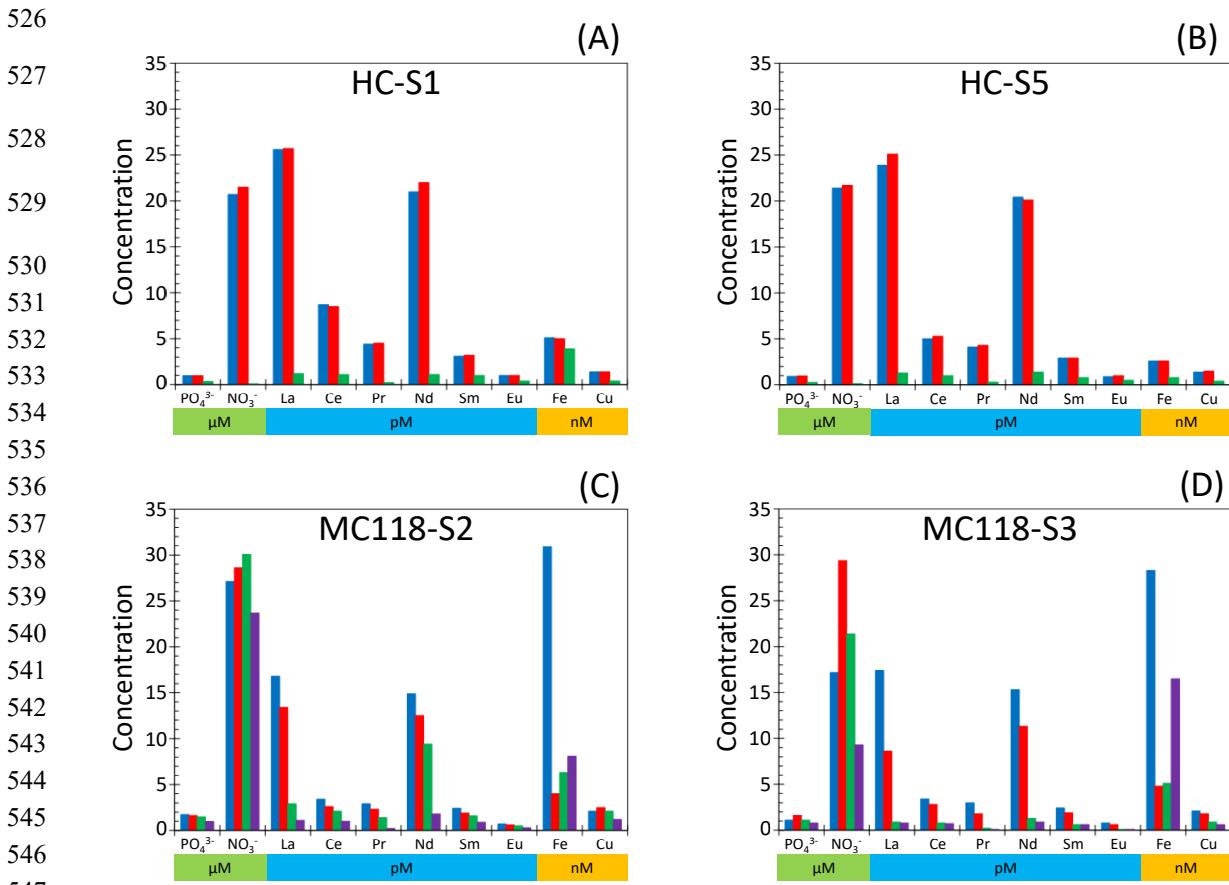
472 **Figure 4.** (A) Bacterial abundance across MC118 mesocosm samples. All samples
 473 exhibited cellular increases throughout the mesocosm incubations. Red triangles =
 474 MC118-S1, black \times = MC118-S2, blue squares = MC118-S3, and green circles =
 475 MC118-S4. (B) Microbial community compositions (%) from HC and MC118. Data
 476 displayed were collected at the end of each mesocosm.

477 **3.2. Amounts of Substrates Required to Oxidize a Quantity of CH₄**478 **3.2.1. General Dissolved Gas Concentration Changes**

479 Of the six mesocosms in HC that exhibited CH₄ oxidation, an average of 98 ± 24 µM
480 (standard deviation of natural variability between mesocosms) of the CH₄ available in
481 each sample was consumed. The average increase in dissolved CO₂ concentration was 4.7
482 ± 1.4 µM (Table S1).

483 Since the initial concentration of dissolved CH₄ was variable in the samples collected at
484 MC118 and different from the HC samples, differences in the absolute concentration
485 changes were also observed. Of the four mesocosms that displayed CH₄ oxidation,
486 dissolved CH₄ concentration showed an average decrease of 83 ± 58 µM over the course
487 of the mesocosm experiments. Where there was CH₄ oxidation, there were concomitant
488 decreases in DO and increases in dissolved CO₂ concentrations (Figures 3C-D and S3-
489 S4). On average, the DO decreased by 56 ± 38 µM during the incubations from MC118.
490 The average ratio of DO:CH₄ removed in MC118 was 0.7 ± 0.1 (Table 2). Dissolved CO₂
491 being produced further supports the occurrence of CH₄ oxidation, with an average
492 increase of 18 ± 4 µM throughout the MC118 experiments (Table S1).

493 **3.2.2. General Nutrient and Trace Metal Concentration Changes**


494 The starting concentrations of nutrients and Fe in the HC mesocosms were lower than for
495 the MC118 mesocosms. The proximity to the sediment interface and intermittent
496 resuspension of sediment by violent bursts of CH₄ (EV Nautilus, 2015) likely caused
497 these higher concentrations found at MC118 (D'souza et al., 2016), which is especially
498 apparent in the Fe concentrations (Figures 5 and S6-S9). For example, the average
499 starting Fe concentration in the HC was 3.2 ± 1.3 nM whereas MC118 displayed average
500 values of 21 ± 10 nM (Figure 5). Throughout the HC mesocosm incubations, both
501 PO₄³⁻ and NO₃⁻ had high utilization (Figures 5 and S6) and possibly limited CH₄
502 oxidation. In contrast, the MC118 incubations did not display a decrease in PO₄³⁻ and
503 NO₃⁻ to the point of limitation (Figures 5 and S7), but it is worth noting that the starting
504 concentrations of CH₄ were less in MC118 than in HC (Table S1).

