

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATH. DATA SCI. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 2, No. 1, pp. 189--215

Randomized Algorithms for Low-Rank Tensor Decompositions in the Tucker
Format\ast

Rachel Minster\dagger , Arvind K. Saibaba\dagger , and Misha E. Kilmer\ddagger

Abstract. Many applications in data science and scientific computing involve large-scale datasets that are ex-
pensive to store and manipulate. However, these datasets possess inherent multidimensional struc-
ture that can be exploited to compress and store the dataset in an appropriate tensor format. In
recent years, randomized matrix methods have been used to efficiently and accurately compute
low-rank matrix decompositions. Motivated by this success, we develop randomized algorithms for
tensor decompositions in the Tucker representation. Specifically, we present randomized versions of
two well-known compression algorithms, namely, HOSVD and STHOSVD, and a detailed probabilis-
tic analysis of the error in using both algorithms. We also develop variants of these algorithms that
tackle specific challenges posed by large-scale datasets. The first variant adaptively finds a low-rank
representation satisfying a given tolerance, and it is beneficial when the target rank is not known in
advance. The second variant preserves the structure of the original tensor and is beneficial for large
sparse tensors that are difficult to load in memory. We consider several different datasets for our
numerical experiments: synthetic test tensors and realistic applications such as the compression of
facial image samples in the Olivetti database and word counts in the Enron email dataset.

Key words. randomized algorithms, tensors, Tucker decompositions, low-rank, multilinear algebra, structure-
preserving

AMS subject classifications. 65F99, 15A69, 15A18, 15B52, 68W20, 65F15

DOI. 10.1137/19M1261043

1. Introduction. Tensors, or multiway arrays, appear in a wide range of applications such
as signal processing; neuroscientific applications such as electroencephalography; data mining;
seismic data processing; machine learning applications such as facial recognition, handwriting
digit classification, and latent semantic indexing; imaging; astronomy; and uncertainty quan-
tification. For example, a database of gray-scale images constitutes a third order array when
each image is stored as a matrix, while a numerical simulation of a system of partial differen-
tial equations (PDEs) in three-dimensional space when tracking several parameters over time
yields a five-dimensional dataset. Often, these datasets are treated as matrices rather than as
tensors, suggesting that additional structure that could be leveraged for gaining insight and
lowering computational cost is often underutilized and undiscovered.

A key step in processing and studying these datasets involves a compression step either

\ast Received by the editors May 17, 2019; accepted for publication (in revised form) December 5, 2019; published
electronically February 25, 2020.

https://doi.org/10.1137/19M1261043
Funding: The third author was supported by the National Science Foundation through the grant DMS-1821148.

The first and second authors were supported by the National Science Foundation through the grant DMS-1821149.
\dagger Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (rlminste@ncsu.edu,

asaibab@ncsu.edu).
\ddagger Department of Mathematics, Tufts University, Medford, MA 02155 (misha.kilmer@tufts.edu).

189

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1261043
mailto:rlminste@ncsu.edu
mailto:asaibab@ncsu.edu
mailto:misha.kilmer@tufts.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

190 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

to find an economical representation in memory, or to find principal directions of variability.
While working with tensors there are many possible formats one may consider, and each
format is equipped with a different notion of compression and rank. Examples of tensor
formats include CANDECOMP/PARAFAC (CP), Tucker, hierarchical Tucker, and tensor
train, all of which have their respective benefits (see the surveys [27, 18, 9, 10]). The CP
format which represents a tensor as a sum of rank-1 outer products gives a compact and
unique (under certain conditions) representation. Tucker generally finds a better fit for data
by estimating the subspace of each mode, while hierarchical Tucker and tensor train are useful
for very high-dimensional tensors, i.e., tensors with a large number of modes, since the cost
of storing the tensor scales exponentially with the dimension of the tensor [18]. In this paper,
we focus on the Tucker representation, which is known to have good compression properties.
Given a multilinear rank r, the Tucker form gives a representation of a tensor as a product of a
core tensor and factor matrices typically having orthonormal columns. Popular algorithms for
compression in the Tucker format can be found in [11, 40, 12], and a survey of approximation
techniques can be found in [18]. Using these algorithms, high compression ratios can be
achieved if the target rank for the Tucker approximation is small compared to the original
dimensions. Even if the data is not highly compressible, representing it in the Tucker format
can give insight into its principal directions [41].

