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Abstract

Bragg interferometers, operating using pseudospin-1/2 systems composed of two momentum states,
have become a mature technology for precision measurements. State-of-the-art Bragg interferometers
are rapidly surpassing technical limitations and are soon expected to operate near the projection noise
limit set by uncorrelated atoms. Despite the use of large numbers of atoms, their operation is governed
by single-atom physics. Motivated by recent proposals and demonstrations of Raman gravimeters in
cavities, we propose a scheme to squeeze directly on momentum states for surpassing the projection
noise limit in Bragg interferometers. In our modeling, we consider the unique issues that arise when a
spin squeezing protocol is applied to momentum pseudospins. Specifically, we study the effects of the
momentum width of the atomic cloud and the coupling to momentum states outside the pseudospin
manifold, as these atoms interact via a mode of the cavity. We show that appreciable levels of spin
squeezing can be demonstrated in suitable parameter regimes in spite of these complications. Using
this setting, we show how beyond mean-field techniques developed for spin systems can be adapted to
study the dynamics of momentum states of interacting atoms. Our scheme promises to be feasible
using current technology and is experimentally attractive because it requires no additional setup
beyond what will be required to operate Bragg interferometers in cavities.

1. Introduction

Quantum metrology with atomic and atom-like platforms has greatly benefited from the demonstration of
squeezed spin states [ 1-4] capable of overcoming the standard quantum limit (SQL) that arises for measurement
precision with uncorrelated pseudospins. Several of these schemes rely on the availability of a common channel,
such as a cavity mode [5] or a shared vibrational mode [6], which couples to all the constituent pseudospin-1/2
particles, thereby enabling entanglement generation via collective quantum non-demolition measurements [5,
7-9] or deterministically via effective spin—spin interactions [6, 10, 11].

Bragg interferometers are widely used for applications such as tests of fundamental physics [12—15] and
precision measurements of gravitational acceleration [16, 17]. These systems are attractive because of the unique
encoding of the spin-1/2 system in two momentum states associated with the center-of-mass motion of the
atomic wavepacket. They operate by splitting the wavepacket into two momentum states—that propagate along
different spatial paths accumulating a relative phase—and finally recombining them to obtain interference
fringes. Throughout the interferometer operation, the atom is confined to the same metastable electronic state,
typically the ground state. Although an atom’s momentum is a continuous variable, a pseudospin-1/2 system
with two discrete states can be mapped on to the external motion in a Bragg interferometer. This mapping
requires an initial atomic momentum distribution that is a sharp peak about a central value, so that the
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distribution serves as one of the pseudospin states. Subsequently, pulses of light resonantly couple this
distribution to a second narrow peak that is shifted by an even multiple of the well-defined photon momentum.
This shifted distribution serves as the other pseudospin state.

Current Bragg interferometers operate in free space with state-of-the-art technology enabling control of large
numbers of atoms [18—21]. This technical progress has now achieved high signal-to-noise ratios for determining the
relative phase shift. However, despite the use of large atom numbers, their operation can be completely described in
terms of single-atom physics since the atoms are uncorrelated. As a result, regardless of whether further technical
improvements are realized, the phase sensitivity of these interferometers in the near future will be fundamentally
constrained by the SQL of Aggq = 1 / VN radians, where N'is the number of atoms. Monotonically increasing N'to
improve precision suffers from problems such as practical limitations in trapping and cooling [22, 23], and
uncontrolled phase changes that arise from atomic collisions [24]. Schemes to produce squeezed states of momentum
pseudospins are therefore attractive as a means to achieve precision beyond the corresponding SQL for a given N. A
major hurdle to producing such states in Bragg interferometers is that squeezing requires a channel for the atoms to
controllably interact with each other, and such a channel is unavailable in current interferometer designs.

The recent demonstration of a hyperfine-changing Raman gravimeter operating inside an optical cavity [25]
motivates us to envisage a similar operation of Bragg interferometers in cavities in the near future. The
availability of a cavity mode naturally opens up a channel for mediating atom—atom interactions. Previous
proposals for cavity-based squeezing on momentum spins [26] require significant experimental overhead
dedicated to achieving squeezing while the actual interferometer itself operates in free space. In this work, we
propose an alternative approach that marries the generation of cavity-mediated spin squeezing [2, 27, 28] with
the well known advantages of operating the entire interferometer inside a cavity [25]. Importantly, our scheme
does not require any experimental overhead to generate interactions beyond what is already needed to run a
Bragg interferometer in a cavity. In fact, we show how all-to-all atomic interactions are generated by simply
switching off one of the two Bragg lasers and suitably adjusting the frequency and power of the other.

The use of momentum pseudospins in Bragg interferometers necessitates two unique considerations. First,
the atomic cloud will always have a non-zero momentum width even after velocity selection. This width can
typically be neglected in the analysis with uncorrelated atoms. Second, momentum pseudospins cannot be
considered as closed two level systems since the same pair of counterpropagating electromagnetic fields couples
the pseudospin states to other momentum states, albeit with varying detunings. As a result, leakage to
undesirable momentum states is unavoidable even while applying efficient Bragg pulses for spin rotations, and
also when attempting to engineer interactions for spin squeezing. In our work, we account for the momentum
width as well as leakage to undesirable states and show that they can be important when considering the
efficiency of a spin squeezing protocol applied to momentum pseudospins. Nevertheless, as we demonstrate,
appreciable spin squeezing can still be achieved under suitable and potentially realizable operating conditions.

In the process of accounting for the effects of momentum width and losses to undesirable states, we show
how to extend modeling techniques originally developed for spin systems to interacting atoms in matter-wave
interferometers where information is encoded in external degrees of freedom. This ability to map the
continuous momentum variable onto a discrete quantum pseudospace allows us to directly employ methods
developed for finite dimensional systems [29—-31] . The techniques we use to study our system are widely
applicable for investigations of beyond mean-field physics in a broad range of schemes involving interacting
atoms whose momentum states are coupled by electromagnetic fields.

This article is organized as follows. In section 2, we first derive a master equation describing the atom-cavity
interactions. Further, we adiabatically eliminate the cavity mode to arrive at an effective master equation for the
atoms only. We also describe approximate numerical methods for each of the two master equations that enable
us to obtain complementary insights into the squeezing dynamics. In section 3, we study the efficiency of
squeezing on momentum pseudospins by considering Bragg transitions on the 'Sy — 3P, transition in
Strontium as a specific example [ 17]. We show that appreciable spin squeezing can be demonstrated using
modest laser powers. We study the interplay of squeezing and superradiance, the dynamics under very fast
squeezing, and the effect of a non-zero momentum width. We also discuss the manifestation of an
experimentally observable many-body energy gap. In section 4, we conclude with comments on our results and
possible extensions of our work.

2.Model and methods

2.1. Setup

We consider a collection of N atoms with mass M in a ring cavity with resonance frequency w, as shown in
figure 1(a). Each atom consists of two electronic levels |¢) and |e) with transition frequency w,.. A laser with
frequency wj drives one mode of the ring cavity. The cavity resonance is red detuned from the atomic transition
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Figure 1. Experiment setup and working principle. (a) A cloud of atoms interacts with two counterpropagating modes of a ring cavity.
One mode (mode 1) is driven at frequency wj, while the counterpropagating mode (mode 2) is in vacuum, i.e. not pumped. The
scheme enables cavity-mediated interactions between every pair of atoms. (b) The excitation or de-excitation of a single atom is off-
resonant. However, the exchange of excitation between two atoms is a resonant process.

byadetuning A, = w, — w, > 0, while the drive laser is detuned by A; = w, — w; > 0. The relative detuning
of thelaser and the cavityis A; = w; — w, << A, A Upon absorption or emission of a photon with wavevector
k, the momentum of an atom is shifted by ik, where k = |k|.

2.2. Basic working principle

The underlying principle for how squeezing is generated in our scheme is summarized in figure 1(b) for the case
when the pseudospin is encoded in the states | | ) = |g, 0)and |T) = |g, 2/k) with transition frequency 4w,, where
w, = hk?/2M is the atomic recoil frequency. We denote the driven mode as mode 1 and the counterpropagating
mode as mode 2. The drive laser frequency is arranged such that Ay = w; — w, = 4w, + 0§, where §isatwo-
photon detuning typically assumed to be > 0 in this work. The excitation of an atom from | | ) to | T) (green circle in
figure 1(b)) is facilitated by the absorption of a drive photon and subsequent emission into mode 2. The energy
imbalance between the photon exchange and the spin excitation is

AELHT = (ﬁwl — ’ﬁwc) — 4ﬁw, = hé. (1)

Similarly, the de-excitation of a second spin (magenta circle in figure 1(b)) is accompanied by the absorption of a
photon in mode 2 and subsequent emission at the drive frequency, leading to an energy imbalance

AE, | = (hw, — hw)) — (—4hw,) = —Hé. )

However, from equations (1) and (2), the simultaneous excitation of one atom and de-excitation of the other is
resonant, facilitated by the four-photon process consisting of absorption of a drive photon, emission and
absorption of a virtual cavity photon and subsequent return of the photon to the drive laser. Assuming that the
cavity mode couples identically to all the atoms, the cavity mode cannot distinguish which atom was excited and
which one was de-excited, leading to an effective Hamiltonian of the form

Hepoc J T, (3)
where J© = =N PRty £ with 657 = =|1)j(/land 6, = (6 +) The effective Hamiltonian, equation (3), can be
expressed as

AT Y s @

whereJ = J* % + 7 v+ J*2and J' fori = x, ¥, zare the Cartesian components of the collective angular
momentum J formed by the momentum pseudospins. In the expression for j, the symbols X, ¥, Z refer to unit
vectors along the coordinate axes and are not to be confused with position operators. The second term is the familiar
one-axis twisting (OAT) interaction that gives rise to spin squeezed states useful for quantum metrology [2]. The first
term, on the other hand, opens a many-body energy gap that has been experimentally observed, for example, using
spins encoded in optical clock transitions [28]. We briefly discuss how the latter effect manifests in our system in
section 3.7.