505 The trace metal analysis demonstrated pronounced depletions during all mesocosm
506 incubations. The methanol dehydrogenase (MDH) enzyme that catalyzes the second step
507 in CH₄ oxidation is often Ca(II)-dependent (MxaF type) and methane monooxygenase
508 incorporates Cu and Fe (Fox et al. 1988; Murrell et al. 2000; Ross et al., 2019). However,
509 recent discoveries with methano- and methyl-trophic bacteria have suggested that light
510 rare earth elements (LREE), specifically La, Ce, Pr, Nd, and Sm, may play a significant
511 role in the oxidation of methane and methanol (Huang et al., 2018; Picone and Op den
512 Camp, 2019; Pol et al., 2014). Lanthanum (La), one of the lanthanides identified in CH₄
513 oxidation studies (Pol et al., 2014; Shiller et al. 2017), had an average decrease of 23 ± 2
514 pM in the HC mesocosms and 15 ± 2 pM in the MC118 mesocosms (Figures 5, S8, and
515 S9). While La displayed the highest percentage removed, other LREEs that were

516 removed during the microbial bloom were cerium (Ce), praseodymium (Pr), neodymium
517 (Nd), samarium (Sm), and europium (Eu); these additional LREEs exhibited significant
518 decreases, possibly limiting CH₄ oxidation (Kessler and Chan, 2017). Slightly lower
519 depletions in LREEs at MC118 were observed, which we suspect is due to the lower
520 starting concentrations of CH₄ than in the HC mesocosms. Cu and Fe decreases were also
521 notable at 0.8 to 1.3 nM and 0.7 to 1.8 nM, respectively, in HC mesocosms (Figures 5
522 and S8). MC118 mesocosms showed larger Fe decreases than HC mesocosms at 6.9 to
523 22.8 nM, perhaps due to the oxidation of non-CH₄ hydrocarbons (Figures 5 and S9).

524

525

Figure 5. Nutrient and trace metal results from HC and MC118 mesocosms. (A) – (B) Blue = time 0 days sample collected directly from the Niskin bottle, Red = time 0 days sample collected from the mesocosm bag, and Green = samples collected from the mesocosm bag at the end of the incubation, time = 19 – 21 days. The two t = 0 days samples (Blue and Red) were analyzed to determine if there was any nutrient or trace metal contamination associated with the transfer to the sample bags. (C) – (D) Since the MC118 seawater samples were collected directly into the incubation bags, all samples were collected from the bags at different times. Blue = 0 days, Red = 17 – 22 days, Green = 25 days, Violet = 29 days.

560 **4. Discussion**561 **4.1. Mesocosm Stoichiometric Ratios for Aerobic CH₄ Oxidation**

562 An elemental stoichiometric ratio for CH₄ oxidation would be useful for predicting the
563 sufficiency of the environment to supply essential nutrients and trace metals to enable the
564 oxidation of CH₄. For the most accurate determination of a stoichiometric ratio for CH₄
565 oxidation, the analysis of a pure culture of aerobic methanotrophs would be required.
566 However, using pure culture ratios to predict CH₄ oxidation based on measured
567 concentrations of nutrients or trace metals in the natural environment would be
568 challenging; competing processes in the natural environment, such as denitrification and
569 the oxidation of non-methane hydrocarbons, could also influence changes in these
570 compounds and confuse predictions of the extent of CH₄ oxidation. Furthermore,
571 cultivation tends to favor rapid-growth phenotypes that may lack environmental
572 relevance. Thus, our approach was to use mesocosm incubations so that uncertainties due
573 to these competing processes and potential cultivation bias would be included in the final
574 results. So, while our mesocosm approach likely incurs more uncertainty for a
575 stoichiometric ratio specific to CH₄ oxidation, the intent was that it would provide a
576 reasonable range of possible concentration changes to be observed during an aerobic CH₄
577 oxidation event in the natural environment. Since concentration changes in DO, CH₄,
578 nutrients, and trace metals were determined throughout these incubations, two different
579 ratios were established, one for CH₄-to-nutrients and another for CH₄-to-trace metals
580 (Table 3).

581 The CH₄:N:P ratios for HC were similar for both the on- and off-seep sampling locations,
582 with an average ratio of (144 ± 45):(30 ± 5):(1). The CH₄:DO:N:P ratio for MC118
583 mesocosms was (210 ± 190):(140 ± 110):(19 ± 11):(1). The variability in the MC118
584 nutrient ratio is likely caused by variable competition for the available nutrients coupled
585 with the oxidation of non-methane hydrocarbons. Due to the relatively elevated
586 uncertainty in the MC118 ratio, the nutrient ratios are statistically similar between HC
587 and MC118. Similar conclusions are reached when investigating the ratio of
588 CH₄:DO:La:Ce:Pr:Nd:Sm:Eu:Fe:Cu, in that the results from HC were statistically similar
589 to MC118, given the variability observed in these environments (Table 3). Increased
590 uncertainty in the MC118 trace metal stoichiometric ratio for CH₄ oxidation was most
591 apparent in Fe, Cu, and Nd, likely caused by different amounts of oxidation of non-CH₄
592 hydrocarbons. It is interesting to note that Pol et al. (2014) showed that La-Ce-Pr-Nd are
593 all utilized similarly, and that the utilization decreased with higher MW elements.
594 However, while our stoichiometric ratios for La:Nd are in roughly equal proportions, our
595 stoichiometric ratios for La:Sm are significantly less than what might have been expected
596 based the results of Pol et al. (2014) yet are likely related to the decreased utilization of
597 heavier REEs (Picone and Op den Camp, 2019) (Table 3).

598 Although the biogeochemical conditions are different at the sites investigated, the
599 stoichiometric ratios from both the HC and MC118 mesocosms indicate nutrients and

trace metals were utilized in similar proportions (Table 3). Despite the MC118 incubations also involving the oxidation of non-CH₄ hydrocarbons (Figure 4), the similarity of results is likely caused by CH₄ being the dominant hydrocarbon available for oxidation at the beginning of each mesocosm. This further suggests that the stoichiometric ratios for aerobic CH₄ oxidation presented here can possibly be used to estimate CH₄ consumption at other oceanographic seep sites, even if concurrent (secondary) biochemical processes are occurring. Certainly, future studies investigating the chemical requirements for CH₄ oxidation should also consider monitoring other biochemical processes occurring concurrently such as the oxidation of higher order hydrocarbons and nitrogen transformations (Ward et al., 2013), both of which likely occurred in these experiments. For example, the trace metal analyses reported here displayed changing Mo concentrations and the nutrient analyses displayed increases in nitrite (Kessler and Chan, 2017), possibly related to nitrogen dynamics in these incubations (Bertine, 1972; Collier, 1985).

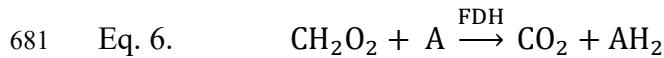
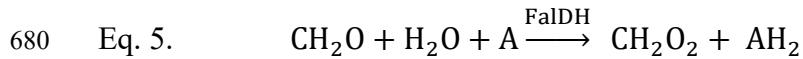
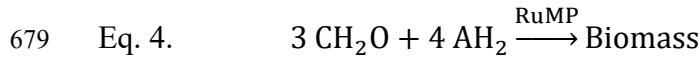
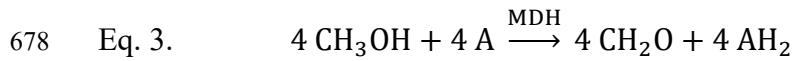
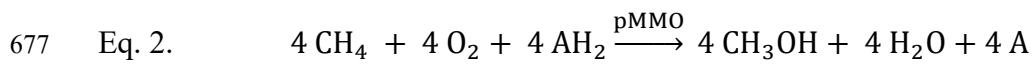
614

615

616

617

618 **Table 3.** Mesocosm stoichiometric ratios for aerobic methane oxidation. The averages
 619 reported, and their associated standard deviations, are weighted to the uncertainties of the
 620 HC and MC118 values.






