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Abstract
Bragg interferometers, operating using pseudospin-1/2 systems composed of twomomentum states,
have become amature technology for precisionmeasurements. State-of-the-art Bragg interferometers
are rapidly surpassing technical limitations and are soon expected to operate near the projection noise
limit set by uncorrelated atoms. Despite the use of large numbers of atoms, their operation is governed
by single-atomphysics.Motivated by recent proposals and demonstrations of Raman gravimeters in
cavities, we propose a scheme to squeeze directly onmomentum states for surpassing the projection
noise limit in Bragg interferometers. In ourmodeling, we consider the unique issues that arise when a
spin squeezing protocol is applied tomomentumpseudospins. Specifically, we study the effects of the
momentumwidth of the atomic cloud and the coupling tomomentum states outside the pseudospin
manifold, as these atoms interact via amode of the cavity.We show that appreciable levels of spin
squeezing can be demonstrated in suitable parameter regimes in spite of these complications. Using
this setting, we showhowbeyondmean-field techniques developed for spin systems can be adapted to
study the dynamics ofmomentum states of interacting atoms.Our scheme promises to be feasible
using current technology and is experimentally attractive because it requires no additional setup
beyondwhat will be required to operate Bragg interferometers in cavities.

1. Introduction

Quantummetrologywith atomic and atom-like platforms has greatly benefited from the demonstration of
squeezed spin states [1–4] capable of overcoming the standard quantum limit (SQL) that arises formeasurement
precisionwith uncorrelated pseudospins. Several of these schemes rely on the availability of a common channel,
such as a cavitymode [5] or a shared vibrationalmode [6], which couples to all the constituent pseudospin-1/2
particles, thereby enabling entanglement generation via collective quantumnon-demolitionmeasurements [5,
7–9] or deterministically via effective spin–spin interactions [6, 10, 11].

Bragg interferometers arewidely used for applications such as tests of fundamental physics [12–15] and
precisionmeasurements of gravitational acceleration [16, 17]. These systems are attractive because of the unique
encoding of the spin-1/2 system in twomomentum states associatedwith the center-of-massmotion of the
atomicwavepacket. They operate by splitting thewavepacket into twomomentum states—that propagate along
different spatial paths accumulating a relative phase—andfinally recombining them to obtain interference
fringes. Throughout the interferometer operation, the atom is confined to the samemetastable electronic state,
typically the ground state. Although an atom’smomentum is a continuous variable, a pseudospin-1/2 system
with two discrete states can bemapped on to the externalmotion in a Bragg interferometer. Thismapping
requires an initial atomicmomentumdistribution that is a sharp peak about a central value, so that the
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distribution serves as one of the pseudospin states. Subsequently, pulses of light resonantly couple this
distribution to a second narrow peak that is shifted by an evenmultiple of thewell-defined photonmomentum.
This shifted distribution serves as the other pseudospin state.

CurrentBragg interferometers operate in free spacewith state-of-the-art technology enabling control of large
numbersof atoms [18–21]. This technical progress hasnowachievedhigh signal-to-noise ratios fordetermining the
relativephase shift.However, despite theuseof large atomnumbers, their operation canbe completely described in
termsof single-atomphysics since the atomsareuncorrelated.As a result, regardless ofwhether further technical
improvements are realized, thephase sensitivityof these interferometers in thenear futurewill be fundamentally
constrainedby the SQLof N1SQLfD = radians,whereN is thenumberof atoms.Monotonically increasingN to
improveprecision suffers fromproblems suchas practical limitations in trapping andcooling [22, 23], and
uncontrolledphase changes that arise fromatomic collisions [24]. Schemes toproduce squeezed states ofmomentum
pseudospins are therefore attractive as ameans to achieveprecisionbeyond the corresponding SQL for a givenN. A
majorhurdle toproducing such states inBragg interferometers is that squeezing requires a channel for the atoms to
controllably interactwith eachother, and sucha channel is unavailable in current interferometer designs.

The recent demonstration of a hyperfine-changing Raman gravimeter operating inside an optical cavity [25]
motivates us to envisage a similar operation of Bragg interferometers in cavities in the near future. The
availability of a cavitymode naturally opens up a channel formediating atom–atom interactions. Previous
proposals for cavity-based squeezing onmomentum spins [26] require significant experimental overhead
dedicated to achieving squeezingwhile the actual interferometer itself operates in free space. In this work, we
propose an alternative approach thatmarries the generation of cavity-mediated spin squeezing [2, 27, 28]with
thewell known advantages of operating the entire interferometer inside a cavity [25]. Importantly, our scheme
does not require any experimental overhead to generate interactions beyondwhat is already needed to run a
Bragg interferometer in a cavity. In fact, we showhow all-to-all atomic interactions are generated by simply
switching off one of the twoBragg lasers and suitably adjusting the frequency and power of the other.

The use ofmomentumpseudospins in Bragg interferometers necessitates twounique considerations. First,
the atomic cloudwill always have a non-zeromomentumwidth even after velocity selection. This width can
typically be neglected in the analysis with uncorrelated atoms. Second,momentumpseudospins cannot be
considered as closed two level systems since the same pair of counterpropagating electromagnetic fields couples
the pseudospin states to othermomentum states, albeit with varying detunings. As a result, leakage to
undesirablemomentum states is unavoidable evenwhile applying efficient Bragg pulses for spin rotations, and
alsowhen attempting to engineer interactions for spin squeezing. In ourwork, we account for themomentum
width aswell as leakage to undesirable states and show that they can be important when considering the
efficiency of a spin squeezing protocol applied tomomentumpseudospins. Nevertheless, as we demonstrate,
appreciable spin squeezing can still be achieved under suitable and potentially realizable operating conditions.

In the process of accounting for the effects ofmomentumwidth and losses to undesirable states, we show
how to extendmodeling techniques originally developed for spin systems to interacting atoms inmatter-wave
interferometers where information is encoded in external degrees of freedom. This ability tomap the
continuousmomentumvariable onto a discrete quantumpseudospace allows us to directly employmethods
developed for finite dimensional systems [29–31] . The techniques we use to study our system arewidely
applicable for investigations of beyondmean-field physics in a broad range of schemes involving interacting
atomswhosemomentum states are coupled by electromagnetic fields.

This article is organized as follows. In section 2, we first derive amaster equation describing the atom-cavity
interactions. Further, we adiabatically eliminate the cavitymode to arrive at an effectivemaster equation for the
atoms only.We also describe approximate numericalmethods for each of the twomaster equations that enable
us to obtain complementary insights into the squeezing dynamics. In section 3, we study the efficiency of
squeezing onmomentumpseudospins by considering Bragg transitions on the S P1

0
3

1- transition in
Strontium as a specific example [17].We show that appreciable spin squeezing can be demonstrated using
modest laser powers.We study the interplay of squeezing and superradiance, the dynamics under very fast
squeezing, and the effect of a non-zeromomentumwidth.We also discuss themanifestation of an
experimentally observablemany-body energy gap. In section 4, we concludewith comments on our results and
possible extensions of ourwork.

2.Model andmethods

2.1. Setup
Weconsider a collection ofN atomswithmassM in a ring cavity with resonance frequencyωc as shown in
figure 1(a). Each atom consists of two electronic levels gñ∣ and eñ∣ with transition frequencyωa. A laserwith
frequencyωl drives onemode of the ring cavity. The cavity resonance is red detuned from the atomic transition
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by a detuningΔc=ωa−ωc>0, while the drive laser is detuned byΔl=ωa−ωl>0. The relative detuning
of the laser and the cavity isΔcl=ωl−ωc=Δc,Δl. Upon absorption or emission of a photonwithwavevector
k , themomentumof an atom is shifted by k , where k k= ∣ ∣.

