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Abstract: A polarimetric radar method to estimate mean shapes of ice hydrometeors was applied
to several snowfall and ice cloud events observed by operational and research weather radars.
The hydrometeor shape information is described in terms of their aspect ratios, », which represent
the ratio of particle minor and major dimensions. The method is based on the relations between
depolarization ratio (DR) estimates and aspect ratios. DR values, which are a proxy for circular
depolarization ratio, were reconstructed from radar variables of reflectivity factor, Z,, differential
reflectivity, Zpg, and copolar correlation coefficient py,, which are available from radar systems
operating in either simultaneous or alternate transmutation of horizontally and vertically polarized
signals. DR-r relations were developed for retrieving aspect ratios and their sensitivity to different
assumptions and model uncertainties were discussed. To account for changing particle bulk density,
which is a major contributor to the retrieval uncertainty, an approach is suggested to tune the DR-r
relations using reflectivity-based estimates of characteristic hydrometeor size. The analyzed events
include moderate snowfall observed by an operational S-band weather radar and a precipitating
ice cloud observed by a scanning K,-band cloud radar at an Arctic location. Uncertainties of the
retrievals are discussed.
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1. Introduction

Scanning polarimetric weather radars operating at centimeter-wavelength frequency bands, such
as S (~3 GHz), C (~5 GHz) and X (~10 GHz) bands, have been long used for hydrometeor identification
(HID) retrievals [1-3]. The HID algorithms usually utilize a fuzzy-logic approach and are based
on variables from horizontal and vertical polarization radar measurements such as the equivalent
radar reflectivity factor (hereafter just reflectivity), Z,, differential reflectivity, Zpg, specific differential
phase Kpp, and copolar correlation coefficient, py. As an output, these algorithms prescribe different
dominant hydrometeor types/species for cloud and precipitation particles filling the radar resolution
volume. Typical ice hydrometeor species that are routinely identified using radar measurements
are hail, graupel, aggregated snow, and ice crystals. Quantitative information on ice particle shapes,
however, is not typically provided by the HID algorithms.

Atmospheric ice particles, however, have a great variety of habits and most commonly, they
are of irregular shape [4]. In many practical applications ranging from microphysical and climate
modeling studies [5,6] to snowfall quantitative precipitation estimation (QPE) methods [7], a general
shape type of ice hydrometeors needs to be quantified. Usually, simple oblate spheroidal shape
(for planar type crystals) or prolate spheroidal shape (for columnar type crystals) models are used
for describing irregular ice particle shapes [8]. An aspect ratio defined as the ratio of particle minor
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and major dimensions is a general parameter-characterizing particle shape. While the spheroidal
shape has limitations in describing the hexagonal structure of single pristine ice crystals, it is generally
appropriate for describing a degree of non-sphericity of irregular shape particles which often are a
dominant species.

A remote sensing method for estimating mean aspect ratios for relatively homogeneous horizontal
layers of precipitating ice hydrometeors using direct measurements of circular depolarization or slant
45° linear depolarization ratios (CDR and SLDR, respectively) was suggested and applied to data
taken by scanning millimeter-wavelength frequency (~35 and ~95 GHz) cloud radars [9,10]. CDR and
SLDR measurements unlike a traditional horizontal—Vertical polarization linear depolarization
ratio (LDR)—are not very sensitive to particle wobbling around preferential orientation with major
dimensions in the horizontal plane, so these measurements are suitable for inferring particle shapes.
Standard deviations of particle wobbling are usually smaller than about 30° [11,12]. A similar remote
sensing method was also later applied for fully polarimetric K,-band scanning radar measurements [13].
While this radar did not directly measure CDR, CDR values were reconstructed from linear polarization
basis measurements as in [14]. Radar-based retrievals of particle aspect ratios in these studies agreed
generally well with concurrent in-situ measurements when appropriate particle density assumptions
were made.

Recently [15,16], suggested an approach to reconstruct depolarization ratio (DR) from Zpr and
Phv Observations by radars operating in the simultaneous transmission-simultaneous reception (STSR)
mode, which precludes direct measurements of depolarization. Later, weather radar Zpgr and ppy
measurements were applied to infer aspect ratios of ice cloud hydrometeors assuming the solid
ice hexagonal particles, which are characteristic of single plates or solid columns [12]. Moreover,
depending on particle shapes, observed polarimetric variables also depend on particle bulk density, so
density assumptions are essential for aspect ratio retrievals from depolarization [9] or combined Zpr
and pp, measurements [17]. For the soft spheroidal particle model, the particle bulk density assumption
is, in essence, equivalent to an assumption of the complex dielectric constant of the ice-air mixture
which dry hydrometeors are made of. Without the density assumption, only a polarizability parameter
of the particles can be estimated [17]. The objective of this study was to extend depolarization-based ice
hydrometeor shape retrievals to evaluate the spatial variability of their aspect ratios with approximate
accounting for the effects of changing particle density.