2.3. Atom-cavity interactions
We now proceed to derive a master equation that reflects the underlying atom-cavity interaction at the heart of
the resonant spin exchange intuitively described in the previous section. The Hamiltonian governing the
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dynamics of the atom-cavity system is
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where gis the atom-cavity vacuum Rabi frequency, « is the cavity decay rate and « is the amplitude of the drive
laser with |« |2 the photon flux in units of photons/time. The operators d, d; fors = 1,2 respectively describe
the creation and annihilation of photons in modes 1 and 2 whose wavevectors satisfy k; = —k, = kZ (see

figure 1(a)). The operator Z; represents the position of atom j along the cavity axis. The decay of the cavity fields is
accounted for by the standard Lindblad dissipator of the type D[O]p = épOAT — OTép /2 — pOATO /2 for jump
operator O and density matrix p. The resulting master equation is

R SN
p = —If, p) + 3 xDlalp. ©)
ih s=1
We neglect free-space scattering in our analysis since superradiant decay (section (3.4)) is typically the dominant
dissipation mechanism (see appendix F and discussion in section 4).
We work in an interaction picture rotating at the drive frequency w; with free evolution Hamiltonian

Hp = 3, hwy / 2(Je)i (el — 12)i(gD) + Xshw 4! 4. First, we adiabatically eliminate the excited state |e) based on
the large detuning of the drive lasers and cavity modes from the |¢) < |e) transition (appendix A.1). Further, on
long timescales, the upwards propagating mode (mode 1) is composed of a macroscopic steady state amplitude
with small fluctuations around this value. The macroscopic amplitude 3 (| 3| > 1) is found from the mean-field
equation

3= —(g — iAd)ﬁ N %)

For t > k7!, the steady-state valueis 3 = —ivra/(k/2 — iA,). We displace mode 1 by the amplitude 3by
making the transformation 4; — (3 + 4. Apart from introducing some constant terms that can be neglected,
the resulting Hamiltonian is

A2

N : 2
H, .= Z -+ - Z ﬁAdﬁ;as
j=1 M s=1
N 2
I s Qs
- iW*&zeﬂkew + fajeta), ®)
j=1 48

with ke = ki — ky, = 2k the effective wavevector along Z. The dissipative part of the master equation remains
the same. The second line of equation (8) reflects the dominant photon exchange between the macroscopic field
in mode 1 and the vacuum of mode 2. In writing equation (8), we have neglected the small exchange process
between the vacuum fields of the two modes. This approximation allows us to keep track of only mode 2 and
ignore the other terms containing 4, in the master equation since mode 1 only interacts with the atoms and
mode 2 through the c-number (3.

2.3.1. Momentum width using the |n, q) notation

The momentum shift operator e*#*«% appearing in equation (8) can only shift the momentum in units of k..
For simplicity, we consider initial atomic states that are clustered around | |) = |n fikeg), i.. { 13] (0)) = ny hkeg,
where n; is an integer. (A superposition of | | ) and | 1) = n; fikeg with ny = 1) 4+ 1 can be subsequently obtained
by a /2 Bragg pulse.) We introduce two labels n, g to represent a momentum state as | p) = |n, q). Thelabel n
denotes the momentum center and is defined as

\,

p
Tkt
where || x || denotes the nearest integer to x. The label g quantifies the deviation from a center and is defined as

q=p— nﬁkeff. (10)

We note that an initial offset from an integer multiple of hk.f , i.e. { ﬁ] (0)) = m hkesr + p,g can be trivially
accounted for by denoting statesas |p) = |n, g, p ) sothat p = nhkes + q + p . Notethat|p | < 1/2since
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larger values can be modeled as an offset about a shifted initial center n; — n; £ 1. Without loss of generality,
we assume poge = 0.

The momentum width is characterized by a spread o;. We assume that the initial momentum spread o, is
small compared to the difference between subsequent centers, i.e.

Y (11)
Pk e

Combined with the fact that the dynamics under equation (8) does not change the spread but only shifts the
center, this assumption ensures that we can assume the orthogonality relation

(', q'\n, q) = dn,wd(q — q'), (12)

for all momentum states that significantly participate in the dynamics.

2.4. Numerical solution: semiclassical Langevin equations
The master equation governing the atom-cavity interactions is:

1

—[Hao, pa_c] + kD[] p. (13)
1fi

pﬂ —C
For an atom in an initial state |, ) the momentum shift operator e*% only shifts the center n but does not
change g;. As aresult, it can be expressed as

o0

eikerZj — Z |n+ 1, qj>j<ﬂ, qjl- (14)

n=-—00

We define generalized population and coherence operators 5, as
= In, q;) (m, g}l (15)

We have dropped the label g;in defining the operators &;,,, since an initial value of g remains constant during
the subsequent dynamics governed by the master equation. The procedure to sample the initial value of g; will be
discussed shortly in section 2.4.1.

The free energy term can be expressed as

ﬁz
Z hwls), (16)

n=-—00
where hw) = (nhkes + qj)2 / 2M. The frequency w’, can be better expressed as
wl = 4w, (n? + 2nd;5; + q]?a;), 17)

where we have introduced the dimensionless quantities § = /0, and 3, = g, /Tik.s. The Hamiltonian,
equation (8), can now be expressed as

szzhwiaﬂﬂ_ dazaz ZZ4A Ann+1+ﬁ,\“\'+ln) (18)
j n

Expressed this way, the atom-cavity interaction is reminiscent of the detuned Tavis-Cummings model that is at the
heart of cavity-based spin exchange schemes considered for optical clock transitions [27, 28]. The Hamiltonian
governing the dynamics is dependent on the initially sampled value of g; which enters through the frequencies wi.

We write down the dynamical equations for the corresponding c-numbers s;,, <+ &/, and ¢ < d, within
the truncated Wigner approximation (TWA) framework. The TWA technique involves evolving the classical
equations of motion associated with the Hamiltonian subject to initial conditions sampled from the Wigner
distribution of the initial state [30, 32]. While the sampling procedure accounts for the quantum and statistical
uncertainties in the initial conditions, the time evolution governed by simple classical equations is a good
approximation in a variety of situations since, in leading order, these equations remain unaffected by quantum
fluctuations [29, 32—35]. In the case of open systems, the coupling to the reservoir not only gives rise to
additional damping terms in the classical equations but also introduces Langevin noise terms [33] with diffusion
coefficients satisfying the Einstein relations [36]. The expectation value of any symmetrized product of operators
is obtained directly by computing the corresponding c-number product, called the Weyl symbol, and averaging
this quantity over several trajectories with appropriately sampled initial conditions and noise realizations [30].
The expectation values of operator products in a different ordering can be subsequently obtained through the
use of appropriate commutation relations.

We introduce the effective coupling strength g... = ¢%|3]/2A, and withoutloss of generality assume that 3
is real. The c-number equations are
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d . 1 i :Oe j j ] i

Sl = i — Psh + 1%(4*@,1,%1 — STorm) + CEhis = S,
d . .8 ; .
Lo=—(5 - ida)e+ BT T sl + [F 60 + o, 19)
dt 2 2 ] n 4

where &(t) for | = 1,2 are white-noise processes satisfying &,(f) = 0and & (t)&,(t') = §,6(t — t'). The bar
indicates averaging over several trajectories with different noise realizations and initial conditions (see

section 2.4.1) . The equation for (is a stochastic differential equation because of the noise arising from coupling
to modes outside the cavity [33, 37]. We refer to this model as the multi-center model (MCM) because of its
ability to track an arbitrary number of momentum centers.

2.4.1. Initial conditions
The mode amplitude { = a + ib isinitialized according to the Wigner distribution of a vacuum state as

P(a, t =0) = P(b, t = 0) = N0, 1/2), (20)
sothat |C* = ((4] &) + (&4]))/2 = 1/2.Here, N(11, ) denotes a normal distribution with mean jand
standard deviation o.

For the atoms, we first consider each atom to be in a state described by the density matrix
1 R 2 /52
M) = f dq e=9'/2%4n;, q) (n, q|, (1)
p N Iny> q) (s ql

where the restriction, equation (11), ensures that states with |g| ~ fk.g do not contribute significantly so that
the limits of integration can be extended to £ o0o.

We note that by using two labels #, g to characterize the momentum, we have effectively split the momentum
phase space distribution into one for the discrete label # and one for the continuous label g. To sample g, we note
that the momentum space distribution of the state described by equation (21) is Gaussian with spread o,.
Therefore, in each trajectory, the value of g; for any atom jis drawn as

P(g, t=0) = NQO, ) = P(G,t=10)= N, 1). (22)

In general, our approach in its present formulation is valid for any initial atomic density matrix that is diagonal
in the momentum basis. The density matrix for atom j can then be interpreted as a probability distibution for the
initial value of g; from which this value can be sampled in each trajectory. As already noted, the value of g;
remains constant during the subsequent time evolution and the only effect of g;is to modify the frequencies

w), w},...that enter the Hamiltonian, equation (18), for each trajectory.