2.2. Basicworking principle
Theunderlying principle for how squeezing is generated in our scheme is summarized infigure 1(b) for the case
when the pseudospin is encoded in the states g , 0ñ º ñ∣ ∣ and g k, 2ñ º ñ∣ ∣ with transition frequency 4ωr, where

k M2r
2w = is the atomic recoil frequency.Wedenote the drivenmode asmode 1 and the counterpropagating

mode asmode 2.Thedrive laser frequency is arranged such that 4cl l c rw w w dD = - = + , where δ is a two-
photondetuning typically assumed tobe> 0 in thiswork. The excitationof an atom from ñ∣ to ñ∣ (green circle in
figure 1(b)) is facilitated by the absorptionof a drive photon and subsequent emission intomode2. The energy
imbalance between the photon exchange and the spin excitation is

E 4 . 1l c r   w w w dD = - - = ( ) ( )

Similarly, the de-excitation of a second spin (magenta circle infigure 1(b)) is accompanied by the absorption of a
photon inmode 2 and subsequent emission at the drive frequency, leading to an energy imbalance

E 4 . 2c l r   w w w dD = - - - = - ( ) ( ) ( )

However, from equations (1) and (2), the simultaneous excitation of one atomand de-excitation of the other is
resonant, facilitated by the four-photon process consisting of absorption of a drive photon, emission and
absorption of a virtual cavity photon and subsequent return of the photon to the drive laser. Assuming that the
cavitymode couples identically to all the atoms, the cavitymode cannot distinguishwhich atomwas excited and
which onewas de-excited, leading to an effectiveHamiltonian of the form

H J J , 3eff µ
- +ˆ ˆ ˆ ( )

where J j
N

j1s= å


=
ˆ ˆ , with j js = ñ á+ˆ ∣ ∣and j js s=- +ˆ ( ˆ )†. The effectiveHamiltonian, equation (3), can be

expressed as

J J J J JJ J , 4z z z= - -- +ˆ ˆ ˆ · ˆ ˆ ˆ ˆ ( )

where J J JJ x y z
x y z= + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ and J

iˆ for i=x, y, z are theCartesian components of the collective angular
momentum Ĵ formedby themomentumpseudospins. In the expression for Ĵ, the symbols x y z, ,ˆ ˆ ˆ refer tounit
vectors along the coordinate axes and arenot tobe confusedwithpositionoperators.The second term is the familiar
one-axis twisting (OAT) interaction that gives rise to spin squeezed statesuseful for quantummetrology [2]. Thefirst
term,on theotherhand, opens amany-body energy gap that hasbeen experimentally observed, for example, using
spins encoded inoptical clock transitions [28].Webrieflydiscusshowthe latter effectmanifests inour system in
section3.7.

2.3. Atom-cavity interactions
Wenowproceed to derive amaster equation that reflects the underlying atom-cavity interaction at the heart of
the resonant spin exchange intuitively described in the previous section. TheHamiltonian governing the

Figure 1.Experiment setup andworking principle. (a)A cloud of atoms interacts with two counterpropagatingmodes of a ring cavity.
Onemode (mode 1) is driven at frequencyωl, while the counterpropagatingmode (mode 2) is in vacuum, i.e. not pumped. The
scheme enables cavity-mediated interactions between every pair of atoms. (b)The excitation or de-excitation of a single atom is off-
resonant. However, the exchange of excitation between two atoms is a resonant process.
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dynamics of the atom-cavity system is
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where g is the atom-cavity vacuumRabi frequency,κ is the cavity decay rate andα is the amplitude of the drive
laserwith 2a∣ ∣ the photon flux in units of photons/time. The operators a a,s sˆ ˆ† for s=1, 2 respectively describe
the creation and annihilation of photons inmodes 1 and 2whosewavevectors satisfy kk k z1 2= - = ˆ (see
figure 1(a)). The operator zjˆ represents the position of atom j along the cavity axis. The decay of the cavity fields is

accounted for by the standard Lindblad dissipator of the type O O O O O O O2 2 r r r r= - -[ ˆ ] ˆ ˆ ˆ ˆ ˆ ˆ† † †
for jump

operator Ô and densitymatrix ρ. The resultingmaster equation is

H a
1

i
, . 6

s
s

1

2


år r k r= +

=
˙ [ ˆ ] [ ˆ ] ( )

Weneglect free-space scattering in our analysis since superradiant decay (section (3.4)) is typically the dominant
dissipationmechanism (see appendix F and discussion in section 4).

Wework in an interaction picture rotating at the drive frequencyωlwith free evolutionHamiltonian
H e e g g a a2f j l j j s l s s w w= å ñ á - ñ á + å(∣ ∣ ∣ ∣) ˆ ˆ† . First, we adiabatically eliminate the excited state eñ∣ based on

the large detuning of the drive lasers and cavitymodes from the g eñ « ñ∣ ∣ transition (appendix A.1). Further, on
long timescales, the upwards propagatingmode (mode 1) is composed of amacroscopic steady state amplitude
with smallfluctuations around this value. Themacroscopic amplitudeβ ( 1b ∣ ∣ ) is found from themean-field
equation

2
i i . 7clb

k
b ka= - - D -⎜ ⎟⎛

⎝
⎞
⎠˙ ( )

For t 1k- , the steady-state value is i i2 clb ka k= - - D( ).We displacemode 1 by the amplitudeβ by
making the transformation a a1 1b +ˆ ˆ . Apart from introducing some constant terms that can be neglected,
the resultingHamiltonian is
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with k k k k2eff 1 2= - = the effective wavevector along ẑ. The dissipative part of themaster equation remains
the same. The second line of equation (8) reflects the dominant photon exchange between themacroscopic field
inmode 1 and the vacuumofmode 2. Inwriting equation (8), we have neglected the small exchange process
between the vacuum fields of the twomodes. This approximation allows us to keep track of onlymode 2 and
ignore the other terms containing a1̂ in themaster equation sincemode 1 only interacts with the atoms and
mode 2 through the c-numberβ.

2.3.1.Momentumwidth using the n q, ñ∣ notation
Themomentum shift operator e k zi jeff ˆ appearing in equation (8) can only shift themomentum in units of keff .
For simplicity, we consider initial atomic states that are clustered around n keffñ º ñ∣ ∣ , i.e. p n k0j effá ñ = ˆ ( ) ,

where n is an integer. (A superposition of ñ∣ and n keffñ º ∣ with n n 1= +  can be subsequently obtained
by aπ/2 Bragg pulse.)We introduce two labels n, q to represent amomentum state as p n q,ñ º ñ∣ ∣ . The label n
denotes themomentum center and is defined as

n
p

k
, 9

eff
= ( )

where x denotes the nearest integer to x. The label q quantifies the deviation from a center and is defined as

q p n k . 10eff= - ( )

Wenote that an initial offset from an integermultiple of keff , i.e. p n k p0j eff offá ñ = +ˆ ( ) can be trivially

accounted for by denoting states as p n q p, , offñ º ñ∣ ∣ so that p n k q peff off= + + . Note that p 1 2off <∣ ∣ since
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larger values can bemodeled as an offset about a shifted initial center n n 1   .Without loss of generality,
we assume poff=0.

Themomentumwidth is characterized by a spread qs .We assume that the initialmomentum spreadσq is
small compared to the difference between subsequent centers, i.e.

k
1. 11

q

eff

s
 ( )

Combinedwith the fact that the dynamics under equation (8) does not change the spread but only shifts the
center, this assumption ensures that we can assume the orthogonality relation

n q n q q q, , , 12n n,d dá ¢ ¢ ñ = - ¢¢∣ ( ) ( )

for allmomentum states that significantly participate in the dynamics.

2.4. Numerical solution: semiclassical Langevin equations
Themaster equation governing the atom-cavity interactions is:

H a
1

i
, . 13a c a c a c 2


r r k r= +- - -˙ [ ˆ ] [ ˆ ] ( )

For an atom in an initial state n q, jñ∣ , themomentum shift operator eik zjeff ˆ only shifts the center n but does not

change qj. As a result, it can be expressed as

n q n qe 1, , . 14k z

n
j j j

i jeff å= + ñ á
=-¥

¥

∣ ∣ ( )ˆ

Wedefine generalized population and coherence operators nm
jŝ as

n q m q, , . 15nm
j

j j js = ñ áˆ ∣ ∣ ( )

Wehave dropped the label qj in defining the operators nm
jŝ , since an initial value of qj remains constant during

the subsequent dynamics governed by themaster equation. The procedure to sample the initial value of qjwill be
discussed shortly in section 2.4.1.

The free energy term can be expressed as

p

M2
, 16

j

n
n
j

nn
j

2

å w s=
=-¥

¥ˆ
ˆ ( )

where n k q M2n
j

jeff
2 w = +( ) . The frequency n

jw can be better expressed as

n nq q4 2 , 17n
j

r j q j q
2 2 2w w s s= + +( ˜ ˜ ˜ ˜ ) ( )

wherewe have introduced the dimensionless quantities q q qs=˜ and kq q effs s=˜ . TheHamiltonian,
equation (8), can nowbe expressed as

H a a
g

a a
4

. 18
j n

n
j

nn
j

cl
j n c

n n
j

n n
j

2 2

2

2 , 1 2 1,* 


åå ååw s b s b s= - D -
D

++ +
ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( )† †

Expressed thisway, the atom-cavity interaction is reminiscent of the detunedTavis-Cummingsmodel that is at the
heart of cavity-based spin exchange schemes considered for optical clock transitions [27, 28]. TheHamiltonian
governing thedynamics is dependent on the initially sampled value of qjwhich enters through the frequencies n

jw .
Wewrite down the dynamical equations for the corresponding c-numbers snm

j
nm
js« ˆ and a2z « ˆ within

the truncatedWigner approximation (TWA) framework. The TWA technique involves evolving the classical
equations ofmotion associatedwith theHamiltonian subject to initial conditions sampled from theWigner
distribution of the initial state [30, 32].While the sampling procedure accounts for the quantum and statistical
uncertainties in the initial conditions, the time evolution governed by simple classical equations is a good
approximation in a variety of situations since, in leading order, these equations remain unaffected by quantum
fluctuations [29, 32–35]. In the case of open systems, the coupling to the reservoir not only gives rise to
additional damping terms in the classical equations but also introduces Langevin noise terms [33]with diffusion
coefficients satisfying the Einstein relations [36]. The expectation value of any symmetrized product of operators
is obtained directly by computing the corresponding c-number product, called theWeyl symbol, and averaging
this quantity over several trajectories with appropriately sampled initial conditions and noise realizations [30].
The expectation values of operator products in a different ordering can be subsequently obtained through the
use of appropriate commutation relations.

