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We theoretically analyze superradiant emission of light from an ultracold gas of bosonic atoms confined
in a bad cavity. A metastable dipolar transition of the atoms couples to the cavity field and is incoherently
pumped, and the mechanical effects of cavity-atom interactions tend to order the atoms in the periodic
cavity potential. By means of a mean-field model we determine the conditions on the cavity parameters
and pump rate that lead to the buildup of a stable macroscopic dipole emitting coherent light. We show that
this occurs when the superradiant decay rate and the pump rate exceed threshold values of the order of the
photon recoil energy. Above these thresholds superradiant emission is accompanied by the formation
of stable matter-wave gratings that diffract the emitted photons. Outside of this regime, instead, the
optomechanical coupling can give rise to dephasing or chaos, for which the emitted light is respectively
incoherent or chaotic. These behaviors exhibit the features of a dynamical phase transitions and emerge
from the interplay between global optomechanical interactions, quantum fluctuations, and noise.
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Superradiance describes the collective emission of light
by an ensemble of dipoles. It is a quantum interference
phenomenon in the emission amplitudes [1–3] and is
accompanied by a macroscopic coherence within the
ensemble [1,2]. In its original formulation, Dicke consid-
ered N dipoles confined within their resonance wavelength
and showed that their spontaneous decay can be enhanced
by the factor N [2].

Quantum interference is typically lost due to fluctua-
tions in the amplitude and in the phase of the dipole-field
coupling. These fluctuations can be suppressed by cooling
the atomic medium to ultralow temperatures [4,5] and/or
by subwavelength localization of the scatterers in an
ordered array [6–13]. When, in contrast, the coherence
length of the atomic wave function extends over several
wavelengths, superradiant scattering of laser light can
manifest through the formation of matter-wave gratings
[4,5,14–16]. In free space, superradiant gain can be
understood as the diffraction of photons from the density
grating of the recoiling atoms, which acts as an amplifying
medium [4,15]. Within an optical resonator, these dynam-
ics can give rise to lasing [17–20] and be cast in terms of
synchronization models [19,21].
In this Letter we analyze the interplay between super-

radiant emission and quantum fluctuations due to the
recoiling atoms, when the atoms’ dipolar transitions couple
to the mode of a lossy standing-wave resonator. In contrast
to Refs. [4,5,14–16], here the atoms are incoherently
pumped, as shown in Fig. 1, and therefore no coherence
is established by the process pumping energy into the

system. The system parameters are in the regime where
stationary superradiant emission (SSR) is predicted
[22–27]: In a homogeneous medium, SSR consists in
the buildup of a stable macroscopic dipole that acts as a
stationary source of coherent light. The dynamical proper-
ties can be understood in terms of a time-periodic state at
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FIG. 1. (a) An atomic gas initially forms a Bose-Einstein
condensate and is confined within a standing-wave resonator,
which emits photons at rate κ. (b) The metastable atomic transition
jgi → jei couples to the cavity mode and is incoherently pumped
at rate w. After the first superradiant decay (c) the atoms form
density gratings. (d) The emitted field XðtÞ (here in the reference
frame of the atomic frequency) becomes coherent for sufficiently
large values of w, such that one grating is mechanically stable.
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the asymptotics of the driven-incoherent dynamics [28–32],
whose frequency is determined by the incoherent pump
rate w [28]. In a homogeneous medium the transition from
normal to SSR fluorescence is controlled by w when the
superradiant decay rate is larger than the rates character-
izing other incoherent processes. Here, we show that in the
presence of the optomechanical coupling with the external
degrees of freedom SSR corresponds to spatiotemporal
long-range order and is reached when the characteristic
rates exceed the recoil frequency, scaling the mechanical
energy exchanged with radiation. When instead the recoil
frequency becomes comparable with the pump or the
superradiant decay rate, then the superradiant emitted
light can become either chaotic or incoherent. The chaotic
phase, in particular, characterizes the asymptotic phase of
an incoherent dynamics, it emerges from the interplay
between quantum fluctuations, noise, and global inter-
actions mediated by the cavity field, and is thus qualita-
tively different from chaos reported in quantum dynamics
of Hamiltonian global-range interacting systems [33,34].
Consider a gas of N atomic bosons with mass m that are

