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Through simultaneous but unequal electromechanical amplification and cooling processes, we create a
method for a nearly noiseless pulsed measurement of mechanical motion. We use transient electro-
mechanical amplification (TEA) to monitor a single motional quadrature with a total added noise —8.5 +
2.0 dB relative to the zero-point motion of the oscillator, or equivalently the quantum limit for simultaneous
measurement of both mechanical quadratures. We demonstrate that TEA can be used to resolve fine
structure in the phase space of a mechanical oscillator by tomographically reconstructing the density matrix
of a squeezed state of motion. Without any inference or subtraction of noise, we directly observe a squeezed
variance 2.8 £ 0.3 dB below the oscillator’s zero-point motion.
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The past ten years have seen a dramatic improvement in
the ability to measure and control the quantum state of
macroscopic mechanical oscillators. Much of this progress
results from advances in the parametric coupling of these
oscillators to optical cavities or resonant electrical circuits.
These related fields of optomechanics and electrome-
chanics have demonstrated the ability to cool mechanical
oscillators to near their motional ground state [1], entangle
mechanical oscillators with each other [2,3] or with other
degrees of freedom [4], and create squeezed states of
motion [5-7]. To verify the successful creation of these
nonclassical states, electromechanical and optomechanical
methods have also enabled measurements of mechanical
motion with near 50% quantum efficiency [8,9], or equiv-
alently an added noise equal to the zero-point motion of the
oscillator, the quantum limit for simultaneous measurement
of both mechanical quadratures [10].

These advances have encouraged notions of using non-
classical states of motion to test quantum mechanics at larger
scales, sensing forces with quantum enhanced precision, and
enabling quantum transduction between disparate physical
systems [11]. But as mechanical oscillators are prepared in
more profoundly quantum states [12,13], with finer features
in oscillator phase space, the measurement efficiency must
further improve to resolve these fine features and to use them
to realize a quantum advantage.

Reaching higher levels of efficiency with existing
methods is hindered by fundamental and technical limi-
tations, which seem difficult to overcome. In electro-
mechanical and optomechanical devices, the state of
motion can be converted without gain or added noise into
a propagating electric field, and one quadrature component
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of the field can be measured nearly noiselessly [4,8].
However, the loss experienced by the field traveling
between the device and the amplifier has prevented
quantum efficiency much greater than 50%. To improve
measurement efficiency, the device can be used as its own
parametric amplifier, emitting an electric field that encodes
an amplified copy of the mechanical oscillator’s state,
thereby overcoming any subsequent loss and inefficiency
of the following measurement chain. Using this strategy,
both quadratures can be measured simultaneously with
added noise very close to the quantum limit [9]. For steady
state monitoring of a single quadrature, backaction evading
schemes are, in principle, noiseless [6,14]. However,
unwanted parametric effects, both parasitic [15,16] and
intrinsic to the electromechanical Hamiltonian [17-19],
have prevented measurements with noise far below the
quantum-limited value.

In this Letter, we implement an efficient measurement of
a single mechanical quadrature, monitoring mechanical
motion with an added noise of —8.5 £ 2.0 dB relative to
zero-point motion, and a quantum efficiency of n, = 88+
5%. By generating mechanical dynamics equivalent to the
time reverse of dissipative squeezing [20], we intentionally
induce mechanical instability through the electromechani-
cal interaction, allowing for a pulsed measurement of
the initial state of the mechanical oscillator. We term this
protocol transient electromechanical amplification (TEA),
and demonstrate the resolution of fine features in phase
space by using TEA to perform quantum state tomography
[21] on a dissipatively squeezed state of the mechanical
oscillator, from which we reconstruct the mechanical
density matrix.

© 2019 American Physical Society
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FIG. 1. (a) Schematic of experiment consisting of the electro-

mechanical circuit (green) inductively coupled to a transmission
line. Pump tones are applied through a directional coupler, while
outgoing microwave signals are directed to a chain of conven-
tional microwave amplifiers and mixer circuits, forming a micro-
wave receiver, which adds noise much larger than zero-point
fluctuations. (b) False-color micrograph of aluminum drum. The
white bar corresponds to a distance of approximately 10 pm.
(c) Time and (d) frequency domain representation of temporally
overlapping dissipative squeezing pump tone amplitudes [A(7)
and A(w)]. (e) Time and (f) frequency domain representation of
transient electromechanical amplification (TEA) pump tone
amplitudes.