We introduce the effective coupling strength g g 2 ceff
2 b= D∣ ∣ andwithout loss of generality assume thatβ

is real. The c-number equations are
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where ξl(t) for l=1, 2 arewhite-noise processes satisfying t 0lx =( ) and t t t tl l l l,x x d d¢ = - ¢¢ ¢( ) ( ) ( ). The bar
indicates averaging over several trajectories with different noise realizations and initial conditions (see
section 2.4.1) . The equation for ζ is a stochastic differential equation because of the noise arising from coupling
tomodes outside the cavity [33, 37].We refer to thismodel as themulti-centermodel (MCM) because of its
ability to track an arbitrary number ofmomentum centers.

2.4.1. Initial conditions
Themode amplitude a ibz = + is initialized according to theWigner distribution of a vacuum state as

P a t P b t, 0 , 0 0, 1 2 , 20= = = =( ) ( ) ( ) ( )

so that a a a a 2 1 22
2 2 2 2z = á ñ + á ñ =∣ ∣ ( ˆ ˆ ˆ ˆ )† † . Here, , m s( ) denotes a normal distributionwithmeanμ and

standard deviationσ.
For the atoms, wefirst consider each atom to be in a state described by the densitymatrix

q n q n q0
1

2
d e , , , 21

q

q1 2 q
2 2

òr
ps

= ñás

-¥

¥
-

 ( ) ∣ ∣ ( )( )

where the restriction, equation (11), ensures that states with q keff~∣ ∣ do not contribute significantly so that
the limits of integration can be extended to¥.

We note that by using two labels n, q to characterize themomentum,we have effectively split themomentum
phase space distribution into one for the discrete label n and one for the continuous label q. To sample q, we note
that themomentum space distribution of the state described by equation (21) is Gaussianwith spreadσq.
Therefore, in each trajectory, the value of qj for any atom j is drawn as

P q t P q t, 0 0, , 0 0, 1 . 22j q j s= = = =( ) ( ) ⟹ ( ˜ ) ( ) ( )

In general, our approach in its present formulation is valid for any initial atomic densitymatrix that is diagonal
in themomentumbasis. The densitymatrix for atom j can then be interpreted as a probability distibution for the
initial value of qj fromwhich this value can be sampled in each trajectory. As already noted, the value of qj
remains constant during the subsequent time evolution and the only effect of qj is tomodify the frequencies

, ,n
j

m
jw w ¼that enter theHamiltonian, equation (18), for each trajectory.

To appropriately sample the n-space distribution corresponding to the state described by equation (21), we
note that the discrete levels n,m,Kare reminiscent of the differentmJ levels in a 2J+1 spinmanifold.Here, the
choice of J depends on the number of discrete levels that participate significantly in the dynamics.We initialize
the c-numbers snm

j according to theDTWA (discrete truncatedWigner approximation) prescription [29, 30],
namely
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Wenote that our choice of initial conditions is consistent with a formal generalization of the TruncatedWigner
Approximation technique to systemswithD discrete states on a given site [31].

Prior to implementing our squeezing protocol, a Bragg pulse rotates the state of each atom to an equal
superposition of the n n,  centers. Starting with the initial conditions in equation (23), we obtain the c-number
values corresponding to such an equal superposition by numerically implementing afictitious instantaneous
state rotation that rotates each spin to lie on the equatorial plane of the Bloch sphere formed by n n, 
(appendix B.1). The observables from theMCMsimulations are averaged over 2000 trajectories in order to
sample the initial conditions and noise realizations.

2.5. Effective atom–atom interactions
The spin exchange dynamics anticipated in section 2.2 is confirmedwhenmode 2 is adiabatically eliminated to
obtain amaster equation describing the effective atom–atom interactions.Whenmode 2 is negligibly excited, it
can be considered as a reservoir in a vacuum statewith densitymatrix R 0 00 = ñá∣ ∣.We use the superoperator
formalism to adiabatically eliminatemode 2 [38]. The details of this derivation are presented in appendix A.2.
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The resultingmaster equation can be compactly expressed in terms of operators analogous to collective angular
momentumoperators, whichwe introduce below.

2.5.1. Collective angularmomentum operators
First, we introduce generalized population and coherence operators for a single atom, along the lines of
equation (15), but with an extra label q, as

n q m q, , . 24nm
j q

j
,s = ñ áˆ ∣ ∣ ( )

Wecan then define collective angularmomentumoperators ,n n
z

 
ˆ ˆ acting on any two consecutivemomentum

centers n, n+1 as

q q qd , d ,
1

2
d . 25n
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With 2n
x

n n  = +
+ -ˆ ( ˆ ˆ ) and i2n

y
n n  = -
+ -ˆ ( ˆ ˆ ) , the operators , ,n

x
n
y

n
z

  ˆ ˆ ˆ satisfy the usual angular
momentum commutation relations

, i , 26n
j

n
k

jkl n
l

  =[ ˆ ˆ ] ˆ ( )

where òjkl is the usual Levi-Civita symbol for the right-handed coordinate system formed by the x, y, z axes. Once
again, the restriction on initial states, equation (11), ensures that the limits of integration over q can be extended
to¥while still allowing the use of the orthogonality relation equation (12) in deriving the commutation rules
in equation (26). Specifically, the collective spin consisting of the pseudospin-1/2 systems formed by the two

centers n n,  are characterized by the operators ,n n
z

 

 

ˆ ˆ .

Themaster equation for the reduced densitymatrix Tra c a cr r= -[ ], obtained after adiabatically eliminating
mode 2, can be expressed as

H
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i
, 2 , 27a a

n
n n aeff
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with the effectiveHamiltonian
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where the coherent and dissipative coupling strengths,χn andΓn are defined as
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with n4 1 2n cl rd wº D - +( ). The notation ar̃ indicates that themaster equation is written in an appropriate
interaction picture (appendix A.2).

2.6. Numerical solution: cumulant theory for one and two-atomoperators
Tomake computations tractable, we assume that the n n,  centers form a closed two-level systemwhile
studying the collective spin dynamics using themaster equation, equation (27). To this effect, we truncate
equation (27) as

H
1

i
, 2 , 30a a n n aeff

T


 r r r= + G

+
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where the truncatedHamiltonian is

H q n qd 8 . 31
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We recall that , with 0qs =˜ , the effectiveHamiltonian, equation (31), is analogous to the standard spin
exchange/one-axis twistingmodel studied for closed two-level systems coupled to a cavity [2, 27, 28, 39] (also
comparewith equation (3)), and provides a referencemodel against which complications arising from the nature
ofmomentum states can be contrasted.

Exact solutions even for the truncatedmaster equation, equation (30), are computationally intractable
because of the exponential scaling of the Liouville spacewith atomnumber.We use an approximatemethod
wherewe only keep track of expectation values of single atom and two atomoperators, of the type n n

q
,

1,
a b

sá ñˆ and

n n
q

n n
q

,
1,

,
2,

a b c d
s sá ñ¢ˆ ˆ , where the n values can take either n or n. Sincewe are ignoring the othermomentum centers, we
refer to thismodel as the two-centermodel (TCM). As in theMCM, the single atom and two atom expectation
values are first initialized according to the state described by equation (21). Next, an instantaneous rotation
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transforms these quantities to correspond to a state that is an equal superposition of n n,  (appendix B.2). The
identical initial conditions for each atomand the permutation symmetry of themaster equation enable us to
avoid separate indices for every atom in the system,with the number of atomsN explicitly appearing in the
equations for the quantities n n

q
,

1,
a b

sá ñˆ and n n
q

n n
q

,
1,

,
2,

a b c d
s sá ñ¢ˆ ˆ . The resulting equations ofmotion for these single atom

and two atom expectation values are summarized in appendix C.

