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We resolve phonon number states in the spectrum of a superconducting qubit coupled to a multimode
acoustic cavity. Crucial to this resolution is the sharp frequency dependence in the qubit-phonon interaction
engineered by coupling the qubit to surface acoustic waves in two locations separated by ~40 acoustic
wavelengths. In analogy to double-slit diffraction, the resulting interference generates high-contrast
frequency structure in the qubit-phonon interaction. We observe this frequency structure both in the
coupling rate to multiple cavity modes and in the qubit spontaneous emission rate into unconfined modes.
We use this sharp frequency structure to resolve single phonons by tuning the qubit to a frequency of
destructive interference where all acoustic interactions are dispersive. By exciting several detuned yet
strongly coupled phononic modes and measuring the resulting qubit spectrum, we observe that, for two
modes, the device enters the strong dispersive regime where single phonons are spectrally resolved.
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Quantum control over mechanical degrees of freedom
promises insight into fundamental physics as well as the
development of innovative quantum technologies. As
mechanical resonators are massive and macroscopic, they
can probe quantum theories at large scales [1-3], while the
ability of mechanical motion to couple to a variety of quantum
systems has inspired numerous mechanics-based transduc-
tion schemes [4—10]. Additionally, mechanical elements are
compact compared to their electromagnetic counterparts,
enabling the on-chip fabrication of many wavelength micro-
wave structures such as high-performance filters and multi-
mode resonators [ 1 1-13]. High-fidelity control over the large
number of modes achievable in acoustic platforms would be a
powerful resource for quantum information processing [14].

The field of circuit quantum electrodynamics (cQED) has
provided both guidance and tools for achieving quantum
control over mechanical excitations. In cQED, the state of a
photonic mode is measured and manipulated using super-
conducting qubits. These qubits can also interact with
mechanical systems using piezoelectric materials. Two
seminal works leveraged this fact to couple a qubit to a
dilatational resonator [15] and to propagating surface
acoustic waves (SAWSs) [16]. Both surface and bulk acoustic
waves can be confined to form high-overtone resonators
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[17,18], leading to demonstrations of qubit-phonon cou-
pling in multimode cavities [19-23]. Most recently, a pair of
experiments used resonant interactions to create number and
superposition states of an acoustic cavity mode, thereby
demonstrating basic quantum control of acoustic phonons
[3,24]. Following the example of cQED, achieving strong
dispersive interactions in acoustic systems would lead to
improved quantum control through quantum nondemolition
phonon measurement [25,26] and qubit-mediated phonon-
phonon interactions [27,28]. Realizing these techniques in
acoustic systems would enable the exploration of a multi-
mode analogy of cQED [29].

But coupling a single qubit with uniform strength to
multiple modes of an acoustic cavity reduces the number of
coherent interactions achievable with a given mode.
Consider that for any qubit frequency inside the cavity
bandwidth, there exists some nearest mode k with detuning
A, less than half the cavity’s free spectral range f,. To be in
the dispersive limit for all modes, the qubit must have
coupling g < A, < f,/2. This limited coupling then
bounds the number of operations possible within the qubit’s
coherence time (27y)~! at approximately ¢%/(Agy). The
number of interactions achieved for mode k is further
reduced by a large factor ~|n — k|f,/A for the nth cavity
mode. Eschewing the dispersive limit by choosing g = f
yields strong, resonant interactions between the qubit and
multiple cavity modes. The resulting hybrid modes are
composed predominantly of linear cavity modes, effectively
diluting the qubit’s nonlinearity and thereby increasing the
time required for coherent operations [21]. This reduction in
coherent operations can be overcome by engineering a
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frequency-structured interaction such that modes far from
the qubit frequency couple with rates exceeding f,, while the
coupling to nearby modes is suppressed, preserving the
dispersive limit.

Indeed, acoustic platforms excel at realizing such
strongly frequency-dependent couplings. In SAW devices,
an interdigitated transducer (IDT) converts between elec-
trical and acoustic signals with a frequency dependence
determined by the Fourier transform of the IDT geometry
[12,30]. A desired frequency response can be engineered by
computing its inverse Fourier transform and shaping the
IDT accordingly. Moreover, the slow speed of sound
(v = 2880 m/s on GaAs) implies that megahertz frequency
resolution can be realized with millimeter geometries.