	CH ₄	DO	NO ₃ ⁻	PO ₄ ³⁻						
HC	144 ± 45	ND	30 ± 5	1						
MC118	210 ± 190	140 ± 110	19 ± 11	1						
Average	148 ± 44	140 ± 110	28 ± 5	1						
	CH ₄ (×10 ⁶)	DO (×10 ⁶)	La	Ce	Pr	Nd	Sm	Eu	Fe	Cu
HC	4.4 ± 1.3	ND	1	0.22 ± 0.07	0.17 ± 0.01	0.78 ± 0.08	0.07 ± 0.02	0.02 ± 0.01	57 ± 21	44 ± 7
MC118	5.3 ± 3.3	3.6 ± 2.2	1	0.26 ± 0.13	0.16 ± 0.03	0.71 ± 0.28	0.08 ± 0.04	0.03 ± 0.01	850 ± 420	40 ± 40
Average	4.5 ± 1.2	3.6 ± 2.2	1	0.23 ± 0.06	0.17 ± 0.01	0.77 ± 0.08	0.07 ± 0.02	0.03 ± 0.01	60 ± 20	44 ± 7

621

622

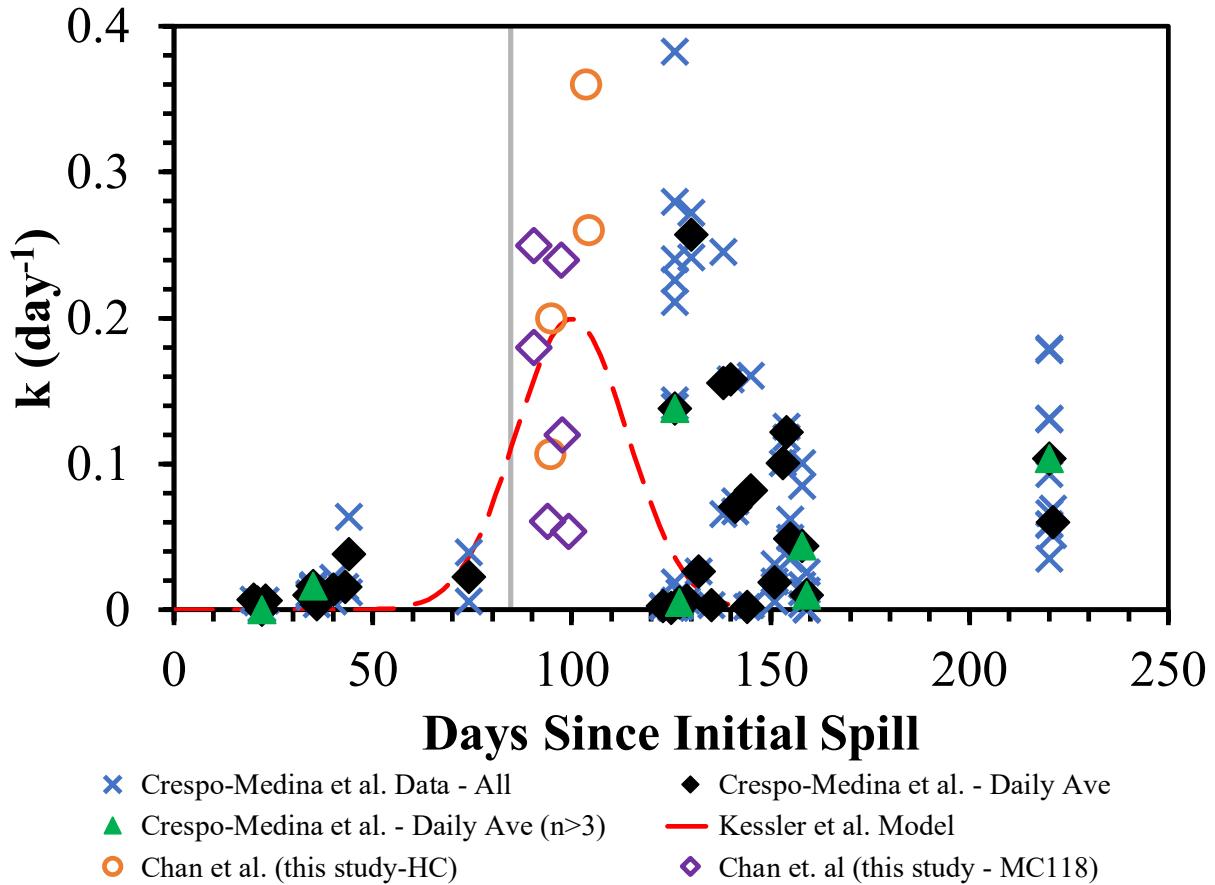
623 **4.2. Evaluating the Reaction Chain for Aerobic CH₄ Oxidation to Interpret the Observed**
624 **DO:CH₄**625 The overall reaction for aerobic CH₄ oxidation is generally described with Eq. 1, indicating that
626 if one mole of CH₄ is fully oxidized to CO₂, two moles of DO will be removed.627 Eq. 1. CH₄ + 2 O₂ → CO₂ + 2 H₂O628 However, if CH₄ is not fully converted to CO₂, for example through the formation of biomass or
629 intermediates, less than two moles of O₂ will be utilized. Only after the biomass/intermediates
630 are mineralized to CO₂ will the full two moles of O₂ be removed. For each of the mesocosm
631 experiments conducted in MC118, the DO:CH₄ ratio was less than two (Table 2), suggesting that
632 the formation of biomass and intermediates was significant. Since both the cell count and 16S
633 rRNA gene survey data also indicate that significant methanotrophic biomass formed during
634 these incubations and was still present when these experiments were terminated (Figure 4), it is
635 not surprising that less DO was removed than would have been expected for complete
636 remineralization to CO₂. What is surprising is that the average values for the DO:CH₄ ratios were
637 slightly less than one (Table 2). While we cannot fully discredit that this slight deviation from
638 unity is explained by an unidentified analytical error, we instead investigate the reaction
639 mechanism of aerobic CH₄ oxidation to raise possible biochemical explanations.640 Since aerobic CH₄ oxidation is a microbially mediated process, biological growth processes
641 occur concurrently, utilizing a portion of the substrates to produce cellular organic matter. It has
642 been well documented that CH₄ oxidation occurs through soluble and particulate CH₄
643 monooxygenase enzymes (sMMO and pMMO, respectively), and that most type I methanotrophs
644 closely related to those identified in these mesocosms predominantly use the membrane-bound
645 pMMO (Kalyuzhnaya et al., 2013; Murrell et al., 2010). While sMMO function is well
646 documented, the exact mechanism of pMMO is not completely known with only predicted
647 biochemical pathways (Kalyuzhnaya et al., 2013). The first step of the CH₄ oxidation process
648 with pMMO has CH₄ being converted to methanol (CH₃OH, Eq. 2), requiring electron acceptors
649 and donors (i.e., redox cofactors such as Nicotinamide adenine dinucleotide - NAD,
650 Pyrroloquinoline quinone - PQQ, etc. represented simply in the equations here as A and AH₂).
651 Next, methanol is converted to formaldehyde (CH₂O, Eq. 3) via methanol dehydrogenase
652 (MDH) (Bédard and Knowles, 1989; Kalyuzhnaya et al., 2013). Following this step, there are
653 three possible pathways for formaldehyde to be utilized by the cell: (1) assimilation into biomass
654 via the ribulose monophosphate (RuMP) pathway (Eq. 4) (Dalton and Leak, 1985; Kalyuzhnaya
655 et al., 2013; Quayle and Ferenci, 1978), (2) further oxidation to CO₂ (Eq. 5 and 6) (Bédard and
656 Knowles, 1989; Kalyuzhnaya et al., 2013), or (3) assimilation into the serine pathway.
657 Concerning pathway (2), the formaldehyde is converted to formate by formaldehyde
658 dehydrogenase (FalDH) (Eq. 5) (Bédard and Knowles, 1989). Formate is then converted to CO₂
659 via formate dehydrogenase (FDH, Eq. 6) (Bédard and Knowles, 1989). Thus, CO₂ can be
660 produced and measured in these mesocosms without first forming cellular biomass via the RuMP
661 pathway. However, part of the formaldehyde is used to create biomass in pathway (1) and thus
662 the amount of carbon remaining as biomass must be considered.

