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Abstract
Wediscuss a realization of topological superfluidity with fermionic atoms in an optical lattice.We
consider a situationwhere atoms in two internal states experience different lattice potentials: one
species is localized and the other itinerant, and showhowquantum fluctuations of the localized
fermions give rise to an attraction and spin–orbit coupling in the itinerant band. At low temperature,
these effects stabilize a topological superfluid ofmobile atoms even if their bare interactions are
repulsive. This emergent state can be engineeredwith alkaline-earth atoms in a superlattice with a
dimerized unit cell. To probe its unique properties we describe protocols that use high spectral
resolution and controllability of a narrow clock transition, such asmomentum-resolved spectroscopy
and supercurrent response to a synthetic (laser-induced)magneticfield.

1. Introduction

Our understanding ofmany-body systems traditionally relies on the Landau classification of ordered states of
matter based on global symmetries spontaneously brokenwithin a given phase. This symmetry breaking is
accompanied by emergence of an order-parameter (OP), i.e. non-zero expectation value of a local physical
observable that uniquely characterizes the phase. For instance a hallmark signature of a fermionic superfluid
(SF) is breaking of the particle number conservation [U(1)] symmetry which occurs as a result of Cooper pairing.
The correspondingOPplays the role of a Cooper pair wavefunction and defines an energy gap in the excitation
spectrum, allowing dissipationless particle currents [1]. However,many phases ofmatter defy the Landau
paradigm. An important class of such systems are topological superfluids (TSFs) [2, 3], i.e. phases that in
addition toU(1), break a residual 2 symmetry. The latter symmetry breaking is a global phenomenon that
occurs in the absence of local OPs and only for appropriate boundary conditions [4–7].

Despite all efforts dedicated to the search for TSFs, they remain elusive with the only confirmed realization
being liquid 3He [8, 9]. One reason for such scarcity is that TSFs require a very particular orbital structure of
Cooper pairs, at least p-wave [10–12], whichmay originate either from strongly spin-dependent interactions,
dipolar couplings [13], or a large spin–orbit coupling (SOC) that couples particle’smotion to its spin.

The coexistence of a sizeable SOC and attractive interactions (leading toCooper pairing) is quite rare in
nature [14], fundamentally because SOC and fermion pairing have very different physical origins. In the present
work, we propose a pathway towards topological superfluidity, which overcomes these limitations by
engineering attractive interactions and an effective SOC from the same ingredient—the optical lattice structure.
We study amodel of repulsive fermions in two bands: one localized and another itinerant, and show that
inhomogeneities spanning few lattice sites (e.g. dimerization) in the localized band lead to two profound
phenomena. First, they induce an emergent short-range attractive interaction among the itinerant species, by
virtue of local quantum fluctuations. Second, they enlarge the unit cell in accordance with the extent of localized
wavefunctions. The index of non-equivalent sites within the unit cell plays the role of a spin degree of freedom
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which flips whenever an atom tunnels between cells. As a result, itinerant fermions experience an effective SOC
whosemagnitude is comparable to the bandwidth.We show that a combination of this SOC and attractive
interactions gives rise to a robust p-wave TSF in quasi-one dimension (quasi-1D) and a chiral px+ipy SF in 2D.

Our TSF state can be observed in ultracold nuclear-spin polarized fermionic alkaline-earth atoms (AEAs)
[15], e.g. 87Sr [16] or 173Yb [17, 18], in an optical superlattice with a few-site unit cell [19–22]. The localized
(itinerant) states can be implementedwith atoms in an excited 3P0 (ground state

1S0) clock state (respectively, e-
and g-states), with a single e-atom per unit cell.We propose several experimental probes for characterizing the
TSFs, includingmomentum-resolved spectroscopy [23, 24] and generation of a particle supercurrent with a
laser-induced syntheticmagnetic field [25–27]. Our approach avoidsmany known experimental issues: (i) the
only relevant interactions occur through the almost perfectly elastic aeg

- channel [28] (when the two-atom
wavefunction is antisymmetric with respect to interchange of e and gflavors, and symmetric in the spatial
indices), and therefore the system is not affected by inelastic e–e losses [29, 30] or strong scattering in the e–g
symmetric aeg

+ channel when close to an orbital Feshbach resonance [31, 32]; (ii) p-wave interactions in our case
emerge as a result of quantumfluctuations as opposed to a p-wave Feshbach resonance, and our setup is free
from the three-body losses reported in experiments [33–36]; (iii) the effective SOC in our system is generated as a
result of the lattice structure and hence avoids heating, inherent to earlier proposals to create SOCusing near-
resonant Raman lasers [37–45]. Our proposal is facilitated by the existence ofmagic [46] and zero-magic [47]
lattices for alkaline-earth atoms at amenable wavelengths. Finally, our cold-atom systemopens a path towards a
long-sought-after realization of a pairingmechanism in repulsive fermions that emerges because of nanoscale
inhomogeneities [48–51] and has fundamental implications for superconductivity in cuprate and heavy-
fermionmaterials.

2. p-wave superfluidity in a quasi-1D superlattice

Key aspects of the emergent Cooper pairing and SOC leading to our proposed TSF state can be seen by studying
the dimerized quasi-1D optical lattice, shown infigure 1(a) and described by themodelHamiltonian:
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where i=xi=0,K,Nd−1, x̂ =(y, z) and a=1, 2 labels dimers and sites within a dimer, respectively.
x xá ¢ ñ^ ^ denotes nearest-neighbor links in the yz-plane. The operator e xi a^

ˆ† (g xi a^
ˆ † ) creates a nuclear-spin

polarized e (g) atom at site awithin a dimer with position (i, x̂ ) (n e ex x xi a
e

i a i a=
^ ^ ^

ˆ ˆ ˆ† and similarly for n xi a
g
^

ˆ ).
The e-atoms occupy a dimerized latticewith a large intra-dimer hopping Je>0 and one atomper dimer
(we assume that dimers are decoupled). The g-atoms propagate in a simple (non-dimerized) lattice with a
nearest-neighbor tunneling Jg. The second term in (1) contains a local e–g repulsion of strengthU 0eg >

- .
Aswe shall demonstrate below (see figure 2(d)) phases exhibited byHamiltonian (1) are insensitive to values

of Jg
^ as long as they are small compared to Jg. To simplify the presentation (and only for this reason), we

consider a pure 1D case J 0g =^ and omit x̂ in subscripts. However, we emphasize that our results actually
apply to an anisotropic 3D systemofweakly coupled 1D tubes, which is closer towhat is accessible inmost cold-
atom experiments (see also an extension to a 2D geometry in appendix G).

We focus on the regime J Ue eg
- and Jgwhen interactions and g-atomkinetic energy in (1) can be

considered a perturbation to the e-atomkinetic energy. For ith dimer, the latter has eigenstates
e e vaci i i

1

2 1 2l lñ = + ñ∣ ( ˆ ˆ )∣† † (λ=±1 and vacñ∣ is the vacuum state without atoms)with energies−λJe

(figure 1(b)). States of the entire e–g system can be approximately written as eg i i glY ñ =  ñ Ä Y ñ∣ ∣ ∣ ( gY ñ∣ is a state
of only g-atoms), thanks to the single-dimer gap 2Je.

We next assume that the e-subsystem is prepared in the excited state 1i il = - ñ∣ . This configuration is
stable because of the large energy penalty 2Je that suppresses decay of individual dimers to their ground state (GS)
withλ=+1 in the absence of decoherence sources (this requirement is well satisfied in cold-atom systems), for
instance due to e–g scattering. Theweak interactionsUeg

- only induce e-atom virtual transitions to dimer states
withλ=+1, whichwe take into account via 2nd order perturbation theory (the kinetic energy of g-atoms
amounts to a 1st order correction because it operates within the degenerate subspace egY ñ{∣ }). These virtual
processes, shown infigure 1(c), give rise to an effectiveHamiltonian for the g-subsystem (see appendix A)

2
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Figure 1. (a)The systemdescribed by equation (1) can be implemented by tightly confining in an array of 1D tubes (shown
schematically in the inset) an ultra-cold gas of nuclear-spin polarized fermionic alkaline-earth atoms prepared in the clock states g
(in blue) and e (red color). Along the tubes, e-atoms experience a superlattice that consists of weakly-coupled double-wells (dimers)
with large intra-dimer tunneling Je. The g-atoms are itinerant and experience aweaker lattice potential along the tube directionwith a
nearest-neighbor hopping Jg. There is also aweak inter-tube g-atomhopping Jg

^ that connects corresponding sites of dimers in

nearest-neighbor tubes.Wewill put J 0g =^ until the end of section 2.1.Within each tube, a unit cell (dashed rectangle) at a position
xi=i includes two lattice sites labeledwith a=1, 2 (4wells overall). The e–g repulsive interactionUeg

->0 is assumed small
compared to Je:U Jeg e

-  . (b) Symmetric (λ=+) and antisymmetric (λ=−) e-atomkinetic-energy eigenstates within a dimer.
(c)When e-atomdimers are prepared in the anti-symmetricmode, virtual transitions to the symmetric state, caused by the e–g
interaction, induce an effective attraction u U J4gg eg e

2= -( ) between two g-fermions within a dimer. These processes are captured by
the effectivemodel (2).