In this article, we engineer a frequency-dependent
coupling between a transmon qubit and a multimode
SAW cavity to realize g~ f, together with dispersive
operation. The qubit couples to phonons through an IDT
that is bisected to create a pair of interaction regions
separated by a long travel time, 79 ns [Fig. 1(a)].
In close analogy to double-slit interference, the many-
wavelength separation between interaction regions creates
sharp fringes in the frequency dependence of the qubit-
phonon interaction strength [30,31]. We observe the
designed frequency dependence as a high-contrast modu-
lation of both the coherent exchange rate between the qubit
and cavity modes and the qubit spontaneous emission rate
into unconfined phonons. This frequency dependence
greatly reduces the coupling to certain modes to create
frequency windows for dispersive operation. We tune the
qubit transition to such a window and observe the single-
phonon Stark shift from three strongly coupled modes of
the cavity by populating these modes while measuring the
qubit spectrum. For two of these modes, we enter the strong
dispersive regime where the single-phonon Stark shift
exceeds the qubit and acoustic linewidths, demonstrating
that spatially extended coupling can be leveraged to take
full advantage of multimode acoustic systems.

The device we study comprises a tunable transmon qubit
on a piezoelectric GaAs surface with two IDT halves
embedded in a multimode SAW cavity [Fig. 1(a)]. The
cavity is formed between two Bragg mirrors made of
aluminum strips that reflect surface waves over a 100-MHz
bandwidth to form a phononic Fabry-Perot cavity [Figs. 1(b)
and 1(c)]. The effective cavity length extends beyond the
mirror separation L = 125 ym by 20 ym from acoustic
penetration into the mirror array to create a mode spacing
fs~ 10 MHz. The mirrors and IDT were designed with
periodicity 4. = 675 nm, which corresponds to a center
frequency near f.=4.25 GHz. The IDT halves, each 8
periods long, are mirror images of each other reflected across
the center of the cavity and separated by S =26 ym.
The mechanical loading effects on the resonator from the
IDT are minimized by using thin metal (30 nm of aluminum)
and a split electrode design [Fig. 1(d)] [11]. Qubit readout
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FIG. 1. Double-slit qubit concept and device. (a) Schematic of
the device. A transmon qubit resembling a double-slit interfer-
ometer is formed by shunting two halves of an interdigitated
transducers (IDT, red and blue) with a pair of Josephson junctions
(yellow). Two distributed Bragg arrays (green) confine phonons
in a narrow frequency band to create acoustic resonances (gray
curve). (b)—(e) False-color SEM micrographs of a representative
device. (b) The qubit IDT (purple) is shunted by Josephson
junctions and located within an acoustic cavity of width
W = 16 ym. The imaged device has half the cavity length of
the measured device. Insets show enlarged images (c) of the
Bragg mirror and (d) the IDT, whose innermost fingers are
extended to shunt the junctions. (e) Antenna paddles couple the
qubit to a copper waveguide cavity at 5.9 GHz for readout and
control. (f) When the qubit is tuned outside the mirror bandwidth
(unshaded), the IDT launches phonons with a frequency depend-
ence determined by the Fourier transform of the IDT geometry,
creating fringes in the qubit loss rate I'y. (g) Inside the mirror
band, the IDT modifies the qubit coupling strength g,, to the
evenly spaced cavity modes. By tuning the qubit frequency to a
zero in the coupling at f,, coupling rates exceeding the mode
spacing can be achieved with dispersive operation, provided the
slope near f, (red dotted line) is much smaller than one.

and control are enabled by attaching antenna paddles
[Fig. 1(e)] that strongly couple the qubit to a copper
waveguide cavity at 5.9 GHz (see the Appendix A).

An IDT split in half achieves a mode-selective coupling
by creating a frequency profile A(f) analogous to the
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spatial profile of double-slit diffraction. The IDT is split
into two regions of length D separated by distance S. The
Fourier transform about the symmetry point between these
two regions is real and the product of two factors: a slow
sinc envelope centered on f,. with period v/D and a fast
sinusoidal modulation with period 1/7 = v/S:

A(f) = sinc[z(f — f.)D/v] sin(zf7).