The device [shown schematically in Fig. 1(a)] is an
aluminum inductor-capacitor (LC) circuit composed of a
spiral inductor and a compliant vacuum gap capacitor, which
couples electrical energy to motion. The LC circuit has a
resonant frequency of . = 2z x 7.4 GHz, and is coupled to
a transmission line at a rate k. ~ 27 x 3.1 MHz. The
compliant top-plate of the capacitor [shown in Fig. 1(b)]
is free to vibrate with a fundamental mechanical resonant
frequency of w,, = 27 x 9.4 MHz and mechanical linewidth
of I'), % 27 x 21 Hz. For additional device parameters and
details, see the Supplemental Material [17]. The electro-
mechanical system is attached to the base plate of a dilution
refrigerator, resulting in a mechanical occupancy of n,,, < 40
in thermal equilibrium.

The electromechanical circuit is in the resolved sideband
regime [22], enabling coherent control of motion with
microwave tones. Applying a red detuned microwave pump
to the LC circuit (A = o, — @, = —w,,) allows for sideband
cooling [1], and state transfer between mechanical and
microwave fields [23,24], where ), is the frequency of
the pump tone. A blue detuned microwave pump (A =
+w,,) creates entanglement between mechanical and
microwave fields [4], and realizes a quantum limited
phase-insensitive amplifier of mechanical motion [9].
Combining these two interactions, with simultaneous appli-
cation of red and blue detuned pump tones, addresses two

orthogonal mechanical quadratures X, = i(b" —b)/\/2
and X_= (b"+b)/ V2 independently, and enables

backaction evading measurement, dissipative squeezing,
and TEA.

The type of interaction is determined by the sign of
[en(t) =T_(7) =T (¢), where T'y(7) are the electro-
mechanical growth and decay rates caused by the blue
(+) and red (-) detuned microwave tones, respectively [4].
Dissipative squeezing occurs when I, (7) > 0, which
cools the mechanical oscillator towards a squeezed vacuum
state [20]. The microwave control tones that enable dis-
sipative squeezing are shown schematically in the time and
frequency domain in Figs. 1(c) and 1(d). Ideal backaction
evasion occurs when I, = 0, where perfect constructive
interference between sidebands decouples one mechanical
quadrature from microwave vacuum fluctuations, pro-
ducing a noiseless representation of a single mechanical
quadrature in a single microwave quadrature [25]. Finally,
TEA occurs when I, () <0, amplifying motion with
energy gain G ~ ellenl’. Figures 1(e) and 1(f) show the
microwave pump tones used in the time and frequency
domain for TEA.

For both TEA and backaction evading measurement, the
motion of a single mechanical quadrature X is encoded in a
single microwave quadrature U. The variance of U can then
be written as the sum of the noise contributions from the
signal and added noise:

<AU2> = Gtol(<AX2> + <AX§dd>)v (1)

where Gy is the total gain of the microwave receiver chain
in units of V?/quanta. If the total added measurement noise
(AX2,,) is known, then the variance of the mechanical
state (AX?) can be inferred. Equivalently, by preparing a
mechanical state with known variance the added measure-
ment noise can be characterized. For an ideal single quad-
rature measurement (AXZ2,,) = 0 and U faithfully records
one quadrature of the mechanical state. Approaching this
ideal behavior is highly desirable for characterizing quantum
states of motion, as the number of repeated measurements
required to reconstruct a quantum state grows rapidly with
added noise. Furthermore, assigning meaningful uncertain-
ties to the extracted density matrix after any inference or
deconvolution procedure is complicated and subtle, dimin-
ishing confidence in the inferred state.

For the two special quadratures X, the noise properties
of TEA are determined by the relative strength of I', and
I"_. Assuming optimal detuning of the microwave tones by
exactly +w,, and I'. < k/2 (avoiding the strong coupling
regime), the added noise (AX3,, . ) referred to the input of
TEA is given by

VI £ VIO +1,(2n, +1)
AXZ N( + m m ) 2
< add,:t> 2|Fem+rm| ( )

In analogy with the high cooperativity limit, if
L, (21, +1)/[Ten + T, < 1, then (AX2,, _) will be less
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FIG. 2. (a) General pulse protocol for characterization of TEA

and squeezing. The first overlapping red- or blue-detuned pulses
determine whether the mechanical oscillator is squeezed, cooled,
or allowed to thermalize with its environment. The second set of
pulses tune the gain and added noise of the measurement. The
final red-detuned pulse transfers the amplified state of the
mechanical oscillator to the microwave field for quadrature
extraction. The pulse lengths are chosen so that elleml’ is
large, and provides sufficient amplification gain or dissipative
squeezing and cooling to overwhelm the thermal noise of the
mechanical environment. The pulse envelopes drawn are
slower than in the experiment for visual clarity. (b) A single
experimental voltage trace of the down-converted microwave
field (wpe = 27 x 1.8 MHz) showing the resulting exponential
growth and decay of the microwave field due to the amplification
and transfer pulses respectively.

than zero-point motion. In the case where I'_ =0,
equal noise will be added to both quadratures, enabling
nearly quantum limited phase-insentive amplification [9].
However, if the pump frequencies deviate from optimal
detuning, either through an initial detuning, or through
pump-power induced shifts in the resonance frequency of
the circuit, Eq. (2) is not valid, and theory including pump
induced mechanical and cavity frequency shifts is required
[17]. Similarly, the variance of the squeezed and anti-
squeezed quadratures after dissipative squeezing <AX§q. +)
takes the same form as Eq. (2), but with I'_ > I",.