2. Models and Methods

A logarithmic scale proxy of depolarization ratio (DR) obtainable from STSR horizontal (/) and
vertical (v) polarization measurements can be expressed as [15,16]

DR(dB) = 10logio [(Zgr + 1 = 2 Za," ppo)/(Zar + 1+ 2 Z4," pi)] 1)

where Z;, is differential reflectivity in the linear scale (i.e., logarithmic scale Zpr = 10 log10(Z4;).
For STSR measurements, DR depends on the transmitter phase shift between h and v polarized
signals (¢t), which often is not known. It has been shown [16] that this dependence is usually rather
weak. While being only a proxy for cthe ircular depolarization ratio, the DR parameter has important
advantages over real depolarization measurements. It does not depend on propagation phase shift as
true CDR [18]. DR estimates are available in all radar resolution volumes where directly measured
co-polarized signals are reliably measured. The real depolarization measurements, on the other hand,
are only available when weak depolarized echoes are reliably measured, which greatly diminishes radar
coverage for depolarization ratios compared to reflectivity [10]. DR estimates, in essence, combine the
information contained in Zpr and py, for more convenient retrievals of particle aspect ratios.
Modeling the mean particle aspect ratio—DR correspondences—is performed in this study
assuming oblate spheroidal particles in the Rayleigh scattering regime which is generally valid for
atmospheric ice hydrometeors at S-band frequencies. An oblate general habit for snowflakes was
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coefficients in the m-D relations. Figure 2 illustrates corresponding sensitivities.
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As seen from Figure 2, changes in the horizontal-vertical polarization phase shift on transmission
typicdy SRS% {1 BB sty AR AREEY iH‘th‘é“?—ﬂl@FHQHBQEY?G}%@PQE&EW&%QIE% ifh gn
transmission typically cause a rather modest variability in the r-DR relations. For a given DR values,
changes in @t (curve 4 vs. curve 1 in Figure 2) from 90° (i.e., circular polarized signals are transmitted)
to 0° (i.e., 45° slant linearly polarized signals are transmitted) result in the variability of particle aspect
ratios of an order of only few hundredths. This is, in part, due to the fact that DR remains a good
proxy for CDR corrected for propagation phase shift even though ¢ can change rather significantly
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more robust compared to potential differential reflectivity-based aspect ratio estimates.
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the ground for a 40 km range). An exception for this general tendency is a region at about 50 km to
the south-east from the radar site, where locally higher values of Zpr and lower py, values result in
higher DR, which indicates rather non-spherical particles. Radiosonde sounding from the location in
Chanhassen, MN (not shown) indicated that during radar measurements, temperatures at altitudes of
about 3.2 km above ground were approximately —15 °C, which corresponds to a temperature regime
favorable for the growth of dendritic crystals with low aspect ratios [28]. This might explain the
transition between dominant shapes happening at radar ranges of around 40-50 km. Measurements at
longer ranges, however, should be treated with some caution, as lower signal-to-noise ratios (SNRs)
can cause biases in observed polarimetric variables [29]. To avoid very low SNRs, data points were
considered only if reflectivities were greater than —10 dBZ.

Another example of KDLH radar measurements and corresponding particle characteristic size
and aspect ratio retrievals is shown in Figure 6. The snowfall event depicted in Figure 6 was observed
on 20 February 2014. It can be seen that for this event, very non-spherical particles were present in the
entire area of the north-eastern quadrant (i.e., between azimuthal directions of 0° and 90°) and also at
close distances in the south-west direction. High values DR and Zpgr and low py, values observed
in these areas are indicative of dendritic-type pristine crystals being a dominant hydrometeor habit.
According to the radiosonde soundings, the —15 °C level for this measurement time was at about 4 km
above the ground (i.e., at approximately a 50 km range from the radar site). Note also that reflectivities
across these areas vary very significantly, which results in a large dynamic range of particle median
volume size estimates (e.g., from about 1 mm to approximately 4 mm). Almost everywhere else in the
depicted scan particles are more spherical with aspect ratios of about 0.4-0.9 which are characteristic
of irregular hydrometeor shapes. As for the event shown in Figure 5, the particle mean aspect ratio
data in Figure 6 at further radar ranges (and thus at higher altitudes) are near 0.9-1.0 and rather noisy,
which might be, in part, due to low SNR values and the influence of particle tumbling.