665 To produce a balanced aerobic CH₄ oxidation reaction series, we hypothesize the following
 666 stoichiometry. Since three moles of formaldehyde are required for biomass assimilation via the
 667 RuMP pathway (Kalyuzhnaya et al., 2013) and one mole of formaldehyde is required for the
 668 oxidation to CO₂ via pathway (2), there needs to be a total of four moles of CH₄ and four moles
 669 of O₂ that begin this microbially mediated reaction. To balance the system of equations, the
 670 oxidation of the biomass that is created must be considered (Eq. 7). In Eq. 7, biomass is more
 671 generally represented as a -CH₂O- chain. Lastly, these reactions would not occur without
 672 electron transport within a biological system, and thus an equation for a terminal electron
 673 acceptor/donor pair is needed. In an aerobic CH₄ oxidation environment, it is DO that serves as
 674 this electron acceptor with many electron transport chains, cytochromes, etc. that facilitate this
 675 process (Eq. 8). The simplification of this system of equations results in the overall aerobic CH₄
 676 oxidation equation (Eq. 1).

684
 685 Based on these hypothesized reactions, the DO:CH₄ ratio should not drop below 1:1. However,
 686 the MC118 incubations ended with an average DO:CH₄ of 0.7 ± 0.1 . While synergies with other
 687 organisms can remove more CH₄ and provide more electron donors, such as anaerobic oxidation
 688 of CH₄ linked to denitrification identified near the sediment-water interface (Raghoebarsing et
 689 al., 2006; Waki et al., 2002) or aerobic methane oxidization coupled with nitrate reduction in
 690 hypoxic environments (Kits et al. 2015), our mesocosms did not have enough dissolved nitrate to
 691 account for the extra DO demand. For example, if we assume that nitrate provides oxygen to
 692 further oxidize CH₄, the measured decrease in nitrate during the MC118 mesocosms is only
 693 sufficient in one of the four mesocosms to raise the DO:CH₄ to 1:1. A DO:CH₄ of less than 1:1
 694 could also be explained if Eq. 2 did not produce water. In this hypothetical reaction mediated
 695 with pMMO, the DO:CH₄ in the initial step of aerobic CH₄ oxidation would only be 0.5:1. We
 696 note that this stoichiometry is consistent with the first step of the pMMO-catalyzed reaction
 697 cycle, but requires differences in the latter stages than assumed for pMMO in biochemical
 698 studies (Culpepper and Rosenzweig, 2012; Sirajuddin and Rosenzweig, 2015). While additional
 699 systematic experiments are required to confirm the true reaction mechanism and explain the
 700 occurrence of DO:CH₄ ratios <1 , our data clearly indicates that two moles of DO is not an
 701 inherent requirement for the oxidation of one mole of CH₄. Even though the goal of this study

702 was not to determine cellular biochemical functions in methanotrophs, the hypothesized reaction
703 mechanism produced from these experiments can serve as a starting point for future experiments.

704


705

706 4.3. Deepwater Horizon Implications

707 The information learned from the mesocosm incubations can be used to better understand the
708 fate of CH₄ dissolved in the deep hydrocarbon intrusion layers during the DWH blowout in the
709 Gulf of Mexico. First, the biogeochemical conditions at the start of the MC118 incubations were
710 likely more similar to the conditions experienced during the DWH blowout than the samples
711 from HC. The nutrient and trace metal concentrations in the MC118 mesocosm were similar to
712 those experienced during the DWH (Joung and Shiller, 2013; Shiller and Joung, 2012) and there
713 was likely competition between methanotrophs and other hydrocarbon oxidizers for available
714 resources. The MC118 mesocosms showed that ca. 80% of the dissolved CH₄ was oxidized in ca.
715 19-25 days (Tables 2 and S1, Figures 3, S3, and S4). Certainly, outside of these mesocosm
716 incubation bags mixing in the deep Gulf of Mexico would influence these results since mixing
717 would dilute CH₄ concentrations and methanotrophic cell density but would add fresh DO,
718 nutrients, and trace metals into a parcel of CH₄-laden water. Nonetheless, the results presented
719 here display that a near complete oxidation is possible even without added reactants from
720 mixing. Second, the Kessler et al. (2011) model of DWH CH₄ oxidation (Figure 6) suggests that
721 CH₄ oxidation rate constants averaged over the entire plume peaked ca. 20 days after the CH₄
722 source to the water column stopped. Perhaps coincidentally, the highest rate constant determined
723 from the mesocosm experiments presented here for MC118 occurs ca. 20 days after the parcel of
724 CH₄-laden water was isolated (Figure 6). In addition, the magnitude of the oxidation rate
725 constants determined here is in agreement with the model and previous measurements. Third,
726 applying the stoichiometric ratio derived from the HC samples for CH₄ oxidation to Fe
727 concentrations measured in waters during the DWH blowout (0.3 – 2.2 nmol/kg) (Joung and
728 Shiller, 2013) suggests that 23 to 170 µM of CH₄ could potentially be oxidized. Using the
729 stoichiometric ratio derived from the MC118 mesocosms predicts that 2 to 14 µM CH₄ oxidation
730 could be supported. Estimating CH₄ oxidation using decreases in La during the DWH blowout
731 (Shiller et al., 2017) and applying the stoichiometric ratio from HC seeps, respectively, yields 18
732 to 53 µM of CH₄ oxidation that could be supported, while using the MC118 stoichiometric ratio
733 suggests that 21 to 64 µM of CH₄ oxidation could be supported. The range of estimates for DWH
734 CH₄ oxidation potential is due to the different concentrations of initial reactants in these
735 experiments as well as resource competition with bacteria conducting other concurrent
736 metabolisms. While CH₄ concentrations were heterogeneous over the extent of the deep intrusion
737 layers during the DWH incident, the capacity for DWH CH₄ to be oxidized, as predicted here
738 with the mesocosm results, is greater than all but a handful of measurements of CH₄
739 concentration during and after conditions of active release from the well (Crespo-Medina et al.,
740 2014; Joye et al., 2011; Kessler et al., 2011; Reddy et al., 2012; Valentine et al., 2010; Yvon-
741 Lewis et al., 2011).