Figure 2. (a)Zero-temperature phase diagramof equation (2) computedusing anunconstrainedHartree–Fock–Bogoliubovmean-field
theory in a systemwithNd=100dimers andperiodic boundary conditions.μ is the g-atomchemical potential. Thick [thin] lines indicate
1storder transitions between topological superfluid (TSF) and insulator states [2ndorder transition inside the insulating region]. In the
charge-densitywave (CDW) state the unit cell has twodimerswith an averagedensityng=1 atomperdimer. For smallugg theCDW
undergoes a transition to aband insulatorwith a single-dimerunit cell. Blue square (red star) corresponds tougg/Jg=2.7 (2.3). (b)SFgap
Δ and average density n n ng

N i i
g

i
g1

1 2d
= å +( ) plotted along the arrows shown in (a). (c)Two lowest-magnitude eigenvalues εof theBdG

Hamiltonian computed in anopen chain forugg=2.3Jg. Theorder parameterswere taken froma converged solution in (a).Orangecircles
indicateMajorana edgemodes inside theTSFphase.The arrowmarksaTSF-band insulator transition. (d)Critical temperatureTc as a
functionof interaction strengthugg in the strong 1D limit J J 0g g =^ (thick black lines) and anisotropic3Dcasewith J J 0.1g g =^ (thin red
andblue lines) [see inset infigure 1(a)] forμ/Jg=−1.8 (blue color) and−1.7 (red line).Nd=100 [see (a)], while transverse dimensions are
60×60 tubes. TheBoltzmannconstant is kB=1.
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2= -( ) is the strength of intra-dimer g-

atom attractionmediated by quantum fluctuations of localized e-atoms3. If we associate the site index a=1, 2
inside a dimerwith a spin- 1

2
degree of freedom, H

g
0

ˆ contains kinetic energywith a SOC that arises because any
tunneling event ‘flips’ pseudospin a. This effectiveHamiltonianwill give rise to a TSF phase.

The physical origin of the p-wave TSF phase is especially transparent at weak coupling ugg=Jg and low
filling ng=1, when the kinetic energy in (2) dominates and is diagonalized by states f g gek k k
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with energies J2 cosk g
k

2
 t= (τ=±1). In a dilute system, the Fermi sea occupies states with smallmomenta

k p∣ ∣ in the low-energy τ=−1 band, and to an excellent approximationwe can keep only the f fk k, 1 º-
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mode. As a result, interactions in (2) becomemanifestly p-wave (see [52]):
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Physical origins of theHamiltonian (3) and the p-wave superfluid state are similar to themechanismof
singlet-tripletmixing in s-wave superconductors with Rashba SOC [25, 53–56] due to broken spin SU(2)
symmetry.

2.1. Stability and topological nature of the superfluid state
To assess the stability of the p-wave SF state beyond theweak coupling limit, and uncover its topological
properties, we compute the phase diagramof Hef

ˆ within a fully unconstrainedHartree–Fock–Bogoliubov
(HFB)mean-field approach in real space (explained in appendix C). This variational techniqueminimizes
the grand potential H g gia ia iaef má - å ñˆ ˆ ˆ† (μ is the g-atom chemical potential)with respect to local OPs iD =
u g ggg i i2 1- á ñˆ ˆ , g gi i i2 1x = á ñˆ ˆ† and n g gia

g
ia ia= á ñˆ ˆ† , and includes the competition between SF phases with afinite gapΔi

and various inhomogeneous states, e.g. charge-density waves (CDWs) andmagnetic phases, characterized by a
site-dependent nia

g and ξi, respectively. Theminimization is performed at zero temperatureT=0 in a system
with periodic boundary conditions (BCs). Once theGS is self-consistently determined, we open the chain and
diagonalize the Bogoliubov-deGennes (BdG)mean-fieldHamiltonianwith fixedOPs to determine edgemodes:
If an SF phase displays zero-energy (Majorana)modes, we call it topological [2]. Figure 2(a) shows the phase
diagramofmodel (2) as a function of chemical potentialμ and interaction ugg. In agreementwith the previous
section, the SF phase is stable at weak coupling ugg<Jg and lowdensity, and is characterized by themixing of
singlet g gk k,2 1á ñ-ˆ ˆ and triplet g gk a ka,á ñ-ˆ ˆ Cooper pair amplitudes. To better understand this effect, let us consider
properties of themodel (2) under space inversion I: x→−x. In the dimerized lattice, I=σ x⊗Id, where Id:
k→−k is an inversion acting on the dimer center-of-mass andσ x appears because Imust interchange dimer
sites. The SOC H

g
0

ˆ is invariant under I butmanifestly breaks Id due to the odd-momentum terms. In an SF state,
Cooper pair wavefunctions inherit this feature and the system exhibits p-wave pairing between same-flavor
g-atoms g g kk a ka

n
,á ñ ~-ˆ ˆ (n is odd) despite the s-wave nature of interactions in equation (2).We again note a

similarity of this situation and singlet-tripletmixing in non-centrosymmetric superconductors with Rashba
SOC [14, 25, 26].

When ugg orμ is increased, the systemundergoes a 1st order transition to a non-SF gapped state with an
average density ng=1 (figure 2(b)). This phase is a band insulator for small ugg, and aCDWwith two dimers
per unit cell for strong interactions. As shown infigure 2(c), the SF state is topological (i.e. possesses zero-energy
edgemodes) for all ugg andμwhere it is stable. This happens becausewe used theHartree–FockOPs in our
variational scheme: if theminimizationwere constrained to include only site-independentΔi, onewould

3
Note that ugg is small compared to Je, but the ratio ugg/Jg can be arbitrary.
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recover awell-known transition [2] fromTSF to a non-topological SF state. The latter phase is unstable towards
CDWformation and the transition never happens.

The phase diagram infigure 2(a) remains valid at finite temperatureT>0. Indeed, as demonstrated in
figure 2(d) a typical critical temperature, abovewhich the SF phase disappears, isTc∼0.1Jg (here and belowwe
use the units with Boltzmann constant kB=1). ForT>Tc, the systembecomes a homogeneous Fermi liquid.

It is important to emphasize thatwe focused on the 1D case only for simplicity, and our results really apply to
a 3D systemwith anisotropic g-atomhopping, shown in the inset offigure 1(a). To demonstrate this, we add a
weak transverse nearest-neighbor hopping Jg

^ of g-atoms in the yz-plane between corresponding sites of the
dimers and compare the critical temperature obtained using the 3DHFB approximationwith the 1D case. The
transverse hopping processes are described by an additional term in theHamiltonian (2):

H g g
k

k k k
g

ab a b0 åd d= ^ˆ ˆ ˆ†

with J k k2 cos cosk g y z = - +^ ^( ), k=(k, ky, kz) and g gka kk k a,y z
ºˆ ˆ . Replacing H H H

g g g
0 0 0d +ˆ ˆ ˆ , we obtain

the functionTc (ugg) for 1D (J 0g =^ ) and 3D (J J0.1g g=^ ) lattices, presented infigure 2(d). Adding a relatively
weak Jg

^ only slightly perturbs the results of the strictly 1D calculation.Moreover, it is known [57] thatMajorana
modes also remain unchanged in a systemofweakly-coupled 1D tubes. Therefore, in the rest of the paperwe
continue studying the 1D systemwith J 0g =^ .