3. Spin squeezing

3.1. Figure ofmerit:Wineland squeezing parameter R
2x

The n
z

n
z

 
 

ˆ ˆ term implicit in equation (31) (see equation (4)) can be exploited to prepare spin squeezed states.

Thefigure ofmerit of a squeezed state, relevant for quantummetrology, is theWineland squeezing parameter R
2x

[2] defined as

V

V

1
. 32R

2
2
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SQL
x = ( )

The contrast  is given by

N
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2
, 33

n
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á ñ∣ ˆ ∣
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where J x y zn
x

n
y

n
z

n   = + +   
ˆ ˆ ˆ ˆ ˆ ˆ ˆ . For a given state,Vmin is the variance in a spin component in the plane

perpendicular to themean spin direction (characterized by the unit vector nMSDˆ ), minimized over all axes in
this plane.Mathematically,

V J nmin . 34
n n

nmin
2

MSD

= á ñ
^

(ˆ · ˆ ) ( )
ˆ ˆ

V N 4SQL = sets the corresponding SQL for unentangled atoms and is the variance of any spin component
in this plane for a coherent spin state [2].

3.2. Considerations for choosing parameters
First, we note that the single atom-cavity vacuumRabi frequency can be expressed as g Ckg= , whereC is the
cooperativity of the cavity and γ is the inverse lifetime of the excited state. Ourmodel imposes two constraints
that limit b∣ ∣ to the range

C
1 , 35cb

kg
D ∣ ∣ ( )

wherewe have used g Ckg= . The lower bound 1b ∣ ∣ allows us to treatmode 1 as a classical field
represented by the c-numberβ. The upper bound ensures that the excited state eñ∣ is negligibly populated, i.e.

g

4
1, 36

c

2 2

2

b
D


∣ ∣ ( )

thereby ensuring that the adiabatic elimination of eñ∣ is valid.Weworkwith b∣ ∣values such that 100b∣ ∣ and
the excited state population is 0.01 .

3.3. Parameters for the S P1
0

3
1- transition in Sr88

Although our scheme is applicable to awide variety of atomic species, here we consider its efficiencywhen it is
implemented on the 689 nm S P1

0
3

1- transition of Sr88 . Our choice ismotivated by the advantages of using
ground-state Sr88 in Bragg interferometers [17], such as its extremely small scattering cross-section, insensitivity
to straymagnetic fields and ease of experimentalmanipulation, including accessing the parameter regimes
required for our scheme. The inverse lifetime of the excited state is 2 7.6 kHzg p = while the single photon
recoil frequency isωr/2π=4.74 kHz. The spin-1/2 system is encoded in kS , 01

0 ñ º ñ∣ ∣ and kS , 21
0 ñ º ñ∣ ∣

implying that n n0, 1= =  .We considerN=103 atoms in a cavity with decay rateκ/2π=100 kHz, and

with either of two cooperativities,C=1 (C= 10). The single atom-cavity vacuumRabi frequency g Ckg=
then takes the value g/2π≈27.6 kHz (87.2 kHz).We assume that the cavity resonance is detuned from the
atomic transition such thatΔc/2π=200MHz.We characterize the relative strength of the dissipative and
dispersive interactions by the ratioR defined as

R
2

. 37
n

n nc
k
d

=
G

=

 

( )

Weoperate in the regimeΔc≫NCRγ, which ensures that the squeezing induced fields in both themodes, 1 and
2, are small compared to themacroscopic field b∣ ∣ inmode 1.
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Squeezing byone-axis twisting occurswhen the dispersive interactions dominate, corresponding to the regime
R=1.We considerR in the range 0.025−0.2 in our study, corresponding to 2 2 MHzn d p .Model-enforced

constraints (see equation (35) and the discussion following it) restrict the photonnumber inmode 1, 2b∣ ∣ , to the
range 1×104−2× 106 (1×104−2× 105). Experimentally, these constraints translate to varying the powerP
in thedrive laser in a range 10 nW−150 μW (10 nW−15 μW) (appendixD). In standardone-axis twistingwith
closed two level systems, squeezing proceeds at a characteristic rateQ N nc=


[2, 27, 39]. The permissible values of

2b∣ ∣ results in a squeezing rateQ/2π in the range 5Hz−7.6 kHz (0.5–76 kHz) (appendixD).Weonly consider
squeezing rates such thatQ 1nd   (< 1/50 in all simulations), allowing for the adiabatic eliminationofmode 2 in
deriving the two-centermodel (see appendixA.3). Even in this regime,while very slow rates are undesirable froma
technical perspective, very fast squeezingwithQωr leads to couplingwithmomentumstates outside the
pseudospinmanifold anddegrades the squeezing, aswewill demonstrate.

Finally, to account for themomentumwidth of the atomic cloud, we consider values 0.1q s̃ to satisfy the

requirement, equation (11), of ourmodel. The dephasing rate 4 2d r qm w s= ˜ associates a characteristic
timescale to themomentumwidth. Specifically, for a collection of atoms initialized in the same, equal
superposition between the two centers n n,  and undergoing free evolution, the contrast  decays as

t e td
2 2

 = m-( ) .With 0.1q s̃ , the correspondingmaximum rate is 2 2.7 kHzdm p = .

3.4. Limits set by superradiance
Wefirst consider the caseof 0qs »˜ , i.e. negligiblemomentumwidth. Figure 2(a)plots the evolutionof the spin
squeezingparameter in theC=1case for values ofR in the range0.025−0.2, andwith 5.4 102 5b » ´∣ ∣ .Modest
laserpowers, up to40 μW,are sufficient tomaintain this intracavity photonnumber for the rangeofR considered
here (appendixD). In this parameter regime, theTCM (dashed) andMCM (solid) results agree excellently until R

2x
reaches itsminimumvalue.Theminimumvalueof R

2x arises as a trade-off between the twistingdynamics that
decreasesVmin (equation (32) andfluctuations in superradiant decay from n to n that increase this quantity [27, 39].
For smallerR, the larger valueof nd  strongly suppresses dissipation relative todispersive interactions (equation (29)),
leading to improved squeezing, i.e. smaller values of R

2x .However, forfixed 2b∣ ∣ , the absolute squeezing rate N nc 
also

decreaseswith larger nd  (equation (29)), leading to slower squeezingdynamics.Therefore, as summarized in the inset,

smallerR values enable greatermetrological gain, but the time taken for squeezing also increaseswhen 2b∣ ∣ isfixed.
The population dynamics at the differentmomentum centers reveal the effect of superradiance. Figure 2(b)

shows the evolution of populations in n n,  for the case ofR=0.2. The rapid decrease (increase) in n (n)
population reflects superradiant decay on the n n  transition. Further, theMCMenables an investigation of
the leakage to centers outside the spinmanifold, highlighting the power of this technique.We denote the first k
centers higher than n as n+k, and the first k centers lower than n as n−k. TheMCMreveals that a small number
of atoms (<10) are lost ton+1 during the squeezing dynamics, as seen infigure 2(c) for the variousR values.

Figure 2. Interplay of squeezing and superradiance for different R 2 nk d=  values. (a)Evolution of R
2x forR=0.025, 0.05, 0.1, 0.2.

Inset:maximummetrological gain (1 R,min
2x in dB) and time taken to achieve this gain. (b)Population in n, n forR=0.2, with total

population in all centers adding up toN=103. (c)Population in n+1 for differentR values. In this panel,N=103,C=1,
5.4 102 5b » ´∣ ∣ . Solid (dashed) lines representMCM (TCM) results. Four centers, n n n n, , ,1 2  + + , were tracked in theMCM

simulations, with negligible population in n+2.
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However, the excellent agreement between the TCMandMCMresults infigure 2(a) indicates that in this
parameter regime, the centers n n,  can be effectively treated as a closed two-level spin-1/2manifold.

3.5. Squeezing faster and faster
A simple two-levelmodel, such as the TCM,would predict that the squeezing rate can be arbitrarily increased by
simply pumping inmore laser power so that 2b∣ ∣ is increased. Figure 3(a) explores the evolution of R

2x in the case
C=10,R=0.05 ( 2 1nd p = MHz) for different values of 102 4b∣ ∣ in the range 2−16. As expected, the TCM

(dashed) predicts that R
2x attains the sameminimumvalue faster when 2b∣ ∣ is increased. However, theMCM

results (solid) present a different narrative: As 2b∣ ∣ increases, R
2x indeed attains itsminimum faster, but this value

also increases, signaling a degradation of squeezing. In fact, themetrological gain R
2x- drops by∼3 dB (factor of

2) as 2b∣ ∣ increases from 2 104´ to 16×104.
Large oscillations in theMCMcurves as 2b∣ ∣ is increased indicates the breakdown of the two-centermodel.