To appropriately sample the #-space distribution corresponding to the state described by equation (21), we
note that the discrete levels 1, m, ...are reminiscent of the different m; levels ina 2] + 1 spin manifold. Here, the
choice of ] depends on the number of discrete levels that participate significantly in the dynamics. We initialize
the c-numbers s),,,, according to the DTWA (discrete truncated Wigner approximation) prescription [29, 30],
namely

i
Sipn, = 1,

PQRe{s) pont =+1) =PQIm{s} .} =+1) = %

n,m=n, n,m=n,
j _ j *
Sigtinl,nl - (sr{l,minl) >
s/ =0. (23)

n=n;,m=n

We note that our choice of initial conditions is consistent with a formal generalization of the Truncated Wigner
Approximation technique to systems with D discrete states on a given site [31].

Prior to implementing our squeezing protocol, a Bragg pulse rotates the state of each atom to an equal
superposition of the 7, n; centers. Starting with the initial conditions in equation (23), we obtain the c-number
values corresponding to such an equal superposition by numerically implementing a fictitious instantaneous
state rotation that rotates each spin to lie on the equatorial plane of the Bloch sphere formed by n}, n;
(appendix B.1). The observables from the MCM simulations are averaged over 2000 trajectories in order to
sample the initial conditions and noise realizations.

2.5. Effective atom—atom interactions

The spin exchange dynamics anticipated in section 2.2 is confirmed when mode 2 is adiabatically eliminated to
obtain a master equation describing the effective atom—atom interactions. When mode 2 is negligibly excited, it
can be considered as a reservoir in a vacuum state with density matrix Ry = |0) (0|. We use the superoperator
formalism to adiabatically eliminate mode 2 [38]. The details of this derivation are presented in appendix A.2.

6
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The resulting master equation can be compactly expressed in terms of operators analogous to collective angular
momentum operators, which we introduce below.

2.5.1. Collective angular momentum operators
First, we introduce generalized population and coherence operators for a single atom, along the lines of
equation (15), but with an extralabel g, as

&8 = |n, q)i (m, ql. (24)

. 2 ~Z . .
We can then define collective angular momentum operators J 2> J ,acting on any two consecutive momentum
centersn,n + 1as

N e X n_ N o0 A
=S [ s, To=% [ sl T Zf dg G0 — 01D (29)
j=197° j=1Y7%

With ﬁj = (j: + j;)/Z and ji = (ﬁ: - j;)/Zi, the operators jn, Jn, jn satisfy the usual angular
momentum commutation relations

[T Tl = i€ (26)
where € is the usual Levi-Civita symbol for the right-handed coordinate system formed by the x, y, zaxes. Once
again, the restriction on initial states, equation (11), ensures that the limits of integration over q can be extended
to 0o while still allowing the use of the orthogonality relation equation (12) in deriving the commutation rules
in equation (26). Specifically, the collective spin consisting of the pseudospin-1/2 systems formed by the two
centers n;, ny are characterized by the operators j i, ﬁ Zl.

The master equation for the reduced density matrix p, = Tr.[p,__], obtained after adiabatically eliminating
mode 2, can be expressed as

- _[Heff> Pa] + Z 21, L[j ]pm (27)
with the effective Hamiltonian
Her = Z Z f dq (Snﬁwr)(q&q)ajjg + Z hxnj;j:, (28)
j=1n=—00 n=-—o00

where the coherent and dissipative coupling strengths, x,, and I, are defined as
2 2 2 2
o[£ s (1) w2 09)
AN, ) K2/4 + 6 4N, ) K2/4 + 6

with 6, = Ay — 4w, (1 4 2n). The notation p, indicates that the master equation is written in an appropriate
interaction picture (appendix A.2).

2.6. Numerical solution: cuamulant theory for one and two-atom operators

To make computations tractable, we assume that the 71;, 1 centers form a closed two-level system while
studying the collective spin dynamics using the master equation, equation (27). To this effect, we truncate
equation (27) as

[ ar B + 20, LLT 31 P (30)

where the truncated Hamiltonian is

N o0
-3 f dq 8niw,) o) 558 + Iix T uT . (1)
j=1n=n;,n; -
Werecall that, with &; = 0, the effective Hamiltonian, equation (31), is analogous to the standard spin
exchange/one-axis twisting model studied for closed two-level systems coupled to a cavity [2, 27, 28, 39] (also
compare with equation (3)), and provides a reference model against which complications arising from the nature
of momentum states can be contrasted.
Exact solutions even for the truncated master equation, equation (30), are computationally intractable
because of the exponential scaling of the Liouville space with atom number. We use an approximate method
where we only keep track of expectation values of single atom and two atom operators, of the type (5%, ) and

(6,1, Uj f’“> where the 7 values can take either # or #;. Since we are ignoring the other momentum centers, we
refer to this model as the two-center model (TCM). As in the MCM, the single atom and two atom expectation

values are first initialized according to the state described by equation (21). Next, an instantaneous rotation

nnb
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transforms these quantities to correspond to a state that is an equal superposition of #;, n; (appendix B.2). The
identical initial conditions for each atom and the permutation symmetry of the master equation enable us to
avoid separate indices for every atom in the system, with the number of atoms N explicitly appearing in the

~2,q'

equations for the quantities <€7$;?n ,)and (6;;?,% 8,9 ). The resulting equations of motion for these single atom

and two atom expectation values are summarized in appendix C.

3. Spin squeezing

3.1. Figure of merit: Wineland squeezing parameter 512{
The J ; J ,le term implicit in equation (31) (see equation (4)) can be exploited to prepare spin squeezed states.

. . . . 2
"[H]led ﬁigiurf1 of merit of a squeezed state, relevant for quantum metrology, is the Wineland squeezing parameter £
2] defined as

2 1 Vmin
_ 1 Vioin 32
G- e (32)
The contrast C is given by
o M)l .
N/2

where inl =J zf{ +J ZL? +J ;i. For a given state, V,,i,, is the variance in a spin component in the plane
perpendicular to the mean spin direction (characterized by the unit vector fiysp), minimized over all axes in
this plane. Mathematically,
Vmin = Amﬂin <(In1 . ﬁ)2> (34)
n_Lnysp
Vsqu = N /4 sets the corresponding SQL for unentangled atoms and is the variance of any spin component
in this plane for a coherent spin state [2].

3.2. Considerations for choosing parameters

First, we note that the single atom-cavity vacuum Rabi frequency can be expressed as g = ,/Cky, where Cis the
cooperativity of the cavity and +yis the inverse lifetime of the excited state. Our model imposes two constraints
that limit | 3| to the range

1 <6 K A (35)

J Cry ’

where we have used ¢ = /Ckry. Thelower bound | 3| > 1allows us to treat mode 1 as a classical field
represented by the c-number 3. The upper bound ensures that the excited state |e) is negligibly populated, i.e.

g% 1B
4A?

< 1, (36)

thereby ensuring that the adiabatic elimination of |e) is valid. We work with | 3| values such that | 3| > 100 and
the excited state population is <0.01.

3.3. Parameters for the 'S, — 3P, transition in 3%Sr

Although our scheme is applicable to a wide variety of atomic species, here we consider its efficiency when it is
implemented on the 689 nm 'Sy, — 3P, transition of #Sr. Our choice is motivated by the advantages of using
ground-state 38Sr in Bragg interferometers [17], such as its extremely small scattering cross-section, insensitivity
to stray magnetic fields and ease of experimental manipulation, including accessing the parameter regimes
required for our scheme. The inverse lifetime of the excited state is v/27 = 7.6 kHz while the single photon
recoil frequency is w,/2m = 4.74 kHz. The spin-1/2 system isencoded in||) = |'Sy, 0%ik)and |T) = |'So, 27k)
implying thatn = 0, n; = 1. We consider N = 10’ atoms in a cavity with decay rate /2 = 100 kHz, and
with either of two cooperativities, C = 1 (C = 10). The single atom-cavity vacuum Rabi frequency g = \/Cky
then takes the value g/27 =~ 27.6 kHz (87.2 kHz). We assume that the cavity resonance is detuned from the
atomic transition such that A /27 = 200 MHz. We characterize the relative strength of the dissipative and
dispersive interactions by the ratio R defined as

L,
R=-2 - (37)
Xn ~— 20m,

We operate in the regime A > NCR~, which ensures that the squeezing induced fields in both the modes, 1 and
2, are small compared to the macroscopic field | ] in mode 1.
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Figure 2. Interplay of squeezing and superradiance for different R = £ /24, values. (a) Evolution of éé for R = 0.025,0.05,0.1,0.2.
Inset: maximum metrological gain (1 / §2R,mi“ in dB) and time taken to achieve this gain. (b) Population in 1y, n; for R = 0.2, with total
population in all centers adding up to N = 10°. (¢) Population in .. for different R values. In this panel, N = 10°,C = 1,

|87 ~ 5.4 x 10°.Solid (dashed) lines represent MCM (TCM) results. Four centers, ny, 1y, Npy, N, were tracked in the MCM
simulations, with negligible populationin . ,.