2.2. Topological superfluid phase beyondmean-field: fermion parity switches
Although our analysis so far utilized theHFB approximation, the topological nature of the SF state remains
intact evenwhen corrections beyond thatmean-field approach are taken into account. By theMermin–Wagner
theorem, compact, continuous symmetries cannot be spontaneously broken in one dimension, for systemswith
finite-range interactions. Thatmeans that theU(1) symmetry of particle-number conservation cannot be
broken spontaneously in our strictly one-dimensional system.Nonetheless, in a finite systemone can still draw
conclusions about the topological nature of the system’s ground state. To this end, we are going to investigate the
behavior of themany-body fermion parity switch [4, 5], a topological invariant that signals the presence of a
topologically non-trivial superfluid phase in our system. This invariant reveals the physical emergence of a
fractional (4π-periodic) Josephson effect response.

To demonstrate the topologically non-trivial nature of the phase, we compute the fermion parity switch

E N E N E N1 1 4
N g g N g
1

2 0 0
1

0 = + + - -[ ( ) ( )] ( ) ( )

withN=2Nd, E0 (Ng)—theGS energy of theHamiltonian (2)withNg fermions (we assumeNg even) using exact
diagonalization in a single tube (1Ddimerized lattice), and show that it changes signwhen the boundary
conditions are switched fromperiodic to anti-periodic.When this happens, theGS realizes a fermionic parity
switch [4, 5] for a givenNg.

Infigure 3we present exact diagonalization results (using the Lanczos technique of [58]) in systemswith
N=26 sites (13 dimers), and an even number of g-atomsNg=2,K, 10. Clearly, displays different signs for
the two types of boundary conditions, thus realizing the fermion parity switch, indicating the topologically non-
trivial nature of the phase.

3. Preparation in ultra-cold gases

The system infigure 1(a) and equation (1) can be realizedwithAEAs, such as fermionic 87Sr, using the sequence
of steps shown infigure 4: Step (0)We start with a nuclear-spin polarized g-atomband insulator (in the lowest
lattice band) in a deepmagic-wave lattice (where e and g atoms experience equal light shifts and therefore same
trapping potential [46])with suppressed tunneling. Step (1)The system is irradiated by a laser with a staggered
phase (equal toπ) and resonant with the g e0 1ñ  ñ∣ ∣ transition g e nñ[∣ ( ) denotes a g (e)-atom in the lattice band
n]. The laser intensity is adjusted to perform a

2

p -pulse that turns states g0ñ∣ into g e0 1ñ  ñ∣ ∣ at neighboring

lattice sites. Step (2) is another
2

p -pulse similar to the previous step, butwith a uniformphase of 2π. As a result,

states g e0 1ñ + ñ∣ ∣ evolve back to g0ñ∣ , while g e0 1ñ - ñ∣ ∣ become e1ñ∣ .
Steps (3) and (4) are themost difficult because an adiabatic protocol needs to be implemented. First, we

create a dimerized e-superlattice by ramping up a potential experienced only by e-atoms [47] at twice the
periodicity of themagic lattice, and apply aπ-pulse to resonantly transfer the states e1ñ∣ to excited antisymmetric
motional states in each double-well, in order to satisfy J Je g>∣ ∣ ∣ ∣ [59]. Second, we prepare a g-atomFermi-liquid
state starting from theCDWstate in step (2). This is accomplished by applying a large energy biasΔ0=Δ
(t=0) towells that contain g-atoms, whichmakes this CDW the g-subsystemGS. This state can be adiabatically
transferred to theGS of delocalized g-atoms by decreasingΔuntil it vanishes and at the same time varying the

5
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hopping Jg (figure 5(a)). To illustrate this procedure (ramp), we assume that

t
t t t t

t t
tanh ,

0,
0 0 0

0
g

D =
D - <⎧⎨⎩( ) [ ( )]

and

J J J eg g m
t t0 0

2= + a- -( ) ( )

with J Jm g
0 ( ), and compute thewavefunction tgy ñ∣ ( ) of g-atoms. The ramp stops at t=tf. The overlaps

P t t FSgy= á ñ( ) ∣ ( )∣ ∣with the ideal Fermi sea FSñ∣ are presented infigure 5(b) for representative values of the
parameters Jg

0( ), Jm,Δ0,α and γ, and several chain lengths L. As onewould expect, the system exhibits an
‘orthogonality catastrophe’ [60]whenP (t0) decays exponentially with system size due to the presence of a small
number of defects in the resultingmomentumdistribution nk (tf). Nevertheless, the latter is very close to the
ideal Fermi function nk

ideal, differing from it only near band edges (figure 5(c)).
After this last step, thefilling of g-atoms can be controlled spectroscopically and the system is cooled down by

removing atoms from k-states near band edges with a laser which drives a narrow transitionwhose detuning is
adiabatically changed to scan the conduction band and access atoms deeper in the Fermi sea [59].We anticipate,
that if the atom removal can be done slow enough compared to the thermalization time set by the effective
interactions between g-atomsmediated by the background e-atoms andwithout introducing extra heating, it
should be possible to cool down the gas into the SF state.

Figure 3. Fermion parity switch  (4) of a chain with periodic and anti-periodic boundary conditions (PBC and anti-PBC)
computed using Lanczos exact diagonalization in a chain withN=26 sites. The number of g-atoms is even:Ng=2,K, 10. Blue,
cyan, green and red curves correspond to interaction strengths u J 0.03gg g = , 1.03, 2.1 and 2.7, respectively. Arrows show direction
of increasing ugg.

Figure 4.Aprotocol to prepare themodel infigure 1(a) and equation (1). Blue (red) color indicates g (e) atoms. Atoms are nuclear-spin
polarized and hoppings are quenched until steps (3) and (4). e g nñ∣ ( ) means a state with one e (g) atom in the nth spatial level (n=0
meansGS). At step (2), pale blue-red (±) ellipses correspond to g e0 1ñ  ñ∣ ∣ states.
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The above scheme can be extended to realize the anisotropic 3D lattice shown infigure 1(a) and studied in
section 2.1. Indeed, because all atoms are nuclear-spin polarized, we only need to addmagic optical lattices along
y- and z-axes. Then g-atomswill tunnel between nearest-neighbor tubes, while the hopping of e-atoms is
prohibited by the Pauli exclusion principle: the only resonant states in the neighboring tubes are antisymmetric
double-well orbitals which can not be doubly occupied in the absence of spin-flip tunneling processes.

4.Detection

The simplest way to verify the presence of g-atom attractive interactions ugg in a cold-atom experiment, is to
study quench dynamics in the normal, i.e. non-SF state, using the following protocol: (i) for times t<0, g-atoms
fill a non-interacting Fermi sea, which can be achieved by preparing a dilute system in a shallow lattice with
negligible g-atom interactions ugg. (ii)At t=0, Jg is switched off (e.g. by increasing the lattice depth), and g-
atoms are brought in contact with e-atoms, thus allowing them to experience the e–g interactions described in
equation (1). Then, one lets the system evolve for a time t0. As a result, basis states with doubly occupied dimers
accumulate a phase−Ut0, whereU ugg=-[ in equation (2)] is the induced g-atom interaction. (iii)At t=t0, the
e-atoms are removed, hopping Jg is restored and the system evolves with a non-interactingHamiltonian (1st
term in (2)). The sign ofU can be determined bymeasuring an average number of doubly occupied dimers:

Figure 5.Adiabatic preparation (ramp) of the g-atomFermi-liquidGS from a band insulator during steps (3) and (4) infigure 4. (a)
Schematics of the ramp.Δ(t) and Jg(t) are bias of g-atomwells and their hopping, respectively. (b)Overlap P t FSgy= á ñ∣ ( )∣ ∣of the g-
atom state tgy ñ∣ ( ) with the ideal Fermi sea FSñ∣ as a function of time t and for several chain length L (indicated by numbers near
curves). Parameters of the system are t0Jg

(0)=7.31, J 15g0
0D = -( ) , J 0.49g

0 2a =[ ]( ) , J 0.15g
0g =( ) . The inset in this panel shows

finite-size scaling ofP(tf)with L. (c)Momentumdistribution nk in the state tg fy ñ∣ ( ) and its deviation from nk
ideal in FSñ∣ .
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n t t n n t
i

i
g

i
g

2 1 2åy y= á ñ( ) ( )∣ ˆ ˆ ∣ ( )

in the state ty ñ∣ ( ) of the systemat time t. For short evolution times,when U t 10 ∣ ∣ and t t J1 g0-  ,n2 (t)=
n2 (0)−ζU·(t−t0)with ζ>0.Hence, thenumberof doubleoccupanciesdecreases (increases) for the repulsive
(attractive) interactionU [see appendixD for a completederivationof this result].