A study of the population dynamics at the different centers confirms this breakdown. As seen infigure 3(b),
although the populations in n (n) follow the general decreasing (increasing) trend expected from n n 
superradiant decay, the TCMandMCMpopulation transients significantly differ in the case of strong driving
( 10 162 4b =∣ ∣ ). Further, theMCM transients display pronounced oscillations with a frequency∼8ωr,
corresponding to the relative detuning between the n n«  and n n 1« + , n n1 «-  transitions.

Giant population oscillations in n±1, shown infigures 3(c)–(d), confirm the significant participation of these
centers in the dynamics as 2b∣ ∣ increases. A simple Rabi oscillationmodel qualitatively explains the occupation
of these states: The coherent superposition of the n n,  centers serves as a large collective spin that sourcesmode
2. Both cavitymodes, 1 and 2, are nowmacroscopically occupied and drive two-photonRabi oscillations
between n n 1« - and n n 1« + with approximate two-photon detuning 8ωr.Wefind that themaximum
population Pn

max
1
in n±1 predicted by thismodel is given by (see appendix E)

P
N N

2 8
. 38n

n

r

max
2

1

c

w
»




⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 3(e) compares thefirst oscillation peak in the n±1 populationswith the analytic formula equation (38).
For small occupations (small 2b∣ ∣ ), the formula agrees verywell with the simulations, whereas the discrepancy
becomes about a factor of 2 at the largest occupation ( 16 102 4b = ´∣ ∣ ). In this strong driving regime, the

Figure 3. Squeezing faster and faster. (a)Evolution of R
2x for 10 2, 4, 8, 162 4b =∣ ∣ . (b)Population in n, n for 10 162 4b =∣ ∣ , with

total population in all centers adding up toN=103. Solid (dashed) lines representMCM (TCM) results. (c)–(d)Population in,
respectively, n−1 and n+1 centers, for various drive strengths. (e)Comparison of simulated n±1 populations to analytic result of Rabi
oscillationmodel (see Text). In this panel,N=103,C=10 andR=0.05. Six centers, n n n n n n, , , , ,2 1 1 2- -   + + , were tracked in the
MCMsimulationswith very lowpopulations in n±2.
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coherence that develops between n n, 1 + and n n, 1 - is no longer negligible andmodifies thefield inmode 2
considerably, leading to the breakdownof the simple Rabi oscillation picture presented here (appendix E).

Finally, we note thatfigures 3(c), 3(d) display trends such as the decrease (increase) in the amplitude of
population oscillations in n 1- (n 1+ ) over time and the gradual deviation of the oscillation troughs from zero.
These features likely arise from the complex interplay of the Rabi flopping and the cavitymediated superradiant
decay on the n n , n n1 -  and n n 1 + transitions.

3.6. Effect ofmomentumwidth
Wenow consider the casewhen the atomic cloud has non-zeromomentumwidth. For this study, we use the
parameters from figure 3, i.e.C=10 and 10 2, 4, 8, 162 4b =∣ ∣ . Figure 4(a) shows the evolution of R

2x for

0, 0.025, 0.05qs =˜ and 0.1 in the case when 10 42 4b =∣ ∣ . In this panel, the solid and dashed curves
respectively indicate theMCMandTCMmodels. Three trends can be observed from this figure: (T1)When the
rate of squeezing is fast relative to the dephasing ( qsµ ˜ ), the R

2x transient is similar (blue) to the zerowidth case
(red)while theminimumvalue attained is greater indicating slight degradation of squeezing. (T2) For larger
momentumwidth, the R

2x transient displays oscillatory behavior signifying competition between squeezing and

dephasing (orange). (T3)As thewidth increases further and dephasing dominates, R
2x initially decreases slightly

but then steeply increases to values well above unity, signaling rapid loss of squeezing (black).
These trends are summarized in figure 4(b), where themaximummetrological gain achievable is plotted as a

function of 2b∣ ∣ for different values of qs̃ . The 0qs =˜ case (red) reflects the study performed infigure 3 and
shows that very strong driving lead to loss of squeezing as a result of coupling to othermomentum centers. At the
other extreme is the case of 0.1qs =˜ (black), where rapid dephasing leads to a complete loss of squeezing for
weak driving, and barely observable squeezing (∼2 dB) even for very strong driving. For intermediate widths

0.025, 0.05qs =˜ (blue, orange), the squeezing suffers at both ends, with dephasing restricting the squeezing at
weak driving, and coupling to other centers serving as a limitation at very strong driving. For thesewidths, an

Figure 4. Squeezing in the presence ofmomentumwidth. (a)Evolution of R
2x in the case of 10 42 4b =∣ ∣ for 0, 0.025, 0.05, 0.1qs =˜ .

Solid (dashed) lines representMCM (TCM) results. (b)Maximummetrological gain (1 R,min
2x in dB) as a function of drive strength

for different qs̃ values. (c)Evolution of R
2x in the TCM for 0.1qs =˜ and 10 22 4b =∣ ∣ whenNE=0,1,2,4 echo pulses are inserted.

Initially, the N 1, 2, 4E = cases evolve identically to the N 0E = case until thefirst echo is applied (at different times in the three cases)
and hence their initial profile is overlaid by the red N 0E = curve. The gray broken line shows the 0qs =˜ case with no echoes.
(d)Evolution of the constituents,C andVmin of R

2x in the TCMwhenNE=2 echo pulses are inserted. Other details are the same as in
figure 3.
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optimumdrive strength therefore exists where themetrological gain ismaximized, as reflected by the variation
of the gain for the four cases of 2b∣ ∣ considered here.

Asfigure 4(a) exemplifies, we observe that the TCM (dashed) typically qualitatively reproduces the features
seen in theMCM (solid)when studying the effect ofmomentumwidth. Except at very strong driving, the TCM
andMCMagree reasonably well in the (T1) cases until theminimum squeezing time, after which theMCMrises
very steeply compared to the TCM. In the (T2) cases, bothmodels capture the oscillatory behavior but can be
very different quantitatively. Finally, bothmodels agree verywell in the (T3) case. The difference in the two
models is not only because of the extramomentum centers tracked by theMCM, but also because of the
approximations used in solving for the dynamics in thesemodels. In the TCMmodel, we force all non-trivial
three-atom correlations to zero using a systematic truncation scheme (appendix C). However, theMCM is a
TWA-style approach that can, in general, capture the build-up of non-trivial three-atom correlations, which
should be anticipated in an interacting system such as the one considered here. As an example, the general steep
increase of theMCMcurves after theminimum squeezing time in the (T1) cases is amanifestation of the effect of
three-atom correlations, also visible in the cases plotted infigure 3(a). On the other hand, the superposed
oscillations at frequency∼8ωr are a result of coupling to the n±1momentum centers.

The dephasing-induced degradation of squeezing can in fact be reversed. To elucidate this point, we consider
the case of 10 22 4b =∣ ∣ and 0.1qs =˜ , a situationwhere achieving squeezing is seemingly hopeless because of
weak driving and rapid dephasing (red curve infigure 4(c)). As aminimal toymodel to illustrate our protocol, we
consider the TCMand interrupt the squeezing dynamics with a series of ‘instantaneous’ echo pulses
(appendix B.2). In a frame rotating at 4ωr, the axis of rotation for these echoes is the same as that of the initial
π/2-pulse used for preparing the equal superposition of the n n0, 1= =  centers. Figure 4(c) shows the
evolution of R

2x when N 0, 1, 2, 4E = echo pulses are inserted during the course of the squeezing dynamics. The

gray broken line shows the evolution of R
2x when 0qs =˜ . The timing of theNE>0 echo pulses are such that they

approximately divide the time to achieve theminimum R
2x in the 0qs =˜ case (∼0.3ms) into a sequence of

T T T T, 2 , , 2 ,¼ segments, where the number of 2T segments isNE−1. The insertion of echo pulses leads to a
revival of R

2x as it periodically attainsminima< 1 as the spins re-phase after an echo pulse is applied. Increasing

the number of such echoes prevents R
2x fromblowing up to very large values at any point during its evolution and

alsomaintains the periodically attainedminima close to the 0qs =˜ transient.
The applicability of such a protocol to revive the squeezing parameter goes beyond onlymomentum

pseudospins, and is useful on a variety of platformswhere squeezing is desired in the presence of unavoidable
on-site disorder, for example, in the case ofNV centers. For a practical implementation usingmomentum
pseudospins, the non-zero echo pulse duration ( 2 4 r p w to avoid leakage to centers outside n n0, 1= =  )
and the effect ofmomentumwidth on pulse efficiency [40] have to be considered. Nevertheless, with suitable
choice of parameters, we anticipate partial revivals in R

2x to be observable despite these deviations fromour toy
model.