742

743

Figure 6. The first-order rate constants for aerobic CH_4 oxidation determined here from HC and MC118 superimposed on the DWH data presented in Figure 1. Violet diamonds = rate constants determined here from the HC experiments. Orange circles = rate constants determined here from the MC118 experiments. All other symbols are the same as indicated in Figure 1. The horizontal (i.e. time in days) position for the data determined here is the time until the start of rapid CH_4 oxidation plotted relative to the day the DWH blowout was stopped and no longer injecting CH_4 into Gulf of Mexico waters (vertical gray line).

Also, if we scale the average concentration of CH_4 removed via oxidation in these mesocosm incubations ($90 \pm 40 \mu\text{M}$) to the entire volume of the deepwater plume during the DWH incident (ca. $7.3 \times 10^{15} \text{ L}$; Du and Kessler, 2012), we can estimate the total capacity for CH_4 oxidation during the DWH incident. This scaling exercise results in a value of $7 \pm 3 \times 10^{11}$ moles of CH_4 . Reddy et al. (2012) determined 6.23×10^9 moles of CH_4 were released during the DWH event which is <1% of the CH_4 oxidation potential of the impacted waters. This does not provide proof of the fate of CH_4 during this event; however, it does add further support to our previous contention that DWH CH_4 was fully oxidized in the deep intrusion layers and provides empirical biogeochemical data to characterize an entire oxidation event.

Finally, another result reported here relevant to the DWH blowout is the DO: CH_4 ratio. In MC118 mesocosms, the DO: CH_4 ratios suggest that a significant portion of the oxidized CH_4 is being converted to biomass and potentially intermediates (e.g., methanol) instead of fully to CO_2 . Du and Kessler (2012) estimated that $60\% \pm 40\%$ of the deep intrusion layer hydrocarbon mass

765 was oxidized based on complete conversion to CO₂. However, if a significant portion of this
766 CH₄-C remained as biomass, the DO demand for CH₄ oxidation would have been less, and a
767 near-complete removal of CH₄ could have been supported.

768

769 **5. Conclusions**

770 Mesocosm incubations of seawater collected in two seep fields, one in the North Atlantic Bight
771 in and near Hudson Canyon and the other in the Gulf of Mexico, were used for the controlled
772 study of biogeochemical changes during aerobic CH₄ oxidation. The analysis of dissolved gases
773 (CH₄, CO₂, DO) in real-time and in high resolution permitted monitoring of each mesocosm
774 experiment and provided the opportunity to analyze for other parameters such as microbial
775 genetics, cell abundance, nutrients, and trace metals at critical times during this CH₄ oxidation
776 process. This sampling frequency captured the different stages of these CH₄ oxidation events and
777 was possible due to the controlled and isolated nature of the mesocosm incubations; conducting a
778 similar study of a CH₄ perturbation in nature, such as the DWH blowout, would have been
779 logistically challenging due to more heterogeneous and multi-variate conditions occurring at-
780 depth over an area of approximately 73,000 km² (Du and Kessler, 2012).

781 While the initial biogeochemical conditions at the seeps on the Atlantic Margin were different
782 from those in the Gulf of Mexico, several similarities in the characteristics of CH₄ oxidation
783 were observed. The stoichiometric ratio results for CH₄ oxidation were statistically similar
784 between both environments despite greater natural variability in the Gulf of Mexico, likely due
785 to the influence of non-CH₄ hydrocarbon oxidation processes. Both the experiments presented
786 here (Figure 3) and those from the DWH blowout (Figure 1) suggest that a significant lag phase
787 precedes rapid CH₄ oxidation. In the semi-confined environment of Hudson Canyon, this lag
788 time was approximately one week on average while it was approximately two weeks in more
789 open ocean environments outside of Hudson Canyon and in the Gulf of Mexico. Following this
790 lag time, our experiments show that the CH₄ oxidation rate constants increased substantially and
791 remained high even after the CH₄ concentration decreased significantly, a finding which appears
792 congruent with measurements during and after the DWH blowout (Figure 1 and Crespo-Medina
793 et al., 2014; Rogener et al., 2018). Since CH₄ oxidation follows first-order kinetics, the
794 persistence of elevated rate constants suggests that the remineralization of methanotrophic
795 biomass may be slow and thus that CH₄ oxidation could start rapidly without a lag phase, or with
796 an abbreviated lag phase, if CH₄ concentrations again rose, as modeled previously (Valentine et
797 al., 2012). Thus, this data suggests that a natural environment may remain primed to oxidize
798 future releases of CH₄, though the extent and duration remains untested.

799

800 **Acknowledgments**

801 This work was made possible by grants from the National Science Foundation (OCE-1318102 to
802 J.D.K.) and the Gulf of Mexico Research Initiative through the GISR (to J.D.K.) and
803 CONCORDE (to A.M.S.) consortia. Support for D.L.V. and E.C.A. also came primarily from
804 OCE-1318102, but secondary support was provided by the NSF (OCE-1333162 and OCE-
805 1756947). Data are publicly available through the Gulf of Mexico Research Initiative
806 Information & Data Cooperative (GRIIDC) at
807 <https://data.gulfresearchinitiative.org/data/R1.x137.000:0019>. We thank the captain and crew of
808 the R/V *Endeavor* and the E/V *Nautilus* as well as Bill Fanning and Nicole Raineault for their
809 enthusiasm and support at sea. Finally, we would like to thank Patrick Crill, an anonymous
810 reviewer, and the editor for constructive suggestions which helped to strengthen this manuscript.

811

812 **References**

813

814 Bédard, C., & Knowles, R. (1989). Physiology, biochemistry, and specific inhibitors of CH₄,
815 NH₄⁺, and CO oxidation by methanotrophs and nitrifiers. *Microbiological Reviews*, 53(1), 68-84.