Outside the mirror bandwidth, the qubit loses energy to
propagating phonons atarate I'; o« A(f)? [Fig. 1(H)][21,30].
Within the mirror band, the qubit exchanges excitations with
confined acoustic modes [Fig. 1(g)] described by the multi-
mode Jaynes-Cummings Hamiltonian,

1
H/h :Efqu +mea;1“m +9m(a3;15— +auot), (1)

where the qubit is described by Pauli matrices and transition
frequency f,, the cavity modes are described by annihilation

(creation) operators a,, (a},) and frequencies f,,, and the
qubit and cavity couple with strength g,,. If the IDT is
symmetric about the cavity center, then g,, has the form
Im = 9oA(f ) = gosin (zf,,7), where g, is the maximal
qubit-cavity coupling strength and the slowly varying
sinc is approximated as unity. With the designed separa-
tion between IDT halves, the coupling varies with a
periodicity approximately equal to the mirror bandwidth
(1/7 ~ 100 MHz), ensuring at least one cavity mode
achieves coupling near g.

Dispersive operation can be achieved regardless of mode
density or maximal coupling strength by designing A(f) to
cross zero with a sufficiently shallow slope. Consider
tuning the qubit to a frequency f, such that A(f.) = 0.
A cavity mode with small detuning A_ from the qubit will
couple with rate g, that is bounded above by this detuning
multiplied by the slope of the coupling strength near f, i.e.,
9.] < golA'(f.)A,| [Fig. 1(g)]. Thus, the magnitude of
A'(f,) constrains g./A, and thereby sets a lower limit on
how dispersive qubit-cavity interactions can be. We engi-
neer this slope, approximated for the split-IDT design as
90A'(f,) = mgyr = 0.14, to be much smaller than one.

To confirm the designed frequency structure in the
device, we measure the qubit spectrum as an applied
magnetic flux tunes its frequency. We begin by tuning
the qubit across the mirror bandwidth to investigate the
frequency region where phonons are confined. We observe
pronounced avoided crossings in the qubit spectrum where
the qubit coherently exchanges energy with cavity phonons
[Fig. 2(a)]. The extracted coupling rates [Fig. 2(b), see
Appendix C] vary between the modes, with several
strongly coupled modes in close spectral proximity to
crossing-free regions wider than f; at both edges of the
mirror band. Three main effects explain the observed
behavior. First, the split-IDT modulates the coupling
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FIG. 2. Avoided crossings spectroscopy. Tuning the qubit
across the cavity modes measures the mode frequencies and
qubit-cavity coupling strengths. (a) Within the mirror bandwidth,
9 avoided crossings appear with varying coupling strength and a
nearly even mode spacing, f, = 10.6 MHz. The strong avoided
crossings have a spurious mode on their high-frequency shoulder,
which we attribute to a resonance with nonzero transverse mode
number. (b) The coupling strengths to each mode are extracted
from the measured crossings. The qubit couples more strongly to
modes at the center of the mirror band with maximum strength
go = 5.1 MHz. The IDT is symmetric about the cavity center,
resulting in strong coupling to even modes (green) and weak
coupling due to odd modes (blue). Coupling to transverse modes
(orange) is a factor of 5 smaller. An inference of the frequency
dependence of the qubit coupling strength (gray dotted line) made
from measurements of the qubit spontaneous emission rate (see
main text) agrees well with the measured coupling rates.

proportional to A(f), coupling the qubit strongly to modes
near 4.25 GHz with g, = 5.1 MHz while decoupling it
from modes roughly 5f, above or below. Second, neigh-
boring cavity modes couple to the qubit with alternating
strength because the qubit IDT is approximately symmetric
about the cavity center, strongly (weakly) coupling the
qubit to modes with even (odd) spatial symmetry. Lastly,
resonant exchange between the qubit and cavity modes at
the edge of the mirror bandwidth is unresolved as the
coupling rate is much less than the loss rate of these weakly
confined modes.