Finally, we investigate the constituent observables of the spin squeezing parameter to better understand this
strong revival phenomenon. From equation (32), R

2x comprises of two observables, namely,  (equation (33))
andVmin (equation (34)). Figure 4(d) plots the evolution of these observables aswell as R

2x for the case of N 2E = .
The re-phasing of the spins after each echo leads to the expected increase of  . However, figure 4(d) shows that
this increase alone is not responsible for the strong revival of R

2x . As the spins re-phase,Vmin also reaches its

minima close to the timeswhen  peaks, thereby leading to sharp dips in R
2x .

3.7. Collective physics with amany-body energy gap
Apart from squeezing, yet another type of collective behaviormanifests as a result of the cavitymediated atom–

atom interactions.We consider the observable ̂ , defined as the normalized length of the projection of the
Bloch vector on to the equatorial plane of the Bloch sphere.Mathematically

N 2
. 39

n
x

n
y2 2


 

=
á ñ + á ñ

^
 

ˆ ˆ
( )

Figure 5(a) plots the evolution of ̂ in the case 0.05qs =˜ for different values of 10 2, 4, 82 4b =∣ ∣ . The TCM
(dashed) and theMCM (solid) are in qualitative agreement in all cases and in quantitative agreement when
dephasing dominates, i.e. for weak driving (red). The gray broken line shows the corresponding decay of ̂ for
freely evolving atoms, i.e. with no interactions, which obeys the analytical expression t e td

2 2
 = m
^

-( ) , where
4 2d r qm w s= ˜ . Clearly, interactions lead to an observably slow decay of contrast compared to the free

evolution case.
The effectiveHamiltonian, equation (31), provides insight into the slow decay of ̂ in the presence of

interactions.We note that for any n

12

QuantumSci. Technol. 4 (2019) 045010 A Shankar et al



J J . 40n n n
z

n
z

n
z

n n    = - -
- +ˆ ˆ ˆ · ˆ ˆ ˆ ˆ ( )

We introduce themany-body gapHamiltonian, H J Jn n nG c=
  

ˆ ˆ · ˆ . The initial uncorrelatedmany-body state
can be visualized as a coherent spin state in the equatorial plane of the Bloch sphere corresponding to the
maximumquantumnumber J N 2n = associatedwith the operator J Jn n 

ˆ · ˆ . In other words, this initial state
satisfies

N N
J J 0

2 2
1 , 0 1. 41n n á ñ = + =^ 

⎜ ⎟⎛
⎝

⎞
⎠ˆ · ˆ ( ) ( ) ( )

Thefirst termof Heff
ˆ in equation (31) is not collective, causing dephasing of individual spins that leads to

shortening of themean spin length and populates shells of lower Jn. The presence of HG
ˆ introduces an energy

penalty for populating shells of lower Jn. Specifically, HG
ˆ dictates that

H J M J J, 1 , 42n J n n nG n cñ = +    
ˆ ∣ ( ) ( )

implying that the transition to a lower shell, J J 1n n -  , incurs an energy penalty

E J2 . 43J J n n1n n cD = -   ∣ ∣ ( )( )

As a result, individual atomdephasing is slowed down, leading to slower decay of ̂ .
We verify this qualitative explanation infigure 5(b), wherewe study the dynamics of ̂ under the TCMwith

the gapHamiltonian HG
ˆ turned off. The decay of ̂ is then in excellent agreement with the free evolution case,

although interactions are present through the remaining terms in equation (31) and the dissipative termof
equation (30).

Investigations with the TCM indicate that the presence of the gapHamiltonian HG
ˆ is an advantage froma

metrology perspective. The slow decay of contrast leads to a smaller value for theminimum squeezing
parameter R

2x compared to the case when HG
ˆ is turned off. Further, the subsequent rise of R

2x after theminimum

value is attained is slowed downwhen HG
ˆ is present.We note that the non-zeromomentum spread is an

intrinsic source of dephasing in a Bragg interferometer, and the cavity-mediated interactionswe engineer
naturally provide amany-body gap protection that suppresses this dephasing.

In general, our results are consistent with other examples that confirm that the presence of amany-body gap
arising from correlations can supresses adverse effects of single-atomdecoherence [28] and potentially
contribute to extending the coherence time for precisionmetrology. This ability to engineermany-body
correlations driven either bymediated interactions or particle statistics represents an emerging paradigm for
advancedmetrology [41].

4. Conclusion

Wehave proposed and analyzed in detail a scheme for squeezing directly onmomentumpseudospins using
cavity-mediated atom–atom interactions. Implementing our scheme does not require any experimental
overhead beyondwhat is necessary to operate Bragg intereferometers in a cavity. Since our scheme relies on
emission and absorption of a cavity photon, it is only applicable to states separated by k2 . Nevertheless, the
squeezing can be transferred to higher diffraction orders by subsequently applying largemomentum transfer
pulses [18, 42]. For studying various aspects of the problem,we have focused on the S P1

0
3

1- transition in Sr88

Figure 5.Manifestation of amany-body energy gap. (a)Evolution of ̂ for 0.05qs =˜ for different values of 10 2, 4, 82 4b =∣ ∣ . (b)
TCMresults using the same parameters as in (a), but with the gapHamiltonian HG

ˆ turned off. The gray broken line in each case shows
the decay of ̂ under free evolution. Solid (dashed) lines representMCM (TCM) results. Other details are the same as infigure 3.
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as an example, working in parameter regimeswhere<10 dB ofmetrological gain is achievable in a few hundred
microseconds to a fewmilliseconds based on the driving strength.Whilemore than sufficient for a proof-of-
principle experiment, we expect that with suitable choice of parameters—smallmomentumwidth, small ratios
of dissipative to dispersive interactions (R 2 nk d= ) andmoderately strong driving strengths,10 dB of
metrological gain can be achieved. Such parameters are within the reach of current technology: State-of-the-art
cooling and velocity selection techniques are able to provide samples with 0.01q s̃ while still ensuring
appreciable atomnumbers [20, 43]. TheR value can be tuned to smaller values by detuning the drive laser farther
away from the cavity resonance. Strong driving at large detunings is not a problem sincemodern lasers are able
to deliver orders ofmagnitudemore power than the hundreds ofmicrowatts required in our proof-of-principle
parameter regimes. In addition to squeezing, the same experimental setup can also be used to demonstrate and
explore collective physics associatedwith the opening of amany-body energy gap bymeasuring a different
observable, namely the contrast ̂ (equation (39)).

Ourmodel of atomic source ismotivated by a combination of computational and near-term experimental
considerations.While simulationswithN=103 atoms only requiremodest computational resources, the
favorable linear scaling of themulti-centermodel nevertheless allows a straightforward extension to simulating
atomic sources with larger number of atoms.Moreover, our results are directly relevant to potential proof-of-
principle experiments with small atomic clouds. Although a variety of atomic species can be used for this
scheme, our specific choice of atom, Sr88 , has a very small scattering cross-section [17] and potentially allows the
use of larger atomnumbers without introducingmajor complications such as atomic collisions. The unraveling
of the dynamics into phase space trajectories is enabled by considering initial atomic densitymatrices that have a
momentumwidth but are still diagonal in themomentumbasis. Thefinite spatial extent of realistic atomic
sources implies the presence of some degree of initial coherence between the variousmomentum components.
In futurework, wewill explore possible extensions of ourmodel to study the effects of such initial coherences on
the squeezing dynamics, whichmay be particularly important for sources such as Bose–Einstein condensates
launched from strongly confining traps.

In addition to superradiant decay, single atom free-space scattering (FSS) also degrades the squeezing.
Superradiance, being collectively enhanced, is the dominant source of degradation inmost of the parameter
regimeswe have considered (appendix F) and therefore we have only focused on this dissipationmechanism.
The parameter regimewhere superradiance dominates FSS is R NC12  (appendix F), and therefore, FSS is
not important when large atomnumbers are used such that this inequality is satisfied.Nevertheless, FSS can be
straightforwardly included in both the simulationmodels demonstrated herewith very little computational
overhead by accounting for the corresponding Lindblad terms. The scaling of themulti-centermodel remains
linear in atomnumber since FSS occurs independently for each atom.