In recent years, randomized matrix algorithms have gained popularity for developing low-
rank matrix approximations (see the reviews [22, 29, 14]). These algorithms are easy to
implement, are computationally efficient for a wide range of matrices (e.g., sparse matrices,
matrices that can be accessed only via matrix-vector products, and dense matrices that are
difficult to load in memory), and have accuracy comparable with nonrandomized algorithms.
There is also well-developed error analysis applicable to several classes of random matrices
for randomized algorithms. Even more recently, randomized algorithms have been developed
for tensor decompositions (see below for a detailed review). Motivated by this success, we
analyze existing randomized tensor algorithms and propose and analyze new randomized
tensor algorithms.

Contributions and contents. In section 2, we first review the necessary background infor-
mation on tensors and randomized algorithms. Then, in section 3, we present analyses of
randomized versions of higher order SVD (HOSVD) and sequentially truncated higher order
SVD (STHOSVD) (proposed in [46] and [7], respectively). Our contributions here include the
probabilistic analysis of the randomized versions of these algorithms, as well as analysis of
the associated computational costs. In section 4 we present adaptive randomized algorithms
to compute low-rank tensor decompositions for use in applications where the target rank is
not known beforehand. In section 5, we present a new randomized compression algorithm for
large tensors, which produces a low-rank decomposition whose core tensor has entries taken
directly from the tensor of interest. In this sense, the core tensor preserves the structure
(e.g., sparsity, nonnegativity) of the original tensor. For sparse tensors, our algorithm has
the added benefit that the intermediate and final decompositions can be stored efficiently,
thus enabling the computation of low-rank tensor decompositions of large, sparse tensors. We
also provide a probabilistic error analysis of this algorithm. Finally, in section 6, we test the
performance of all algorithms on several synthetic tensors and real-world datasets and discuss
the performance of the proposed bounds.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 191

Related work. Several randomized algorithms have been proposed for computing low-rank
tensor decompositions, e.g., Tucker format [7, 45, 28, 31, 39, 17, 46], CP format [17, 4, 5, 42],
t-product [45], tensor networks [3], and tensor train format [7, 24]. Our work is most similar
to [7, 17, 46]. The algorithm for randomized HOSVD is presented in [46], and the correspond-
ing analysis is presented in [17] (both unpublished manuscripts). Randomized and adaptive
versions of the STHOSVD were proposed and analyzed in [7], but our manuscript provides
probabilistic error analysis for a different distribution of random matrices (see section 3 for a
justification of our choice). To the best of our knowledge, our proposed algorithm for produc-
ing structure-preserving tensor decompositions and the corresponding error analysis are novel.
Related to this algorithm is the CUR-type decomposition for tensors proposed in [33, 13]. In
contrast, our algorithm produces decompositions in which the core tensor (rather than the
factor matrices in the aforementioned references) retains entries from the original tensor. This
allows for the decomposition of extremely large sparse tensors as the sparsity is maintained
at each step of the algorithm.

2. Background. In this section, we introduce the necessary background information for
working with tensors and review the standard compression algorithms. We also discuss the
optimal approximation of a tensor for comparison purposes. Finally, we review the relevant
background for randomized matrix algorithms---specifically the randomized SVD.

2.1. Notation and preliminaries. We denote a d-mode tensor \bfscrX \in \BbbR I1\times \cdot \cdot \cdot \times Id with entries

xi1,...,id , 1 \leq ij \leq Ij , j = 1, . . . , d.

A tensor can be ``unfolded"" into a matrix by reordering the elements, and this process is
known as matricization. There are d different unfoldings for a d-mode tensor. Each mode-j
unfolding arranges the resulting matrix such that the columns are the mode-j fibers of the
tensor. The mode-j unfolding is denoted as X(j) \in \BbbR Ij\times (

\prod
k \not =j Ik) for j = 1, . . . , d.

