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Abstract

We discuss a realization of topological superfluidity with fermionic atoms in an optical lattice. We
consider a situation where atoms in two internal states experience different lattice potentials: one
species is localized and the other itinerant, and show how quantum fluctuations of the localized
fermions give rise to an attraction and spin—orbit coupling in the itinerant band. At low temperature,
these effects stabilize a topological superfluid of mobile atoms even if their bare interactions are
repulsive. This emergent state can be engineered with alkaline-earth atoms in a superlattice with a
dimerized unit cell. To probe its unique properties we describe protocols that use high spectral
resolution and controllability of a narrow clock transition, such as momentum-resolved spectroscopy
and supercurrent response to a synthetic (laser-induced) magnetic field.

1. Introduction

Our understanding of many-body systems traditionally relies on the Landau classification of ordered states of
matter based on global symmetries spontaneously broken within a given phase. This symmetry breaking is
accompanied by emergence of an order-parameter (OP), i.e. non-zero expectation value of alocal physical
observable that uniquely characterizes the phase. For instance a hallmark signature of a fermionic superfluid
(SF) is breaking of the particle number conservation [U(1)] symmetry which occurs as a result of Cooper pairing.
The corresponding OP plays the role of a Cooper pair wavefunction and defines an energy gap in the excitation
spectrum, allowing dissipationless particle currents [1]. However, many phases of matter defy the Landau
paradigm. An important class of such systems are topological superfluids (TSFs) [2, 3], i.e. phases that in
addition to U(1), break a residual Z, symmetry. The latter symmetry breaking is a global phenomenon that
occurs in the absence of local OPs and only for appropriate boundary conditions [4-7].

Despite all efforts dedicated to the search for TSFs, they remain elusive with the only confirmed realization
being liquid *He [8, 9]. One reason for such scarcity is that TSFs require a very particular orbital structure of
Cooper pairs, at least p-wave [ 10—12], which may originate either from strongly spin-dependent interactions,
dipolar couplings [13], or a large spin—orbit coupling (SOC) that couples particle’s motion to its spin.

The coexistence of a sizeable SOC and attractive interactions (leading to Cooper pairing) is quite rare in
nature [14], fundamentally because SOC and fermion pairing have very different physical origins. In the present
work, we propose a pathway towards topological superfluidity, which overcomes these limitations by
engineering attractive interactions and an effective SOC from the same ingredient—the optical lattice structure.
We study a model of repulsive fermions in two bands: one localized and another itinerant, and show that
inhomogeneities spanning few lattice sites (e.g. dimerization) in the localized band lead to two profound
phenomena. First, they induce an emergent short-range attractive interaction among the itinerant species, by
virtue of local quantum fluctuations. Second, they enlarge the unit cell in accordance with the extent of localized
wavefunctions. The index of non-equivalent sites within the unit cell plays the role of a spin degree of freedom

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ab2ee0
https://orcid.org/0000-0003-3254-4494
https://orcid.org/0000-0003-3254-4494
mailto:ortizg@indiana.edu
mailto:arey@jilau1.colorado.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab2ee0&domain=pdf&date_stamp=2019-07-24
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab2ee0&domain=pdf&date_stamp=2019-07-24
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

New J. Phys. 21 (2019) 073049 LIsaevetal

which flips whenever an atom tunnels between cells. As a result, itinerant fermions experience an effective SOC
whose magnitude is comparable to the bandwidth. We show that a combination of this SOC and attractive
interactions gives rise to a robust p-wave TSF in quasi-one dimension (quasi-1D) and a chiral p,. + ip, SFin 2D.

Our TSF state can be observed in ultracold nuclear-spin polarized fermionic alkaline-earth atoms (AEAs)
[15],e.g. 87Sr[16] or '>Yb [17, 18], in an optical superlattice with a few-site unit cell [19-22]. The localized
(itinerant) states can be implemented with atoms in an excited °P, (ground state 'Sy) clock state (respectively, e-
and g-states), with a single e-atom per unit cell. We propose several experimental probes for characterizing the
TSFs, including momentum-resolved spectroscopy [23, 24] and generation of a particle supercurrent with a
laser-induced synthetic magnetic field [25-27]. Our approach avoids many known experimental issues: (i) the
only relevant interactions occur through the almost perfectly elastic a,, channel [28] (when the two-atom
wavefunction is antisymmetric with respect to interchange of eand gﬂavors, and symmetric in the spatial
indices), and therefore the system is not affected by inelastic e—elosses [29, 30] or strong scattering in the e—g
symmetric d,, + channel when close to an orbital Feshbach resonance [31, 32]; (ii) p-wave interactions in our case
emerge asa result of quantum fluctuations as opposed to a p-wave Feshbach resonance, and our setup is free
from the three-body losses reported in experiments [33—36]; (iii) the effective SOC in our system is generated as a
result of the lattice structure and hence avoids heating, inherent to earlier proposals to create SOC using near-
resonant Raman lasers [37—45]. Our proposal is facilitated by the existence of magic [46] and zero-magic [47]
lattices for alkaline-earth atoms at amenable wavelengths. Finally, our cold-atom system opens a path towards a
long-sought-after realization of a pairing mechanism in repulsive fermions that emerges because of nanoscale
inhomogeneities [48—51] and has fundamental implications for superconductivity in cuprate and heavy-
fermion materials.

2. p-wave superfluidity in a quasi-1D superlattice

Key aspects of the emergent Cooper pairing and SOC leading to our proposed TSF state can be seen by studying
the dimerized quasi-1D optical lattice, shown in figure 1(a) and described by the model Hamiltonian:
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wherei =x;=0,...,N; — 1, x, = (y,2z)anda = 1, 2 labels dimers and sites within a dimer, respectively.
(. x[) denotes nearest-neighbor links in the yz-plane. The operator & , (8] ) creates anuclear-spin
polarized e (g) atom at site a within a dimer with position (i, x ) (i, , = éi'LN éix, « and similarly for nmu)
The e-atoms occupy a dimerized lattice with a large intra-dimer hopping J, > 0 and one atom per dimer

(we assume that dimers are decoupled). The g-atoms propagate in a simple (non-dimerized) lattice with a
nearest-neighbor tunneling J,. The second term in (1) contains a local e-g repulsion of strength U, > 0.

As we shall demonstrate below (see figure 2(d)) phases exhibited by Hamiltonian (1) are insensitive to values
of J, ; aslong as they are small compared to J,. To simplify the presentation (and only for this reason), we
consider a pure 1D case ], ;‘ = 0 and omit x, in subscripts. However, we emphasize that our results actually
apply to an anisotropic 3D system of weakly coupled 1D tubes, which is closer to what is accessible in most cold-
atom experiments (see also an extension to a 2D geometry in appendix G).

We focus on the regime J, > U, and J, when interactions and g-atom kinetic energy in (1) can be
considered a perturbation to the e-atom kinetic energy. For ith dimer, the latter has eigenstates
[\ = \/_ — (e} + T4 éfz) [vac) (A = £1and |vac) is the vacuum state without atoms) with energies — \J,

(figure 1(b)). States of the entire e~g system can be approximately written as [¥g) = [T, |\)i ® [¥) () isastate
of only g-atoms), thanks to the single-dimer gap 2J...