In Fig. 2(a) we demonstrate, in a three-step protocol, the
control of the mechanical oscillator needed to study TEA.
An initial pair of pulses prepares the mechanical oscillator
in a desired state, by either sideband cooling (I'_ > 0 and
I, = 0), dissipatively squeezing (I'_ > I', > 0), or letting
the mechanical oscillator reach equilibrium with its thermal
environment (I', =I'"_ = 0). Following state preparation,
the motion of the mechanical oscillator and the amplitude
of the microwave field are amplified by applying red and
blue pumps such that I", > I'_. After a short delay, the
red-detuned pump is pulsed on to transfer the previously
amplified state of the mechanical oscillator to the micro-
wave field [24]. After further amplification by a high
electron-mobility transistor (HEMT) amplifier, and a room
temperature measurement chain, the signal is mixed down
to a heterodyne frequency of wy = 27 x 1.8 MHz MHz,

@ 30 cool amplify

= transfer

= 20 time
= 2
~ s add )
= 10 LLIIYYYY I Y
A <
g zero-point motion
0T~=
. 2
-10 (AX add - )
1 1 1 1 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6
r T
by 20
squeeze  amplify
154 1+ transfer
104 < Xz : time
A
—~ sq,t
SR
Nj% 0 zero-point motion
5 [
~ 5 I
> /
= /
-10 Teea_-7
1 1 1 1
0 0.2 0.4 0.6 0.8 1

FIG. 3. (a) Total added noise referred to the input of TEA
relative to zero-point motion. I', is varied, while I'_ = 27 x
181 kHz is held constant. The circles are data, while theory from
Eq. (2) (including HEMT noise contributions) is shown without
any free parameters as the dashed lines, and deviates significantly
because the pump power is large enough to induce additional
parametric processes. The solid lines are theory including para-
metric effects (with free parameters) [17]. The inset illustrates the
pulse sequence used for the inference of (AX3,, ). Here, we
obtain a minimum added noise of (AX2, ) =—8.5+2.0 dB.
(b) Inferred variance of the squeezed (AXZ, _) and anti-squeezed
(Aquﬁ ) quadratures after dissipatively squeezing. ', is varied,
while I'_ =2z x 154 kHz is held constant. The minimum
squeezed variance is (AXZ,_) = —7.9 4 1.4 dB. The circles
are the data, while theory is shown without any free parameters
as the dashed lines, with the expected agreement at low pump
powers. The solid lines are theory including parametric effects
(with free parameters) [17]. The inset illustrates the pulse
sequence for the inference of squeezing.

allowing the two mechanical quadratures to be extracted
from the exponentially decaying microwave field shown in
Fig. 2(b).

We determine experimentally the total noise (AX2, ,)
added during TEA by separately preparing the mechanical
oscillator in both a thermal state and through sideband
cooling. By comparing the variance of these two states in a
ratio, the added noise can be inferred [17,26]. Figure 3(a)
shows the total added noise as a function of the ratio of red
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and blue pump power. With the optimal ratio of the red
and blue-detuned pumps we find total added noise relative
to zero-point motion of (AX2, )=-85+20dB,
which is equivalent to a quantum efficiency of 7, =
(1+2(AX2, )" = 88 4 5%. We compare these results
to the prediction of Eq. (2) with no adjustable parameters,
illustrating poor quantitative agreement. We attribute this
discrepancy to additional squeezing of the mechanical
oscillator caused by nonlinear mixing of the microwave
pumps. We find good agreement in a fit to a more general
theory that includes such processes [17,19]. The two
theories deviate significantly from each other, but TEA
nevertheless achieves a minimum added noise equivalent
to that predicted by the ideal case in Eq. (2). We
emphasize that (AX2,,.) is the total noise added by
the entire measurement chain, and for I, /T_ > 1.3 TEA
has large enough gain to overwhelm the noise added by
the HEMT amplifier [17].