To study A(f) outside the mirror band, we tune the qubit
over a 1-GHz span and examine the influence of propa-
gating phonons on the qubit linewidth and transition
frequency. In contrast to the discrete cavity modes, propa-
gating modes form a continuum, enabling a dense sampling
of A(f) over a broad frequency range and affording a
clear picture of how effectively the split IDT tailored the
qubit-phonon interaction. In the measured qubit spectra
[Fig. 3(a)], the features arising from acoustic interactions
are emphasized by subtracting the flux dependence
expected from an acoustically uncoupled qubit (see
Appendix B). At frequencies detuned from the central
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FIG. 3. Interaction with propagating phonons. (a) Tuning the

qubit across the ~1-GHz IDT bandwidth probes its interaction
with the continuum of propagating phonons outside the mirror
band. Subtracting the expected flux tuning without acoustic
interactions makes clear an oscillatory feature in both linewidth
and frequency as seen in the measured readout (RO) voltage.
Zigzag features bordering the central coherent avoided crossings
are well described as resonant interactions with lossy acoustic
modes. A strongly coupled system is present at 4.41 GHz that is
not a SAW-cavity mode. (b) The decay rate I'; is found by
measuring the qubit 7 decay time. The measured energy loss
rate varies by more than a factor of 25 within a 55-MHz span. A
model closely fits the measurement except in the regions with the
largest I';, where increased uncertainty from the short decay
times compounds with effects from the semireflective mirrors that
are not included in the model. The measured frequency-depen-
dent Lamb shift § agrees well with the calculations from the IDT
model (inset).

avoided crossings, the qubit linewidth oscillates with a
period of 110 MHz that is consistent with the expected
delay time and an amplitude that decays as the qubit tunes
out of the IDT bandwidth. Additionally, the qubit fre-
quency deviates from the uncoupled flux dependence with
a similarly enveloped oscillation with matching 110-MHz
periodicity. Both of these effects can be understood by
modeling the qubit’s emission of phonons from the IDT as a
frequency-dependent resistance, which must be accompa-
nied by a frequency-dependent reactance from Kramers-
Kronig relations [11,12]. We observe this reactance as a
modulation of the qubit frequency compared to its
uncoupled flux tuning, an effect describable as a phononic
Lamb shift [30,32].

We determine the qubit energy decay rate with increased
precision by measuring qubit excited state lifetime (7;) in
the time domain. With the qubit far detuned from the
acoustic cavity modes, we observe I'; = (227)~" oscil-
lating in frequency with large amplitude; the loss increases
by a factor of 25 above its minimal value within a 55-MHz

span [Fig. 3(b)]. A simple model that combines a prediction
for the phonon emission rate from the IDT and a constant
internal quality factor Q; closely fits the measured
qubit loss rate, giving Q; = 1.2 x 10* and 7 = 9.04 ns
(see Appendix D). The nulls in I'; arise from destructive
interference between the two IDT halves, an effect with
close parallels to an atom interfering with its mirror image
[33,34]. As the depth of these nulls is approximately
uniform across the IDT bandwidth, phonon loss from
imperfect destructive interference is less than 75 kHz.
Additionally, the extracted IDT parameters from the qubit
loss rate can be used to calculate the frequency-dependent
phononic Lamb shift, showing agreement with the mea-
sured qubit frequency [inset of Fig. 3(b)].

Our measurement of the qubit interaction with propa-
gating modes also provides an independent inference of the
interaction strength between the qubit and cavity modes.
The best-fit model from Fig. 3(b) determines A(f) using
propagating modes and can be extended to frequencies
inside the mirror band, where it closely follows the
measured coupling rates [Fig. 2(b)].

Having characterized the qubit interaction with both
confined and propagating phonons, we turn to resolving the
qubit’s Stark shift from individual cavity phonons. This
resolution requires dispersive operation with all modes, i.e.,
Gm < |A,,| for all modes m, where A, = f, — f,,, as well
as a Stark shift that exceeds both the qubit and acoustic loss
rates. Tuning the qubit to f, = 4.318 GHz realizes dis-
persive operation; the least-dispersive interaction is with
mode 7, where A;/g; = 8.5 > 1. In this multimode dis-
persive regime, the interaction term in the Hamiltonian
[Eq. (1)] becomes

H[/h = Z)(majﬂamgp
m

where individual phonons shift the transmon frequency by
2y .- An accurate calculation of y,, must include the higher
levels of the transmon, and is well approximated as

1 1
=g |—- 2
X gm(Am Am+a), (2)

where @ = —190 MHz is the transmon’s anharmonicity.
With the qubit at f, its transition frequency is above the
acoustic modes while the |e) — |f) transition is below,
such that A,, > 0 and A,, + a < 0 for all modes m. With
this level ordering, the two terms in Eq. (2) add construc-
tively to create large and positive Stark shifts [35].