We next assume that the e-subsystem is prepared in the excited state [, |\ = —1);. This configuration is
stable because of the large energy penalty 2], that suppresses decay of individual dimers to their ground state (GS)
with A = +1 in the absence of decoherence sources (this requirement is well satisfied in cold-atom systems), for
instance due to e-g scattering. The weak interactions U, only induce e-atom virtual transitions to dimer states
with A = +1, which we take into account via 2nd order perturbation theory (the kinetic energy of g-atoms
amounts to a 1st order correction because it operates within the degenerate subspace {|,,) }). These virtual
processes, shown in figure 1(c), give rise to an effective Hamiltonian for the g-subsystem (see appendix A)
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Figure 1. (a) The system described by equation (1) can be implemented by tightly confining in an array of 1D tubes (shown
schematically in the inset) an ultra-cold gas of nuclear-spin polarized fermionic alkaline-earth atoms prepared in the clock states g
(in blue) and e (red color). Along the tubes, e-atoms experience a superlattice that consists of weakly-coupled double-wells (dimers)
with large intra-dimer tunneling J,. The g-atoms are itinerant and experience a weaker lattice potential along the tube direction with a
nearest-neighbor hopping J,. There is also a weak inter-tube g-atom hopping J, gL that connects corresponding sites of dimers in
nearest-neighbor tubes. We will put J, gi = 0 until the end of section 2.1. Within each tube, a unit cell (dashed rectangle) at a position
x; = iincludes two lattice sites labeled with a = 1, 2 (4 wells overall). The e-g repulsive interaction Ug > 0is assumed small
comparedto J: U, < . (b) Symmetric (A = +) and antisymmetric (A = —) e-atom kinetic-energy eigenstates within a dimer.

(c) When e-atom dimers are prepared in the anti-symmetric mode, virtual transitions to the symmetric state, caused by the e—g
interaction, induce an effective attraction ug, = ( U,;g)2 / 4], between two g-fermions within a dimer. These processes are captured by
the effective model (2).
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Figure 2. (a) Zero-temperature phase diagram of equation (2) computed using an unconstrained Hartree—Fock—Bogoliubov mean-field
theory in a system with N; = 100 dimers and periodic boundary conditions. ¢ is the g-atom chemical potential. Thick [thin] lines indicate
Ist order transitions between topological superfluid (TSF) and insulator states [2nd order transition inside the insulating region]. In the
charge-density wave (CDW) state the unit cell has two dimers with an average density #¢ = 1 atom per dimer. For small ty, the CDW
undergoes a transition to a band insulator with a single-dimer unit cell. Blue square (red star) corresponds to ug,/J, = 2.7 (2.3). (b) SF gap
A and average density n8 = N%Zi(ni% + n$) plotted along the arrows shown in (a). (c) Two lowest-magnitude eigenvalues € of the BdG

Hamiltonian computed in an open chain for 4, = 2.3/,. The order parameters were taken from a converged solution in (a). Orange circles
indicate Majorana edge modes inside the TSF phase. The arrow marks a TSF-band insulator transition. (d) Critical temperature T, as a
function of interaction strength u, in the strong 1D limit J, ; / J, = 0 (thick black lines) and anisotropic 3D case with ] gi / J¢ = 0.1(thinred
and bluelines) [see inset in figure 1(a)] for 11/J, = —1.8 (blue color) and —1.7 (red line). N; = 100 [see (a)], while transverse dimensions are
60 x 60 tubes. The Boltzmann constantis kg = 1.
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Hef = Hog — Ug Z ﬁﬁﬁig’
i
Ay = —Jg > [0*(1 + cosk) + o’ sinklw & 8y )
k

where g = ﬁz ;e kg, o are Pauli matrices, momentum k € [—, 7] (in units of inverse lattice spacing
1/ay) is defined in a dimer Brillouin zone (BZ) with N;states. ug, = (U,,)> / 4], is the strength of intra-dimer g-
atom attraction mediated by quantum fluctuations of localized e-atoms”. If we associate the siteindexa = 1,2
inside a dimer with a spin—% degree of freedom, H;; contains kinetic energy with a SOC that arises because any
tunneling event ‘flips’ pseudospin a. This effective Hamiltonian will give rise to a TSF phase.

The physical origin of the p-wave TSF phase is especially transparent at weak couplAing gy K Jpandlow
filling n¥ < 1, when the kinetic energy in (2) dominates and is diagonalized by states f,_ = %(ﬁkl - Te‘i5§k2)

with energies ¢, = 27J, cos % (7 = £1). In a dilute system, the Fermi sea occupies states with small momenta

|k| < 7 inthelow-energy 7 = —1 band, and to an excellent approximation we can keep only the fk’i = fk
mode. As aresult, interactions in (2) become manifestly p-wave (see [52]):
N At A Ugg gat At A A
Hef ~ Zekfk ﬁ( - _Z elszJrqfk’quk/ﬁ(’ (3)
x 4NJ g

Within the Bogoliubov mean-field theory (see appendix B) one introduces a pairing OP
u Caa A
A=- 4;22 e (f ol
q
which parameterizes the single-particle excitation spectrum

Ex = (e — w)? + IDil?,

with a p-wave gap Dy /2 1 kA. uis the g-atom chemical potential (set by the Fermi energy). A is a solution of the
2
self-consistency equation 1 = 12813 Yk 2—, A, e 2 g 1=/ 2|
d k
Physical origins of the Hamiltonian (3) and the p-wave superfluid state are similar to the mechanism of

singlet-triplet mixing in s-wave superconductors with Rashba SOC [25, 53-56] due to broken spin SU(2)
symmetry.

2.1. Stability and topological nature of the superfluid state

To assess the stability of the p-wave SF state beyond the weak coupling limit, and uncover its topological
properties, we compute the phase diagram of H¢ within a fully unconstrained Hartree—Fock—Bogoliubov
(HFB) mean-field approach in real space (explained in appendix C). This variational technique minimizes

At A

the grand potential (Hos — Y, . &.) (uis the g-atom chemical potential) with respect to local OPs A; =
—Uge (8810 & = <§12 gandnf = <gAlL &,.)»and includes the competition between SF phases with a finite gap A;
and various inhomogeneous states, e.g. charge-density waves (CDWs) and magnetic phases, characterized by a
site-dependent n$ and &, respectively. The minimization is performed at zero temperature T = 0 in a system
with periodic boundary conditions (BCs). Once the GS is self-consistently determined, we open the chain and
diagonalize the Bogoliubov-de Gennes (BdG) mean-field Hamiltonian with fixed OPs to determine edge modes:
If an SF phase displays zero-energy (Majorana) modes, we call it topological [2]. Figure 2(a) shows the phase
diagram of model (2) as a function of chemical potential 1 and interaction ug. In agreement with the previous
section, the SF phase is stable at weak coupling 1, < Joand low density, and is characterized by the mixing of
singlet (¢_; ,&,) and triplet (§_, &, ) Cooper pair amplitudes. To better understand this effect, let us consider
properties of the model (2) under space inversion I: x — —x. In the dimerized lattice,] = 0* ® I;, where I

k — —kisan inversion acting on the dimer center-of-mass and o * appears because I must interchange dimer
sites. The SOC H is invariant under I but manifestly breaks I; due to the odd-momentum terms. In an SF state,
Cooper pair wavefunctions inherit this feature and the system exhibits p-wave pairing between same-flavor
g-atoms (¢ ; & ) ~ k" (nis odd) despite the s-wave nature of interactions in equation (2). We again note a
similarity of this situation and singlet-triplet mixing in non-centrosymmetric superconductors with Rashba
SOC[14,25,26].

When ug, or 11is increased, the system undergoes a 1st order transition to a non-SF gapped state with an
average density n® = 1 (figure 2(b)). This phase is a band insulator for small 11, and a CDW with two dimers
per unit cell for strong interactions. As shown in figure 2(c), the SF state is topological (i.e. possesses zero-energy
edge modes) for all ug, and e where it is stable. This happens because we used the Hartree—Fock OPs in our
variational scheme: if the minimization were constrained to include only site-independent A;, one would

3 . . .
Note that u,, is small compared to J, but the ratio ug,/J, can be arbitrary.
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recover a well-known transition [2] from TSF to a non-topological SF state. The latter phase is unstable towards
CDW formation and the transition never happens.

The phase diagram in figure 2(a) remains valid at finite temperature T > 0. Indeed, as demonstrated in
figure 2(d) a typical critical temperature, above which the SF phase disappears, is T, ~ 0.1], (here and below we
use the units with Boltzmann constant kg = 1). For T > T, the system becomes a homogeneous Fermi liquid.