816 Bertine, K. K. (1972). The deposition of molybdenum in anoxic waters. *Marine Chemistry*, 1(1),
817 43-53. [https://doi.org/10.1016/0304-4203\(72\)90005-9](https://doi.org/10.1016/0304-4203(72)90005-9)

818 Breier, J. A., Rauch, C. G., McCartney, K., Toner, B. M., Fakra, S. C., White, S. N., & German,
819 C. R. (2009). A suspended-particle rosette multi-sampler for discrete biogeochemical sampling
820 in low-particle-density waters. *Deep Sea Research Part I: Oceanographic Research Papers*,
821 56(9), 1579-1589. <https://doi.org/10.1016/j.dsr.2009.04.005>

822 Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C.,
823 McIntyre, C. P., Sylva, S. P., & Maloney, J. V. (2010). Tracking hydrocarbon plume transport
824 and biodegradation at Deepwater Horizon. *Science*, 330(6001), 201-204.
825 <https://doi.org/10.1126/science.1195223>

826 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P.
827 J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions
828 of sequences per sample. *Proceedings of the National Academy of Sciences*, 108(Supplement 1),
829 4516-4522. <https://doi.org/10.1073/pnas.1000080107>

830 Chan, E. W., Kessler, J. D., Shiller, A. M., Joung, D. J., & Colombo, F. (2016). Aqueous
831 Mesocosm Techniques Enabling the Real-Time Measurement of the Chemical and Isotopic
832 Kinetics of Dissolved Methane and Carbon Dioxide. *Environmental Science & Technology*,
833 50(6), 3039-3046. <https://doi.org/10.1021/acs.est.5b04304>

834 Collier, R. W. (1985). Molybdenum in the northeast Pacific Ocean. *Limnology and
835 Oceanography*, 30(6), 1351-1354. <https://doi.org/10.4319/lo.1985.30.6.1351>

836 Crespo-Medina, M., Meile, C. D., Hunter, K. S., Diercks, A-R., Asper, V. L., Orphan, V. J., et al.
837 (2014). The rise and fall of methanotrophy following a deepwater oil-well blowout. *Nature
838 Geoscience*, 7(6), 423-427. <https://doi.org/10.1038/NGEO2156>

839 Culpepper, M. A., & Rosenzweig, A. C. (2012). Architecture and active site of particulate
840 methane monooxygenase. *Critical Reviews in Biochemistry and Molecular Biology*, 47(6), 483-
841 492. <https://doi.org/10.3109/10409238.2012.697865>

842 Dalton, H., & Leak, D. J. (1985). Methane oxidation by microorganisms. In R. K. Polle, C. S.
843 Dow (Eds.), *Microbial Gas Metabolism* (pp. 173 – 200). New York: NY: Academic Press.

844 de Angelis, M. A., Lilley, M. D., Olson, E. J., & Baross, J. A. (1993). *Deep Sea Res. Part I
845 Oceanogr. Res.*, 40(6), 1169-1186. [https://doi.org/10.1016/0967-0637\(93\)90132-M](https://doi.org/10.1016/0967-0637(93)90132-M)

846 Dickens, G. R. (2011). Down the Rabbit Hole: toward appropriate discussion of methane release
847 from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past
848 hyperthermal events. *Climate of the Past*, 7(3), 831-846. <https://doi.org/10.5194/cp-7-831-2011>

849 Dickens, G. R., O'Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic
850 methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.
851 *Paleoceanography*, 10(6), 965-971. <https://doi.org/10.1029/95PA02087>

852 Dlugokencky, E. J., E. G. Nisbet, R. Fisher, & D. Lowry (2011). Global atmospheric methane:
853 budget, changes and dangers. *Philosophical Transactions of the Royal Society of London A:
854 Mathematical, Physical and Engineering Sciences*, 369(1943), 2058-2072.
855 <https://doi.org/10.1098/rsta.2010.0341>

856 D'souza, N. A., Subramaniam, A., Juhl, A. R., Hafez, M., Chekalyuk, A., Phan, S., et al. (2016).
857 Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. *Nature
858 Geoscience*, 9(3), 215-218. <https://doi.org/10.1038/NGEO2631>

859 Du, M., & Kessler, J. D. (2012). Assessment of the spatial and temporal variability of bulk
860 hydrocarbon respiration following the Deepwater Horizon oil spill. *Environmental Science &
861 Technology*, 46(19), 10499-10507. <https://doi.org/10.1021/es301363k>

862 Dubinsky, E. A., Conrad, M. E., Chakraborty, R., Bill, M., Borglin, S. E., Hollibaugh, J. T., et al.
863 (2013). Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon
864 oil spill in the Gulf of Mexico. *Environmental Science & Technology*, 47(19), 10860-10867.
865 <https://doi.org/10.1021/es401676y>

866 EV Nautilus (2015). Explosive Methane Burst and Bubble Streams | Nautilus Live, edited by
867 EVNautilus, *YouTube*. https://youtu.be/pO_rXOEWnAA

868 Fox, B. G., Surerus, K. K., Münck, E., & Lipscomb, J. D. (1988). Evidence for a mu-oxo-
869 bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase,
870 Mössbauer and EPR studies. *Journal of Biological Chemistry*, 263(22), 10553-10556.

871 Hathorne, E.C., Haley, B., Stichel, T., Grasse, P., Zieringer, M., & Frank, M. (2012). Online
872 preconcentration ICP-MS analysis of rare earth elements in seawater. *Geochemistry, Geophysics,
873 Geosystems*, 13(Q01020). <https://doi.org/10.1029/2011GC003907>

874 Huang, J., Yu, Z., & Chistoserdova, L. (2018) Lanthanide-Dependent Methanol Dehydrogenases
875 of XoxF4 and XoxF5 Clades Are Differentially Distributed Among Methylotrophic Bacteria and
876 They Reveal Different Biochemical Properties. *Frontiers in Microbiology*, 9(1366).
877 <https://doi.org/10.3389/fmicb.2018.01366>

878 Higgins, J. A., & Schrag, D. P. (2006). Beyond methane: towards a theory for the Paleocene-
879 Eocene thermal maximum. *Earth Planetary Science Letters*, 245(3-4), 523-537.
880 <https://doi.org/10.1016/j.epsl.2006.03.009>

881 Ho, P., Lee, J., Heller, M., Lam, P.. and Shiller, A. M. (2018). The distribution of dissolved and
882 particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): the

883 roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the
884 hydrothermal plume. *Marine Chemistry*, 201, 242-255.
885 <https://doi.org/10.1016/j.marchem.2017.12.003>

886 Joung, D., & Shiller, A. M. (2013). Trace element distributions in the water column near the
887 Deepwater Horizon well blowout. *Environmental Science & Technology*, 47(5), 2161-2168.
888 <https://doi.org/10.1021/es303167p>

889 Joye, S. B., MacDonald, I. R., Leifer, I., & Asper, V. (2011). Magnitude and oxidation potential
890 of hydrocarbon gases released from the BP oil well blowout. *Nature Geoscience*, 4(3), 160-164.
891 <https://doi.org/10.1038/NGEO1067>