The spectrumof Bogoliubov excitations can be probed bymomentum-resolved spectroscopy [23, 24, 59].
Let us assume that we isolate a single layer of tubes along the y=0 plane and remove all other tubes. A laser with
awavevector along the x-axis, Rabi frequencyΩ, detuned by δ from the atomic e–g transition, transfers g-atoms
from the SF phase to e-states in empty nearest-neighbor tubes along the positive y-direction (the transfer
happens along the y-axis and does not change an atom’s x-position along the tube, nor its z-component). The e-
lattice depth has been reduced tomakeflat bands at±Je (see figure 1(b)) dispersive with a band structure

J k1 2 cosk
e

e
2 t h h= + +t where τ=±1 and ηJe is the inter-dimer hopping. The g-atom transfer rate to an

e-band k
e t , k, dt( ), can bewritten in terms of the spectral density k,ab w( ) of the single-particle normal

Green function [24]:

k k k
k

k
,

2
, , 2

Re 1 e ,

1 2 cos
,

k2

11 22

i
12

2
  


d w w t

h w

h h
=

W
+ -

+

+ +
t

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) [( ) ( )]

with k
ew m d= - -t and

k f g g g g, i .ab ka kb ka kbi0 i0 w w= á ñ - á ñw w+ -( ) ( )[ ˆ ˆ ˆ ˆ ]† †

f e 1T 1w = +w -( ) ( ) is the Fermi function at temperatureT, and i0 is an infinitesimal imaginary number (see
appendix E).

The representative signal is shown infigure 6. Itsmaximum (for afixed k) occurs whenω coincides with
the highest occupied BdG energy state. Therefore, one canmap out the BdGband structure and extract the
excitation gapΔ (see panels (a) and (d)). Infigures 6(b) and (e)weplot the same signal as a function of the bare
laser detuning δ, as it would be observed in an experiment. This spectroscopy technique can also be used to
probe the insulating phase infigure 1(a). The transfer rate inside the band insulator regime is shown in
figures 6(c) and (f). In this case, the excitation spectrum is again gapped, but as opposed to the SF state, this gap
exists because all single-particle states below the Fermi level arefilled, and not due to fermion pairing. Finally, we

Figure 6.The transfer rate k, dt( ) (in arbitrary units) of g-atoms from the TSFwithμ=−1.8Jg, and from the insulatorwith
μ=−1.3Jg (seefigure 2(a)). These values ofμ are indicated by numbers inmagenta. The interaction strength is ugg=2.3Jg. For
concreteness, in the empty tubewe assume Je=Jg and η=1, so that the e-atomband structure is J2 cosk

e
g

k

2
 t=t . The left (right)

column corresponds to τ=m1. (a) and (d) t as a function of the shifted frequency k
ew m d= - -t , which reveals the BdG

band structure and allows us to extract the SF gapΔ. (b) and (e)The signal in the detuning-momentumplane, as it would bemeasured
in a real experiment. (c) and (f) Same as in panels (a) and (d), but inside the band insulatorwith a fullyfilled single-particle band òk,−1. A
weaker signal for τ=1 is due toHartree–Fock corrections.
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note that the signal with τ=−1 (panels (a)—(c)) is significantly stronger than the onewith τ=1 ((d)—(f)),
which highlights the validity of the effectivemodel (3).

Due to the SOC inherent in equation (2), the TSF state has remarkable features that set it apart from a usual s-
wave SF and can be used as its ‘fingerprint’. Perhaps itsmost revealing property is an analog of the spin-galvanic
effect, when an applied Zeemanmagnetic field induces a bulk supercurrent [26, 27]. Since the pseudospin
degrees of freedom in Hef

ˆ correspond to a site index inside the unit cell, this ‘field’must couple to themotion of
g-atoms and can be implemented as a laser-assisted tunnelingwithin dimers [37, 38]. This hopping can be set to
have an arbitrary phase θ, but we focus on the case

2
q = p , i.e. consider the perturbation:

H b g g ,y
i ab

ab
y

ia ibef
,
åd s= -ˆ ˆ ˆ†

and compute the supercurrent response (figure 7(a))

K b .yká ñ =ˆ

Wecan anticipate this response based on pure symmetry arguments: as explained in section 2.1, the SOCbreaks
the space inversion symmetry in the dimer lattice due to odd inmomentum terms∼sin k. On the other hand, the
synthetic Zeeman term Hefd ˆ with b 0y ¹ violates time-reversal symmetry (see discussion in appendix F).
Breaking of these two symmetries is a necessary condition to stabilize a state with a non-zero current in the
system.

The operator K̂ is a single-particlemass current, obtained by varying theHamiltonian H H Hb
g
0 efd= +ˆ ˆ ˆ

(see equation (2))w.r.t. thefluxj piercing the ring: K Hb 0d dj= j=ˆ ˆ ∣ . This flux enters via a phase factor eij on
each physical link in the lattice with one-site unit cell, but in the dimerized lattice onemust replace
g gei

x
i1

i2
1

i jˆ ˆ and g gei
x

i2
i 2 1

2
i j+ˆ ˆ( ) , because the position x in a non-dimerized lattice is x=2xi+a−1=0,

K, 2Nd−1 and g gx ia=ˆ ˆ .We obtain

K k k b J g g1 cos sin .
N

k

y x
y g ab ka kb

1

d
å s s= - + -ˆ [ ( ) ( )] ˆ†

Infigure 7(b)we show themagneto-electric coefficientκ as a function of the chemical potential for several
interaction strengths. Remarkably,κ exists only inside the SF phase and vanishes across the TSF-insulator
transition.

Due to the p-wave nature of the SF phase, the synthetic field by induces a pseudospin polarization

S b ,y ycá ñ =ˆ

where S g g
N i ab ia ib
1

2 d
s= åˆ ˆ ˆ† . The susceptibilityχ andmagneto-electric coefficientκ can be related in theweak-

coupling dilute limit ugg=Jg, n
g=1 atT=0 [25]. Indeed, as explained in appendix F, similar calculations

that led to equation (3) yield 4 1 cos
J N k E

k1

2 2g d

k

k

k c= - = - å - m-⎡⎣ ⎤⎦ with òk andEk defined after equation (3).

Figure 7(b) showsχ andκ as functions of the chemical potentialμ across the TSF-insulator transition. In cold-
atom experiments it is possible tomeasureχ, for example by a Ramsey-type protocol [61]: Assuming that the
system is in its GS 0y ñ∣ (with b 0y ¹ ), at t=0we quench theHamiltonian from(2) to H J Sx g x=ˆ ˆ e.g. bymaking
the intra-dimer g-atom tunneling dominant and let the system evolve for a time t

J0 2 g
= p . As a result, the state

becomes e Si
0

x2y yñ = ñ- p∣ ∣ˆ . Nowwemeasure the difference in populations on two sites of a dimer, i.e. Szy yá ñ∣ ˆ ∣ .

Because S Se eS
z

S
y

i ix x2 2 =-p pˆ ˆˆ ˆ , the above protocol yields Sy0 0y yá ñ∣ ˆ ∣ and can be used to obtainχ.

Figure 7. (a)Model (2)with a laser-assisted intra-dimer tunneling± i by simulating amagneticfield B eby y= . A supercurrent
K byá ñ ~ˆ is induced in the TSF phase. (b)Magneto-electric response K byk = á ñˆ and longitudinal susceptibility S b

y
yc = á ñˆ as

functions of the chemical potentialμ. (c)Momentumdistribution asymmetry νp inside the TSF phase for by=0.3Jg andμ=−1.8Jg.
In (b) and (c), a red star (blue square) corresponds to ugg/Jg=2.3 (2.7) (seefigure 2).
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Another physical effect induced by Hefd ˆ is an asymmetry of the g-atommomentumdistributionwhich can
be detected in time-of-flight experiments [62]. Because thesemeasurements involve the crystalmomentum

p in the BZ of a single-site unit cell, we need to compute g g g gp
J

b p p p p
g

y
n = á - ñ- -ˆ ˆ ˆ ˆ† † with g gep N x

px
x

1

2
i

d
º å =-ˆ ˆ

g g ge e
N ia

px p a
ia p

p
p

1

2
2i i 1 1

2 2 ,1
i

2 ,2
d

iå = +- - - -ˆ ( )( ) . Figure 7(c) shows νp computed in the TSF phase of

figure 2(a). For comparison, in a non-SF system, p k k k k, ,F F
n d d~ - - (kF is the Fermimomentum). SF

correlations destroy Fermi points and lead to afinite asymmetry even away from k=±kF.