It is important to emphasize that we focused on the 1D case only for simplicity, and our results really apply to
a 3D system with anisotropic g-atom hopping, shown in the inset of figure 1(a). To demonstrate this, weadd a
weak transverse nearest-neighbor hopping J, ; of g-atoms in the yz-plane between corresponding sites of the
dimers and compare the critical temperature obtained using the 3D HFB approximation with the 1D case. The
transverse hopping processes are described by an additional term in the Hamiltonian (2):

SHy =3 €1 6ab &8s
k

with e = —2J; (cosk, + cosk,), k = (k ky,k;)and g, = 8k, k.. Replacing A — Hy + 6H;, we obtain
the function T, (1) for 1D ( ]gL = 0)and 3D (J ;‘ = 0.1],) lattices, presented in figure 2(d). Adding a relatively
weak ] ;‘ only slightly perturbs the results of the strictly 1D calculation. Moreover, it is known [57] that Majorana

modes also remain unchanged in a system of weakly-coupled 1D tubes. Therefore, in the rest of the paper we
continue studying the 1D system with J gL =0.

2.2. Topological superfluid phase beyond mean-field: fermion parity switches
Although our analysis so far utilized the HFB approximation, the topological nature of the SF state remains
intact even when corrections beyond that mean-field approach are taken into account. By the Mermin—Wagner
theorem, compact, continuous symmetries cannot be spontaneously broken in one dimension, for systems with
finite-range interactions. That means that the U(1) symmetry of particle-number conservation cannot be
broken spontaneously in our strictly one-dimensional system. Nonetheless, in a finite system one can still draw
conclusions about the topological nature of the system’s ground state. To this end, we are going to investigate the
behavior of the many-body fermion parity switch [4, 5], a topological invariant that signals the presence of a
topologically non-trivial superfluid phase in our system. This invariant reveals the physical emergence of a
fractional (4 7-periodic) Josephson effect response.

To demonstrate the topologically non-trivial nature of the phase, we compute the fermion parity switch

X = [Eg(N + 1) + Eo(Ny — 1] — Eo(Np) @

with N = 2N, E; (N)—the GS energy of the Hamiltonian (2) with N, fermions (we assume N, even) using exact
diagonalization in a single tube (1D dimerized lattice), and show that it changes sign when the boundary
conditions are switched from periodic to anti-periodic. When this happens, the GS realizes a fermionic parity
switch [4, 5] for a given N,

In figure 3 we present exact diagonalization results (using the Lanczos technique of [58]) in systems with
N = 26sites (13 dimers), and an even number of g-atoms N, = 2, ..., 10. Clearly, X’ displays different signs for
the two types of boundary conditions, thus realizing the fermion parity switch, indicating the topologically non-
trivial nature of the phase.

3. Preparation in ultra-cold gases

The system in figure 1(a) and equation (1) can be realized with AEAs, such as fermionic 875y, using the sequence
of steps shown in figure 4: Step (0) We start with a nuclear-spin polarized g-atom band insulator (in the lowest
lattice band) in a deep magic-wave lattice (where e and gatoms experience equal light shifts and therefore same
trapping potential [46]) with suppressed tunneling. Step (1) The system is irradiated by a laser with a staggered
phase (equal to 7) and resonant with the |g0) — |el) transition [|g (e) n) denotes a g (e)-atom in the lattice band
n]. The laser intensity is adjusted to perform a %—pulse that turns states |g0) into |g0) + |el) at neighboring
lattice sites. Step (2) is another g-pulse similar to the previous step, but with a uniform phase of 27. As a result,
states |g0) + |el) evolve back to |g0), while [g0) — |el) become |el).

Steps (3) and (4) are the most difficult because an adiabatic protocol needs to be implemented. First, we
create a dimerized e-superlattice by ramping up a potential experienced only by e-atoms [47] at twice the
periodicity of the magic lattice, and apply a m-pulse to resonantly transfer the states |el) to excited antisymmetric
motional states in each double-well, in order to satisfy || > |J;| [59]. Second, we prepare a g-atom Fermi-liquid
state starting from the CDW state in step (2). This is accomplished by applying a large energy bias Ay = A
(t = 0) to wells that contain g-atoms, which makes this CDW the g-subsystem GS. This state can be adiabatically
transferred to the GS of delocalized g-atoms by decreasing A until it vanishes and at the same time varying the

5
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X, x10~4

0.15 0.25 0.35
Ny/N

Figure 3. Fermion parity switch X’ (4) of a chain with periodic and anti-periodic boundary conditions (PBC and anti-PBC)
computed using Lanczos exact diagonalization in a chain with N' = 26 sites. The number of g-atoms is even: N, = 2, ..., 10. Blue,
cyan, green and red curves correspond to interaction strengths tge /Ty = 0.03,1.03,2.1 and 2.7, respectively. Arrows show direction
of increasing ugg.

1) /2 pulse
90) = le1)

m phase

| \ (1)

~10) |90) |90) £lel) 9 7/2 pulse
[g0) —|el)
2w »] ase
make le1) -
dimers

(3,4)

Figure 4. A protocol to prepare the model in figure 1(a) and equation (1). Blue (red) color indicates g (¢) atoms. Atoms are nuclear-spin
polarized and hoppings are quenched until steps (3) and (4). |e(g) n) means a state with one e () atom in the nth spatial level (n = 0
means GS). At step (2), pale blue-red ( & ) ellipses correspond to |g0) =+ |el) states.

hopping J, (figure 5(a)). To illustrate this procedure (ramp), we assume that

Al = Agtanh[y(t — t)], t < to
o 0, t >t

and
o= IO+ e

with J,, > ] ;0)’ and compute the wavefunction [¢), (1)) of g-atoms. The ramp stops at t = t;. The overlaps

P(t) = | {3, (t)|FS) | with the ideal Fermi sea |FS) are presented in figure 5(b) for representative values of the
parameters ] g(o), T Do, avand 7y, and several chain lengths L. As one would expect, the system exhibits an
‘orthogonality catastrophe’ [60] when P (t,) decays exponentially with system size due to the presence of a small
number of defects in the resulting momentum distribution #, (). Nevertheless, the latter is very close to the
ideal Fermi function n,ideal, differing from it only near band edges (figure 5(c)).

After this last step, the filling of g-atoms can be controlled spectroscopically and the system is cooled down by
removing atoms from k-states near band edges with a laser which drives a narrow transition whose detuning is
adiabatically changed to scan the conduction band and access atoms deeper in the Fermi sea [59]. We anticipate,
that if the atom removal can be done slow enough compared to the thermalization time set by the effective
interactions between g-atoms mediated by the background e-atoms and without introducing extra heating, it
should be possible to cool down the gas into the SF state.
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Figure 5. Adiabatic preparation (ramp) of the g-atom Fermi-liquid GS from a band insulator during steps (3) and (4) in figure 4. (a)
Schematics of the ramp. A(f) and J(¢) are bias of g-atom wells and their hopping, respectively. (b) Overlap P = | (1), (t)|FS) | of the g-
atom state |1/, (¢)) with the ideal Fermi sea |FS) as a function of time t and for several chain length L (indicated by numbers near
curves). Parameters of the system are f, go) =731, A / ] éo) =—15« / []g(o)]2 =0.49,~/] g’) = 0.15. The inset in this panel shows

finite-size scaling of P(t) with L. (c) Momentum distribution 1 in the state 1), (t7)) and its deviation from n,id“l in |FS).

The above scheme can be extended to realize the anisotropic 3D lattice shown in figure 1(a) and studied in
section 2.1. Indeed, because all atoms are nuclear-spin polarized, we only need to add magic optical lattices along
y- and z-axes. Then g-atoms will tunnel between nearest-neighbor tubes, while the hopping of e-atoms is
prohibited by the Pauli exclusion principle: the only resonant states in the neighboring tubes are antisymmetric
double-well orbitals which can not be doubly occupied in the absence of spin-flip tunneling processes.