892 Kalyuzhnaya, M. G., Yang, S., Rozova, O., Smalley, N., Clubb, J., Lamb, A., et al. (2013).
893 Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. *Nature
894 Communications*, 4, 2785. <https://doi.org/10.1038/ncomms3785>

895 Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez, A., & Delong, E. F.
896 (2008). Aerobic production of methane in the sea. *Nature Geoscience*, 1(7), 473-478.
897 <https://doi.org/10.1038/ngeo234>

898 Kelley, D. S., & Früh-Green, G. L. (1999). Abiogenic methane in deep-seated mid-ocean ridge
899 environments: Insights from stable isotope analyses. *Journal of Geophysical Research – Solid
900 Earth*, 104(B5), 10439-10460, <https://doi.org/10.1029/1999jb900058>

901 Kessler, J. D., & Chan, E. (2017). Chemical and Isotopic Kinetics of Dissolved Methane and
902 Carbon Dioxide for samples collected in the northern Gulf of Mexico and Atlantic July 2014-
903 April 2015. Distributed by Gulf of Mexico Research Initiative Information and Data Cooperative
904 (GRIIDC), Harte Res. Inst., Texas A&M Univ., Corpus Christi, Corpus Christi,
905 <https://doi.org/10.7266/N7RR1WPX>

906 Kessler, J. D., & Reeburgh, W. S. (2005). Preparation of natural methane samples for stable
907 isotope and radiocarbon analysis. *Limnology and Oceanography: Methods*, 3, 408-418.
908 <https://doi.org/10.4319/lom.2005.3.408>

909 Kessler, J. D., Valentine, D. L., Redmond, M. C., Du, M., Chan, E.W., Mendes, S.D., et al.
910 (2011). A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of
911 Mexico. *Science*, 331(6015), 312-315. <https://doi.org/10.1126/science.1199697>

912 Kits, K. D., Klotz, M. G., & Stein, L. Y. (2015). Methane oxidation coupled to nitrate reduction
913 under hypoxia by the *G* ammaproteobacterium *M ethylomonas denitrificans*, sp. nov. type strain
914 FJG1. *Environmental microbiology*, 17(9), 3219-3232. <https://doi.org/10.1111/1462-2920.12772>

915 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013).
916 Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon
917 sequence data on the MiSeq Illumina sequencing platform. *Applied and Environmental
918 Microbiology*, 79(17), 5112-5120. <https://doi.org/10.1128/AEM.01043-13>

919 Leonte, M., Kessler, J. D., Kellermann, M. Y., Arrington, E. C., Valentine, D. L., & Sylva, S. P.
920 (2017). Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in
921 the waters of Hudson Canyon, US Atlantic Margin. *Geochimica et. Cosmochimica Acta*, 204,
922 375-387. <https://doi.org/10.1016/j.gca.2017.01.009>

923 Mau, S., Blees, J., Helmke, E., Niemann, H., & Damm, E. (2013). Vertical distribution of
924 methane oxidation and methanotrophic response to elevated methane concentrations in stratified
925 waters of the Arctic fjord Storfjorden (Svalbard, Norway). *Biogeosciences*, 10(10), 6267-6278.
926 <https://doi.org/10.5194/bg-10-6267-2013>

927 Murrell, J. C., McDonald, I. R., & Gilbert, B. (2000). Regulation of expression of methane
928 monooxygenases by copper ions. *Trends in Microbiology*, 8(5), 221-225.
929 [https://doi.org/10.1016/S0966-842X\(00\)01739-X](https://doi.org/10.1016/S0966-842X(00)01739-X)

930 Murrell, J. C. (2010). The aerobic methane oxidizing bacteria (methanotrophs), In K. N. Timmis,
931 T. J. McGenity, J. Roelof van der Meer, & V. de Lorenzo (Eds.), *Handbook of hydrocarbon and*
932 *lipid microbiology* (pp. 1953-1966), Springer Berlin Heidelberg.

933 Oremland, R. S., & Taylor, B. F. (1978). Sulfate reduction and methanogenesis in marine
934 sediments. *Geochimica et. Cosmochimica Acta*, 42(2), 209-214, [https://doi.org/10.1016/0016-7037\(78\)90133-3](https://doi.org/10.1016/0016-7037(78)90133-3).

935

936 Pack, M. A., Heintz, M. B., Reeburgh, W. S., Trumbore, S. E., Valentine, D. L., Xu, X., &
937 Druffel, E. R. M. (2015). Methane oxidation in the eastern tropical North Pacific Ocean water
938 column. *Journal of Geophysical Research-Biogeosciences.*, 120(6), 1078–1092.
939 <https://doi.org/10.1002/2014JG002900>

940 Picone, N. & Op den Camp, H. J. M. (2019). Role of rare earth elements in methanol oxidation.
941 *Current Opinion in Chemical Biology*, 49, 39-44. <https://doi.org/10.1016/j.cbpa.2018.09.019>

942 Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M., & Op den
943 Camp, H. J. M. (2014). Rare earth metals are essential for methanotrophic life in volcanic
944 mudpots. *Environmental Microbiology*, 16(1), 255-264. <https://doi.org/10.1111/1462-2920.12249>

945

946 Quayle, J. R., & Ferenci, T. (1978). Evolutionary aspects of autotrophy. *Microbiological
947 Reviews*, 42(2), 251-273.

948 Raghoebarsing, A. A., Pol, A., nan de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F.,
949 Rijpstra, W. I. C., et al. (2006). A microbial consortium couples anaerobic methane oxidation to
950 denitrification. *Nature*, 440(7086), 918-921. <https://doi.org/10.1038/nature04617>

951 Reddy, C. M., Arey, J. S., Seewald, J. S., Sylva, S. P., Lemkau, K. L., Nelson, R. K., et al.
952 (2012). Composition and fate of gas and oil released to the water column during the Deepwater
953 Horizon oil spill. *Proceedings of the National Academy of Sciences*, 109(50), 20229-20234.
954 <https://doi.org/10.1073/pnas.1101242108>

955 Redmond, M. C., & Valentine, D. L. (2012). Natural gas and temperature structured a microbial
956 community response to the Deepwater Horizon oil spill. *Proceedings of the National Academy of
957 Sciences*, 109(50), 20292-20297. <https://doi.org/10.1073/pnas.1108756108>

958 Redmond, M. C., Valentine, D. L., & Sessions, A. L. (2010). Identification of novel methane-,
959 ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.
960 *Applied and Environmental Microbiology*, 76(19), 6412-6422.
961 <https://doi.org/10.1128/AEM.00271-10>

962 Reeburgh, W. S. (2007). Oceanic methane biogeochemistry. *Chemical reviews*, 107(2), 486-513.
963 <https://doi.org/10.1021/cr050362v>

964 Rivers, A. R., Sharma, S., Tringe, S. G., Martin, J., Joye, S. B., & Moran, M. A. (2013).
965 Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil
966 spill. *ISME Journal*, 7(12), 2315-2329. <https://doi.org/10.1038/ismej.2013.129>