5.Discussion

Topological superfluidity in Fermi liquids is intimately related to the coupling between particles’ spin and orbital
motion. From this perspective, a key ingredient in our theory is the presence of latticemodulations that host
localized degrees of freedom and play a dual role. On the one hand, quantumfluctuations of localized fermions
stabilize superfluid states in the itinerant channel, evenwhen the bare interactions are repulsive. On the other
hand, themodulations enlarge the lattice unit cell and lead to an emergent odd inmomentum SOC in the
conduction band. A combination of these effects typically results in a topologically non-trivial superfluid state in
a number-conserving systemwith potential emergence ofMajoranamodes.We illustrated the above
mechanismby studying a systemof spinless fermions in a quasi-1D latticewith a dimerized structure and
showed howone can observe this physics in a quantum simulator with alkaline-earth atomswith a variety of
probes, includingmomentum-resolved spectroscopy and an analog of the spin-galvanic effect, i.e. amagneto-
electric phenomenon that can be used to detect superfluidity with broken inversion symmetry.

In order to observe the TSF in cold-atom experiments, one needs to reach temperatures below the critical
valueTc. In section 2.1we estimatedTc∼0.1Jgwhen u Jgg g~ . Assuming Jg∼100 Hz (controlled by the g-atom
lattice depth),T 10 Hz 0.5 nKc ~ ~ . Because ugg=(Ueg

-)2/4Je, reaching the condition ugg∼Jgwill be possible
when Je∼1 kHz [22] andU u J2 600Hzeg gg e= ~- . The latter values are compatible with Jg∼100 Hz if the
e-atoms are loaded in a higher lattice band of the double-well superlattice (in order to satisfy J Je g>∣ ∣ ∣ ∣) and if
one takes advantage of the tighter confinement from the zero-magic lattice experienced only by the e-atoms.

While achieving such low temperatures is non-trivial, they are still feasible under current experimental
capabilities, in particular given that it is the entropy (and not the actual temperature)whatmatters for cold-atom
experiments.We note that if one can follow the preparation protocol discussed in section 3, itmight be possible
to adiabatically create the superfluid phase by preparing a high-fidelity band insulator as a starting point. Indeed,
assuming that step (5) infigure 4 is adiabatic, Jg=100 Hz and temperatureT=0.5Tc=5 Hz, the required
entropy is S≈0.05kB per (nuclear-spin polarized) atom,which is achievable in current experiments [63].
Moreover, in alkaline-earth atoms thefidelity of the band insulator can be further increased by using the large
number of nuclear-spin degrees of freedom. The enlargedHilbert space should allow formore efficient
sympathetic cooling [64–68]. This improved condition, when followed up by an appropriate filtering protocol to
isolate a single nuclear spin component without heating the gas, could help to reduce the initial entropy of the
cloud before loading it in the lattice. The individual addressing capabilities offered by optical tweezersmight
further helpwith the preparation of desired low-entropy initial band insulator.

In section 3, we assumed that our preparation protocol does not introduce randomdefects into the system,
for instance, e-holes, i.e. empty double-wells without e-atoms. Despite the quasi-1Dnature of our setup, this
disorder will not necessarily lead to complete Anderson localization of single-particle states due to the strong
SOC inherent to our system [69].Moreover, because of the p-wave nature of our TSF state, it is expected to be
robust againstmoderate disorder [70]when themean-free path is larger than the superfluid coherence length.
As the disorder strength is increased, potentially localized zero-modes will become gapped and the topological
state is destroyed.However, one should remember that a significant density of e-holes will also suppress g-atom
pairing, so the superfluid state is likely to be destroyed even before the above topological transition occurs.We
leave detailed investigation of this issue for a futurework.

The analysis presented in themain text can be easily extended beyond quasi-1D.Oneway to accomplish this
was already described in section 2.1 (i.e. adding transverse g-atomnearest-neighbor hopping Jg

^). Another route
is to prepare a 2D systemwhere g-atoms propagate in a square lattice, and e-atoms are localized inside square
plaquettes. In this case, similar arguments show that quantumfluctuations of the e-atoms stabilize a px+i py
superfluid state of the g-species (see appendix G).
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AppendixA.Derivation of the g-atom effectiveHamiltonian (2)

Wefocuson the regime Je?Jg,Ueg
-when the interaction term H U n neg ia ia

g
ia
e

int = å-ˆ ˆ ˆ and g-atomkinetic energy

H
g
0

ˆ in equation (1) can be treated as a small correction to the kinetic energyof e-atoms H J e e h.c.
e

e i i i0 1 2= - å +ˆ ( ˆ ˆ )† ,
and use perturbation theory to compute the effective low-energymodel (2). The zero-order subspace is spanned
by the states eg i i glY ñ =  ñ Ä Y ñ∣ ∣ ∣ . Because Jg=Je, we consider this subspace degenerate for all gY ñ∣ . To
determine 1st (2nd)order corrections to thewavefunctions (energy eigenvalues), we employ the Schrieffer–Wolff
transformation (SWT)methodwhich systematically removes off-diagonalmatrix elements of Hint

ˆ between states

egY ñ∣ to eachorder inUeg
- [71]: H H H He e

e
0 int

 = +  -ˆ ˆ ˆ ˆˆ ˆ
with 1 2  = + + ¼ˆ ˆ ˆ being an anti-hermitian

generator of the SWTand Un eg
n ~ -ˆ ( ) . Notice that H

g
0

ˆ acts only on the g-atomstates gY ñ∣ and contains only

diagonalmatrix elements, thus representing a 1st order correction.On the other hand, Hint
ˆ has both off-diagonal

anddiagonal elements. The latter are proportional to nia ia
gå ˆ , i.e. they only correct the g-atomchemical potential

and can beomitted.
To thefirst order inUeg

-, ̂ is given by:

U
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E E
n ,eg

ia E E

E
e
ia E

e e
ia
g

1
, e e

e e å=
¢ -

~
-

¢

¢ˆ ˆ ˆ ˆ
ˆ

where PEeˆ is the projector onto the state i il ñ∣ of the e-subsystemwith an energyEe, and neia
~ˆ is an off-diagonal

part of thematrix ni ia
e

i
x

a a
1

2

1

2 1 2l l d s d dá ¢ ñ = + -ll ll¢ ¢∣ ˆ ∣ ( ) (δab is a Kronecker delta-symbol).

The generator 1̂ yields a 2nd order inUeg
- correction H H,2

1

2 1 int=ˆ [ ˆ ˆ ]which operates in the degenerate
manifold egY ñ{∣ }:
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with u U J4gg eg e
2= -( ) andλ=±1. The g-atom interaction can be controlled by preparing the e-subsystem in a

particular local state: it is repulsive (attractive) for a (anti-) symmetric e-stateλ=+1 (λ=−1).
The above calculation can be straightforwardly generalized to the case of afinite e-atomhopping between

dimers, δeJe=Je, when the levels at±Je become narrow bandswith dispersion J 1 ek
e

e e
k

k
ei l d l= - + = -l ∣ ∣

and the zero-order subspace is described by eg k k glY ñ =  ñ Ä Y ñ∣ ∣ ∣ . Here the e-atom eigenstates are

e ee vack k k
1

2 1
i

2
kl lñ = + ñj-∣ ( ˆ ˆ )∣† † with k ktan sin 1 cosk e ej d d= +( ). The product in egY ñ∣ runs over all k-

states in a singleλ-band, reflecting the unit filling of e-atoms.
To compute the perturbative effect of Hint

ˆ , we again employ the SWT similar to the one described above.
However, because e-atoms are nowdelocalized, the 2nd order correction H2