Tensor product. The tensor product (or mode product) is a fundamental operation for
multiplying a tensor by a matrix. Given a matrix A \in \BbbR K\times Ij , the mode-j product of a tensor
\bfscrX with A is denoted \bfscrY = \bfscrX \times j A and has dimension \bfscrY \in \BbbR I1\times ...Ij - 1\times K\times Ij+1\times \cdot \cdot \cdot \times Id . More
specifically, the product can be expressed in terms of the entries of the tensor as

\bfscrY i1,...,ij - 1,k,ij+1,...,id =

Ij\sum
ij=1

xi1,...,idakij , 1 \leq k \leq K, j = 1, . . . , d.

The tensor product can also be expressed as the product of two matrices. That is, we can write
\bfscrY (j) = AX(j) for j = 1, . . . , d. Note that tensor products across distinct modes commute, and
multiplying a tensor \bfscrX with d matrices Aj , j = 1, . . . , d, across modes 1, . . . , d, respectively,

is written as \bfscrX \times d
j=1Aj . The following lemma will be useful in our analysis.

Lemma 2.1. Let \bfscrX \in \BbbR I1\times \cdot \cdot \cdot \times Id and let \Pi j \in \BbbR Ij\times Ij be a sequence of d orthogonal projec-
tors. Then for j = 1, 2, . . . , d,

\| \bfscrX - \bfscrX
d

\times
j=1

\Pi j\| 2F =

d\sum
j=1

\| \bfscrX
j - 1

\times
i=1

\Pi i \times j (I - \Pi j)\| 2F \leq
d\sum

j=1

\| \bfscrX - \bfscrX \times j \Pi j\| 2F .

The proof of this lemma can be found in [40, Theorem 5.1].D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

192 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

Tucker representation. The Tucker format of a tensor \bfscrX of rank (r1, . . . , rd) consists of
a core tensor \bfscrG \in \BbbR r1\times \cdot \cdot \cdot \times rd and factor matrices \{ Aj\} dj=1 with each Aj \in \BbbR Ij\times rj such that

\bfscrX = \bfscrG \times d
j=1Aj . We define the desired size of the core tensor, (r1, . . . , rd), as the target rank.

For short, the Tucker representation is written as [\bfscrG ;A1, . . . ,Ad].
Note that storing a tensor in Tucker form is beneficial as it requires less storage than a full

tensor when the rank of the Tucker form is significantly less than the original dimension. For
a d-mode tensor \bfscrX \in \BbbR I\times I\times \cdot \cdot \cdot \times I and target rank (r, r, . . . , r) with r \ll I, the cost of storing
the Tucker form of \bfscrX is \scrO (rd + drI), compared to \scrO (Id) for a full tensor.

Kronecker products. The Kronecker product of two matrices A \in \BbbR m\times n and B \in \BbbR k\times \ell is

A\otimes B =

\left[
a11B a12B \cdot \cdot \cdot a1nB
a21B a22B \cdot \cdot \cdot a2nB
...

...
. . .

...
am1B am2B \cdot \cdot \cdot amnB

\right] \in \BbbR mk\times n\ell .

We also note some properties of Kronecker products that will be useful in our analysis, namely

(A\otimes B)(C\otimes D) = AC\otimes BD, (A\otimes B)\top = A\top \otimes B\top .

Kronecker products are also useful for expressing tensor mode products in terms of matrix-
matrix multiplications. Suppose \bfscrY = \bfscrX \times d

j=1Aj ; then

(2.1) Y(j) = AjX(j)(A
\top
d \otimes A\top

d - 1 \otimes \cdot \cdot \cdot \otimes A\top
j+1 \otimes A\top

j - 1 \otimes \cdot \cdot \cdot \otimes A\top
1).