4. Detection

The simplest way to verify the presence of g-atom attractive interactions iy, in a cold-atom experiment, is to
study quench dynamics in the normal, i.e. non-SF state, using the following protocol: (i) for times t < 0, g-atoms
fill a non-interacting Fermi sea, which can be achieved by preparing a dilute system in a shallow lattice with
negligible g-atom interactions ug,. (ii) At t = 0, J,is switched off (e.g. by increasing the lattice depth), and g-
atoms are brought in contact with e-atoms, thus allowing them to experience the e—g interactions described in
equation (1). Then, one lets the system evolve for a time #,. As a result, basis states with doubly occupied dimers
accumulate a phase — Uty, where U [=—u,, in equation (2)] is the induced g-atom interaction. (iii) At = £, the
e-atoms are removed, hopping J,is restored and the system evolves with a non-interacting Hamiltonian (1st
termin (2)). The sign of U can be determined by measuring an average number of doubly occupied dimers:
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Figure 6. The transfer rate R (6, k) (in arbitrary units) of g-atoms from the TSF with ;i = —1.8],, and from the insulator with

1 = —1.3],(see figure 2(a)). These values of 11 are indicated by numbers in magenta. The interaction strength is ugg = 2.3J,. For
concreteness, in the empty tube we assume J, = Jyand 7 = 1, so that the e-atom band structureis ef, = 27/, cos . The left (right)
column corresponds to 7 = F 1.(a)and (d) R ; as a function of the shifted frequency w = €}, — p — 6, which reveals the BAG
band structure and allows us to extract the SF gap A. (b) and (e) The signal in the detuning-momentum plane, as it would be measured
in areal experiment. (c) and (f) Same as in panels (a) and (d), but inside the band insulator with a fully filled single-particleband ¢, ;. A
weaker signal for 7 = 1is due to Hartree—Fock corrections.

m(t) = (¢ (t)lZﬁfi Sl ()

in the state [¢(¢)) of the system at time t. For short evolution times, when |U|t, < landt — ty < 1/J;, 1, (t) =
1y (0) — (U - (t — ty) with ¢ > 0. Hence, the number of double occupancies decreases (increases) for the repulsive
(attractive) interaction U [see appendix D for a complete derivation of this result].

The spectrum of Bogoliubov excitations can be probed by momentum-resolved spectroscopy [23, 24, 59].
Let us assume that we isolate a single layer of tubes along the y = 0 plane and remove all other tubes. A laser with
awavevector along the x-axis, Rabi frequency €2, detuned by 6 from the atomic e—g transition, transfers g-atoms
from the SF phase to e-states in empty nearest-neighbor tubes along the positive y-direction (the transfer
happens along the y-axis and does not change an atom’s x-position along the tube, nor its z-component). The e-
lattice depth has been reduced to make flat bands at 4], (see figure 1(b)) dispersive with a band structure
€t =Tk \/ 1 + n* + 27 cosk where 7 = +1 and 1/, is the inter-dimer hopping. The g-atom transfer rate to an
e-band €, R,(6, k), can be written in terms of the spectral density A, (w, k) of the single-particle normal
Green function [24]:

Re [(1 + ne™) Aip(w, k)]
J1+ 72 + 2ncosk

>

2
R, k) = % i@, 6 + A, k) — 27

withw = €f. — p — §and
Agp(w, k) = if(w)[<§ka§]jb>w+i0 - <gAka§;h>win]-

f(w) = (/T 4+ 1)~'is the Fermi function at temperature T, and i0 is an infinitesimal imaginary number (see
appendix E).

The representative signal R is shown in figure 6. Its maximum (for a fixed k) occurs when w coincides with
the highest occupied BdG energy state. Therefore, one can map out the BAG band structure and extract the
excitation gap A (see panels (a) and (d)). In figures 6(b) and (e) we plot the same signal as a function of the bare
laser detuning 6, as it would be observed in an experiment. This spectroscopy technique can also be used to
probe the insulating phase in figure 1(a). The transfer rate inside the band insulator regime is shown in
figures 6(c) and (f). In this case, the excitation spectrum is again gapped, but as opposed to the SF state, this gap
exists because all single-particle states below the Fermi level are filled, and not due to fermion pairing. Finally, we

8
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-17 -16  -15 -14
1/ Jg

Figure 7. (a) Model (2) with a laser-assisted intra-dimer tunneling 41 b, simulating a magnetic field B = by e,. A supercurrent

(R) ~ b, isinduced in the TSF phase. (b) Magneto-electric response x = (K) /b, and longitudinal susceptibility x = ($”) /b, as
functions of the chemical potential j.. (c) Momentum distribution asymmetry v, inside the TSF phase for b, = 0.3],and t = —1.8].
In (b) and (c), a red star (blue square) corresponds to ug,/J, = 2.3 (2.7) (see figure 2).

note that the signal with 7 = —1 (panels (a)—(¢)) is significantly stronger than the one with 7 = 1 ((d)—(f)),
which highlights the validity of the effective model (3).

Due to the SOC inherent in equation (2), the TSF state has remarkable features that set it apart from a usual s-
wave SF and can be used as its ‘fingerprint’. Perhaps its most revealing property is an analog of the spin-galvanic
effect, when an applied Zeeman magnetic field induces a bulk supercurrent [26, 27]. Since the pseudospin
degrees of freedom in H¢ correspond to a site index inside the unit cell, this ‘field” must couple to the motion of
g-atoms and can be implemented as a laser-assisted tunneling within dimers [37, 38]. This hopping can be set to
have an arbitrary phase 0, but we focus on the case § = g, i.e. consider the perturbation:

8He = —by >~ 0y &80

i,ab

and compute the supercurrent response (figure 7(a))
(R) =k b,

We can anticipate this response based on pure symmetry arguments: as explained in section 2.1, the SOC breaks
the space inversion symmetry in the dimer lattice due to odd in momentum terms ~sin k. On the other hand, the
synthetic Zeeman term §H,f with b, = 0 violates time-reversal symmetry (see discussion in appendix F).
Breaking of these two symmetries is a necessary condition to stabilize a state with a non-zero current in the
system.

The operator K is a single-particle mass current, obtained by varying the Hamiltonian H, = HS + 6He
(see equation (2)) w.r.t. the flux ¢ piercing the ring: R = 6H,/6¢ | ,—o- This flux enters via a phase factor el on
each physical link in the lattice with one-site unit cell, but in the dimerized lattice one must replace
8, — e¥¥g, and §,, — el@TD¥g because the position x in a non-dimerized lattice isx = 2x; + a — 1 = 0,
..>2Ng — land § = g, . Weobtain

R = N%;[Uy(l — cosk) + o*(sink — by /J)]a gAkTagkb‘

In figure 7(b) we show the magneto-electric coefficient « as a function of the chemical potential for several
interaction strengths. Remarkably,  exists only inside the SF phase and vanishes across the TSF-insulator
transition.

Due to the p-wave nature of the SF phase, the synthetic field b, induces a pseudospin polarization

< y> = be,

where § = ZLNdZ  Oup gAl; ;- The susceptibility x and magneto-electric coefficient x can be related in the weak-
coupling dilute limit 1z, < Jo, n¥ < lat T = 0[25]. Indeed, as explained in appendix F, similar calculations

QE;” cos % with ¢, and Ej. defined after equation (3).
k

Figure 7(b) shows x and « as functions of the chemical potential y across the TSF-insulator transition. In cold-
atom experiments it is possible to measure Y, for example by a Ramsey-type protocol [61]: Assuming that the
system s in its GS |1)) (with b, = 0),att = 0 we quench the Hamiltonian from(2) to H, = J; S, e.g. by making

the intra-dimer g-atom tunneling dominant and let the system evolve for a time ¢, = % Asaresult, the state
g

thatled to equation (3) yield x = —4y = —ﬁzk -

becomes |¢p) = e*iggxw()}. Now we measure the difference in populations on two sites of a dimer, i.e. (1/}|§Z|1/1>.
Because e'2%:§,e 7135 = §, the above protocol yields (1/|S,|t/) and can be used to obtain x.
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Another physical effect induced by §H.y is an asymmetry of the g-atom momentum distribution which can

be detected in time-of-flight experiments [62]. Because these measurements involve the crystal momentum

- Tt i _ysts st s Veith g — L Sipxp
pin the BZ of a single-site unit cell, we need to compute v, = b (gp g — 8,8 p> with ¢, = N Sehg =

1

2N,
figure 2(a). For comparison, in a non-SF system, v, ~ &gk, — Ok —k, (kr is the Fermi momentum). SF
correlations destroy Fermi points and lead to a finite asymmetry even away from k = £kg.