ˆ will describe non-local interactions
of g-atoms on different dimers, similar to the RKKY interaction ofmagneticmoments inmetals [72]. A simple
calculation yields:
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In this expression, the denominator contains ‘+’ sign because for the unit e-atomfilling, only inter-band

transitions (that changeλ) are allowed and k
e l~l . Clearly, for δe=0when J

k
e

k
e

e = =¢ andjk=0, H2
RKKYˆ

reduces to equation (A1).
A detailed investigation of the phases generated by H2

RKKYˆ is beyond the scope of the present work.Here we

onlymention that for δe=1, corrections to the localmodel (A1) appear starting from2nd order in δe: H2
RKKY

=ˆ
H e2

2 d+ˆ ( ). Indeed, 1st order corrections to the summandwill have the form l le k kd + ¢( ), where lk is some

linear combination of sin k and cos k. Because le 0
N k k

k k z
k z z

1 2
i

,0 , 1
d

d då ~ =¢
¢-

( ) ( ) , there are no linear in δe

terms in the perturbative expansion of H2
RKKYˆ .
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Appendix B. BCS theory in a translationally invariant 1D system

In this section, we present a simple BCS theory that can be treated analytically and a number of insights can be
gained on the structure of the topological SF phase. In particular, we analyze the singlet-tripletmixing of Cooper
pair states due to the SOC in equation (2).

At the BCS level [73], the linearized interaction Hint
ˆ in (2) becomes:

H g g h.c. ,
k

k kint 1 ,2å» D +-
ˆ [ ˆ ˆ ]† †

where g g i e
u

N k k k,2 1 0
igg

d
D = - å á ñ º - D f

-
Dˆ ˆ (realΔ0) is an s-waveOP. Because the above interaction couples

fermionswith oppositemomenta, to avoid overcounting of k-states wewill restrictmomentum summations to a
‘positive’half of the BZwith k>0 (indicated by a prime), and denote g Gk a ka, º-ˆ ˆ (−k belongs to the other half

of the BZ): f g g f g G f G g, , ,k ka k b k ka kb ka kb,å = å¢ +-( ˆ ˆ ) [ ( ˆ ˆ ) ( ˆ ˆ )]. Then
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Similarly, the kinetic energy in equation (2) can bewritten as
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Up to constant terms, the full BCSHamiltonian is
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The BdGHamiltonian BdG can be easily diagonalizedwhen theOPΔ is purely imaginary. This scenario is still
quite general, and belowwewill focus on the casefΔ=0when z x y

BdG 0 s m s s= Ä - + D Ä( [ ]) ( ). It is
diagonalized by performing a unitary transformation U U1 1y

BdG BdG BdG   = Ä Ä( ) ( )† with

U 1 1
i i

1

2
=

-( ). The eigenstatesψν τ are labeled by two indices τ and ν=±1, and have the form
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with hk=ò(k)−μ+iΔ0σ
y and the spinor
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2 1 e
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⎛
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The corresponding energies areEkντ=νTkτwithT J k J R2 1 cos 2k g g k
2

0
2 2m t= + D + + +t ( ) ,

R D k2 1 cosk k
2 2m= + +( ) and D k1 cosk 0= D +( ).

The parameterΔ0 is determined from the BCS self-consistency condition:

u
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with the inverse temperatureβ=1 /T. To solve this equation, let us assume that the Fermi level (corresponding
tomomentum kF) lies below zero, i.e. J k2 1 cos 0g Fm = - + <( ) . Near the Fermi level k k kFd = -∣ ∣ ,

T 2k, 1 m=+ ∣ ∣andT v kk F, 1 0
2 2 2d= D +- , with Fermi velocity v J J1 2F g g

2m= - ( ) . In theweak coupling and
zero-temperature limits, themain contribution to the sum comes from around the Fermi surface:
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Fromhere, 2 e J u J
0

2 1 2g gg g
2rD = p m- -( ) with ρ∼Jg?Δ0—a characteristic energymeasured from the Fermi

level beyondwhich the above expansion becomes invalid.
TheOPΔ0 involves g-fermionswith opposite pseudospin a and describes an s-waveCooper pairing.

However, due to the SOC inherent in H
g
0

ˆ , there is also an admixture of the p-wave pairing states of two g-atoms
with the same pseudospinwhich, because of Fermi statistics,must be antisymmetric inmomentum. To quantify
these p-wave correlations, we compute a spin-averaged pairing amplitude g Ga ka ka

1

2 0
 = å á ñ

D
ˆ ˆ using the BdG

wavefunctions (B1):

k

R T

Tsin

4
th

2
.

k k

k åm t b
=

t t

t

This result demonstrates that p-wave correlations in the system are enslaved to the s-waveOP.Moreover, the τ-
dependence of the quasiparticle energy is essential: ifTk,+1=Tk,−1, as it would be in the absence of SOC, there is
no p-wave pairing and 0 º .

Finally, we derive the BCS approximation in theweak-coupling limit described by equation (3). Introducing
the pairingOP f fe

u

N k k k4
igg

d

k
2D = - å á ñ-

-̂
ˆ , one can linearize theHamiltonian (3):

H f f f f
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†

where D 2i sink
k

2
= D , ò−k=òk, as before kå¢¼extends over half of the BZ, and F fk k= -

ˆ ˆ . ThisHamiltonian is

diagonalized by a Bogoliubov transformation from f-fermions to quasiparticles kĝ and kĜ [1]:
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Here E Dk k k
2 2 m= - +( ) ∣ ∣ is the quasiparticle dispersion. The SF gap has a p-wave symmetry:Dk=−D−k

and its amplitudeΔ is determined from the self-consistency equation E1 sin
u

N k
k

k4
2
2

gg

d
= å :

e J u J2 1 2g gg g
2D ~ p m- -( ) , which coincides with the result obtained in themulti-band case.

AppendixC.UnconstrainedHFB theory in position space

In the present section, we summarize the fully unconstrainedHFBmean-field approach [74]whichwe used to
compute the phase diagram infigure 2. This variational technique treats on an equal footing SF and normal
phases, including various insulating states that break translational symmetry, and hence provides an additional
check of robustness of the TSF phase. Ourmethod amounts to the following linearization of the four-fermion
interaction:

H u g g g g u h h h

h n g g n g g

h g g g g g g

h g g g g
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g g
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

† †

† †

† † †

† † † †

where hH,F,B
ˆ refer toHartree, Fock andBogoliubov contributions with (in general complex)OPs n g gia

g
ia ia= á ñˆ ˆ† ,

g gi i i2 1x = -á ñˆ ˆ† , and u g gi gg i i2 1D = - á ñˆ ˆ . The full HFBmean-fieldHamiltonian includes Hint
ˆ and the g-atom

kinetic energy H
g
0

ˆ (see equation (2)), and can bewritten as:

H g g
X D
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with composite indices iaa = { }and jbb = { }, and 2Nd×2Nd dimensionalmatrices D i y
i ijs d= Dab ab and

X X J

u
n

n
.

ia jb g ij ab
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j i
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g
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md d d
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⎛
⎝
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⎞
⎠
⎟⎟

[ ( )]

The kernelab has the property x x* t t = - with τ x=(σ x⊗δαβ), which guarantees that its spectrum is
evenwith respect to zero energy.We shall enumerate its positive eigenvalues by ν=1,K, nνwith nν=2Nd.
HHFB
ˆ can be diagonalized by a Bogoliubov transformation

g

g
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n
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†

where gn̂ are new fermionicmodes andψν is an eigenstate of corresponding to an energy Eν�0. These states
obey a completeness relation n

p q
x

p
x

q pq* *y y t y t y då + =n
n n n nn[ ( ) ( ) ] with p and q=1,K, 4Nd.

Using the above quasiparticlemodes, we canwrite down the self-consistency relations:
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wherefν=1−2fν and f 1 e 1E Tg g= á ñ = +n n n
nˆ ˆ ( )† .

The quantumphase diagram (figure 2)was computed byminimizing the grand potential HHFB = á ñˆ
(notice, HHFB

ˆ already includes the term nia ia
gm- å ˆ ):
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AppendixD. Probing the g-atom attraction

Herewe present a simple derivation of the time dependence of the number of doubly occupied dimers after the
quench protocol described in themain text. Assume that the g–g interactions areHubbard-like:
H UV U n ni i

g
i
g

int 1 2= = åˆ ˆ ˆ ˆ , whereU denotes the interaction strengthwhose sign is unknown and needs to be

determined (in themain text,U=−ugg<0). The operator V̂ is a projector onto states with only doubly-
occupied dimers. Our task is to compute n t t V t2 y y= á ñ( ) ( )∣ ˆ ∣ ( ) , where ty ñ∣ ( ) is the time-dependent state of the
system.