2.2. HOSVD/STHOSVD. The higher order SVD (HOSVD) and sequentially truncated
higher order SVD (STHOSVD) are two popular algorithms for computing low-rank tensor
decompositions in the Tucker format. Note that, for these algorithms, the factor matrices Aj

all have orthonormal columns.
HOSVD. In the HOSVD algorithm, each mode is handled separately. The factor matrix

Aj is formed from the first rj left singular vectors of X(j). Once all factor matrices Aj are

found, the core tensor is formed by \bfscrG = \bfscrX \times d
j=1A

\top
j . The error in approximating \bfscrX using the

HOSVD is bounded by the sum of the error in each mode, as shown in the following theorem,
taken from [40, Theorem 5.1].

Theorem 2.2. Let \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad] be the rank-r approximation to d-mode tensor \bfscrX \in
\BbbR I1\times \cdot \cdot \cdot \times Id using the HOSVD algorithm. Then

\| \bfscrX - \widehat \bfscrX \| 2F \leq d\sum
j=1

\| \bfscrX \times j (I - AjA
\top
j)\| 2F =

d\sum
j=1

Ij\sum
i=rj+1

\sigma 2
i (X(j)).

This theorem says that the error in the rank-r approximation of the tensor \bfscrX computed
using the HOSVD is the sum of squares of the discarded singular values from each mode
unfolding. To simplify the upper bound, we introduce the notation

(2.2) \Delta 2
j (\bfscrX) \equiv

Ij\sum
i=rj+1

\sigma 2
i (X(j)), j = 1, . . . , d.

With this notation, the error in the HOSVD satisfies \| \bfscrX - \widehat \bfscrX \| F \leq (
\sum d

j=1\Delta
2
j (\bfscrX))1/2.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 193

STHOSVD. An alternative to the HOSVD is the sequentially truncated HOSVD
(STHOSVD) algorithm which also produces a compressed representation in the Tucker format.
STHOSVD processes the modes sequentially, which makes the order in which the modes are
processed important since we may obtain different approximations by using different orders.

At each stage, the core tensor \bfscrG is unfolded, and the factor matrix Aj is formed by taking
the first rj left singular vectors. The new core tensor \bfscrG (j) is obtained by projecting the
previous core tensor onto the subspace spanned by the columns of Aj . We then have a jth

partial approximation, defined as \widehat \bfscrX (j)
= \bfscrG (j)\times j

i=1Ai.
The approximation error in this case is the sum of errors in the successive approximations

and has the same upper bound as that of HOSVD. This is shown in the following theorem,
which assumes that the processing order is \rho = [1, 2, . . . , d]. If a different processing order is
taken, the upper bound will remain the same, so this assumption is made for ease of notation.
The proof of this theorem can be found in [40, Theorem 6.5].

Theorem 2.3. Let \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad] be the rank-r STHOSVD approximation to d-mode
tensor \bfscrX with processing order \rho = [1, 2, . . . , d]. Then

\| \bfscrX - \widehat \bfscrX \| 2F =

d\sum
j=1

\| \widehat \bfscrX (j - 1)
 - \widehat \bfscrX (j)

\| 2F \leq
d\sum

j=1

\| \bfscrX \times j (I - AjA
\top
j)\| 2F =

d\sum
j=1

\Delta 2
j (X(j)).

The computational cost of the STHOSVD is lower than that of the HOSVD, which was
established in [40] but is also reviewed in subsection 3.3. Although the error in the HOSVD
and the error in the STHOSVD satisfy the same upper bound, it is not clear which algorithm
has a lower error. There is strong numerical evidence to suggest that STHOSVD typically
has a lower error, although counterexamples to this claim have been found [40]. For these
reasons, STHOSVD is preferable to HOSVD since it has a lower cost and the same worst case
error bound. A downside to STHOSVD is that the processing order \rho has to be determined
in advance; some heuristics for this choice are given in [40].