confined along the axis of a standing-wave resonator. The
atoms do not interact directly; their relevant electronic
degrees of freedom (d.o.f.) form a metastable dipole with
excited state jei and ground state jgi. The dipoles are
incoherently pumped at rate w and strongly coupled to a
cavity mode with wave number k and loss rate κ. The
evolution of the density matrix ϱ̂ for the cavity field and
the atoms’ internal and external d.o.f. is given by the
Born-Markov master equation ∂tϱ̂ ¼ ½Ĥ0 þ Ĥc; ϱ̂�=ðiℏÞ þ
w
P

jL½σ̂†j �ϱ̂þ κL½â�ϱ̂. Here, Ĥ0 ¼
P

N
j¼1 p̂

2
j=ð2mÞ is the

total kinetic energy, with p̂j the momentum of each atom j;
Ĥc ¼ ℏΔâ†âþ ℏgNðâ†X̂=2þ H:c:Þ describes the revers-
ible evolution due to the interaction with the resonator,
with â and â† the annihilation and creation operators of a
cavity photon, and Δ the cavity detuning from the atomic
transition frequency. The field couples with strength g to
the collective dipole X̂ ¼ P

jσ̂j cosðkx̂jÞ=N, where σ̂j ¼
jgijhej and the sum is weighted by the value of the cavity
standing-wave mode cosðkxÞ at the positions x̂j. The
Lindbladians describe the incoherent dynamics and read
L½Ô�ϱ̂ ¼ −ðÔ†Ô ϱ̂þϱ̂Ô†ÔÞ=2þ Ô ϱ̂ Ô†. For N ≫ 1 the
quantum dynamics is numerically intractable due to the
adverse Liouville space scaling. This dynamics can be cast
in terms of long-range dipolar and optomechanical inter-
actions in the atoms’ Hilbert space when κ and Δ are the
largest rates. In this regime the atomic transition is radia-
tively broadened by the coupling with the cavity; its line-
width at an antinode is Γc ¼ g2κ=ðκ2 þ 4Δ2Þ. Then, the
cavity field follows adiabatically the atomic motion, â ∝ X̂
[35,36], while shot-noise fluctuations are negligible [37].
The atoms’ density matrix ρ̂N then obeys the master equation
∂tρ̂N ¼½Ĥeff ; ρ̂N �=ðiℏÞþw

P
jL½σ̂†j �ρ̂NþNΛL½X̂�ρ̂N . Here,

Ĥeff ¼ Ĥ0 þ V̂, where V̂ ¼ −ℏNΛðΔ=κÞX̂†X̂ describes the
global interactions mediated by cavity photons. Now the
incoherent processes are the incoherent pump at rate w and
the superradiant decay with rate Λ ¼ NΓc. We neglected
retardation effects of the cavity field, which is justified by the
choice of large κ. We also neglected single-atom radiative
decay at rate Γc, assuming timescales t < 1=Γc and N ≫ 1.
Since 1=Γc ¼ N=Λ, this timescale can be stretched to
t → ∞ in a thermodynamic limit N → ∞ where Λ is kept
constant [33,36]. Under these assumptions we finally obtain
the mean-field master equation for the single-particle density
matrix ρ̂1 (assuming that ρ̂N is a product state at t ¼ 0):

∂tρ̂1 ¼ ½Ĥmffρ̂1g; ρ̂1�=ðiℏÞ þ wL½σ̂†�ρ̂1; ð1Þ

where ρ̂1 ¼ TrN−1fρ̂Ng is obtained by tracing out N − 1
atoms. Now the incoherent evolution is due entirely to the
incoherent pump and the interactions with the resonator are
given by the mean-field Hamiltonian:

Ĥmf ¼
p̂2

2m
−

ℏΛ
2 sin χ

ðeiχXfρ̂1gσ̂† þ H:c:Þ cosðkx̂Þ; ð2Þ

with tanðχÞ ¼ κ=ð2ΔÞ. Here, the Rabi frequency is pro-
portional to the mean-field order parameter Xfρ̂1g ¼
Trfσ̂ cosðkx̂Þρ̂1g, and thus depends on the global macro-
scopic dipole. Note that X generates the intracavity field
and within the mean-field treatment determines the field’s
coherence properties. By neglecting the diffusion due to the
incoherent pump, Eq. (1) can be reduced to a Vlasov
equation with a potential that depends on the macroscopic
dipole of the initial state, and whose stable solutions are
metastable states of the out-of-equilibrium dynamics
[38,39]. In the following we analyze the stability of a

thermal initial state ρ̂ð0Þ1 ¼jeihej⊗ expð−βp̂2=2mÞ=Z, with
inverse temperature β, partition function Z. Here,

Xfρ̂ð0Þ1 g¼0.
The short-time dynamics is determined by means of a

stability analysis as a function of w and β, see Supplemental
Material (SM) [40] for details. No superradiant emission is

found when Xfρ̂ð0Þ1 g ¼ 0 is stable to small fluctuations.
When instead X ∼ expðγtÞ exponentially increases with
ReðγÞ > 0, then the system undergoes superradiant
decay with ReðγÞ. Figure 2 shows the contour plot of
the exponent ReðγÞ as a function of both w and β. We find a
threshold temperature kBTc ≈ 0.1ℏΛ2=ð2ωRÞ, where ωR ¼
ℏk2=ð2mÞ is the recoil frequency. For T > Tc thermal
fluctuations suppress superradiance. For T < Tc super-
radiance is found for a finite interval of the pump rate
0 < w ≤ wmaxðβÞ, which increases with the ratio η ¼
β=β̄ ¼ Tc=T. For η → ∞ the upper bound is wmax ¼
Λ=2, that coincides with the value found for a homo-
geneous medium [36]. We now focus on the regime where
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Λ is of the order of ωR, so that the threshold temperature Tc
can be several μK.
We now study the dynamics of an ensemble of atoms in

the zero-temperature limit, when the atoms initially form a
Bose-Einstein condensate (BEC). We neglect onsite inter-
actions and analyze the dynamics of the external d.o.f. on
the closed family of momentum states jΨ0i ¼ j0i (the
BEC) and jΨni ¼ ðjnℏki þ j − nℏkiÞ= ffiffiffi

2
p ðn ¼ 1; 2;…Þ.

These states are coupled by absorption and emission of
cavity photons; their energy Ekin;n ¼ n2ℏωR is an integer
multiple of ωR. The asymptotic behavior of Eq. (1) is
strictly defined in the thermodynamic limit and is deter-
mined by means of a recursive procedure [40]. In Fig. 3 we
report the coherence properties of the emitted light in a
w − Λ phase diagram. We first note the normal (striped)
phase with w > Λ=2, where there is no superradiant

emission. The transition from normal to superradiant phase
(without optomechanical coupling) has been discussed in
the literature [22–24,28,42]. Within the regime where SSR
is expected, we now find that the optomechanical coupling
gives rise to three phases which we denote by (i) incoherent,
(ii) coherent, and (iii) chaotic, corresponding to the
coherence properties of the emitted light. In the incoherent
phase only the solution with X ¼ 0 is stable and collective
effects are suppressed. In the coherent phase there is one
stable solution with X ≠ 0. As visible in the phase diagram,
the condition for the appearance of this phase is that the
superradiant linewidth exceeds a minimum value deter-
mined by the recoil frequency, Λ > Λc with Λc ∼ 6ωR.
Finally, the chaotic phase is found for Λ > Λc, when the
pump rate is below a threshold wcðΛÞ. Here, both solutions
with X ≠ 0 and X ¼ 0 are unstable.