Avoiding the noise associated with the simultaneous
measurement of noncommuting observables is of particular
importance when measuring mechanical states with a width
in phase space less than the zero-point motion of the
oscillator [27], and is desirable for many quantum state
tomography protocols [28]. Thus, to test the effectiveness
of TEA on states with variance below zero-point fluctua-
tions, we prepare squeezed states of motion using the
dissipative procedure illustrated in the inset of Fig. 3(b). To
infer the total amount of squeezing, the motion is first
squeezed for 90 us, then a 30 us blue-detuned microwave
pulse I'y =22 x73kHz and I'_=0) is applied to
amplify both motional quadratures. The variance associated
with zero-point motion, which must be added by the phase-
insensitive amplifier, is subtracted to infer the variance of
the squeezed and antisqueezed quadratures, which is shown
in Fig. 3(b). We obtain a maximum inferred vacuum
squeezing of (AXZ ) =7.9=+ 14 dB below the zero-
point motion of the mechanical oscillator. We are able to
far surpass the so-called steady state 3 dB squeezing limit
both because we are using pulsed operations, and more than
a single mode is involved during dissipative squeezing [29].
Theory without any free parameters is plotted as the dashed
lines in Fig. 3(b), which agrees well at low pump powers.
The solid lines show predicted squeezing when including
additional parametric effects induced by nonlinear mixing
of the two microwave pumps (with free parameters) [17].

Having demonstrated that we can prepare a squeezed
state with variance below zero-point motion, the ability of
TEA to resolve fine phase space features can be tested by
performing quantum state tomography on the squeezed
mechanical state. By rotating a noiseless single quadrature
measurement through all possible measurement axes, a set
of phase space marginals can be recorded, and the density
matrix can be reconstructed via quantum state tomography
[30-34]. Figures 4(a) and 4(b) show histograms of a
sideband cooled (ng, ~ 0.02) and a dissipatively squeezed
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FIG. 4. Measurement of mechanical squeezed and sideband
cooled states with single quadrature TEA. (a) A density plot of
the marginal distributions of a sideband cooled state as a function
of tomography angle ¢. (b) A density plot of the marginal
distributions of a squeezed state using single quadrature TEA as a
function of ¢. (c) The schematic shows the rotation of the single
quadrature measurement axis X(¢) relative to the prepared
squeezed state. The squeezed variance is represented as the blue
ellipse. (d) The total measured variance of a sideband cooled state
with ng ~ 0.02 (green) and squeezed vacuum (blue), which
exhibits squeezing 2.8 + 0.3 dB below zero-point motion. The
data points are the circles, while theory (with no free parameters)
is the solid line. (e) Squeezed and (f) sideband cooled diagonal
density matrix elements are inferred from tomographic
reconstruction of the covariance matrix. The errorbars represent
90% confidence intervals estimated with an empirical bootstrap
of the tomography data.

state of the mechanical oscillator as a function of the
tomography angle ¢. Figure 4(c) demonstrates the rotation
of the single quadrature measurement axis relative to the
prepared squeezed state by ¢.

The minimum width that can be resolved in the tomog-
raphy data (AX ;. (¢)?) is an important figure of merit for
single quadrature measurements in the quantum regime. In
Fig. 4(d) the total variance as a function of tomography
angle is computed with theory (using independently mea-
sured parameters) shown as the solid blue line. The
squeezed quadrature has a total variance of (AX i, (¢)?) =
(AXZ, )+ (AX2,,_) =2.84+03 dB below the zero-
point motion of the mechanical oscillator. We emphasize
that this represents the total reduction in noise that is
present at the end of our conventional microwave receiver
and no noise is subtracted to find this result.

The marginal distributions (1.4 x 103 points in total) can
be used to reconstruct the density matrix of the quantum state
in the number basis. For a general quantum state, iterative
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methods of tomographic reconstruction [21]—based upon
maximum likelihood—are a reliable method of estimating
quantum states [28], and are guaranteed to produce a physical
density matrix. However, tomographic reconstruction of
squeezed states in the Fock basis requires estimating density
matrix elements up to very high phonon number [33,35]. To
avoid calculating large density matrices we assume Gaussian
Wigner quasiprobability distributions [36], and estimate the
density matrix through reconstruction of the covariance
matrix [37]. The covariance matrix is then used to infer
the Fock basis density matrix of the mechanical oscillator. In
Figs. 4(e) and 4(f) we plot the inferred diagonal density
matrix elements for the squeezed vacuum and sideband
cooled states, with the error bars on the measurements
representing 90% confidence intervals from an empirical
bootstrap procedure [17,38]. From the density matrix we also
infer the purity of the squeezed state to be p=1/
(14 2ny) = 0.53 £ 0.03 [17], where ng is the equivalent
thermal occupation of the squeezed state. This demonstrates
the direct resolution of features in phase space with a width
approximately half that of zero-point fluctuations and the
ability to resolve the squeezed character in the number basis.

Mechanical devices are increasingly being integrated
into circuit QED systems as resource efficient elements,
transducers and quantum memories, which offer access to
new regimes of circuit QED [12,13]. By directly using
mechanical instability as a probe, TEA can efficiently
measure motion in the presence of additional nonlinear
effects. Combining TEA with already demonstrated [9]
quantum state transfer techniques provides a path towards
efficient tomography of non-Gaussian states in macro-
scopic mechanical oscillators.
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