2.3. Best approximation. We would like to find an optimal rank-r approximation of a
given tensor \bfscrX , which we will denote as \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}. Let \scrS = \{ \bfscrY \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id : rank(Y(j)) \leq
rj , j = 1, . . . , d\} . Then \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t} is an optimal tensor defined as satisfying the condition

min
\bfscrY \in \scrS
\| \bfscrX - \bfscrY \| F = \| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

The Eckart--Young theorem [16] states that an optimal rank-r approximation to a matrix A
can be constructed using the SVD truncated to rank r. Unfortunately, an analogue of this
result for Tucker forms does not exist in higher dimensions [26]. The existence of \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t} is
guaranteed by [21, Theorem 10.8]; however, this minimizer is not unique since Tucker repre-
sentations are not unique [27, section 4.3]. In general, computing \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t} requires solving an
optimization problem that has no closed-form solution. In [12], the higher order orthogonal it-
eration (HOOI) was proposed to compute the ``best"" approximation by generating a sequence
of iterates by repeatedly cycling through the modes sequentially. Because the HOOI algo-
rithm requires many iterations with the tensor \bfscrX , its implementation for large-scale tensors isD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

194 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

challenging because of the overwhelming computational cost. Although neither the HOSVD
nor the STHOSVD produces an optimal rank-r approximation, they do satisfy the inequality

(2.3) \| \bfscrX - \widehat \bfscrX \| F \leq \surd d\| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

The proofs are available for the HOSVD (Theorem 10.3) and STHOSVD (Theorem 10.5)
in [21]. The proof requires the observation that

(2.4) \Delta j(\bfscrX) \leq \| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F , j = 1, . . . , d.

We highlight this inequality since it will be important for our subsequent analysis. The
inequality (2.3) suggests that the outputs of the HOSVD and the STHOSVD are accurate for
low dimensions and can be employed in three different ways: as approximations to \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}, as
starting guesses to the HOOI algorithm, or to fit CP models.

2.4. Randomized SVD. It is well known that computing the full SVD of a matrix costs
\scrO (mn2), assuming m \geq n. When the dimensions of a matrix X \in \BbbR m\times n are very large,
the computational cost of a full SVD may be prohibitively expensive. Randomized SVD,
popularized by [22], is a computationally efficient way to compute a rank-r approximation of
X. Assuming that X is approximately low-rank or has singular values that decay rapidly, the
randomized SVD delivers a good low-rank representation of X. Compared to the full SVD,
the randomized SVD is much more computationally efficient across a wide range of matrices.

The randomized SVD algorithm has two distinct stages. In the first stage, or the range
finding stage, we multiply a matrix X by a random matrix (we choose this to be Gaussian in
this paper) in order to have random linear combinations of the columns of X. We then take a
thin QR factorization to obtain a matrix Q that gives a good approximation of the range of X.
This allows us to express X \approx QQ\top X. Then, in the second stage, or the postprocessing stage,
we compute a thin SVD of the much smaller matrix Q\top X = \widehat U\bfB

\widehat \Sigma \widehat V\top , truncate down to the
target rank r, and compute \widehat U = Q\widehat UB to obtain the low-rank approximation \widehat X = \widehat U\widehat \Sigma \widehat V\top .
Algorithm 2.1 summarizes the process.

Algorithm 2.1. [\widehat U, \widehat \Sigma , \widehat V] = RandSVD(X, r, p,\Omega).

Input: matrix X \in \BbbR m\times n, target rank r,
oversampling parameter p \geq 0 such that r + p \leq min\{ m,n\} ,
Gaussian random matrix \Omega \in \BbbR n\times (r+p)

Output: \widehat U \in \BbbR m\times r, \widehat \Sigma \in \BbbR r\times r, and \widehat V \in \BbbR n\times r such that X \approx \widehat U\widehat \Sigma \widehat V\top

1: Multiply Y \leftarrow X\Omega
2: Thin QR factorization Y = QR
3: Form B\leftarrow Q\top X
4: Calculate thin SVD B = \widehat U\bfB

\widehat \Sigma \widehat V\top

5: Form \widehat U\leftarrow Q\widehat U\bfB (: , 1 : r)
6: Compress \widehat \Sigma \leftarrow \widehat \Sigma (1 : r, 1 : r), and \widehat V\leftarrow \widehat V(: , 1 : r)

The computational cost of the algorithm is

Cost = 2(r + p)\scrO (nnz(X)) +\scrO (r2(m+ n)),D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 195

where nnz denotes the number of nonzeros of X.
An error bound for Algorithm 2.1 in the Frobenius norm is presented below, and we will

use this result frequently in our analysis. This theorem can be found in [45, Theorem 3].
However, the proof appeared to have a couple of errors, which were easy to fix. We provide
the proof in section SM1.