Potential Zpg biases will cause uncertainties in DR calculations and thus influence aspect ratio
retrievals. Modeling with the DR Estimator (1) indicates that for a 0.1 dB Zppg bias and typical values of
Pio (e.g., 0.85 < ppy, < 0.995), errors in DR estimates are generally less than about 0.5 dB for smaller Zpg
values (e.g., 0.2 dB < Zpr < 1.5 dB). For larger Zpr values, these errors generally diminish. The data
in Figure 1 suggest that such DR errors can correspond to an additional uncertainty of aspect ratio
retrievals of the order of several hundredths.

3.2. An Example of the Retrievals Using a Research Cloud Radar

Millimeter wavelength cloud radars operating at frequencies of around 35 GHz and 95 GHz have
been also used for snowfall measurements at shorter ranges [30]. Recently, mean aspect ratios of ice
hydrometeors observed at a given altitude were retrieved using K,-band (~35 GHz) radar polarimetric
measurements at the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM)
Program mobile facility in Oliktok Point (70.495° N, 149.886° W), Alaska [13]. The Scanning ARM
Cloud Radar (SACR) used for these retrievals transmits horizontally and vertically polarized signals
alternatively, which alleviates cross-coupling effects in the differential reflectivity data, and measures
horizontal-vertical polarization linear depolarization ratio (LDR) directly, thus allowing estimations of
DR, which, in this case, is the proxy of true CDR without unwanted effects of the propagation phase
shift [14].
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aspect ratios near the radar location but it is rather limited for the purpose of evaluating larger scale
spatial variability of hydrometeor shapes as a function of the azimuthal direction and the distance
from the radar site. The plan position indicator (PPI) azimuthal scans at low elevation angles, which
are similar to those performed by the NEXRAD radars, are convenient for this purpose. In addition to
the RHI scans, the SACR also regularly performs such PPI scans [31], which are used here to illustrate
the aspect ratio retrievals for larger spatial regions using the same approach as that described above for
applications with operational weather radars. It should be noted, however, that cloud radars typically
have smaller maximum observational ranges but provide better spatial and angular measurement
resolutions compared to operational WSR-88D observations.

An example of SACR PPI measurements and corresponding retrievals for a precipitating ice cloud
observed on 21 October 2016 at around 00:52 UTC is shown in Figure 7. The color scales of radar
variables and corresponding microphysical retrievals are the same as for the WSR-88D data shown
in Figures 5 and 6, though the SACR maximum range is significantly smaller. The SACR PPI radar
elevation angle for the data in Figure 7 was 5°. There is an obvious partial radar beam blockage from
local structures at a relatively narrow angle intervals centered at azimuths of about 152°, 165°, and
341°. This blockage is most pronouncedly seen in reflectivity measurements (Figure 7a). There is also
an arc of ground clutter which is best seen in depolarization data (Figure 7e), as DR is also a good tool
for clutter identification. The estimates of particle aspect ratios and characteristic sizes for the regions
of partial beam blockage and clutter should be ignored.

Estimates of the median volume particle size (Figure 7d) were performed using the Z.-D,;;, relation
obtained specifically for the K,-band frequencies from the large in situ microphysical dataset [26]. It was
assumed that the particle size distribution for the event time shown in Figure 7 had an exponential
form as it was indicated by closely collocated in time in situ measurements using Video Ice Particle
Sampler (VIPS), which was launched on a tethered balloon near the radar site [13]. The VIPS instrument
provides quantitative information on particle size distributions and shapes. As seen from Figure 7d,
estimated Dy, values were generally smaller than about 1.5 mm in the larger area of observations and
around 0.8-1 mm in the vicinity of the radar site. This agrees well with VIPS estimates of D, ~ 0.08
mm which were obtained near the radar site at a balloon altitude of about 0.5 km at around the time of
radar observations shown in Figure 7.