At time t=0 g-atoms fill the Fermi sea t f0 vack k k0 , 1F
y yñ = = ñ =  ñ< -∣ ∣ ( ) ˆ ∣

†
, where vacñ∣ is the vacuum

state without particles and kF is the Fermimomentum. Thewavefunction at t=t0 is t e V
0

i
0y yñ = ñj-∣ ( ) ∣ˆ with

j=Ut0, while for t>t0 it is given by t t te H t t
0

i
0

g
0 0y y> ñ = ñ- -∣ ( ) ∣ ( )ˆ ( ) . Therefore,

n t t Ve e e e .V H t t H t t V
2 0 0

i i i i
0

g g
0 0 0 0y y> = á ñj j- - - -( ) ∣ ˆ ∣ˆ ˆ ( ) ˆ ( ) ˆ

Consider a short time t0=1/Uwhenj=1 and n t V V Vi , e eH H
2 0 0 0

i i
0

g g
0 0y y j y y- á ñ » á ñt t-( ) ∣ ˆ ∣ ∣[ ˆ ˆ ]∣ˆ ˆ . If in

additionwe limit ourselves to short-time dynamics, t t J1 g0t = -  / , then

V V t t H Ve e i ,H t t H t t gi i
0 0

g g
0 0 0 0 » + -- - -ˆ ˆ ( )[ ˆ ˆ ]ˆ ( ) ˆ ( ) , and the final expression for n2 (t) is:

n t V t t V V H V t t, , .
g

2 0 0 0j kj= á ñ + - á ñ = á ñ - -( ) ˆ ( ) [ ˆ [ ˆ ˆ ]] ˆ ( )

Here 0 0y yá¼ñ = á ¼ ñ∣ ∣ and VH V E V2
g
0 0

2k = á ñ - á ñ[ ˆ ˆ ˆ ˆ ] (E0 is theGS energy). It is easy to see thatκ>0.
Indeed, introducing a normalizedwavefunction V VV

0 0
2y yñ = ñ á ñ∣ ˆ ∣ ˆ , we have V H E2 V g V2

0 0 0 0k y y= á ñ á ñ -ˆ [ ∣ ˆ ∣ ],
which is clearly positive.
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Appendix E.Momentum-resolved spectroscopy signal

Herewe derive the expression for k, dt( ) used in themain text. Our approach almost exactly follows [24].We
use units such thatÿ=kB=1.

The transfer of g-atoms from the SF phase to e-states in an empty tube is governed by the operator:

V q g ,L
ia

ia iaå= Wˆ ˆ ˆ†

whereΩ is the Rabi frequency and qiaˆ† creates an e-atom inwell a of the ith dimer in the auxiliary (empty) tube.
The initial state of the system containsNg g-atoms, vacN

i g
in

,
g

y yñ = ñ Ä ñ∣ ∣ ∣ ( vacñ∣ is an empty state of the auxiliary

tube). Its energy is E Ni
g

gin 0 m w= + + , whereω0 is the laser frequency (note that wework in the grand-
canonical ensemble, soEg

i already includes the chemical potential offset). In thefinal state, there is a single
e-atomwithmomentum k and band index τ in the auxiliary tube: f vacN

f g
kfi 1

,
g

y yñ = ñ Ä ñt-∣ ∣ ˆ ∣
†

( N
f g

1
,
g

y ñ-∣ is an

intermediate state of g-atomswithNg−1 particles). This state has an energy E N 1f
g

gfi m= + - +( )
eg k

en + t , where νeg is the e–g transition frequency (∼10
14Hz for87Sr). Because νeg is a very large energy

compared to SF energy scales, we introduce a laser detuning δ=ω0−νeg. The operators fkt
ˆ are similar to the f-

modes defined in the text: f q q1 ek k r
k

k
1

2 1
i

2
k

h= - +t
t⎡⎣ ⎤⎦ˆ ˆ ( ) ˆ . η parameterizes the e-atomband structure in the

empty tube via r k1 2 cosk
e

k
2 t t h h= = + +t .

The transfer rate can be computedwith the aid of the Fermi golden rule [24]:
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where summation is extended over all initial andfinal states, and  is the grand partition function. Thematrix
elements of V̂ are given by
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Using the single-particle spectral density [75],
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we obtain after a straightforward calculation:

k k k k, Tr , 1 e , 1 e ,
r

k k
2

i
12

i
21

k

2

   d w w w= - + + +t
tW -{ }( ) ( ) [( ) ( ) ( ) ( )]

with k
ew m d= - -t . Noting that 21 12* = , we arrive at the expression in themain text.

Appendix F.Magneto-electric phenomena

In this sectionwe discuss novelmagneto-electric effects that occur as a result of the odd inmomentum SOC in the
effectivemodel (2)when it is subjected to aweak laser-induced syntheticmagnetic field.We assume this field to
be homogeneous: bH g gk ab ka kbef sd = - åˆ · ˆ ˆ† . In particular, we shall derive weak-coupling expressions for the
susceptibilityχ andmagneto-electric coefficientκ quoted in themain text.

It is well-known that a physical externalmagnetic field breaks time-reversal symmetry  . However, because
b is artificial, it does not necessarily break  . Indeed, under time-reversal, the second-quantized operators and
c-numbers transform as g gka k a, -ˆ ˆ (because a is not a real spin but the position index inside a dimer) and

c→c*. Therefore, only the by-term in Hefd ˆ breaks  and is capable of generating amass current. Belowwe
focus on the case with bx=bz=0 and b 0y ¹ (see figure 7(a)).

It is instructive to study the non-interacting systemdescribed by theHamiltonian H H
g
0 efd+ˆ ˆ H

g
0[ ˆ is defined

in equation (2)]which is diagonalized by Bogoliubov quasiparticles f g b g1 e ik k R
k

y k
1

2 1
i

2
k

= - + -t
t -⎡⎣ ⎤⎦ˆ ˆ ( ) ˆ

with energies R J k b J b k2 1 cos 2 sink k g y g y
2 2 t t= = + + +t ( ) . Assuming thatT=0 and f-particlesfill the

Fermi sea FSñ∣ with a chemical potentialμ, i.e. f fFS FS
k k kd q má ñ = -t t t t t¢ ¢∣ ˆ ˆ ∣ ( )
†

, the averagemass current is (the

operator K̂ was defined in themain text)
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This result is valid even in interacting non-SF systems.Hence amagnetic field cannot generate amass current in
the absence of SF correlations [27].

This situation changes dramatically when pairing correlations are taken into account, technically because the
average current can no longer bewritten as an integral of the quasiparticle group velocity. Consider theweak-
coupling dilute limit ugg=Jg and n

g=1. In this regime, we can project interactions in equation (2) onto the
lowest band τ=−1. At smallfields by=Jg,Δ, the bare fermion operators become g fk k1
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2
»ˆ ˆ and

g b J fe 1 i 2k
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ˆ ˆ . It is easy to check that by enters the projected interaction term
in equation (2) only via quadratic corrections by

2~ . Therefore, to linear order in by the projectedHamiltonian is

the same as equation (3)with J b b2 cos sin sink g
k

y
k

k y
k

2 2
0

2
 = - - = -( ) .Since b sink k y

k0
2

 - = - --
( ) ,
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see equation (B2). The Bogoliubov transformation diagonalizing thisHamiltonian is given by (B3)with òk andEk
replaced by k

0 ( ) and E Dk k k
0 0 2 2 m= - +( ) ∣ ∣( ) ( ) , respectively. However, energies of the quasiparticles kĝ and

kĜ are now split by afield correction and are given by E E b sink k y
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,
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2
= ( ) , respectively. If by is small, we can

assume that sign (Ek,±)=±, and in the BCSGS Ek k k,g g ná ñ = +ˆ ˆ ( )† and Ek k k,náG G ñ = -ˆ ˆ ( )†
with the Fermi

function x e 1x T 1n = + -( ) ( ) .