Sp€ Hpnipa-Dg — %(gzm + e*ipgzp’z). Figure 7(c) shows v/, computed in the TSF phase of

1

5. Discussion

Topological superfluidity in Fermi liquids is intimately related to the coupling between particles’ spin and orbital
motion. From this perspective, a key ingredient in our theory is the presence of lattice modulations that host
localized degrees of freedom and play a dual role. On the one hand, quantum fluctuations of localized fermions
stabilize superfluid states in the itinerant channel, even when the bare interactions are repulsive. On the other
hand, the modulations enlarge the lattice unit cell and lead to an emergent odd in momentum SOC in the
conduction band. A combination of these effects typically results in a topologically non-trivial superfluid state in
anumber-conserving system with potential emergence of Majorana modes. We illustrated the above
mechanism by studying a system of spinless fermions in a quasi- 1D lattice with a dimerized structure and
showed how one can observe this physics in a quantum simulator with alkaline-earth atoms with a variety of
probes, including momentum-resolved spectroscopy and an analog of the spin-galvanic effect, i.e. a magneto-
electric phenomenon that can be used to detect superfluidity with broken inversion symmetry.

In order to observe the TSF in cold-atom experiments, one needs to reach temperatures below the critical
value T.. In section 2.1 we estimated T,. ~ 0.1 ]gwhen Uge ~ Jg. Assuming J, ~ 100 Hz (controlled by the g-atom
lattice depth), T: ~ 10 Hz ~ 0.5 nK. Because u,, = (Uejg)2 /4], reaching the condition u,, ~ J, will be possible
whenJ, ~ 1kHz[22]and U,, = 2,/ug,J, ~ 600Hz. The latter values are compatible with J, ~ 100 Hz if the
e-atoms are loaded in a higher lattice band of the double-well superlattice (in order to satisfy |J,| > |J,[) and if
one takes advantage of the tighter confinement from the zero-magic lattice experienced only by the e-atoms.

While achieving such low temperatures is non-trivial, they are still feasible under current experimental
capabilities, in particular given that it is the entropy (and not the actual temperature) what matters for cold-atom
experiments. We note that if one can follow the preparation protocol discussed in section 3, it might be possible
to adiabatically create the superfluid phase by preparing a high-fidelity band insulator as a starting point. Indeed,
assuming that step (5) in figure 4 is adiabatic, J, = 100 Hz and temperature T = 0.5T, = 5 Hz, the required
entropyis S /& 0.05kg per (nuclear-spin polarized) atom, which is achievable in current experiments [63].
Moreover, in alkaline-earth atoms the fidelity of the band insulator can be further increased by using the large
number of nuclear-spin degrees of freedom. The enlarged Hilbert space should allow for more efficient
sympathetic cooling [64—68]. This improved condition, when followed up by an appropriate filtering protocol to
isolate a single nuclear spin component without heating the gas, could help to reduce the initial entropy of the
cloud before loading it in the lattice. The individual addressing capabilities offered by optical tweezers might
further help with the preparation of desired low-entropy initial band insulator.

In section 3, we assumed that our preparation protocol does not introduce random defects into the system,
for instance, e-holes, i.e. empty double-wells without e-atoms. Despite the quasi- 1D nature of our setup, this
disorder will not necessarily lead to complete Anderson localization of single-particle states due to the strong
SOC inherent to our system [69]. Moreover, because of the p-wave nature of our TSF state, it is expected to be
robust against moderate disorder [70] when the mean-free path is larger than the superfluid coherence length.
As the disorder strength is increased, potentially localized zero-modes will become gapped and the topological
state is destroyed. However, one should remember that a significant density of e-holes will also suppress g-atom
pairing, so the superfluid state is likely to be destroyed even before the above topological transition occurs. We
leave detailed investigation of this issue for a future work.

The analysis presented in the main text can be easily extended beyond quasi-1D. One way to accomplish this
was already described in section 2.1 (i.e. adding transverse g-atom nearest-neighbor hopping J, gl). Another route
is to prepare a 2D system where g-atoms propagate in a square lattice, and e-atoms are localized inside square
plaquettes. In this case, similar arguments show that quantum fluctuations of the e-atoms stabilizeap, + ip,
superfluid state of the g-species (see appendix G).
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Appendix A. Derivation of the g-atom effective Hamiltonian (2)

Wefocus on the regime J, >> J,, U, when the interaction term Hp = Ug>i, i and g-atom kinetic energy
ﬁog in equation (1) can be treated as a small correction to the kinetic energy of e-atoms Ho = L& én + he),

and use perturbation theory to compute the effective low-energy model (2). The zero-order subspace is spanned
by the states [¥,o) = IT;|\)i ® |¥). Because ], < J,, we consider this subspace degenerate for all [). To
determine 1st (2nd) order corrections to the wavefunctions (energy eigenvalues), we employ the Schrieffer—-Wolff
transformation (SWT) method which systematlcally removes off- dzagonal matrix elements of Hiy between states
|¥,) to each order in U, o [711: H= Ho + Hyp — eSHeSwith S = S+8+. .. being an anti-hermitian

generator of the SWT and S, ~ (U,)". Notice that A acts only on the g-atom states |¥) and contains only

diagonal matrix elements, thus representinga 1st order correction. On the other hand, Hi, has both off-diagonal
and diagonal elements. The latter are proportional to 3_,, 7i$, i.e. they only correct the g-atom chemical potential
and can be omitted.

To the firstorderin U,

o> Sis given by:

where ﬁEe is the projector onto the state [, | \); of the e-subsystem with an energy E,, and %ia is an off-diagonal
part of the matrix ;(N[AZ|A\) = %(5 va + éail (01 — 8:2) (O4p1s a Kronecker delta-symbol).

The generator S’] yields a2nd order in U, correction H == [Sl, H,,.] which operates in the degenerate
manifold {|¥,,) }:

~ (U Py 70 Pp.
= SN | R | N ) ASAS + hae
2 iab e Ee
ELEe i
= /\uggz:nlln,2 (A1)

with ug, = (U,)*/4J.and X = £1. The g-atom interaction can be controlled by preparing the e-subsystem ina

particular local state: it is repulsive (attractive) for a (anti-) symmetric e-state A = +1 (A = —1).
The above calculation can be straightforwardly generalized to the case of a finite e-atom hopping between
dimers, 6], < J., when the levels at +-], become narrow bands with dispersion €§, = —\[,|1 + §,el¥| = —\e§

and the Zero -order subspace is described by [¥,,) = [T, [\k) ® [¥). Here the e-atom eigenstates are
M) = f (ek1 + e 1% é]jz) [vac) with tan ¢, = &, sink/(1 + &, cos k). The product in |¥,,) runs over all k-
states in a single A-band, reflecting the unit filling of e-atoms.

To compute the perturbative effect of Hiy, we again employ the SWT similar to the one described above.
However, because e-atoms are now delocalized, the 2nd order correction H, will describe non-local interactions
of g-atoms on different dimers, similar to the RKKY interaction of magnetic moments in metals [72]. A simple
calculation yields:

A RKKY A Ue; 2 ei(k/*k)(xi*xj)
Hy  =- >
2Nd k'k ij Ek/ + Ek

X (Rf — Afelr— ) (Af — Afe v,

In this expression, the denominator contains ‘+’ sign because for the unit e-atom ﬁlling, only inter-band
transitions (that change \) are allowed and €}, ~ . Clearly, for §, = O when ¢, = ¢} = J,and ¢ = 0, H2RKKY

reduces to equation (A1).