We verified these predictions by numerically integrating

Eq. (1) with the initial state ρ̂ð0Þ1 at T ¼ 0 on the grid of
momentum states p ¼ 0;�ℏk;…;�15ℏk. Figure 4(a) dis-
plays jXðtÞj for different values of Λ along path A of Fig. 3,
where a direct transition occurs from an incoherent to a
coherent (SSR) phase. For all values the intracavity field
jXðtÞj first grows exponentially, and subsequently reaches a
maximum at a timescale τc ∼ 1=Λ. After this time scale,

FIG. 2. Contour plot of the rate γ of the first superradiant
emission as a function of the incoherent pump rate w (in units
of Λ) and of the atomic gas temperature 1=β [in units of
β̃−1 ¼ ℏΛ2=ð2ωRÞ]. The solid line separates the regime in which
the atoms undergo superradiant decay from the one where
thermal fluctuations suppress superradiance (stripes).

FIG. 3. Phase diagram in the w=ωR − Λ=ωR plane when the
atoms initially form a Bose-Einstein condensate at T ¼ 0. The
phases are labeled by the coherence properties of the emitted
light. The emitted field is given by XðtÞ and is obtained by
solving Eq. (1) at the asymptotic dynamics, see [40]. Path A
(path B) shows the parameters of Fig. 4 (Fig. 5). In the striped
region superradiant decay is suppressed (corresponding to the
region at T ¼ 0 and w > Λ=2 in Fig. 2).

(a)

(b)

(c)

FIG. 4. The incoherent-coherent transition for the parameters
of path A of Fig. 3 (w ¼ Λ=4 and Δ ¼ κ=2). Subplot (a), from
left to right: Dynamics of X for Λ ¼ 4; 6.5; 9ωR. (b) The
asymptotic value for the mean-field order parameter jXðtfÞj
and (c) the minimum eigenvalue λmin of the partial transpose of
the asymptotic density matrix, signalling entanglement be-
tween external and internal d.o.f., as a function of Λ (in units of
ωR). Black circles: Numerical results at time tf ¼ 4 × 104ω−1

R .
Dashed lines: Steady-state values from the iterative solution of
∂tρ̂1 ¼ 0, Eq. (1).

PHYSICAL REVIEW LETTERS 123, 053601 (2019)

053601-3



(i) for Λ < Λc the intracavity field jXðtÞj decays to zero.
This dynamics is accompanied by the formation of a
statistical mixture of states je;Ψ2ni and je;Ψ2nþ1i, which
dephases the macroscopic dipole and leads to suppression
of superradiant emission. (ii) For Λ ∼ Λc the field under-
goes fast oscillations and then slowly decays to zero.
(iii) For Λ > Λc the field oscillates about a finite asymp-
totic value and the atoms form a stable spatial pattern. This
dynamics exhibits the general features of a dynamical
phase transition, which occurs after the first superradiant
emission at t ∼ τc. After τc the macroscopic dipole X
decays to zero or oscillates about a finite metastable value.
We denote the asymptotic value of the order parameter
by XstðΛÞ, which we determine by numerical evolution of
jXðtÞj, taking jXstðΛÞj ¼ jXðtfÞj, where at tf the dipole
jXðtÞj has reached a constant value. We compare this result
with the asymptotic solution ρ̂st of Eq. (1), using an iterative
procedure based on a seed X > 0 (as for determining the
phase diagram of Fig. 3 [40]). Along path A this iterative
procedure always converges to either Xst ¼ 0 for Λ < Λc
and Xst > 0 for Λ > Λc. As is visible in Fig. 4(b), the
predictions obtained by numerical integration (circles) and
by the iterative procedure (dashed line) qualitatively agree
and exhibit the features of a second-order phase transition.
Figure 4(c) displays the minimum eigenvalue of the partial
transpose of ρ̂st. Its behavior shows that at the buildup of
SSR internal and external d.o.f. become entangled [40].
The transition separating the coherent from the chaotic