Theprojected current and y-componentof thepseudospin Syˆ have the form: K f f2 sin cos
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and S g g f f2 sin cosy N k ab
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g
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. In theBCSGS thefirst term inboth expressions

vanishes atT=0because f f F F E Esin sink
k
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k

k k2 2 , ,n nå¢ á - ñ = å¢ -+ -
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† †
.Hence, K byk = á ñ =ˆ

S b4 4y y c- á ñ = -ˆ .WhenT=0, it is easy to showthatκ is givenby the expression in themain text. Figure 7(b)
showsκ andχnumerically computedbeyond theweak-couplingdilute limit. In the simulationweused the same
strategy as above: solve theBdGequations in thefield, compute Ká ñˆ and Syá ñˆ as functionsofby, and extract the
corresponding linear coefficients.

AppendixG. Topological superfluidity in a 2D lattice

The results presented in themain text, can be extended to higher dimensional systems.Here we briefly consider
a generalization involving a lattice that has the plaquette structure shown infigureG1(a). In each plaquette, there
is one e-atom that can tunnel around the plaquette (with lattice constant a0). On the other hand, g-fermions
move in the simpler square lattice. As before, all atoms are nuclear-spin-polarized andwe use units where
a0=1. TheHamiltonian of this system is

H H H H ; G1
e g
0 0 int= + +ˆ ˆ ˆ ˆ ( )

H J e e

H J g g

g g g g g g g g

H U n n
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h.c. ;
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e
e
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ia ib
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i j i j

ij
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ia
e

0
,

0
,

2 1 3 4 ,4 ,1 3 2

int

ab

ab

x y





å

å

å å

å

=- +

=- +

+ + + + +

=

á ñ á ñ

-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ )

( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ

†

†

† † † †

where i=x i=(xi, yi), i, j=1,K, N label plaquettes in the lattice, a, b=1, 2, 3, 4 denote wells inside a
plaquette, ab indicates all sides abá ñof a square, and ij x y,á ñ is a link connecting two plaquettes in the x or y
direction (figureG1(a)). Other notations are the same as in equation (3).

In the rest of this section, we shall follow an analysis similar to the one in themain text: First, we consider
e-atom states of an isolated plaquette and identify a spatialmode that gives rise to the g-atom attractionwithin
that plaquette. Then, we study aweak-coupling dilute limit ugg=Jg, n

g=1 and demonstrate the stability of a
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chiral px+ipyTSF state. The study of the phase diagram,magneto-electric effects, etc is left for a future
investigation.

Pairing of the g-atoms.–An e-atom localizedwithin a plaquette, has four statesλ=0,K, 3 shown in
figureG1(b). Their wavefunctions are X e vaci a a ialñ = å ñl∣ ˆ ∣( ) † with X ea

a1

2
i 12=l l -p( ) ( ) and corresponding

energies E E J2e e
e0 2= - = - , E E 0e e

1 3= = .Matrix elements of the density nia
eˆ

are n X X ei ia
e

i a a
a1

4
i 12*l lá ¢ ñ = =l l l l¢ - ¢ -p∣ ˆ ∣ ( ) ( ) ( )( ).

In the 1D casewe saw that an attractive interaction between g-atoms occurs when the e-subsystem is
prepared in the highest excited kinetic energy state. An analogous situation happens here: e-atomsmust
fluctuate out of the d-waveλ=2 statewith energy 2Je. Using the Schrieffer–Wolff transformation, we obtain
the second-order g-atomHamiltonian

H H u n n n n

n n n n3 . G2

g
gg

i
i
g

i
g

i
g

i
g

i
g

i
g

i
g

i
g

ef 0 1 3 2 4

1 3 2 4

å= - + +

+ +

ˆ ˆ [( ˆ ˆ )( ˆ ˆ )

( ˆ ˆ ˆ ˆ )] ( )

Here u U J32gg eg e
2= -( ) , and density terms in the 1st (2nd) line describe attractive interactions along sides

(diagonals) of the ith plaquette (gray ellipses infigureG1(a)).
Weak-coupling dilute regime.–The g-atomkinetic energy can bewritten as

H J g g

0 0

0 0

0 0

0 0

,
k

k k
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g a

k k

k k

k k

k k
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x y

x y
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y x

*

* *

*

å

h h

h h

h h

h h

= -

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟

ˆ ˆ ˆ†

where g gek
k x

a N i ia
1 i i


= å -ˆ ˆ( · ) , momentum k=(kx, ky)with k ,p pÎ -a [ ] (α=x, y) is defined in a plaquette

BZwith N states and 1 ek
kih = + -

a
a. Eigenvalues of thematrix in H

g
0

ˆ are J2 cos cosg
k k

2 2
x y ⎡⎣ ⎤⎦. Atweak

coupling ugg=Jg and n
g=1, only the lowest band J J2 cos cos 4k g

k k
g

k

m2 2 2
x y 2

*
 = - + » - +⎡⎣ ⎤⎦ is populated

(m*=2/Jg is the effectivemass). The corresponding eigenvector is 1, e , e , e T
0

1

2
i i ix x y yy = - -j j j j- - + -( )( ) with

e k k
i h h=ja

a a
∣ ∣. At smallmomenta, 1, e , e , ek k k k T

0
1

2
i 2 i 2 i 2x x y yy » +( )( ) .

The low-energy effectiveHamiltonian can be obtained by replacing g fk k0yˆ ( fk is the lowest-band
fermion quasiparticle) in equation (G2):

qH f f
u

N
f f f f

16
.

k
k k k

k kq
k q k q k k

gg
ef

2


å å» +
¢

+ ¢- ¢ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

This expression describes a systemof spinless fermions interacting via an attractive p-wave coupling.Within the
BCS approximationwe have:

FigureG1. (a)Two-dimensional optical superlattice with a plaquette structure. The e-atoms are confinedwithin red square plaquettes
(with one atomper cell), g-atoms propagate in a simple square lattice (thin blue lines). Gray ellipses denote g-atomattractionmediated
by fluctuations of the e-subsystem.Other notations are as infigure 1(a). (b) States of an e-atomwithin a plaquette. Also shown are

point symmetries of thewavefunctions X ea
a1

2
i 1
2=l l -p( ) ( ) with colors indicating phases±1 and± i. In particular, theλ=0 (2) state

has s- (d-)wave symmetry. Attractive interactions between g-atoms occurwhen e-atoms are prepared in theλ=2 state.
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Herewe switched to a grand-canonical ensemblewith a chemical potentialμ and performed the standard
replacement H H nia ia

g
ef ef m - åˆ ˆ ˆ . k kx m= - , kDk D= ( · ), and other notations are the same as in the 1D

weak-coupling case. The aboveHamiltonian is diagonalized by a Bogoliubov transformation identical to the one
used in the 1D case after a replacement k→k . The pairingOP k F f

k k k
u

N2

gg


åD = - ¢ á ñˆ ˆ obeys the BCS equation

k k k ku

N E

u

N E4 8
, G3

k k k k

gg gg

 
å åD D D

= ¢ =
( · ) ( · ) ( )

where E Dk k k
2 2x= + ∣ ∣ and in the last sumweused evenness of the integrand and extended summation over

the entire BZ.Whenever the SF phase develops, the grand potential s in that phase is reduced compared to its
normal-state value n . This shift can be computed using theHellman–Feynman theorem [1]
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There are two competing SF states characterized by different symmetries of theOPD: (i) chiral px±ipy phase
with e eip p x

p
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y y
p= + ), and (ii) px (or py) state with ep x

p
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D = D (or ey
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2D ). Belowwe
assume real amplitudesΔ1,2 and demonstrate that at weak coupling, the px+ipy state is favored.

px+ipy SF.–The ugg-dependence ofΔ1 can be determined bymultiplying equation (G3) by *D [notice that
22
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, kF is the Fermimomentum, and ρ∼Jg?Δ1 is a characteristic energy cutoff.We have:
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px SF.–Proceeding in a similarmanner as above, we use the BCS equation (G3) to calculateΔ2
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p∮ ∣ ∣ . d can be computed as before

N
Q

Q m
2 d

2 2

e

2
e .F

F
I

2

0

1 2 2
2 2 2

4
2 *


ò

d r
p

= D = -
D

= -
k

k
D

-( )
Because e I2 /2<1, 1 2 d d< and the px±ipy SF state is preferred over the striped px,y phase.
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