Squeezing by one-axis twisting occurs when the dispersive interactions dominate, corresponding to the regime
R < 1. Weconsider Rin the range 0.025—0.2 in our study, corresponding to ¢,, /2m < 2 MHz. Model-enforced
constraints (see equation (35) and the discussion following it) restrict the photon number in mode 1, | 32, to the
range 1 x 10* — 2 x 10°(1 x 10* — 2 x 10%). Experimentally, these constraints translate to varying the power P
in the drive laser in arange 10 nW—150 yW (10 nW—15 W) (appendix D). In standard one-axis twisting with
closed two level systems, squeezing proceeds at a characteristicrate Q = N Xy, [2,27,39]. The permissible values of
| 32 results in a squeezing rate Q/2 in the range 5 Hz — 7.6 kHz (0.5-76 kHz) (appendix D). We only consider
squeezing rates such that Q /6, < 1(< 1/50in all simulations), allowing for the adiabatic elimination of mode 2 in
deriving the two-center model (see appendix A.3). Even in this regime, while very slow rates are undesirable from a
technical perspective, very fast squeezing with Q 2 w, leads to coupling with momentum states outside the
pseudospin manifold and degrades the squeezing, as we will demonstrate.

Finally, to account for the momentum width of the atomic cloud, we consider values g < 0.1to satisfy the
requirement, equation (11), of our model. The dephasing rate 41, = 4+/2 w, &, associates a characteristic
timescale to the momentum width. Specifically, for a collection of atoms initialized in the same, equal
superposition between the two centers nj, n; and undergoing free evolution, the contrast C decays as
C(r) = e 1"’ With ; < 0.1, the corresponding maximum rate is 1, /27 = 2.7 kHz.

3.4. Limits set by superradiance
We first consider the case of 7; ~ 0, i.e. negligible momentum width. Figure 2(a) plots the evolution of the spin
squeezing parameter in the C = 1 case for values of R in the range 0.025—0.2, and with | 3|* ~ 5.4 x 10°. Modest
laser powers, up to 40 ;W, are sufficient to maintain this intracavity photon number for the range of R considered
here (appendix D). In this parameter regime, the TCM (dashed) and MCM (solid) results agree excellently until fZR
reaches its minimum value. The minimum value of &, arises as a trade-off between the twisting dynamics that
decreases Vi (equation (32) and fluctuations in superradiant decay from 1, to #; that increase this quantity [27, 39].
For smaller R, the larger value of 6, strongly suppresses dissipation relative to dispersive interactions (equation (29)),
leading to improved squeezing, i.e. smaller values of @%. However, for fixed | 3 |2, the absolute squeezing rate N Xn, also
decreases with larger 6,, (equation (29)), leading to slower squeezing dynamics. Therefore, as summarized in the inset,
smaller R values enable greater metrological gain, but the time taken for squeezing also increases when | 3 |? is fixed.
The population dynamics at the different momentum centers reveal the effect of superradiance. Figure 2(b)
shows the evolution of populations in , #; for the case of R = 0.2. The rapid decrease (increase) in n; (117)
population reflects superradiant decay on the ; — n; transition. Further, the MCM enables an investigation of
the leakage to centers outside the spin manifold, highlighting the power of this technique. We denote the first k
centers higher than n; as n 4, and the first k centers lower than #; as n1_. The MCM reveals that a small number
of atoms (< 10) are lost to 1, ; during the squeezing dynamics, as seen in figure 2(c) for the various R values.
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Figure 3. Squeezing faster and faster. (a) Evolution of §§ for |3/10* = 2, 4, 8, 16.(b) Population in ny, n; for |32 /10* = 16, with
total population in all centers addingup to N = 10°. Solid (dashed) lines represent MCM (TCM) results. (c)—(d) Population in,
respectively, n_; and | centers, for various drive strengths. (e) Comparison of simulated #.., populations to analytic result of Rabi
oscillation model (see Text). In this panel, N = 10%,C = 10and R = 0.05. Six centers, n_, n_j, 1y, 1y, My, Mg, Were tracked in the
MCM simulations with very low populations in #1.4».

However, the excellent agreement between the TCM and MCM results in figure 2(a) indicates that in this
parameter regime, the centers #;, n; can be effectively treated as a closed two-level spin-1/2 manifold.

3.5. Squeezing faster and faster

A simple two-level model, such as the TCM, would predict that the squeezing rate can be arbitrarily increased by
simply pumping in more laser power so that | 3 |? is increased. Figure 3(a) explores the evolution of &, in the case
C = 10,R = 0.05 (6, /2 = 1 MHz) for different values of | 3 |?/10*in the range 2 — 16. As expected, the TCM
(dashed) predicts that 5% attains the same minimum value faster when | 3|? is increased. However, the MCM
results (solid) present a different narrative: As | 3 |* increases, ff{ indeed attains its minimum faster, but this value
also increases, signaling a degradation of squeezing. In fact, the metrological gain £ ,* drops by ~3 dB (factor of
2)as |3 |* increases from 2 x 10%to 16 x 10*

Large oscillations in the MCM curves as | 3 |? is increased indicates the breakdown of the two-center model.
A study of the population dynamics at the different centers confirms this breakdown. As seen in figure 3(b),
although the populations in # (1) follow the general decreasing (increasing) trend expected from n; — n;
superradiant decay, the TCM and MCM population transients significantly differ in the case of strong driving
(8?/10* = 16). Further, the MCM transients display pronounced oscillations with a frequency ~8w,,
corresponding to the relative detuning between the n <= nyand n; <> ny4, n_y < nj transitions.

Giant population oscillations in 7.1, shown in figures 3(c)—(d), confirm the significant participation of these
centers in the dynamics as | 3|? increases. A simple Rabi oscillation model qualitatively explains the occupation
of these states: The coherent superposition of the r;, #; centers serves as a large collective spin that sources mode
2. Both cavity modes, 1 and 2, are now macroscopically occupied and drive two-photon Rabi oscillations
between nj <> n_;and n; « n,, with approximate two-photon detuning 8w,. We find that the maximum
population P, in n.., predicted by this model is given by (see appendix E)

2
max ﬁ NX"l
8w,

(38)

niINZ

Figure 3(e) compares the first oscillation peak in the n..; populations with the analytic formula equation (38).
For small occupations (small | 3 |?), the formula agrees very well with the simulations, whereas the discrepancy
becomes about a factor of 2 at the largest occupation (3> = 16 x 10*).In this strong driving regime, the
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Figure 4. Squeezing in the presence of momentum width. (a) Evolution of & in the case of | 3|* /10* = 4 for &, = 0, 0.025, 0.05, 0.1.
Solid (dashed) lines represent MCM (TCM) results. (b) Maximum metrological gain (1 / fimn in dB) as a function of drive strength
for different &, values. (c) Evolution of 5211 inthe TCM for 5, = 0.1and | 3|*/10* = 2 when Ng = 0,1,2,4 echo pulses are inserted.
Initially, the Ni = 1, 2, 4 cases evolve identically to the Ny = 0 case until the first echo is applied (at different times in the three cases)
and hence their initial profile is overlaid by the red Ng = 0 curve. The gray broken line shows the &, = 0 case with no echoes.
(d) Evolution of the constituents, Cand V,;,, of 521{ in the TCM when Ng = 2 echo pulses are inserted. Other details are the same as in
figure 3.

coherence that develops between ny, #; and n;, n_ is no longer negligible and modifies the field in mode 2
considerably, leading to the breakdown of the simple Rabi oscillation picture presented here (appendix E).

Finally, we note that figures 3(c), 3(d) display trends such as the decrease (increase) in the amplitude of
population oscillations in #1_; (#141) over time and the gradual deviation of the oscillation troughs from zero.
These features likely arise from the complex interplay of the Rabi flopping and the cavity mediated superradiant
decayonthe ny — ny, n_; — njand n; — n, transitions.

3.6. Effect of momentum width

We now consider the case when the atomic cloud has non-zero momentum width. For this study, we use the
parameters from figure 3,i.e. C = 10and |3]>/10* = 2, 4, 8, 16. Figure 4(a) shows the evolution of §2R for

d, = 0, 0.025, 0.05and 0.1 in the case when | 3 [2/10* = 4.In this panel, the solid and dashed curves
respectively indicate the MCM and TCM models. Three trends can be observed from this figure: (T1) When the
rate of squeezing is fast relative to the dephasing (&), the fi transient is similar (blue) to the zero width case
(red) while the minimum value attained is greater indicating slight degradation of squeezing. (T2) For larger
momentum width, the 5% transient displays oscillatory behavior signifying competition between squeezing and
dephasing (orange). (T3) As the width increases further and dephasing dominates, &, initially decreases slightly
but then steeply increases to values well above unity, signaling rapid loss of squeezing (black).

These trends are summarized in figure 4(b), where the maximum metrological gain achievable is plotted as a
function of | 3|* for different values of &,. The &; = 0 case (red) reflects the study performed in figure 3 and
shows that very strong driving lead to loss of squeezing as a result of coupling to other momentum centers. At the
other extreme is the case of 5; = 0.1 (black), where rapid dephasing leads to a complete loss of squeezing for
weak driving, and barely observable squeezing (~2 dB) even for very strong driving. For intermediate widths
&; = 0.025, 0.05 (blue, orange), the squeezing suffers at both ends, with dephasing restricting the squeezing at
weak driving, and coupling to other centers serving as a limitation at very strong driving. For these widths, an
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optimum drive strength therefore exists where the metrological gain is maximized, as reflected by the variation
of the gain for the four cases of | 3| considered here.