To populate a target cavity mode with phonons, we drive
the qubit at a frequency far detuned from its own transition
but resonant with the cavity mode [3]. In Fig. 4(a),
spectroscopy shows the qubit transition at 4.318 GHz
and, with much higher drive power, three acoustic reso-
nances at lower frequencies. The measured qubit linewidth
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FIG. 4. Phonon number splitting. The qubit is tuned to f, =
4.318 GHz where no resonant interactions occur and the first two
transmon transitions straddle the acoustic modes. (a) To excite
and measure the acoustic modes, the drive power is increased
relative to the power used near the qubit transition (shaded, 419
or +28 dB). The interactions with all acoustic modes are
dispersive, with A3/g; = 18, As/gs = 11, and A,/g; = 8.5.
(b) While driving the strongly coupled acoustic modes (3, 5,
and 7), we observe the qubit transition broaden and shift up in
frequency with increasing phonon population. The spectra are fit
to a model assuming a coherent state with 72, average phonons to
determine y,,. For modes 5 and 7, the measured single-phonon
Stark shift exceeds both the qubit and acoustic linewidths. Traces
are vertically offset to aid clarity. For the trace in each mode with
the highest phonon occupancy, the contributions to the best fit
from each phonon Fock state are shown (shaded purple).

y = 550 kHz is only marginally larger than the sum of
contributions from Q;, intrinsic dephasing, and expected
power broadening (see Appendix E). The acoustic line-
widths are measured to be k,, ~ 250 kHz for all three
modes, only slightly larger than the expected 200 kHz of
diffraction loss from the flat-flat mirror design of the cavity
[12,17,21].

We measure the single-phonon Stark shift of the three
strongly coupled modes by varying the population in these
modes and measuring the qubit spectrum. A 3-us drive
pulse at f,, creates a coherent state in mode m with 7,
average phonons [25]. The resulting Stark-driven qubit
spectrum, measured with a spectroscopy pulse concurrent
with the acoustic drive, consists of a sum of Lorentzians
that each correspond to a phonon number state in the cavity
[Fig. 4(b)]. These Lorentzians are spaced by 2y, and

broaden with higher phonon number in proportion to x,,.
Sweeping the drive power at one of the three modes,
the measured qubit spectrum broadens and shifts up in
frequency. Crucially, several resolved peaks appear for
modes 5 and 7 arising from a distribution of phonon
Fock states in the cavity. To model the measurement, we
assume the cavity occupation is Poissonian distributed
and fit the average phonon number in each trace. We find
good agreement between the model and measurement
for acoustic linewidths x357 = 200, 250, 275 kHz and
single-phonon Stark shifts 2y; 57 = 500, 1050, 890 kHz
(see Appendix E). As the single-phonon Stark shifts for
modes 5 and 7 exceed both the qubit and acoustic line-
widths, we confirm that the device enters the strong
dispersive regime for two acoustic modes.

Resolving phonon Fock states in a multimode cavity
through spatial engineering suggests multiple future direc-
tions. For the measured device, the dominant source of
phonon loss was likely diffraction and could be elimi-
nated by using curved reflectors to form a stable cavity
[10]. Combining improved phonon lifetimes with the
demonstrated coupling strengths would enable quantum
nondemolition phonon detection and qubit-mediated inter-
actions between phonon modes. Furthermore, the number
of modes accessible to the qubit can be increased simply by
elongating the cavity, highlighting the promise of SAW
systems for multimode quantum information processing
[3,28]. More generally, the engineering of time-delayed
self-interactions not only enables a wide range of frequency
structures but can also give rise to non-Markovian dynam-
ics [36,37], suggesting delay may prove a valuable resource
for quantum information processing [38].

See related work in Ref. [39].
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APPENDIX A: QUBIT READOUT

The qubit state is measured through its dispersive
interaction with a 5.9-GHz copper waveguide cavity. The
qubit has a large electric dipole moment, coupling it to the
readout cavity with strength g. = 115 MHz. Different
readout techniques were used to probe the qubit state
depending on the measurement details.