Theorem 2.4. Let X \in \BbbR m\times n, and let \Omega \in \BbbR n\times (r+p) be a Gaussian random matrix. Suppose
Q is obtained from Algorithm 2.1 with inputs target rank r \leq rank(X) and oversampling
parameter p \geq 2 such that r + p \leq min\{ m,n\} , and let Br be the rank-r truncated SVD of
Q\top X. Then, the error in expectation satisfies

\BbbE \bfOmega \| X - QQ\top X\| 2F \leq \BbbE \bfOmega \| X - QBr\| 2F \leq
\biggl(
1 +

r

p - 1

\biggr) \mathrm{m}\mathrm{i}\mathrm{n}\{ m,n\} \sum
j=r+1

\sigma 2
j (X).

Remark 1. We will use two slightly different formulations of this theorem in our later
results. Instead of \| X - QBr\| 2F , we will use \| X - \widehat U\widehat U\top X\| 2F . It is straightforward to show
the equivalence between the two forms; see [34, section 5.3] for the explicit details. We will
also use the following result, which uses H\"older's inequality [25, Theorem 23.10]:

(2.5) \BbbE \bfOmega \| X - QQ\top \widehat X\| F \leq \sqrt{} 1 +
r

p - 1

\left(\mathrm{m}\mathrm{i}\mathrm{n}\{ m,n\} \sum
j=r+1

\sigma 2
j (X)

\right) 1/2

.

3. Randomized HOSVD/STHOSVD. In this section, we review randomized algorithms
that are modified versions of the HOSVD and STHOSVD. We also develop a rigorous error
analysis and compare the two algorithms in terms of computational cost.

3.1. Algorithms. To obtain the randomized version of HOSVD, first proposed in [46], a
full SVD of each mode unfolding is replaced with a randomized SVD of each mode unfolding
to construct the factor matrix. The procedure to compute the core tensor remains unchanged.
This is reflected in Algorithm 3.1, and we call this the R-HOSVD algorithm. The randomized
version of STHOSVD is obtained in a similar way; at each step, the SVD of the unfolded
core tensor is replaced with a randomized SVD. This is shown in Algorithm 3.2 (we call
this R-STHOSVD) and is similar to the algorithm proposed in [7]. We briefly comment on
the choice of the random matrices \{ \Omega j\} dj=1. The R-HOSVD proposed in [46] uses standard
Gaussian random matrices, which we also adopt in this paper. The authors in [7] advocate
for \Omega j constructed as a Khatri--Rao product of Gaussian random matrices, which is less
memory intensive compared to standard Gaussian random matrices. A recent article [37] also
recommends the sparse Rademacher and scrambled subsampled randomized Fourier transform
as appropriate choices for the random matrices. While the standard Gaussian random matrices
may be criticized for large storage costs, we note that these matrices need not be stored
explicitly and can be generated on the fly, either columnwise or in appropriately sized blocks.

3.2. Error analysis. In the results below, we assume that the matrices \{ \Omega j\} dj=1 are stan-
dard Gaussian random matrices of appropriate sizes. Here, we provide error bounds in expec-
tation, but we can extend this analysis to develop concentration results that give insight intoD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

196 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

Algorithm 3.1. Randomized HOSVD.