As figure 4(a) exemplifies, we observe that the TCM (dashed) typically qualitatively reproduces the features
seen in the MCM (solid) when studying the effect of momentum width. Except at very strong driving, the TCM
and MCM agree reasonably well in the (T1) cases until the minimum squeezing time, after which the MCM rises
very steeply compared to the TCM. In the (T2) cases, both models capture the oscillatory behavior but can be
very different quantitatively. Finally, both models agree very well in the (T3) case. The difference in the two
models is not only because of the extra momentum centers tracked by the MCM, but also because of the
approximations used in solving for the dynamics in these models. In the TCM model, we force all non-trivial
three-atom correlations to zero using a systematic truncation scheme (appendix C). However, the MCM is a
TWA-style approach that can, in general, capture the build-up of non-trivial three-atom correlations, which
should be anticipated in an interacting system such as the one considered here. As an example, the general steep
increase of the MCM curves after the minimum squeezing time in the (T'1) cases is a manifestation of the effect of
three-atom correlations, also visible in the cases plotted in figure 3(a). On the other hand, the superposed
oscillations at frequency ~8w, are a result of coupling to the #..; momentum centers.

The dephasing-induced degradation of squeezing can in fact be reversed. To elucidate this point, we consider
the case of | 3] /10* = 2 and &, = 0.1, asituation where achieving squeezing is seemingly hopeless because of
weak driving and rapid dephasing (red curve in figure 4(c)). As a minimal toy model to illustrate our protocol, we
consider the TCM and interrupt the squeezing dynamics with a series of ‘instantaneous’ echo pulses
(appendix B.2). In a frame rotating at 4w,, the axis of rotation for these echoes is the same as that of the initial
7/2-pulse used for preparing the equal superposition of the n; = 0, #; = 1 centers. Figure 4(c) shows the
evolution of fi when Ny = 0, 1, 2, 4 echo pulses are inserted during the course of the squeezing dynamics. The
gray broken line shows the evolution of {f{ when &, = 0. The timing of the Ng > 0 echo pulses are such that they
approximately divide the time to achieve the minimum §§ in the &; = 0 case (~0.3 ms) into a sequence of
T, 2T,..., 2T, T segments, where the number of 2T segments is N; — 1. The insertion of echo pulsesleads to a
revival of & as it periodically attains minima < 1 as the spins re-phase after an echo pulse is applied. Increasing
the number of such echoes prevents 512{ from blowing up to very large values at any point during its evolution and
also maintains the periodically attained minima close to the &, = 0 transient.

The applicability of such a protocol to revive the squeezing parameter goes beyond only momentum
pseudospins, and is useful on a variety of platforms where squeezing is desired in the presence of unavoidable
on-site disorder, for example, in the case of NV centers. For a practical implementation using momentum
pseudospins, the non-zero echo pulse duration (227 /4w, to avoid leakage to centers outside n; = 0, ny = 1)
and the effect of momentum width on pulse efficiency [40] have to be considered. Nevertheless, with suitable
choice of parameters, we anticipate partial revivals in §§ to be observable despite these deviations from our toy
model.

Finally, we investigate the constituent observables of the spin squeezing parameter to better understand this
strong revival phenomenon. From equation (32), §f{ comprises of two observables, namely, C (equation (33))
and Vi, (equation (34)). Figure 4(d) plots the evolution of these observables as well as @% for the case of N = 2.
The re-phasing of the spins after each echo leads to the expected increase of C. However, figure 4(d) shows that
this increase alone is not responsible for the strong revival of ff{. As the spins re-phase, Vi, also reaches its
minima close to the times when C peaks, thereby leading to sharp dips in fi.

3.7. Collective physics with a many-body energy gap

Apart from squeezing, yet another type of collective behavior manifests as a result of the cavity mediated atom—
atom interactions. We consider the observable C, , defined as the normalized length of the projection of the
Bloch vector on to the equatorial plane of the Bloch sphere. Mathematically

(Tu P+ (T
€= . (39)

Figure 5(a) plots the evolution of C, in the case 5, = 0.05 for different values of | 3|*/10* = 2, 4, 8. The TCM
(dashed) and the MCM (solid) are in qualitative agreement in all cases and in quantitative agreement when
dephasing dominates, i.e. for weak driving (red). The gray broken line shows the corresponding decay of C, for
freely evolving atoms, i.e. with no interactions, which obeys the analytical expression C, (t) = eHat’, where
143 = 4v/2 w, &,. Clearly, interactions lead to an observably slow decay of contrast compared to the free
evolution case.

The effective Hamiltonian, equation (31), provides insight into the slow decay of C; in the presence of
interactions. We note that for any n
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Figure 5. Manifestation of a many-body energy gap. (a) Evolution of C, for &, = 0.05 for different values of | 3| /10* = 2, 4, 8.(b)
TCM results using the same parameters as in (a), but with the gap Hamiltonian Hg turned off. The gray broken line in each case shows
the decay of C, under free evolution. Solid (dashed) lines represent MCM (TCM) results. Other details are the same as in figure 3.

A— A+ a A Az A A
TnTw =Ta-In = T0T0 = T (40)

We introduce the many-body gap Hamiltonian, Hg = ﬁan ini . inr The initial uncorrelated many-body state

can be visualized as a coherent spin state in the equatorial plane of the Bloch sphere corresponding to the

maximum quantum number ], = N /2 associated with the operator Jy, - J, . In other words, this initial state

satisfies

P N(N

On - dno) = H(Z 5 1) cxor =1 (a1)

The first term of Heg in equation (31) is not collective, causing dephasing of individual spins that leads to

shortening of the mean spin length and populates shells of lower J, . The presence of Hg introduces an energy

penalty for populating shells of lower J, . Specifically, Hg; dictates that
Hellny Mj,) = hix, JuUn + D), (42)
implying that the transition to alower shell, J, — J, — 1,incurs an energy penalty

|AEq, —j, | = 270X, Ju- (43)

Asaresult, individual atom dephasing is slowed down, leading to slower decay of C, .

We verify this qualitative explanation in figure 5(b), where we study the dynamics of C;, under the TCM with
the gap Hamiltonian H turned off. The decay of C, is then in excellent agreement with the free evolution case,
although interactions are present through the remaining terms in equation (31) and the dissipative term of
equation (30).

Investigations with the TCM indicate that the presence of the gap Hamiltonian H; is an advantage from a
metrology perspective. The slow decay of contrast leads to a smaller value for the minimum squeezing
parameter §f{ compared to the case when H is turned off. Further, the subsequent rise of 5}2,\ after the minimum
value is attained is slowed down when Hj;, is present. We note that the non-zero momentum spread is an
intrinsic source of dephasing in a Bragg interferometer, and the cavity-mediated interactions we engineer
naturally provide a many-body gap protection that suppresses this dephasing.

In general, our results are consistent with other examples that confirm that the presence of a many-body gap
arising from correlations can supresses adverse effects of single-atom decoherence [28] and potentially
contribute to extending the coherence time for precision metrology. This ability to engineer many-body
correlations driven either by mediated interactions or particle statistics represents an emerging paradigm for
advanced metrology [41].

4, Conclusion

We have proposed and analyzed in detail a scheme for squeezing directly on momentum pseudospins using
cavity-mediated atom—atom interactions. Implementing our scheme does not require any experimental
overhead beyond what is necessary to operate Bragg intereferometers in a cavity. Since our scheme relies on
emission and absorption of a cavity photon, it is only applicable to states separated by 2/ik. Nevertheless, the
squeezing can be transferred to higher diffraction orders by subsequently applying large momentum transfer
pulses [18, 42]. For studying various aspects of the problem, we have focused on the 'Sy — 3P, transition in #Sr
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as an example, working in parameter regimes where <10 dB of metrological gain is achievable in a few hundred
microseconds to a few milliseconds based on the driving strength. While more than sufficient for a proof-of-
principle experiment, we expect that with suitable choice of parameters—small momentum width, small ratios
of dissipative to dispersive interactions (R = # /26, ) and moderately strong driving strengths, 210 dB of
metrological gain can be achieved. Such parameters are within the reach of current technology: State-of-the-art
cooling and velocity selection techniques are able to provide samples with 3, <5 0.01 while still ensuring
appreciable atom numbers [20, 43]. The R value can be tuned to smaller values by detuning the drive laser farther
away from the cavity resonance. Strong driving at large detunings is not a problem since modern lasers are able
to deliver orders of magnitude more power than the hundreds of microwatts required in our proof-of-principle
parameter regimes. In addition to squeezing, the same experimental setup can also be used to demonstrate and
explore collective physics associated with the opening of a many-body energy gap by measuring a different
observable, namely the contrast C, (equation (39)).