A detailed investigation of the phases generated by I:IZRKKY is beyond the scope of the present work. Here we

only mention that for §, < 1, corrections to the local model (A1) appear starting from 2nd order in d,: H2RKKY =

H, + O(6?). Indeed, 1st order corrections to the summand will have the form 8, (; + ), where I is some

linear combination of sin k and cos k. Because ( ) S € ® =Rz~ 8, 08, 41 = 0, thereareno linear in 8,

. . . A RKKY
terms in the perturbative expansion of H,
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Appendix B. BCS theory in a translationally invariant 1D system

In this section, we present a simple BCS theory that can be treated analytically and a number of insights can be
gained on the structure of the topological SF phase. In particular, we analyze the singlet-triplet mixing of Cooper
pair states due to the SOC in equation (2).

Atthe BCSlevel [73], the linearized interaction I:Iim in (2) becomes:

Hin ~ Y [A 887, + hel,
k

where A = — %:Zk (¢ . $) = —1Agei®s (real Ay)is an s-wave OP. Because the above interaction couples

fermions with opposite momenta, to avoid overcounting of k-states we will restrict momentum summations to a
‘positive” half of the BZ with k > 0 (indicated by a prime), and denote § , . = Gy, (—kbelongs to the other half

of the BZ): Yoy f (&0 & 1) = S f @G> Gi) + f (Gror §))- Then
~ b AT AT A
Hint ~ Z/[A (g]jl sz + legljZ) + hC]
k
= Agol, > '[el™ §ljaGA,jb — h.el.
k

Similarly, the kinetic energy in equation (2) can be written as
A 5t 5 st 5 A AT
Hy =37 can(®f,8 = 2 car® g8 — GraGul
k k

because ¢ (k) = —J,[(1 + cosk)o™ + sink o”] = €T (—k).
Up to constant terms, the full BCS Hamiltonian is

. oA €ap — W0mp  Agel®ro’ &
Ayes = '@ G| i ay )
k AOe oy, /Msub — €ab Gk,b

Hpdc

The BAG Hamiltonian Hpyg can be easily diagonalized when the OP A is purely imaginary. This scenario is still
quite general, and below we will focus on the case o = 0 when Hpag = (0% ® [e — p]) + Ao(c* @ o). Itis
diagonalized by performing a unitary transformation Hpag — Hpye = (UT ® 1) Hpag(U @ 1) with

U= % (} _11) The eigenstates 1, T are labeled by two indices Tand v = =£1, and have the form
1 [Z/TI‘(T + hk] Ukr
v zmmmﬁmmj (B1)
with b = e(k) — p + 1Ay0” and the spinor
1 ( Ri + TD; )
u e . .
T 2Re(Ry + D \ (1 + i)

The corresponding energies are Ey,,, = vTy, with T, = \/ 4+ A+ 2];(1 + cosk) + 27J, Ry,

Ry = \/D,f + 2p*(1 + cosk) and Dy = Ay(1 + cosk).
The parameter A, is determined from the BCS self-consistency condition:

u R
Ao=—25N"" (3 G
0 No & ab <gk,a k,b)
BTir
Aou th —=
N — ggz 2 1—|—7£(1—|—cosk)2
4Ny Ty Ry

with the inverse temperature 3 = 1 /T. To solve this equation, let us assume that the Fermi level (corresponding
to momentum kg) lies below zero, i.e. 1 = —J;/2(1 + coskg) < 0.Near the Fermilevel 6k = |k| — kg,

Tipr = 2|puland T, = J A} + vE6k?, with Fermi velocity vy = JoAJ1 — (11/2],)* . In the weak coupling and

zero-temperature limits, the main contribution to the sum comes from around the Fermi surface:

u u
~ ;’gZ’L[l - ]—g(l + cosk)z] _ lw 2
4Nd k T}C’,l Rk =k 4 21

Ske 2 2
o f * dk VE _ Mg ) Iz 2p
0 Aé

— ln_

+ vEok? Ié - 27, - (2))? Ay
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From here, Ay = 2pe*2’r]g/ g 1= (1/2° with p ~ Jo > Ag—acharacteristic energy measured from the Fermi
level beyond which the above expansion becomes invalid.

The OP A involves g-fermions with opposite pseudospin a and describes an s-wave Cooper pairing.
However, due to the SOC inherent in H, there is also an admixture of the p-wave pairing states of two g-atoms
with the same pseudospin which, because of Fermi statistics, must be antisymmetric in momentum. To quantify
these p-wave correlations, we compute a spin-averaged pairing amplitude P = ZLAOZ (& Gra) using the BAG
wavefunctions (B1):

p psinks~ 7 4 Bl
4Ry Tir 2

T

This result demonstrates that p-wave correlations in the system are enslaved to the s-wave OP. Moreover, the 7-
dependence of the quasiparticle energy is essential: if Ty, . ; = T}, as it would be in the absence of SOC, there is
no p-wave pairingand P = 0.

Finally, we derive the BCS approximation in the weak-coupling limit described by equation (3). Introducing

the pairing OP A = — %Zk e i (f_kf,), one can linearize the Hamiltonian (3):

A At 2 dat At
Ay m > [l — f, fi + Aef f + he]
k

ey A o \[e&—# Dx fi
> @+ (i Fk)( D u—@][ﬁf]’ >

where Dy = 2iA sin %, €_r = €, asbefore Z;( ..extends over half of the BZ, and F, = f_ 4 This Hamiltonian is

diagonalized by a Bogoliubov transformation from f-fermions to quasiparticles 4, and 0 [11:

i 1 1 (Ek + (e — “))@
= k
B) V2B | VE + (& — p) Dy

1 Ep — (ék — ) ) ot
R Il (B3)
Er — (e — ) ( -Df ) k]

Here E;, = \/ (ex — p)* + |Dyf? is the quasiparticle dispersion. The SF gap has a p-wave symmetry: D = —D_;,
and its amplitude A is determined from the self-consistency equation 1 = %Zk sin? g / Ey:
'd

A ~ e 27/ g 1= (/2])? , which coincides with the result obtained in the multi-band case.

Appendix C. Unconstrained HFB theory in position space

In the present section, we summarize the fully unconstrained HFB mean-field approach [74] which we used to
compute the phase diagram in figure 2. This variational technique treats on an equal footing SF and normal
phases, including various insulating states that break translational symmetry, and hence provides an additional
check of robustness of the TSF phase. Our method amounts to the following linearization of the four-fermion
interaction:

Hipe = —Ugg Zé?:lgzgizgil N~ lgg Z[EH + le + ﬁB];
hy = <ﬁ{§>§,’;§iz + <ﬁi‘%>§£§i1;

hp = _<gA,-J;gAi2>gA,‘2gAi1 —he = §ig71§i2 + h.c;
A

hg = <§i2§il>§£§; + h.c. = _u_ 182 h.c,, (C1)
34

where };H)F,B refer to Hartree, Fock and Bogoliubov contributions with (in general complex) OPs n8 = ( gAlZ )
&= —(8g.),and A; = —ug (§,6,)). The full HFB mean-field Hamiltonian includes F, and the g-atom
kinetic energy ﬁog (see equation (2)), and can be written as:

N 1 Xog  Dag (85
Hypg = — ¢t g N
2%( @ a) ~Diy X )\ &
A
Hap
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with composite indices o« = {ia}and 3 = {jb},and 2N,; x 2N, dimensional matrices D,3 = ic?, ﬂAi(S,»j and

Xap = Xiajp = —Jo (8507, + (8536141 + 621685 1)]

66 5["’% i]
— H0ijOqp — Ugg Ojj g| -
& nf)

i),

The kernel H,,s has the property 7*H*r* = —H with 7™ = (0™ ® 6,), which guarantees that its spectrum is
even with respect to zero energy. We shall enumerate its positive eigenvaluesby v = 1, ..., n, with n, = 2N,
Hygg can be diagonalized by a Bogoliubov transformation

[g ] ZW’ Y+ (TR,

where 4, are new fermionic modes and ¢)"is an eigenstate of H{ corresponding to an energy E,, > 0. These states
obey a completeness relation ZZ“[?/J}'Z” Yy + (T"?/J”)p(wa")Z] = bpgwithpandg = 1,...,4N,.
Using the above quasiparticle modes, we can write down the self-consistency relations:

gg n, k
i = Z [w(ll)-Q—ZNdw;/ﬂ) - w(i5)+2m¢él)]¢w

g
ni,

1 .
- EZZ 10— [0y an 10

1 ny, £ 3% *
= 5 ZU [¢(i12)wzlil) - ¢(i1”)+2Nd¢(Viz)+2Nd]¢w

whered, = 1~ fand , = (3/3) = 1//T 4 1)
The quantum phase diagram (figure 2) was computed by minimizing the grand potential G = (Hypg)

.o . g
(notice, Hypp already includes the term — iy, A5):

g Aif?
Fd = — — Fdzl:ll | + Mgg(nzlntZ |€|2 :|

- —ZX 5 (Ugy = 0)2 (W3 — Ul an s an,]-

Appendix D. Probing the g-atom attraction

Here we present a simple derivation of the time dependence of the number of doubly occupied dimers after the
quench protocol described in the main text. Assume that the g—ginteractions are Hubbard-like:
Ay = UV = UY, 7if ii§, where U denotes the interaction strength whose sign is unknown and needs to be
determined (in the main text, U = —ug, < 0). The operator V is a projector onto states with only doubly-
occupied dimers. Our task is to compute 1, (1) = (¢ () V] (t)), where |1 (¢)) is the time-dependent state of the
system.