While in principle theR value can bemade arbitrarily small to suppress superradiance and greatly improve
the squeezing, withfixed atomnumber the power required to squeeze at a specified rateQ rapidly increases as
1/R3 (equation (D.3)), motivating considerations of elegant related schemes that are not as sensitive to
superradiance. Recent schemes developed for squeezing on optical clock transitions circumvent this problemby
either squeezing faster using a twist and turnmechanism achieved by introducing a resonant drive [27] or by an
unconventional choice of initial state that drives the squeezing in a spin component orthogonal to that affected
by superradiant decay [39]. The former can be implemented onmomentumpseudospins using an additional
pair of resonant Bragg lasers injected, for example, one free spectral range away from the cavitymode used for
squeezing. The latter scheme requires an initial state with two ensembles pointing along opposite directions in
the equatorial plane of the Bloch sphere. It can be implemented by launching two cloudswith equal number of
atomswhich are initially in the n and n states respectively and applying a commonπ/2-pulse to rotate them to
the equatorial plane.However, in either case, a careful study of the effects ofmomentumwidth and potential
leakage to othermomentum centers has to be performed. The techniques developed in this paper can be readily
used to undertake such a study. The latter scheme, combinedwith differential rotations on the two ensembles
[17], can potentially be used to implement an entangled atomBragg gradiometer. Finally, our scheme has
natural extensions [44] to circumvent situations where the detection noise limits the utility of the prepared spin
squeezed states formetrology. By adjusting the frequency of the drive laser, the sign of the squeezing interaction
can be reversed, therebymaking our scheme amenable to interaction-based readout schemes such as twisting
echoes [45] that achieve precision below the standard quantum limit even in the presence of detection
noise [46, 47].

From a broader perspective, severalmature atomic and atom-like platforms are beginning to demonstrate
exoticmany-body phenomena such as discrete time crystals [48, 49], many-body localization [50, 51] and
dynamical phase transitions [52, 53]. Bragg interferometers operating in cavities open avenues for engineering
interactions, and the theoretical techniqueswe have developed in this paper can be used to explore the complex
interplay of interactions, losses, disorder and global state rotations in other configurations involving
momentumpseudospins.
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AppendixA.Derivation of effectivemaster equation for atom–atom interactions

A.1. Adiabatic elimination of the excited state
Wefirst transform to an interaction picture rotating at the drive frequencyωlwith free evolutionHamiltonian
H e e g g a a2f j l j j s l s s

1  w w= å ñ á - ñ á + å(∣ ∣ ∣ ∣) ˆ ˆ( ) † . The resulting interaction pictureHamiltonian is
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The coherence operator e gjñ á∣ ∣ satisfies the equation

t
e g e g

g
a e e g g

d

d
i i

2
e . A.2j l j

s
s

k z
j j

1

2
i s jåñ á = D ñ á - ñ á - ñ á

=

-∣ ∣ ∣ ∣ ˆ (∣ ∣ ∣ ∣) ( )† ˆ

In a far-detuned regime, we can set e e g g 1j jñ á - ñ á » -∣ ∣ ∣ ∣ .We then transform to the cavity frame by

substituting a a es s
t, c i cl= Dˆ ˆ† † ( ) , e g e g ej j
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cñ á∣ ∣( ) to get
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In the drive frame, the annihilation operator for amode s satisfies the equation

t
a a

g
g e F

d

d 2
i i

2
e i , A.4s cl s

j

N
k z

j s s
1

i
,1

s jåk
kad= - - D - ñ á - +

=

-⎜ ⎟⎛
⎝

⎞
⎠ˆ ˆ ∣ ∣ ˆ ( )ˆ

where Fŝ is the noise operator associatedwith coupling to themodes outside the cavity. Using the hermitian
conjugate of the expression, equation (A.3), leads to
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These equations can be obtained from the effectiveHamiltonian
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Here k k k k2eff 1 2= - = is the effective wavevector. The cavity resonance is now shifted by Ng 4 c
2- D because

of the presence of the atoms.Modifying the drive frequency Ng 4l l c
2w w - D returns the detuning toΔcl.

A.2. Elimination of the cavityfield a2̂
We follow a similar procedure to that presented inAppendixCof Ref. [54].We split themaster equation,
equation (13), into system, reservoir as well as system-reservoir Liouvillians. These terms are given by
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Wefirst transform to an interaction picturewith S R0  = + .We then have
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t0 0  = -˜ .We integrate equation (A.8) and substitute the formal solution

for ta cr -˜ ( ) in the same equation to get
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Weassume thatmode 2 acts as a reservoir in the vacuum state, i.e. the reservoir densitymatrix is R 0 00 = ñá∣ ∣. At
t=0, the initial uncorrelated state is R0 0a c a 0r r=-˜ ( ) ˜ ( ) , where 0ar̃ ( ) is the densitymatrix for the atomic
ensemble.We then use a decorrelation approximation towrite t t Ra c a 0r r»-˜ ( ) ˜ ( ) for later times, and trace out
mode 2 as
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Thefirst term vanishes because a a 02 2á ñ = á ñ =ˆ ˆ † in the vacuum state.
Next, we find the time evolution equations governing the superoperators associatedwithmode 2 that enter

SR̃ , namely a I2 Äˆ̃ ˆ, a I2 Äˆ̃ ˆ†
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Fock basis vector nñ∣ . The notation A B TÄˆ ( ˆ) is to be understood as the operation A n m Bñáˆ ∣ ∣ ˆ for a vector
n mñá∣ ∣ in the Liouville space ofmode 2 [54]. These equations are found to be
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In arriving at equation (A.13), we have used the fact that the reservoir is approximately in the vacuum state to

set a a a a 02 2 2 2á ñ = á ñ =ˆ ˆ ˆ ˆ† and a a 12 2á ñ =ˆ ˆ † . The time evolution of the systemoperator S tj̃̂ ( ) is given by
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Once again, we introduce generalized population and coherence operators, butwith an extra label q, as
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term in equation (A.13):
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where q qn cl nd wº D - D( ) ( ).
The restriction 1qs ˜ ensures that only operators associatedwith q keff contribute to the dynamics.We

further assume that for themomentumcenters that significantly participate in thedynamics, the corresponding
q2 i nk d-∣ ( )∣ is sufficiently ‘large’.Wewill quantify this criterion self-consistently later on (see appendixA.3).
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We repeat this calculation for the remaining three terms.We define the coherent and dissipative coupling
strengths as
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and perform the reverse interaction picture transformationwith S0 = - to obtain an effectivemaster
equation governing the dynamics of ρa:
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Wemake the simplifying assumption that q 0n n nc c c» º( ) ( ) , q 0n n nG » G º G( ) ( ) , that allows to pull
,n nc G outside the integrals.Wefind that this requirement constrains

k
min

16
, A.22
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where 0n nd dº ( ) and the values of n considered correspond to the centers that significantly participate in the
dynamics. In deriving the simple expression in equation (A.22), we have assumed that the dispersive interaction
dominates, i.e. 2nd k for participating centers. For detunings 4n rd w  , equation (11) is clearly amore
stringent requirement than equation (A.22).

Further, the simultaneous excitation and de-excitation of a pair of atoms is near-resonant only when the
same centers are involved, which corresponds to termswith n n= ¢in equation (A.21). For termswith
n n 1= ¢  , the exchange process is energetically detuned by 8ωr

6. From these considerations, the effective
master equation, equation (A.21), can bewritten as

6
Wenote that ignoring termswith n n¹ ¢ amounts to assuming that rates of the order of 8ωr are ‘rapidly oscillating’. Therefore, themodel

we derive here is strictly speaking only valid for squeezing rates N 8n rc w

 , and cannot be expected to predict all features seen in theMCM

in the strong driving regime (such as in figure 3, also see appendix E) evenwhenmore than two centers are tracked.
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Themaster equation can be considerably simplified nowbecause the integrals over q q, ¢ no longer involveχ
andΓ. By interchanging the dummy variables j q j q, ,« ¢ ¢( ) ( ), terms in the third line cancel. Also, the two
terms on the second line can be cast in aHamiltonian form.We then transform to an interaction picturewith
free evolutionHamiltonian
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and denote the interaction picture densitymatrix by ar̃ , to arrive at the effectivemaster equation
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where theHamiltonian Heff
ˆ is given by
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Using the collective angularmomentumoperators introduced in section 2.5.1, themaster equation can be
compactly expressed as in equation (27).

A.3. Validity of theMarkov approximation
Under the action of theHamiltonian, equation (31), squeezing proceeds at a rateQ N nc~


(assuming 0qs »˜ )

[2, 39]. TheMarkov approximation used in equation (A.18) involves retaining only the leading term in the
integration-by-parts expansion of the integrand.Neglecting the next-to-leading term amounts to
approximating that

t

t t1 d d

2 i
1. A.27
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Since the atomic dynamics proceeds at rate N nc~

, theMarkov approximation requires

that N2 i n nk d c-  
∣ ∣ .