The particle mean aspect ratios retrieved from the SACR measurements are shown in Figure 7f.
The retrievals were performed based on depolarization ratio estimates using the approach discussed
in Section 2. It can be seen that there was a pronounced change in aspect ratios in the region of
observations. More spherical particles were present in the north-western half of the observational area
while hydrometeors with larger degree of non-sphericity (i.e., smaller aspect ratios) were present in
the south-western half. Aspect ratio values in the vicinity of the radar site were around 0.4-0.5, which
is in good agreement with estimates of about 0.5 from in-situ VIPS measurements at around the time of
observation [13]. As is the case with the most radar-based measurements, the retrievals are generally
representative for the larger particles as power radar parameters (in the scattering Rayleigh regime) are
approximately proportional to the fourth moment of the particle size distribution (for typical values of
exponent b = 2 in Equation (3)). It should be mentioned, however, that the VIPS data indicated that
there was no significant dependence of aspect ratios of individual particles on their size, as observed
from in-situ measurements [13].

Maximum observed reflectivities (Figure 7a) were approximately 5 dBZ and estimated D, values
were generally less than 1.5 mm. At these reflectivity levels, non-Rayleigh scattering effects at K,-band
are expected to be rather small [32]. For larger particle populations, however, these effects could
be substantial and need to be accounted for in the retrievals. Especially important accounting for
non-Rayleigh effects would be for the retrievals at W-band (~94 GHz) cloud radar frequencies [6].
Signal attenuation at W-band frequencies, however, is usually much more severe compared to lower
frequencies [33], so sensible retrievals often could be available only for closer ranges.
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retrieval uncertainties could be higher as the effects of particle orientation/tumbling on DR values
become stronger.

4. Conclusions

Quantitative information about general shapes of atmospheric ice particles is important for many
practical applications such as the development of novel polarimetric snowfall QPE methods and
advanced modeling of microphysical processes involving evolution of ice hydrometeors. Depolarization
ratio (DR) estimates, which are less susceptible to particle orientations compared to other polarimetric
variables such as differential reflectivity, can be readily deduced from polarimetric radar variables
measured directly. These estimates are a convenient tool for estimating an average particle shape in
terms of the mean aspect ratio, , which represents the ratio of particle minor and major dimensions.

In addition to the particle shape, DR values strongly depend on particle bulk density; thus, density
information is essential for meaningful aspect ratio retrievals. As in situ microphysical studies show,
the mass of individual ice particles, m, is strongly related to their size, D. Knowing a characteristic
hydrometeor size (e.g., median volume size, D;;,) representing the whole particle size distribution
allows for implicit accounting for the density information in the radar-based aspect ratio retrievals.
DR-r relations used in the retrievals were derived as a function of D,,;,. The mass-size (m-D) relations,
which are representative for unrimed and low-to-moderately rimed atmospheric ice particles, were
used in these derivations.

Independent information on particle characteristic sizes (e.g., from other remote or direct sensors)
could enhance aspect ratio retrievals. Due to the absence of such independent information in this study;,
the Dy, estimates used in the aspect ratio retrievals were obtained from the reflectivity measurements.
These estimates are based on a relatively high correlation between D, and Z,, which was demonstrated
using a wide range of in situ observations in precipitating ice clouds [26].

The suggested polarimetric radar-based approach for retrievals of atmospheric ice particle aspect
ratios was applied to low radar elevation angle (~4.5°) azimuthal measurements from an operational
WSR-88D unit located near Duluth, MN and a research scanning cloud radar deployed in Oliktok
Point, AK. WSR-88D measurement examples during two different moderate snowfall events indicated
a general change in particle habits from rather spherical hydrometeors with aspect ratios of around
0.6 and larger to more non-spherical particles with aspect ratios less than about 0.4 at radar ranges
that approximately corresponded to the altitudes of the —15 °C isotherm, which is the temperature
favorable to the dendritic ice growth. Some variability in the radar ranges (and hence altitudes above
the ground) of this general particle aspect ratio transition, however, was also observed.

The K;-band cloud radar observations in a precipitating ice cloud at Oliktok Point indicated a
range gradient of particle dominant shapes. The retrieved aspect ratios near the radar site were around
0.4, which is in good agreement with in-situ sampling results. Overall, it can be concluded that in
spite of uncertainties in the aspect ratio retrievals, which could be as high as 0.2 or so, the DR-based
approach of estimating particle shapes is rather robust and can provide quantitative information on
dominant ice hydrometeor shapes.
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