We used bright-state readout [40] to measure the qubit
decay rate I'; as a function of frequency [Fig. 3(b)]. This
type of readout is well suited for measuring fast decays, as
the cavity can persist in the bright state for a time that
exceeds the natural qubit lifetime.

For qubit spectroscopy, we used single quadrature
dispersive readout backed by a flux-pumped Josephson
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parametric amplifier. To measure the Stark-driven qubit
spectra, we used a pulsed readout scheme that minimized
qubit dephasing from readout phonons [Fig. 4]. Continuous
readout was used for qubit spectroscopy as a function of
flux [Figs. 2(a) and 3(a)]. In the broad qubit spectroscopy,
we compensate for the varying excited state contrast
resulting from frequency-dependent qubit loss by adjusting
the qubit drive power. This power level is independently
determined from the measured 7'; times.

APPENDIX B: QUBIT FLUX DEPENDENCE

The qubit transition frequency is tuned using an off-chip
coil to thread magnetic flux through the 50-um’ loop
formed by the two Josephson junctions. Omitting acoustic
interactions, we model the qubit frequency f, as a function
of coil current I as

fq(U = fo at + (1 —Clz)COS <ﬂ];]0)2] 1/47

c

where f, is the zero-field qubit frequency, I, is the
coil current required to thread a half-flux quantum through
the qubit loop, I, is the current offset required to offset
ambient fields, and « is the normalized difference between
the junction critical currents. From fitting the measured
qubit frequency [Fig. 5(a)], we find f, = 5.718 GHz,
I.=1.168 mA, I, =79.2 yA, and a = 0.14.

The qubit flux dependence is weakly modified by its
interaction with the continuum of propagating phonon
modes. We model this phononic Lamb shift § as

qu_ fc> 2 sin(af, 7).

c
where I’ is the maximal loss rate to phonons, f. is the
center frequency of the IDT, N, = 8 is the number of finger

I
5(f,) = Zosinc (ﬂ'Nq

(a)

>
o

Frequency (GHz)
N
N

3.8L% . . L
-340 -300 -260 -220
Applied current (uA)
b) T : : .
® 5 N
2 WA WAL,
E OW‘\IA\,’ TR
% toTT
~ AL, . Lt .
38 4.0 4.2 44 4.6
Fit frequency (GHz)
FIG. 5. Qubit flux dependence. (a) The qubit frequency is

measured and fit (white line) over a large range of applied flux.
Regions near avoided crossings are ignored in the fit (gray).
(b) The residual between the measured transitions and the best-fit
uncoupled flux dependence matches the expected acoustic Lamb
shift (black).

periods in each IDT, and 7 is the intra-IDT delay [30]. The
measured phonon loss rate (see Appendix D) independently
determines I'y, f., and 7, allowing the Lamb shift to be
calculated with no free parameters. This calculated Lamb
shift closely matches the residual from the flux fit [inset of
Fig. 3(b) and Fig. 5(b)] except near avoided crossings.

APPENDIX C: ACOUSTIC CAVITY
CHARACTERIZATION

Extracting the coupling strengths from the closely
spaced avoided crossings requires a multimode formalism.
The eigenmodes of the system are found by diagonalizing
the interaction Hamiltonian,

S 91
fa 9

H/h = . |
9 G - fq

including 9 purely longitudinal modes and 5 transverse
modes. The eigenvalues of the matrices as a function of
flux are fit to the measured avoided crossing spectrum
[Fig. 6(a)].

The general properties of the mirrors can be inferred
from the precise measurement of the mode spacings. Near
the center of the mirror bandwidth, the modes are spaced by
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FIG. 6. Avoided crossings analysis. (a) The measured qubit-
cavity avoided crossings are fit by a multimode interaction model
(white) [Fig. 2]. (b) The spacings between the modes f5 are well
matched by a mirror model with a single-element reflectivity of
ry = 3.5% (green).
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fs = 10.6 MHz, but they become more closely spaced near
the edge of the mirror bandwidth due to deeper phonon
propagation into the mirror stack [Fig. 6(b)]. We find a
simple mirror model matches the measurements with a
single-element reflectivity r, = 3.5%, which corresponds
to a mirror bandwidth of 100 MHz.