Attime t = 0 g-atoms fill the Fermi sea [¢)g) = |¢(t = 0)) = Hk<kyfk11|vac>, where |vac) is the vacuum

state without particles and kg is the Fermi momentum. The wavefunction at t = t, is |[¢) (fo)) = e*iw|¢o> with
¢ = Utg, whilefort > tyitisgivenby 1) (t > to)) = e~iHo t=1)|¢)(t,)). Therefore,

m(t > ty) = <,¢J0|eiap\7€iﬁ0‘q(t—t0)Ve—iﬁ(f(t—to)e—ipvlz/)0>‘

Consider ashorttime fy < 1/Uwhen ¢ < 1and n,(¢) — (1/)0|\7|¢0> ~ i <w0|[\7, il TV =il 7] [1)o). If in
addition we limit ourselves to short-time dynamics, T =1t~ ty < 1/], then

elfls (=10 o=l =10 5 V 4 i(t — to)[H, V], and the final expression for n, (£) is:
m(1) = (V) + ot — 1) ([V, [V, Hy 1) = (V) — ket — to).

Here (...) = (¢q|...|[¢o)and k = 2[(VHS V) — EO<\72>] (Eois the GS energy). Itis easyto seethat k > 0.
Indeed, introducing a normalized wavefunction |14} ) = V) / (V) wehave k = 2(V*) [(¥[HS|4Y) — Eol,
which is clearly positive.
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Appendix E. Momentum-resolved spectroscopy signal

Here we derive the expression for R (8, k) used in the main text. Our approach almost exactly follows [24]. We
use unitssuch that A = kg = 1.
The transfer of g-atoms from the SF phase to e-states in an empty tube is governed by the operator:

VL = Qz q,‘zgia’
ia

where (2 is the Rabi frequency and ql; creates an e-atom in well a of the 7th dimer in the auxiliary (empty) tube.
The initial state of the system contains N, g-atoms, [t)i,) = |1/J§(j§> ® |vac) (vac) is an empty state of the auxiliary

tube). Its energyis &, = Ef + uN; + wy, where wy is the laser frequency (note that we work in the grand-
canonical ensemble, so Ef already includes the chemical potential offset). In the final state, there is a single

. . . - AT .
e-atom with momentum k and band index 7 in the auxiliary tube: [1)5) = Iw’;}gg_ 1) @ fi,Ivac) (Izb{,;g, isan
intermediate state of g-atoms with N, — 1 particles). This state has an energy £ = EJ§ +uN, — 1)+
Veg + €}r> Where 1, is the e~gtransition frequency (~10"* Hz for®Sr). Because v/, is a very large energy
compared to SF energy scales, we introduce a laser detuning § = wy — v, The operators fkT are similar to the f-

modes defined in the text: fkT = %[@kl — rl(l + nelb) qu2]. 71 parameterizes the e-atom band structure in the
k

emptytubeviaej, = 1 = T\/l + n? + 2ncosk.
The transfer rate R can be computed with the aid of the Fermi golden rule [24]:

e Ein

/T
651_5111)
Z (& )

R(8, k) = 21y {0l Vilthin) I

in,fi

where summation is extended over all initial and final states, and Z is the grand partition function. The matrix
elements of V' are given by

(@il Vilin) = QD7 (LE I8l RE) (vacl .4, Ivac)
ka

— (gl — 20+ e (Flgeli ]

where (18,1} = (LS 18 l05)-
Using the single-particle spectral density [75],

e—En/T

Aup(w, k) = 21> (n|g, Im)

nm

(m|g}|n)6(Ew — Ey — w),

we obtain after a straightforward calculation:
R+, k) = QTZ{Tr Aw, k) — rlk[(l + e Apw, k) + 1 + e An(w, k)] }

with w = €§, — p — 6. Noting that A;; = A, we arrive at the expression in the main text.

Appendix F. Magneto-electric phenomena

In this section we discuss novel magneto-electric effects that occur as a result of the odd in momentum SOC in the
effective model (2) when it is subjected to a weak laser-induced synthetic magnetic field. We assume this field to
be homogeneous: éH. = —b - >k Oab g,ju 8- In particular, we shall derive weak-coupling expressions for the
susceptibility y and magneto-electric coefficient x quoted in the main text.

It is well-known that a physical external magnetic field breaks time-reversal symmetry 7 . However, because
b is artificial, it does not necessarily break 7 . Indeed, under time-reversal, the second-quantized operators and
c-numbers transformas §,, — ¢  , (because ais notareal spin but the position index inside a dimer) and
¢ — c". Therefore, only the b,-term in 6H.¢ breaks 7 and is capable of generating a mass current. Below we
focus on the case with b, = b, = 0and b, = 0 (see figure 7(a)).

It is instructive to study the non-interacting system described by the Hamiltonian Hy + &Hs [H¢ is defined

1

in equation (2)] which is diagonalized by Bogoliubov quasiparticles fkT =7 [gkl — Rik(l + ek —ib) §k2]

with energies ¢, = TR, = T\/ 2 ];(1 + cosk) + byz + 2Jb, sin k. Assuming that T = 0 and f-particles fill the

Fermi sea |FS) with a chemical potential 1, i.e. (FS| fk:, fleFS> = 60,70(t — €r), the average mass current is (the

operator K was defined in the main text)
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(FSIKR|ES) = Zk X —(by cosk — J, smk)(fkT kT)

Oéxr
- JgNdeT -+ 9(M—€kr)—*(ﬂ w) = 0.

This result is valid even in interacting non-SF systems. Hence a magnetic field cannot generate a mass current in
the absence of SF correlations [27].

This situation changes dramatically when pairing correlations are taken into account, technically because the
average current can no longer be written as an integral of the quasiparticle group velocity. Consider the weak-
coupling dilute limit ug, < Joand n® < 1.In this regime, we can project interactions in equatlon (2) onto the
lowestband 7 = —1. Atsmall fields b, < J,, A, the bare fermion operators become g, ~ 5 fk and

So~ %eik/ 2(1 + ib, / 2J,) fk, where fk = fk Itis easy to check that b, enters the projected interaction term
in equation (2) only via quadratic corrections Nbf. Therefore, to linear order in b, the projected Hamiltonian is
the same as equation (3) with ¢, = —2J, cos % — b, sin % = 620) — by sin % Since —e_j = — EECO) — by sin %,
the BAG Hamiltonian is

(0) D
k
Hpag = —b Sln + A >
Df  p— e

see equation (B2). The Bogoliubov transformation diagonalizing this Hamiltonian is given by (B3) with ¢, and Ej

replaced by fg’) and E” = \/ (€ — 1)? + |Dyf?, respectively. However, energies of the quasiparticles 4, and
[} are now split by a field correction and are given by Ej . = E® F b, sin g, respectively. If b, is small, we can
assume that sign (Ex +) = =, and in the BCS GS (”ykT %) = v(Ex4)and <fsz> = v(E,_) with the Fermi
function v(x) = (/T + 1)L

The projected current and y-component of the pseudospln S have the form: K ~ —zk(z sin 5 -2 cos ) fk fk

and Sy = Wzk ol gka 8y ~ N, Zk(Z sin > —I— - cos ) i fk In the BCS GS the first term in both expressions

Vamshes at T = Obecause >/ sin ~ (fkfk Fk Fk> = > isin 5[1/ (Ex,+) — v(Eg,-)].Hence, k = (K) /by =
S)) / b, = —4x.When T = 0, itis easy to show that & is given by the expression in the main text. Figure 7(b)
shows  and y numerically computed beyond the weak-coupling dilute limit. In the simulation we used the same

strategy as above: solve the BAG equations in the field, compute (K ) and <§y> as functions of b, and extract the
corresponding linear coefficients.