phase occurs for Λ > Λc as a function of w: The properties
of the emitted light dramatically depend on whether w is
smaller or larger than a critical value wcðΛÞ. Figure 5(a)
displays the numerical results for the real and the imaginary
part of XðtÞ for a fixed time interval for (i) w < wc, where
the dynamics is chaotic, (ii) w ≃ wc where the dynamics is
mainly characterized by the appearance of two subhar-
monics, and (iii) for w > wc, where the dynamics is
evidently coherent. The spectrum of the emitted light is
displayed in Fig. 5(b) as a function of w and for the
parameters of path B of Fig. 3. The transition from regular
oscillations to chaos occurs at a value wc where two
sidebands appear. We analytically determine wc by
means of a stability analysis; see [40]. This analysis also
delivers the frequencies of the sideband at w ¼ wc and the
Lyapunov exponent γL ¼ ReðγÞ. As is visible in Fig. 5(c),
γL changes sign at w ¼ wc and is positive for w < wc. The
trajectory of subplot (a)-(i) corresponds to the value of w
where the spectrum is dense: In this parameter regime the
stability analysis predicts the transition from chaotic to
incoherent dynamics. Numerical simulations show that
for w < wc the density grating becomes unstable and the
system jumps back and forth between a prevailing occu-
pation of the set of states corresponding to an even grating,
fje;Ψ2ni; jg;Ψ2nþ1i; n ¼ 0; 1; 2;…g, and of the ones
corresponding to an odd grating, fje;Ψ2nþ1i; jg;Ψ2ni;
n ¼ 0; 1; 2;…g. While the states within each set are

coupled by coherent processes, the two sets are only
coupled to each other by the incoherent pump: Thus, for
w < wc the long-range optomechanical interactions tend to
form a grating, which locks the phase of the field, while the
incoherent pump induces quantum jumps between different
gratings. In the coherent phase internal and external d.o.f.
are entangled as soon as w > wc (see SM also for the
analysis of the chaotic phase [40]). We remark that the spin-
light dynamics in the coherent phase can be understood in
terms of the time crystal studied in Ref. [28]. Our analysis
shows that the optomechanical coupling gives rise to a
spatial pattern which stabilizes the asymptotic time-
periodic state. The parameter regime, however, is smaller
than the one predicted in Ref. [28]: the interplay between
optomechanical dynamics, noise, and quantum fluctuations
gives rise to new time-periodic or even time-aperiodic
states.

FIG. 5. The chaotic-coherent transition for the parameters of
path B of Fig. 3 (Λ ¼ 15ωR and Δ ¼ κ=2). (a) From left to right:
real and imaginary parts of X for w ¼ 1; 1.5; 2.5ωR (here for the
time interval t ∈ ½9.8 × 103; 104�=ωR). (b) Contour plot of the
spectrum of the emitted light FðωÞ (arbitrary units) as a function
of w and of the frequency ω (in units of ωR). Here, FðωÞ ∝
j R tend

0 eiωtXðtÞdtj is found by integrating Eq. (1) until
tend ¼ 104ω−1

R . (c) The real (solid) and imaginary part (dashed)
of the exponent γ (in units of ωR) giving the stability of the
stationary solutions. The vertical dashed lines indicate the critical
pumping strength wcðΛÞ, where ReðγÞ changes sign and the
sidebands appear; the circles mark the corresponding frequencies.
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The phase diagram can be observed by tuning the
superradiant linewidth and the pump rate across values
of the order of the recoil frequency ωR; the phases are
signaled by the first-order correlation function of the
emitted light. These dynamics can be realized when the
resonator linewidth κ exceeds by several orders of magni-
tude ωR and when other incoherent processes can be
discarded over the timescales where the dynamical phase
transition occurs. Specifically, the spontaneous decay of the
dipolar transition and the particle-particle collision rate
shall be orders of magnitude smaller than the recoil
frequency, which can be realized using a Raman transition
between metastable hyperfine states and low densities, as
for instance in Refs. [25,43,44].
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Note added.—Recently we became aware of Refs. [45–47]
where analogous dynamics in similar setups are studied.
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