Our model of atomic source is motivated by a combination of computational and near-term experimental
considerations. While simulations with N = 10 atoms only require modest computational resources, the
favorable linear scaling of the multi-center model nevertheless allows a straightforward extension to simulating
atomic sources with larger number of atoms. Moreover, our results are directly relevant to potential proof-of-
principle experiments with small atomic clouds. Although a variety of atomic species can be used for this
scheme, our specific choice of atom, 38Sr, has a very small scattering cross-section [17] and potentially allows the
use of larger atom numbers without introducing major complications such as atomic collisions. The unraveling
of the dynamics into phase space trajectories is enabled by considering initial atomic density matrices that have a
momentum width but are still diagonal in the momentum basis. The finite spatial extent of realistic atomic
sources implies the presence of some degree of initial coherence between the various momentum components.
In future work, we will explore possible extensions of our model to study the effects of such initial coherences on
the squeezing dynamics, which may be particularly important for sources such as Bose—Einstein condensates
launched from strongly confining traps.

In addition to superradiant decay, single atom free-space scattering (ESS) also degrades the squeezing.
Superradiance, being collectively enhanced, is the dominant source of degradation in most of the parameter
regimes we have considered (appendix F) and therefore we have only focused on this dissipation mechanism.
The parameter regime where superradiance dominates FSSis R? >> 1/NC (appendix F), and therefore, FSS is
not important when large atom numbers are used such that this inequality is satisfied. Nevertheless, FSS can be
straightforwardly included in both the simulation models demonstrated here with very little computational
overhead by accounting for the corresponding Lindblad terms. The scaling of the multi-center model remains
linear in atom number since FSS occurs independently for each atom.

While in principle the R value can be made arbitrarily small to suppress superradiance and greatly improve
the squeezing, with fixed atom number the power required to squeeze at a specified rate Q rapidly increases as
1/R’ (equation (D.3)), motivating considerations of elegant related schemes that are not as sensitive to
superradiance. Recent schemes developed for squeezing on optical clock transitions circumvent this problem by
either squeezing faster using a twist and turn mechanism achieved by introducing a resonant drive [27] or by an
unconventional choice of initial state that drives the squeezing in a spin component orthogonal to that affected
by superradiant decay [39]. The former can be implemented on momentum pseudospins using an additional
pair of resonant Bragg lasers injected, for example, one free spectral range away from the cavity mode used for
squeezing. The latter scheme requires an initial state with two ensembles pointing along opposite directions in
the equatorial plane of the Bloch sphere. It can be implemented by launching two clouds with equal number of
atoms which are initially in the ; and 1 states respectively and applying a common 7/2-pulse to rotate them to
the equatorial plane. However, in either case, a careful study of the effects of momentum width and potential
leakage to other momentum centers has to be performed. The techniques developed in this paper can be readily
used to undertake such a study. The latter scheme, combined with differential rotations on the two ensembles
[17], can potentially be used to implement an entangled atom Bragg gradiometer. Finally, our scheme has
natural extensions [44] to circumvent situations where the detection noise limits the utility of the prepared spin
squeezed states for metrology. By adjusting the frequency of the drive laser, the sign of the squeezing interaction
can be reversed, thereby making our scheme amenable to interaction-based readout schemes such as twisting
echoes [45] that achieve precision below the standard quantum limit even in the presence of detection
noise [46,47].

From a broader perspective, several mature atomic and atom-like platforms are beginning to demonstrate
exotic many-body phenomena such as discrete time crystals [48, 49], many-body localization [50, 51] and
dynamical phase transitions [52, 53]. Bragg interferometers operating in cavities open avenues for engineering
interactions, and the theoretical techniques we have developed in this paper can be used to explore the complex
interplay of interactions, losses, disorder and global state rotations in other configurations involving
momentum pseudospins.
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Appendix A. Derivation of effective master equation for atom—atom interactions

A.1. Adiabatic elimination of the excited state
We first transform to an interaction picture rotating at the drive frequency w; with free evolution Hamiltonian
H = Z huwy / 2(le)i (el — 1g)i(gD) + X hwy dj d,. The resulting interaction picture Hamiltonian is

NEIEN I TN
A== + = (le)i{el ~ 1g) (gD 2 N
j:1 2M s=1

+ iih—g(ﬁ e |e); (gl + a4 e ™% |g); (el)
5 s i\& as € gljle

j=1s=1

+ hvE (0d, + o). (A.1)
The coherence operator |e); (] satisfies the equation
d ¥4 - —iksZ
— le)i (gl = iA|e)i (gl — —Z i(le)i el — Ig)i (gD (A.2)
dt 23
In a far-detuned regime, we canset |e); (¢| — |g); (g] & —1. We then transform to the cavity frame by
substituting 4] = 4 @ei®a!, |e); (g] = |e); (g €24 and adiabatically eliminate |e); (g to get
e): (o]© ~ — 459 o—iksZ; A3
| >] <g| 5 Ac ; (A.3)
In the drive frame, the annihilation operator for a mode s satisfies the equation
N
diﬁs = —(g - iAd)dS - %Z “ikZi o) (e| — ivREad + E, (A4)
t j=1

where F, is the noise operator associated with coupling to the modes outside the cavity. Using the hermitian
conjugate of the expression, equation (A.3), leads to

d
s & —(g - 1Ad)as + 1—2 Z dye ik—k0z

dt C j=1s'=1
—ivEad, + E. (A.5)
These equations can be obtained from the effective Hamiltonian

2

N ﬁ 2 N
~(2) j FS PN
H~W = —_— h Ay + ——|4a/ a;
b AL
N ﬁ 2 . R
— Z (& 'dze—lkeffzj' _|_ &T&lelktffzj‘)
C
+ hﬁ(aaf + o). (A.6)

Here keif = ki — ky = 2k is the effective wavevector. The cavity resonance is now shifted by — Ng?/4 A because
of the presence of the atoms. Modifying the drive frequency w; — w; — Ng?/4A, returns the detuning to A .

A.2. Elimination of the cavity field 4,
We follow a similar procedure to that presented in Appendix C of Ref. [54]. We split the master equation,
equation (13), into system, reservoir as well as system-reservoir Liouvillians. These terms are given by
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N f)jz
Espaic = —1 ZzMﬁ’ pa,C )

=1
‘cRpafc = _i[_ACI&ZTﬁZ’ pafc] + xDla] Pa—c>

N

2
Lsrp, .= ilZﬁ(ﬂ*@eikeff% + Baj ety p|. (A7)

j=177
We first transform to an interaction picture with £y = Lg + Lz. We then have

Pae = LorPyo> (A.8)

where j,_ = e *'p __and Lsr = e Lot Lopelol. We integrate equation (A.8) and substitute the formal solution
for p,_.(¢) in the same equation to get

—Lot

. ~ t ~ ~
Pa—c = LsrtyPa—(0) + fo dt'Lsp() Lsr(t) Py (£ (A.9)

We assume that mode 2 acts as a reservoir in the vacuum state, i.e. the reservoir density matrixis Ry = |0) (0|. At
t = 0, the initial uncorrelated stateis p,_.(0) = p,(0)Ro, where p,(0) is the density matrix for the atomic
ensemble. We then use a decorrelation approximation to write 7, .(¢) ~ p,(t)R, for later times, and trace out
mode 2 as

B, = Trr[Lsr(t) p,(0) Ro] +J(: dt' Trg[ Lsr(t) Lsr(t") P, (t) Ro]. (A.10)

The first term vanishes because (@,) = (4,) = 0 in the vacuum state.
Next, we find the time evolution equations governing the superoperators associated with mode 2 that enter

Lsg,namely 4, @ I, 5; @I, ] ® @) andl ® (5; )T. Here I is the identity operator, i.e. [|n) = |n)for any
Fock basis vector | ). The notation A ® (B)T is to be understood as the operation A|n) (| B for a vector
|n) (m|in the Liouville space of mode 2 [54]. These equations are found to be

d . x . N x z s
El ® (a)T = (g + 1Ad)1 ® @) — k(@ @ I). (A.11)

The solution to this coupled set of differential equations is
ﬂzz ® f(t) = ® f)e_(%_iAd)t
To @)= @7 — a o e+l 4 (4, ® NHe(3-12a), (A.12)

Hermitian conjugation of these two equations yields the expressions for 5; @ I(t)and I ® (5; ().
For brevity, we denote §j = elken?, From equations (A.10) and (A.12), we arrive at

2 2 N _ ~
p —glﬂl ' /"T S..(+N\ 7 (+1 e— ANt

- dt'[S; () Sy (¢ t (k/2—iAg)(t—t")
& ( 4Ac ]JZ:IJ(; [ ] ( ) ) ( )pa( )e

X N . ,
— S p, () Sy (") e~ (K/2HiAD =1
x N . ,
— Syt p,(t)S; (e /2718 =t)
N X : ’

+ f)a(t’)Sj/(t’)Sj(t)e_(”/”‘Af’)(t_t)]. (A.13)

In arriving at equation (A.13), we have used the fact that the reservoir is approximately in the vacuum state to
set (4,dy) = (43 d,) = 0and (4,4;) = 1. The time evolution of the system operator ;(t) is given by

A2 A2

ST]-(t) = exp|i—t—t |eikerZiexp| —i t]. (A.14)

J
2Mh 2Mh

Once again, we introduce generalized population and coherence operators, but with an extra label g, as

554 = In, q) (m, ql, (A.15)
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and expand the momentum shift operator e« as

eikeid) — f dgod, (A.16)

n=-—0o0

We then have

U))x

Z f dqelA“}”(q)tO'] »q (A.17)

n=—0o0

where we have introduced Aw, (q) = 4w, (1 + 2n + 245,). As an example, we explicitly write down the first
term in equation (A.13):

(glﬁl) Zf dt/zf dqf dq'a0t 180 ()

X exp[—(g — ién(q))t] exp[(g - ién/(q’))t’], (A.18)

where 6,(q) = Ay — Aw,(q).