Appendix G. Topological superfluidity in a 2D lattice

The results presented in the main text, can be extended to higher dimensional systems. Here we briefly consider
a generalization involving a lattice that has the plaquette structure shown in figure G1(a). In each plaquette, there
is one e-atom that can tunnel around the plaquette (with lattice constant a,). On the other hand, g-fermions
move in the simpler square lattice. As before, all atoms are nuclear-spin-polarized and we use units where

ap = 1. The Hamiltonian of this system is

H=Hy + B + Hyg (G1)
To =—J. > (é5én + h.c);
3,00
Hog—_]glz(g » +he)
3,00

+ @08 T 8ng) + @8, + 858y +hel
(if) (ij)y

mt— gzng ia>

wherei = x; = (x5, ¥;),1,j = 1,..., Nglabel plaquettes in the lattice, a, b = 1, 2, 3, 4 denote wells inside a
plaquette, [, indicates all sides (ab) of a square, and (j),,, is a link connecting two plaquettes in the x or y
direction (figure G1(a)). Other notations are the same as in equation (3).

In the rest of this section, we shall follow an analysis similar to the one in the main text: First, we consider
e-atom states of an isolated plaquette and identify a spatial mode that gives rise to the g-atom attraction within
that plaquette. Then, we study a weak-coupling dilute limit ug, < J,, n® < 1and demonstrate the stability of a
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a b
(a) : (b) 5
J e
i 5 |2 O -1
3 <7]>1/ 4 E2€:2Jc
4 y 13 °
dZAY S )
2 |1 o 1 Fia=0 +i
J. O0—O
4 3 A=0
9
Jg Es=-2J,

Figure G1. (a) Two-dimensional optical superlattice with a plaquette structure. The e-atoms are confined within red square plaquettes
(with one atom per cell), g-atoms propagate in a simple square lattice (thin blue lines). Gray ellipses denote g-atom attraction mediated
by fluctuations of the e-subsystem. Other notations are as in figure 1(a). (b) States of an e-atom within a plaquette. Also shown are

point symmetries of the wavefunctions XV = %ei'z Ma=1 with colors indicating phases +1 and 4. In particular, the A\ = 0 (2) state
has s- (d-) wave symmetry. Attractive interactions between g-atoms occur when e-atoms are prepared in the A\ = 2 state.

chiral p, + ip, TSF state. The study of the phase diagram, magneto-electric effects, etc is left for a future
investigation.

Pairing of the g-atoms.—An e-atom localized within a plaquette, has four states A = 0, ..., 3 shown in
figure G1(b). Their wavefunctions are | \); = ¥, XM éf|vac) with XV = %eig A@=1D and corresponding
energies E; = —E; = —2J,, Ef = E{ = 0. Matrix elements of the density 7,
are ;(N|AZIN) = X;X)*X,g” — ieig(/\—/\’)(u— D,

In the 1D case we saw that an attractive interaction between g-atoms occurs when the e-subsystem is
prepared in the highest excited kinetic energy state. An analogous situation happens here: e-atoms must
fluctuate out of the d-wave A = 2 state with energy 2J,. Using the Schrieffer—Wolff transformation, we obtain
the second-order g-atom Hamiltonian

He= A — g [(AF + AZ(AS + Af)
i
+ 3(Afaf + AgAH]. (G2)
Here ug, = (Ue;,)2 / 32J,, and density terms in the 1st (2nd) line describe attractive interactions along sides

(diagonals) of the ith plaquette (gray ellipses in figure G1(a)).
Weak-coupling dilute regime.—The g-atom kinetic energy can be written as

0 n, O 1y,
*
I:IOg = _]g Zﬁ,; nkx (?k o (>)|< gkb’
C om0
77?; 0 7 O )

where g, = ﬁzi e"ikx)g. momentum k = (k. k) with k, € [—m, 7] (a = x,)is defined in a plaquette

BZ with N statesand 77, = 1 + e~ Eigenvalues of the matrix in Hy are £2J, [cos % + cos %] Atweak

kZ
2m*

coupling uyy < Jgand n® < 1, only thelowest band ¢ = —2J, [cos kz—x + cos kz—y] ~ —4], + is populated
(m* = 2/],is the effective mass). The corresponding eigenvector is )y = %(1, —e i et 8) —e~i9)T with
e% = 1 /|n; |- Atsmallmomenta, ¢ ~ %(1 , etks/2 oilkathy) /2 oiky /2)T

The low-energy effective Hamiltonian can be obtained by replacing g, — 1 f; (f, is thelowest-band
fermion quasiparticle) in equation (G2):

A AT A Ugg AT AT A A
Heir ) af, fo + > Chepgho o fio ke
k 16ND k’kq

This expression describes a system of spinless fermions interacting via an attractive p-wave coupling. Within the
BCS approximation we have:
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He Z[&kf,f fo Lk mF T+ h.c.]
k

/ 4 & De[ k&
= 3ar (4 Fk>[D: —g) A

Here we switched to a grand-canonical ensemble with a chemical potential 1+ and performed the standard
replacement Hye — Her — pud_;, Af. & = ex — i, Dy = (k - A), and other notations are the same as in the 1D
weak-coupling case. The above Hamiltonian is diagonalized by a Bogoliubov transformation identical to the one

used in the 1D case after areplacement k — k. The pairingOP A = ——% Zk (Fi fk> obeys the BCS equation
Ugg Z/k(k A)  ug Z k(k A) (G3)
4N|:’ X Ex SND X Ex

where E;, = .,/ fi + |Dif?* and in the last sum we used evenness of the integrand and extended summation over
the entire BZ. Whenever the SF phase develops, the grand potential G; in that phase is reduced compared to its
normal-state value G,. This shift can be computed using the Hellman—Feynman theorem [1]

2
G _ Qn f d~ Hiny) f POl IA(u)I '
Np
There are two competing SF states characterized by different symmetries of the OP A: (i) chiral p, & ip, phase
with A,y = Ay(ef F ie)f’) (p=pef + p, eyp), and (ii) p (or p,) state with A, = Ayef (or Aze){’). Below we
assume real amplitudes A, ; and demonstrate that at weak coupling, the p.. + ip, state s favored.

Px + ip, SF.—The ug-dependence of A; can be determined by multiplying equation (G3) by A [notice that

|A]F = 2Aand [k - AP = kK2A:2 = :%Dzkg—i == fdk— ~ kIn —,Whel‘eH = ug Qpwith

*7.2
Qr = ms—f*, kg is the Fermi momentum, and p ~ J; > A isacharacteristic energy cutoff. We have:

px SE.—Proceeding in a similar manner as above, we use the BCS equation (G3) to calculate A,

u u dk k k% cos? 0
_ U z E_ _ Uz f 2
O8N5 G Ex 2 \/5 + k2A3cos?0
mmﬁﬁcoszﬁlnzipzﬁl 20 +1},
2 kFAleOS 9| 2 kFAz
where [ = —2 yf% cos? 0 In|cos | = 0.2. §G can be computed as before
Gy 1 QrA;  p’m* e
=2 - AZ — — 4//‘~.
N, f 4(2) 2 w2

Because e?/ /2 < 1,6G, < §G,and thep, + ip, SF state is preferred over the striped p,,, phase.
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