APPENDIX D: PHONON EMISSION RATE

The qubit lifetime is measured over a wide frequency
range to directly probe the qubit spontaneous emission rate
into unconfined phonons. The qubit loss rate I'; as a
function of qubit frequency f, is modeled by

fq_fc

c

y(fy,) :g—l—%sinc(an

)2[1 —cos(2zf 7)),

where Q; is the qubit internal quality factor, I'; is the
maximal loss rate to phonons, f. is the center frequency
of the IDT, N, =8 is the number of finger periods in
each IDT, and 7 is the intra-IDT delay time. We find
Q;=12x10* Ty=11MHz, f.=424GHz, and
7 = 9.04 ns. The best fit I’y is close to the expected value
of 12.5 MHz calculated using room temperature GaAs
properties [16].

The qubit studied constitutes a giant atom where the
intra-IDT delay time approaches the phonon-limited qubit
lifetime. Deep in this regime, the qubit fully decays before a
phonon can travel between the IDT halves, leading to a host
of effects such as nonexponential decay. The transition to
this regime occurs when the product zzly reaches 1
[30,37]. For this device, nzlj ~ 0.3. However, evidence
of non-Markovian physics was obscured by the presence of
mirrors and the short timescale (9 ns) associated with the
nonexponential decays. A small fraction of the measured
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FIG. 7. Qubit spontaneous emission. (a) Each measured qubit
T; decay is shown normalized by its maximum value. (b) The
extracted 7; times match the model for the qubit-phonon
emission rate. A small fraction of decays displayed nonexpo-
nential features with timescales inconsistent with the intra-IDT
delay time (gray).

time traces display nonexponential features but with time-
scales far exceeding the intra-IDT delay time. These decays
are excluded from the reported qubit energy decay
rates [Fig. 7].

APPENDIX E: NUMBER SPLITTING ANALYSIS

The measured Stark-driven spectra are fit to a sum
of unit-area Lorentzians with weights assumed to be
Poissonian distributed in the number basis with mean
phonon number 7,

Mmax

P.(f.7)) = Co+ C1 Y Pu(R)S(f. 7, ),

n=0

where n is the phonon number in mode m, f is the
spectroscopy frequency, Cy is a constant offset, C; is an
overall amplitude, and n,,, = 6 is a cutoff phonon number.
The two factors in the sum are given by

1 Y+ Kn(n +0)
22 [f = (fg = 2tmn)* + [y + & (n + 2)2/4

where y is the zero-phonon qubit linewidth, f, is the zero-
phonon qubit frequency, k,, is the loss rate of mode m, and
2y 1s the single-phonon Stark shift from mode m. Fits of
the average phonon number show a linear dependence on
applied drive power for the three measured modes [Fig. 8].
The strong drive used to populate the acoustic modes also
weakly excites the qubit, causing the trace offset C, to
increase with 7. Additionally, the bare qubit frequency
pulls weakly up with off-resonant drive power at a rate of
about 150 kHz per phonon, an unexplained effect that is
included in the fits.

The qubit coherence times at f, are measured tobe T =
415 ns and 75 =705 ns. The T3 time is almost twice
T;, and we calculate an intrinsic dephasing rate of
(22T,)~" =30 kHz. The spectroscopic qubit linewidth
was measured to be y =550 kHz at f,. Together, fre-
quency-independent energy loss (360 kHz), intrinsic
dephasing (30 kHz), the effective Rabi rate from the drive
tone (100 kHz), and the finite duration of the drive pulse

~e
2 e . _e-"" 1—Mode3
. e-""

S T e =T — Mode 5

=1 Lo _ o o
L& Mode 7

& —
o_..f . R ]
0 40 80 120

Power at cavity input (pW)

FIG. 8. Phonon number power dependence. The average
phonon number extracted from the measurements depends
linearly on the power applied to each mode.

021056-7



SLETTEN, MOORES, VIENNOT, and LEHNERT

PHYS. REV. X 9, 021056 (2019)

(50 kHz) sum to a 540-kHz qubit linewidth. marginally
smaller than the measured value.

Additionally, an unstable avoided crossing appeared
intermittently between 4.312 and 4.322 GHz with sub-
MHz coupling rate, fluctuating with a several-hour time-
scale. We reject data when the defect was present by
interleaving independent diagnostics with the Stark-driven
spectra and removing defect-present data in postprocessing.
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