The restriction ; < 1 ensures that only operators associated with g < fik.¢ contribute to the dynamics. We
further assume that for the momentum centers that significantly participate in the dynamics, the corresponding
|k/2 — 16,(q)|is sufficiently ‘large’. We will quantify this criterion self-consistently later on (see appendix A.3).
Then, the integral over ¢’ can be performed under a Markov approximation by setting p,(t") = p,(t) to get

(g2|ﬁ|/4A )* e I(Bw@—Duy@Nigid
B i(Aw, wn@Nig a5 ana(t) (A.19)
%:Zf f = i) o

We repeat this calculation for the remaining three terms. We define the coherent and dissipative coupling

strengths as
(181 8@ (481} k2
= ( in, ) et ey T ( my ) R/t G @)P (420

and perform the reverse interaction picture transformation with £, = — L to obtain an effective master
equation governing the dynamics of p,;:

Z Z f dq hw,(@) 551, p,

j=ln=—o00"

- IZ Z f dqf dq X (q/)(UHJ,Z An '+1, n/pa paan’ n’+10.‘r{f1 n

i mn’ T

7q "q' _ A
+6, +lnpuan’ n'+1 n+ln’pa nn+1)

+ZZf dqf dq/]_" (q/)( +1npa n n’+1 + 7, n+1n’pua'7{:g+l
3o’ nn’
- &n],’g+lAn]+1 n'Pa — pao-n]’ n’+10-r{f1,n)' (A2D)

We make the simplifying assumption that x,(q) = x,,(0) = x,, [.(q9) = I,,(0) = L}, that allows to pull
X,» L, outside the integrals. We find that this requirement constrains

< min(

, (A.22)
Rk n J

16w,
where 6, = 6,(0) and the values of n considered correspond to the centers that significantly participate in the
dynamics. In deriving the simple expression in equation (A.22), we have assumed that the dispersive interaction
dominates, i.e. §, > k/2 for participating centers. For detunings 6,, > 4w, equation (11) is clearlya more
stringent requirement than equation (A.22).

Further, the simultaneous excitation and de-excitation of a pair of atoms is near-resonant only when the
same centers are involved, which corresponds to terms with n = #’in equation (A.21). For terms with
n = n' % 1, the exchange process is energetically detuned by 8w,’. From these considerations, the effective
master equation, equation (A.21), can be written as

6 . . . . P et >

We note that ignoring terms with n = n’ amounts to assuming that rates of the order of 8w, are ‘rapidly oscillating’. Therefore, the model
we derive here is strictly speaking only valid for squeezing rates Ny n K 8w and cannot be expected to predict all features seen in the MCM
in the strong driving regime (such as in figure 3, also see appendix F) even when more than two centers are tracked.
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ZZ f dq hwa @& p,
- IZZan dqf dQ( nn+1 j-,&’-t{,npa - pao'ﬁliﬁ—loﬁjfln

i’

jq 5ihd
+Un+1 npa n,n+1 o'Jrl nPa nn+1)

+ZZD’f dqf dq( +lnpa n,n+1 + +1npa nn+1
Bt

~id  Ajhd ja
= Oun+1%m+1,nPa — Pa nn+1Un+1n) (A23)

The master equation can be considerably simplified now because the integrals over g, g’ nolonger involve
and I'. By interchanging the dummy variables (j, ) <> (j’, q'), terms in the third line cancel. Also, the two
terms on the second line can be cast in a Hamiltonian form. We then transform to an interaction picture with
free evolution Hamiltonian

Hf_zzf dq 4hw, (n? + G252) 5 (A.24)

and denote the interaction picture density matrix by 7,, to arrive at the effective master equation
5 Lo~ oA
Pa:E[Heff) Pl +ernf dQI dq' (25, +1npa nn?‘rl
Bi'on

jha i i 571
_Unn-HU +1npa pa nn+1 +1,n)’ (A'ZS)

where the Hamiltonian I:Ieff is given by
Aa=Y Y [ dauhw)@a)o)
jon 5T
+Zzﬁxnf da [ dq'ol 50 (A.26)

Using the collective angular momentum operators introduced in section 2.5.1, the master equation can be
compactly expressed as in equation (27).

A.3.Validity of the Markov approximation

Under the action of the Hamiltonian, equation (31), squeezing proceeds atarate Q ~ NY,, (assuming &; ~ 0)
[2, 39]. The Markov approximation used in equation (A.18) involves retaining only the leading term in the
integration-by-parts expansion of the integrand. Neglecting the next-to-leading term amounts to
approximating that

1 dp,(®»)/dt
p.(t) k/2 — 16

Since the atomic dynamics proceeds at rate ~N Xn> the Markov approximation requires
that|r /2 — 6, | > NX,,-

< 1. (A.27)

Appendix B. Implementing instantaneous state rotations

B.1. Multi-center model

In the multi-center model, we implement an instantaneous rotation in order to initialize the c-numbers in
accordance with the initial state being in an equal superposition of the 7), n; centers. We adopt a pragmatic
approach to implement such a rotation: In the lab frame, we consider a fictitious Hamiltonian

. o
H = ?Z ”b"T 710 + O}{T’nl 19) (B.l)

to act on the collection of atoms for a time T = 7/2€2 so that the pulse areais A = 7/2. Here § specifies the
orientation of the axis of rotation on the equatorial plane of the Bloch sphere. By ignoring the energy difference
w), — w} between any pair of states n, m, we are making the assumption that the pulse is ‘instantaneous’. While
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in practice any state preparation pulse requires a finite amount of time, here we assume such instantaneous
pulses for simplicity and to avoid complications associated with pulse efficiencies and momentum widths [40].

B.2. Two-center model

In the two-center model, instantaneous state rotations are used for state initialization and for probing the effect
of echo pulses on the evolution of the squeezing parameter. To implement perfect, instantaneous rotations, we
consider a Bloch sphere for each § value with the North and South poles represented by the states |7, §) and
|1, §) respectively. The perfect rotation pulses are assumed to not couple states with differentq. The
transformation of this pair of states under a rotation with axis fi and pulse area A (€[0, 27]) s,

ny, g) e, g
A _ e, w0, (B.2)
I, ) I, q)

where the matrix U (i, A) is given by

cosg — in? sin? —i(n* + iny)sing

U, A) = A A Al (B.3)
—i(n* — in’)sin— cos — + in®sin —
2 2 2

Since we track expectation values, we need to recast this transformation in terms of the means of one and two-
atom operators. In what follows, we label ny, 1 using binary digits, i.e. #; = 0 and #; = 1. For one-atom
operators, we define v7 with elements v/ = (&,&Jﬁj )>wherej = 0, ..., 3and n; (m;) is the second (first) digit
from the right in the binary decomposition of j. The vector v{ transforms under the Bragg pulse to

v? = M,(n, A)v?, where

[Unl* UjUn U5Un Uyl
Uil UliUxn UjiUp, Uj U
Mi(B, A) — 1; 12 1; 2 2*1 12 il 2| (BA)

UpUn UpUn UpUn Uyl

Ul UbUs UjU,L |Usnl
For two-atom operators, we similarly define v¥7 with elements v = (5 ,I,J)qm] rfg ), wherej = 0,...,15and
nj, m;, 1;, 5; are respectively the fourth third, second and first digits from the right in the binary decomposmon of
j. This vector transforms as 37 Y = M, (#, Aywv? "I where M,(f, A) = M, (A, A) ® M,(h, A)isal6 x 16
matrix obtained as the Kronecker product of M; with itself.

Appendix C. Evolution of expectation values of one and two-atom operators

We recall the dimensionless quantity § = g/0;. For the numerical simulation, we consider 2L + 1 discrete §
values to sample the Gaussian wavepacket within r o, from center, where ris a small natural number, typically
r = 3. Asaresult, we have

_(J .
5= (f _ 1)r, j=0,1,..2L (o8

The one-atom expectation values are initialized as

(51 (0)) = 1edr A, (C2)
e N 27

where A§ = r/L is the spacing between adjacent § values and the normalization constant

N = 2 J_/z (€3)

ensures that the norm of the initial density matrix is unity even with a finite number of samples. The two-atom
expectation values are initialized as

(o8, o T (0)) = (85, (0) (5%, (0)). (C.4)
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For the one-atom operators, the evolution of the expectation value is given by the following equation.

d

a<a’;a?nb> (Fnl(énu,nl + 611;,,@) + Ian(énb,nl - na,nl) + 8Siw,(np, — na)‘])< ”asnb>

+ 6na,m 6nh,nT 21—‘111 <a"1ﬂli>
N ~2,
+ Sy (N — 1>A*Z< oL, Gl

2,
6nb,nl(N I)Anl Z n ”T Unpq#l

A2, q]
6nq,nT(N 1) )‘”L Z ﬂi ”b U"T’”l

~ A2
Sy (N — 1)A*Z< o, Gy, (C.5)
j

where A\, = I',, + ix, and the index j runs from 0 to 2L.
The expectation values of two-atom operators are governed by the following equation.
d 1 A
37 (O F) = ~ oo + Su + n + S
+ anL((Sn;,,nL - 6na,nl + 6nd,nL - 6n[,nl)
+ 8iw, (ny — 1) + (ng — n)d")) (6 Wb”‘%)