967 Rogener, M. K., Bracco, A., Hunter, K. S., Saxton, M. A., & Joye, S. B. (2018). Long-term
968 impact of the Deepwater Horizon oil well blowout on methane oxidation dynamics in the
969 northern Gulf of Mexico. *Elementa-Science of the Anthropocene*, 6(73).
970 <https://doi.org/10.1525/elementa.332>

971 Rona, P., Guida, V., Scranton, M., Gong, D. L., Macelloni, L., Pierdomenico, M., et al. (2015).
972 Hudson submarine canyon head offshore New York and New Jersey: A physical and
973 geochemical investigation. *Deep-Sea Research Part II-Topical Studies in Oceanography*,
974 121(SI), 213–232. <https://doi.org/10.1016/j.dsr2.2015.07.019>

975 Ross, M. O., MacMillan, F., Wang, J., Nisthal, A., Lawton, T. J., Olafson, B. D., Mayo, S. L.,
976 Rosenzweig, A. C., & Hoffman, B. M. (2019). Particulate methane monooxygenase contains
977 only monocopper centers. *Science*, 364(6440), 566-570. <https://doi.org/10.1126/science.aav2572>

978 Ruppel, C. D. & Kessler, J. D. (2017). The Interaction of Climate Change and Methane
979 Hydrates. *Reviews of Geophysics*, 55(1), 126-168. <https://doi.org/10.1002/2016RG000534>

980 Ryerson, T. B., R. Camilli, J. D. Kessler, E. B. Kujawinski, C. M. Reddy, D. L. Valentine, E.
981 Atlas, D. R. Blake, J. de Gouw, & S. Meinardi (2012). Chemical data quantify Deepwater
982 Horizon hydrocarbon flow rate and environmental distribution. *Proceedings of the National
983 Academy of Sciences*, 109(50), 20246-20253. <https://doi.org/10.1073/pnas.1110564109>

984 Sherwood Lollar, B., T. Westgate, J. Ward, G. Slater, & G. Lacrampe-Couloume (2002).
985 Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon
986 reservoirs. *Nature*, 416(6880), 522-524. <https://doi.org/10.1038/416522a>

987 Shiller, A. M., Chan, E. W., Joung, D. J., Redmond, M. C., & Kessler, J. D. (2017). Light rare
988 earth element depletion during Deepwater Horizon blowout methanotrophy. *Scientific
989 Reports*, 7(1), 10389. <https://doi.org/10.1038/s41598-017-11060-z>

990 Shiller, A. M., & Joung, D. J. (2012). Nutrient depletion as a proxy for microbial growth in
991 Deepwater Horizon subsurface oil/gas plumes. *Environmental Research Letters*, 7(4), 045301.
992 <https://doi.org/10.1088/1748-9326/7/4/045301>

993 Sirajuddin, S., & Rosenzweig, A. C. (2015). Enzymatic Oxidation of Methane. *Biochemistry*,
994 54(14), 2283-2294. <https://doi.org/10.1021/acs.biochem.5b00198>

995 Skarke, A., Ruppel, C., Kodis, M., Brothers, D., & Lobecker, E. (2014). Widespread methane
996 leakage from the sea floor on the northern US Atlantic margin. *Nature Geoscience*, 7(9), 657-
997 661. <https://doi.org/10.1038/NGEO2232>

998 Socolofsky, S. A., Adams, E. E., & Sherwood, C. R. (2011). Formation dynamics of subsurface
999 hydrocarbon intrusions following the Deepwater Horizon blowout. *Geophysical Research
1000 Letters*, 38, L09602. <https://doi.org/10.1029/2011GL047174>

1001 Valentine, D. L., Blanton, D. C., Reeburgh, W. S., & Kastner, M. (2001). Water column methane
1002 oxidation adjacent to an area of active hydrate dissociation. Eel River Basin, *Geochimica et
1003 Cosmochimica Acta*, 65(16), 2633-2640. [https://doi.org/10.1016/S0016-7037\(01\)00625-1](https://doi.org/10.1016/S0016-7037(01)00625-1)

1004 Valentine, D. L., Kessler, J. D., Redmond, M. C., Mendes, S. D., Heintz, M. B., Farwell, C., et
1005 al. (2010). Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill. *Science*,
1006 330(6001), 208-211. <https://doi.org/10.1126/science.1196830>

1007 Valentine, D. L. (2011). Emerging topics in marine methane biogeochemistry. *Annual Review of
1008 Marine Science*, 3, 147-171. <https://doi.org/10.1146/annurev-marine-120709-142734>

1009 Valentine, D. L., Mezić, I., Maćešić, S., Črnjarić-Žic, N., Ivić, S., Hogan, P. J., et al. (2012).
1010 Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption.
1011 *Proceedings of the National Academy of Sciences*, 109(50), 20286-20291.
1012 <https://doi.org/10.1073/pnas.1108820109>

1013 Waki, M., Tanaka, Y., Osada, T., & Suzuki, K. (2002). Effects of nitrite and ammonium on
1014 methane-dependent denitrification. *Applied Microbiology and Biotechnology*, 59(2-3), 338-343.
1015 <https://doi.org/10.1007/s00253-002-1003-y>

1016 Wear, E. K., Carlson, C. A., Windecker, L. A., & Brzezinski, M. A. (2015). Roles of diatom
1017 nutrient stress and species identity in determining the short- and long-term bioavailability of
1018 diatom exudates to bacterioplankton. *Marine Chemistry*, 177(2), 335-348.
1019 <https://doi.org/10.1016/j.marchem.2015.09.001>

1020 Weinstein, A., Navarrete, L., Ruppel, C., Weber, T. C., Leonte, M., Kellermann, M. Y., et al.
1021 (2016). Determining the flux of methane into Hudson Canyon at the edge of methane clathrate
1022 hydrate stability, *Geochemistry, Geophysics, Geosystems*, 17(10), 3882-3892.
1023 <https://doi.org/10.1002/2016GC006421>

1024 Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas.
1025 *Marine Chemistry*, 2(3), 203–215. [https://doi.org/10.1016/0304-4203\(74\)90015-2](https://doi.org/10.1016/0304-4203(74)90015-2).

1026 Wiesenburg, D. A., & Guinasso Jr., N. L. (1979). Equilibrium solubilities of methane, carbon
1027 monoxide, and hydrogen in water and sea water. *Journal of Chemical and Engineering Data*,
1028 24(4), 356-360. <https://doi.org/10.1021/je60083a006>

1029 Yvon-Lewis, S. A., Hu, L., & Kessler, J. (2011). Methane flux to the atmosphere from the
1030 Deepwater Horizon oil disaster. *Geophysical Research Letters*, 38, L01602.
1031 <https://doi.org/10.1029/2010gl045928>.

1032 Zeebe, R. E., Ridgwell, A., & Zachos, J. C. (2016). Anthropogenic carbon release rate
1033 unprecedented during the past 66 million years. *Nature Geoscience*, 9(4), 325-329.
1034 <https://doi.org/10.1038/NGEO2681>

1035