Appendix B. Implementing instantaneous state rotations

B.1.Multi-centermodel
In themulti-centermodel, we implement an instantaneous rotation in order to initialize the c-numbers in
accordancewith the initial state being in an equal superposition of the n n,  centers.We adopt a pragmatic
approach to implement such a rotation: In the lab frame, we consider afictitiousHamiltonian

H
2

e e B.1
j

N

n n
j

n n
j

1
,

i
,

iå s s=
W

+q q

=

-
   

ˆ ( ˆ ˆ ) ( )

to act on the collection of atoms for a timeT=π/2Ω so that the pulse area isA=π/2.Here θ specifies the
orientation of the axis of rotation on the equatorial plane of the Bloch sphere. By ignoring the energy difference

m
j

n
jw w- between any pair of states n,m, we aremaking the assumption that the pulse is ‘instantaneous’.While
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in practice any state preparation pulse requires afinite amount of time, herewe assume such instantaneous
pulses for simplicity and to avoid complications associatedwith pulse efficiencies andmomentumwidths [40].

B.2. Two-centermodel
In the two-centermodel, instantaneous state rotations are used for state initialization and for probing the effect
of echo pulses on the evolution of the squeezing parameter. To implement perfect, instantaneous rotations, we
consider a Bloch sphere for each q̃ valuewith theNorth and South poles represented by the states n q, ñ∣ ˜ and
n q, ñ∣ ˜ respectively. The perfect rotation pulses are assumed to not couple states with differentq̃ . The
transformation of this pair of states under a rotationwith axis n̂ and pulse areaA ( 0, 2pÎ[ ]) is,

n q

n q
U A

n q

n q
n

,

,
,

,

,
, B.2

ñ¢
ñ¢

=
ñ
ñ









⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∣ ˜
∣ ˜

( ˆ )
∣ ˜
∣ ˜

( )

where thematrixU An,( ˆ ) is given by

U A

A
n

A
n n

A

n n
A A

n
A

n,
cos

2
i sin

2
i i sin

2

i i sin
2

cos
2

i sin
2

. B.3

z x y

x y z
=

- - +

- - +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( ˆ )

( )

( )
( )

Sincewe track expectation values, we need to recast this transformation in terms of themeans of one and two-
atomoperators. Inwhat follows, we label n n,  using binary digits, i.e. n 0º and n 1º . For one-atom

operators, we define vq1
˜ with elements v q j
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,
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j j

s= á ñˆ˜ ˜ , where j=0,K, 3 and nj (mj) is the second (first) digit
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For two-atomoperators, we similarly define vq q
2
, ¢˜ ˜ with elements vq q j
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s s= á ñ¢ ˆ ˆ˜ ˜ ˜ ˜ , where j=0,K, 15 and

nj,mj, rj, sj are respectively the fourth, third, second and first digits from the right in the binary decomposition of
j. This vector transforms as M Av n v,q q j q q j

2
, ,

2 2
, ,=¢ ¢¯ ( ˆ )˜ ˜ ˜ ˜ where M A M A M An n n, , ,2 1 1= Ä( ˆ ) ( ˆ ) ( ˆ ) is a 16×16

matrix obtained as theKronecker product ofM1 with itself.

AppendixC. Evolution of expectation values of one and two-atomoperators

We recall the dimensionless quantity q q qs=˜ . For the numerical simulation, we consider 2L+1 discrete q̃
values to sample theGaussianwavepacket within rσq from center, where r is a small natural number, typically
r=3. As a result, we have
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ensures that the normof the initial densitymatrix is unity evenwith a finite number of samples. The two-atom
expectation values are initialized as
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For the one-atomoperators, the evolution of the expectation value is given by the following equation.
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whereλn=Γn+iχn and the index j runs from0 to 2L.
The expectation values of two-atomoperators are governed by the following equation.
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To close the set of equations, we factorize the three-atom expectation values as
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To speed up computation, we identify ‘partial sums’which are recurring summations that appear in the
evaluation of the right-hand-side of equations (C.5) and (C.6) for each q q, ¢˜ ˜ , and evaluate these partial sums
only once per time step (see appendix A in [55]). To study the effect of themany-body energy gap in section 3.7,
we similarly derive the equationswith the gapHamiltonian HG

ˆ turned off.

AppendixD. Laser power and squeezing rate

Here, we explain how the constraint imposed by equation (35) translates to requirements on the laser power and
limits on the squeezing rate.
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D.1. Laser power requirements
Experimentally, the steady-state photon number 2b∣ ∣ inmode 1 is set by the power in the drive laser as
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where the approximation assumes n rd w  so that cl ndD » , and that the interactions are in the dispersive
regime i.e.R2=1. From equation (35) and the discussion following it, the required laser power range is
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D.2. Squeezing rate
From equation (29), the rate of squeezingQ is proportional to 2b∣ ∣ , and consequently, the input power P, as
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wherewe have assumedR2=1. Therefore,Q is constrained to the range
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Appendix E. Rabi oscillationmodel for population leakage

Weconsider the casewhen 0qs »˜ . The two spin states correspond to n k0ñ = ñ∣ ∣ and n k2= ñ ∣ .We assume
thatmode 2 is dominantly sourced by the coherence between n and n and neglect thefluctuating terms to
simplify the equation for ζ (equation (19)) to
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We transform to the rotating frame s s en n
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where in the last approximationwe have assumed that R 2 1nk d=   . As an example of population leakage,
we consider the n n 1« + transition. By symmetry, the same arguments hold true for the n n 1« - transition.
Assuming sn n,1 1+ + is negligible, s 1 2n n, »  , and zero populations and coherences associatedwith n+2, the
equation for the coherence sn n,1+  reads
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wherewe have used the expression for ζ from equation (E.2). From equation (29), the combination g 4 neff
2 d  can

be immediately identified as nc 
forR=1. Solving for sn n
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Further, still neglecting the n+2 center, we can arrive at an equation for the dynamics of the population in n+1 as
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which can be solved using equations (E.2) and (E.4) to give
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This expression explains the oscillations at frequency∼8ωr that can be seen in the populations at the n±1 centers
infigures 3(c)–(d), while the peak value scaled to the number of atoms gives the analytic expression for Pn

max
1

(equation (38)) plotted infigure 3(e).
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From equation (E.4), themaximummagnitude of the coherence sn n
j

,1+ 
is N 16n rc w


. In estimating the

intracavity field, we assumed that it is sourced only by the sn n,  coherence. This approximation is valid as long as
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The breakdownof the approximation, equation (E.7), signals the strong driving regime, i.e. it is the regime
where the squeezing rate N nc 

becomes comparable to the relative detuning 8ωr between the n n«  and
n n 1« + , n n1 «-  transitions.

Appendix F. Relative importance of free-space scattering

Here, we analyze the relative importance of single-atom free-space scattering and collective superradiant decay
in increasing the varianceVmin that enters equation (32). Since the squeezing is driven by a term J J

z z~ ˆ ˆ , the axis
corresponding to theminimumvariance orients towards the z-axis over time [2]. As a result, we can estimate the
degrading effect of various diffusive processes by estimating the corresponding increase in J z 2D( ) .

Free-space scattering:Weassume that once a photon is scattered into free-space, the atom recoils in a random
direction and is lost from the atomic cloud. The rate of emission for a single atom is g 4 c

2 2 2g b D( ∣ ∣ ), where the
term in parenthesis is the effective population in eñ∣ as a result of the drive laser. Startingwith an equal
superposition of g n, ñ∣ and g n, ñ∣ , each such photon could have been scattered equally likely from these two
states, and sowe have (assuming γt=1)
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Scattering from the n (n) state of any single atom increases (decreases) J z by 1/2, therefore, the increase in
variance in a time t is
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Superradiant decay:TheLindblad term nµ G in equation (27) contributes the following time evolution for J
zá ñˆ :

t
J J J J J JJ J

d

d
2 2 , F.3z

n n
z z zá ñ = G á ñ = G á ñ - á ñ - á ñ- +

 
ˆ ˆ ˆ ( ˆ · ˆ ˆ ˆ ˆ ) ( )

wherewe have used equation (4). For our initial state, we have N NJ J 2 2 1á ñ = +ˆ · ˆ ( ), J J N 4
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ˆ . The above rates are valid for times such that N t 1nG  .We
can identify a per-atom rate of emission as N 2nG . Each such photon increases J z by 1, therefore, the increase in
variance in a time t is
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From equations (F.2) and (F.5), the contribution of free-space scattering can be neglected compared to that
of superradiant decaywhen
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Here, R 2 nk d=  is assumed tobe=1.As a result,whenR2 becomes comparable to the inverse collective
cooperativity, free-space scattering canno longerbeneglected. In the simulations presented in this paper,N=103,
C=1, 10, givingNC=103,104.As a result,R? 0.032, 0.01 respectively for the twovalues ofC. The values ofRwe
consider are in the range 0.025–0.2, and therefore someof our parameter regimes (e.g.R=0.025,C=1)donot
satisfy thepreceding requirement.Amoreprecise estimate of the squeezingparameter for such regimes requires the
inclusionof free-space scattering.Nevertheless, in an experiment, increasing the total number of atoms leads to a
larger productNC and reduces the relative importanceof free-space scattering atfixedR.
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