A1, AZ,q EEN
- 6nb,n16nd,n7)\nl<0'nmm a-nc,nl> - 6%,7116710711 An < n n
1,4

Al,d ~2,q X /A
'_6mm6mmAm<@1m@1m>“5wm6%mA (6,08

o 2,4'
nn
i ~2,4

?’l
shi A2q 1,4
+ 6ﬂa,n16ﬂh,ﬂrzrm< n,n| n nd> + 6715,711 nd,mzr < Ng,Np 1), >
P 2,4 1,§ 2,4
+ 5nb,ﬂ16ﬂomzrn¢< na,nl "1 nd> + 6"(1)”'( nd)nTZF”L< np,np I n n>

~ N 3,
+ Onm (N — 2)/\an o, ot G )

1)
)

al,d a2,4 234G
6ﬂmm (N 2) >‘ Z < annh Oncqud O-"L’”]T>
A 520 5 3.4
6”0"T (N 2) )\m Z naqnh ny, Zd "Ta’{i>
q A24 A3
6nc,nl (N 2) )‘ Z < naqn;, UnT,qnd O-”l"{T>
j
Ald a2d A3
O (N = 2) X Z (5, nfm Gnona O
AlLG A2, 3.4
6%,@ (N 2) )\”l Z nuan nCth ”T>"]i>
Al A2,d A34
6”d)”T (N 2) >\ Z < ”mqnb On, ?u U”l"‘]T>
Al A2,d a4
5nd,n1 (N 2) A”l Z Oy, qnb n[ZtT ”1,"J1>' (C6)

To close the set of equations, we factorize the three-atom expectation values as

R ~A’~/A,~//N AlLd ~2,4" ~ Al ~2," ~l1,4
<Oﬁfnb 0-1125,21,1 0-7133,?1/> ~ <O.ia,qm, 0'712[,21,1> <Urlle,qnf> + <O.115:1n,,{ 0-1125,21f> <Urlra,qnb>

Al,d" A2, 1,4’ 2,4’ Al,q"
+ <Une,qn[ Jnu,zn,) <Un[,qnd > -2 < na,nb> <0—n[,‘sz> <Une,qn[> . (C7)
To speed up computation, we identify ‘partial sums’ which are recurring summations that appear in the
evaluation of the right-hand-side of equations (C.5) and (C.6) for each §, §’, and evaluate these partial sums

only once per time step (see appendix A in [55]). To study the effect of the many-body energy gap in section 3.7,
we similarly derive the equations with the gap Hamiltonian H; turned off.

Appendix D. Laser power and squeezing rate

Here, we explain how the constraint imposed by equation (35) translates to requirements on the laser power and
limits on the squeezing rate.
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D.1. Laser power requirements
Experimentally, the steady-state photon number | 3> in mode 1 is set by the power in the drive laser as

18F = #(i) ~ ARP (D.1)
K2/4 4+ A3\ hw ik '

where the apprommatlon assumes 6, >> w;, sothat Ay ~ ¢, and that the interactions are in the dispersive
regimei.e. R* < 1. From equation (35) and the discussion following it, the required laser power range is
2500k _ P A?

<— < —< . D.2
R fiw; . 100CYR? (0-2)

D.2.Squeezing rate
From equation (29), the rate of squeezing Q is proportional to | 3|, and consequently, the input power P, as

NC?y2R?
207K NCPR A~ , D.3
~ 101 SAZ (ﬁwl) 2A? 03

where we have assumed R*< 1. Therefore, Qs constrained to the range

KCy
1250 R < —NC D4

c

Appendix E. Rabi oscillation model for population leakage

We consider the case when &, ~ 0. The two spin states correspond to |n) = |0hk)and n; = |2hk). We assume
that mode 2 is dominantly sourced by the coherence between # and n; and neglect the fluctuating terms to
simplify the equation for { (equation (19)) to

d 8
EC = —(E - 1ACI)C + et Zsm " (E.D)
We transform to the rotating frame s,{T y = s,{T " N e‘““” Atshorttimes (NT;, t < 1), assuming that
the state is prepared along the x-axis of the Bloch sphere in the 1, #; manifold, sm n ~ 1/2forallj. Then, using
the fact that | /2 — i6,| > N X» We can adiabatically eliminate  as
5 it /2 <j et N
N ——)% 3 N (E.2)
e /2 — 6, Z]: e b 4

where in the last approximation we have assumed that R = /26, < 1. Asan example of population leakage,
we consider the #y < n,, transition. By symmetry, the same arguments hold true for the nj < #_; transition.
Assuming s, ., is negligible, s, , ~ 1/2,and zero populations and coherences associated with 1., ,, the
equation for the coherence s,,,  ,, reads

d . ,
dts,iﬂ ”T 121wr5n+1,m + IK(gﬁ) 41Wrt, (E3)
ny

where we have used the expression for ( from equation (E.2). From equation (29), the combination gesz / 46, can

be immediately identified as x,, for R < 1. Solving for s) + 1 8iVes

Nx .
51{“,%1 = 32(;” (etiwrt — el2iwrt), (E.4)
r

Further, still neglecting the 7, , center, we can arrive at an equation for the dynamics of the populationin#_ ; as

d <
s = ITH(C*SnH,nT - CsnT,nH): (ES)

a nipngr

which can be solved using equations (E.2) and (E.4) to give

S
Ny

Nx, 2
~ L L (1 — cos8w,t). (E.6)
4\ 8w,

This expression explains the oscillations at frequency ~8w, that can be seen in the populations at the . centers
in figures 3(c)—(d), while the peak value scaled to the number of atoms gives the analytic expression for P,**
(equation (38)) plotted in figure 3(e).
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From equation (E.4), the maximum magnitude of the coherence snjﬂ,m is Nx,, /16w;.In estimating the
intracavity field, we assumed that it is sourced only by the s, ,, coherence. This approximation is valid aslong as

Sninm

L1l = anl < 8wy (E.7)
snT,nl

The breakdown of the approximation, equation (E.7), signals the strong driving regime, i.e. it is the regime
where the squeezing rate N Xn, becomes comparable to the relative detuning 8w, between the 1) < n; and
Ny <= M4y, Ny <> 1 transitions.

Appendix F. Relative importance of free-space scattering

Here, we analyze the relative importance of single-atom free-space scattering and collective superradiant decay
in increasing the variance Vy,;, that enters equation (32). Since the squeezing is driven by a term ~ J%]7, the axis
corresponding to the minimum variance orients towards the z-axis over time [2]. As a result, we can estimate the
degrading effect of various diffusive processes by estimating the corresponding increase in (AJ?)2.

Free-space scattering: We assume that once a photon is scattered into free-space, the atom recoils in a random
direction and is lost from the atomic cloud. The rate of emission for a single atom is (g2 | 3| /4A2), where the
term in parenthesis is the effective population in |e) as a result of the drive laser. Starting with an equal
superposition of |g, 1)) and |g, ny), each such photon could have been scattered equally likely from these two
states, and so we have (assuming vt < 1)

2 2
N, /N = N, /N = g(i'ﬁ' ) (E.1)

Scattering from the n) (n1) state of any single atom increases (decreases) J“ by 1/2, therefore, the increase in
variance in a time tis

ZN\2 2 2
[V iN(W(M]((_l/Z)Z +(1/2)?)

N/4 N |2\ 4A?
2
(& 18P
—|= —-1/2+1/2
(2[ I =1/ /2)
21312
8”18
=t . F.2
) "
Superradiant decay: The Lindblad term oc T}, in equation (27) contributes the following time evolution for { J7):
d 7z =7 T % 2z%z (¥4
) =20 T) =200 -0) = 0T = ), (E.3)

where we have used equation (4). For our initial state, we have (J - J) = N/2(N/2 + 1), (J°/*) = N/4and
(J¥) = 0,s0that

N,, = =N, = L,N?/2, (F.4)
where N, ~ N/Z + (J*)and N, ~ N/Z — (J*). The above rates are valid for times such that NT, t < 1. We
can identify a per-atom rate of emission as F,,lN / 2. Each such photon increases J* by 1, therefore, the increase in

variance in a time ¢ is

22 NT, ¢ NT, 1)?

(A# = iN (12— |2 ~ 2N, t. (E.5)
N/4 N 2 2

From equations (F.2) and (F.5), the contribution of free-space scattering can be neglected compared to that
of superradiant decay when

2
c

2 2
'yt(g4|ﬁ| ) < 2NT,t = R? > % (F.6)

Here, R = £ /26, isassumed to be <(1. Asaresult, when R?*becomes comparable to the inverse collective
cooperativity, free-space scattering can no longer be neglected. In the simulations presented in this paper, N = 10°,
C = 1,10, giving NC = 10°,10% Asaresult, R > 0.032,0.01 respectively for the two values of C. The values of R we
consider are in the range 0.025-0.2, and therefore some of our parameter regimes (e.g. R = 0.025, C = 1) donot
satisfy the preceding requirement. A more precise estimate of the squeezing parameter for such regimes requires the
inclusion of free-space scattering. Nevertheless, in an experiment, increasing the total number of atoms leads to a
larger product NC and reduces the relative importance of free-space scattering at fixed R.
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