Input: d-mode tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id , target rank vector r \in \BbbN d,
oversampling parameter p \geq 0 satisfying (3.1)

Output: \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad]
1: for j = 1 : d do
2: Draw random Gaussian matrix \Omega j \in \BbbR

\prod
i \not =j Ii\times (rj+p)

3: [\widehat U, \widehat \Sigma , \widehat V] = RandSVD(X(j), rj , p,\Omega j)

4: Set Aj \leftarrow \widehat U
5: end for
6: Form \bfscrG = \bfscrX \times d

j=1A
\top
j

Algorithm 3.2. Randomized STHOSVD.

Input: d-mode tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id , processing order \rho , target rank vector r \in \BbbN d,
oversampling parameter p \geq 0 satisfying (3.5)

Output: \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad]
1: Set \bfscrG = \bfscrX
2: for j = 1 : d do
3: Draw random Gaussian matrix \Omega \rho j \in \BbbR zj\times (r\rho j+p), where zj is as defined in (3.4)

4: [\widehat U, \widehat \Sigma , \widehat V] = RandSVD(G(\rho j), r\rho j , p,\Omega \rho j)

5: Set A\rho j \leftarrow \widehat U
6: Update G(\rho j) \leftarrow \widehat \Sigma \widehat V\top \{ Note: overwriting G(\rho j) overwrites \bfscrG \} .
7: end for
8: \bfscrG \leftarrow G(\rho d), in tensor form.

the tail bounds. These can be obtained by combining our analysis with the results from, e.g.,
[19, Theorem 5.8].

Theorem 3.1 (randomized HOSVD). Let \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad] be the output of Algo-
rithm 3.1 with inputs target rank r = (r1, r2, . . . , rd) satisfying rj \leq rank(X(j)) for j = 1, . . . , d
and oversampling parameter p \geq 2 satisfying

(3.1) rj + p \leq min\{ Ij ,
\prod
i \not =j

Ii\} , j = 1, . . . , d.

Then, the expected error in the approximation satisfies

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq

\left(d\sum
j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX)

\right) 1/2

(3.2)

\leq

\Biggl(
d+

\sum d
j=1 rj

p - 1

\Biggr) 1/2

\| \bfscrX - \widehat \bfscrX opt\| F .(3.3)

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 197

Proof. Using Lemma 2.1, we can write

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| 2F \leq \BbbE \{ \bfOmega k\} dk=1

d\sum
j=1

\| \bfscrX \times j (I - AjA
\top
j)\| 2F =

d\sum
j=1

\BbbE \bfOmega j\| \bfscrX \times j (I - AjA
\top
j)\| 2F ,

where the equality comes from linearity of expectations and the independence of \Omega j for each
mode j. We can unfold each term in the summation as \| \bfscrX \times j (I - AjA

\top
j)\| 2F = \| (I -

AjA
\top
j)X(j)\| 2F . Then, by applying Theorem 2.4, we can bound the expected value of the

squared error in each mode to obtain

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| 2F \leq d\sum

j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX).

Finally, H\"older's inequality gives

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq \Bigl(\BbbE \{ \bfOmega k\} dk=1

\| \bfscrX - \widehat \bfscrX \| 2F\Bigr) 1/2 \leq
\left(d\sum

j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX)

\right) 1/2

.

For the second inequality, recall that \Delta 2
j (\bfscrX) \leq \| \bfscrX - \^\bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| 2F from (2.4). Thus, combined

with the previous inequality, we have

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq \Biggl(d+ \sum d

j=1 rj

p - 1

\Biggr) 1/2

\| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

To compare this result to the approximation error obtained using the HOSVD algorithm,
we consider a few special cases. Let r = max1\leq j\leq d rj . Then, if p = r + 1, these bounds take
the form

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq \surd 2\| \bfscrX - \widehat \bfscrX \mathrm{H}\mathrm{O}\mathrm{S}\mathrm{V}\mathrm{D}\| F \leq

\surd
2d\| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

Similarly, if we choose p = \lceil r\epsilon \rceil + 1 for some \epsilon > 0, the error satisfies

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq \surd 1 + \epsilon \| \bfscrX - \widehat \bfscrX \mathrm{H}\mathrm{O}\mathrm{S}\mathrm{V}\mathrm{D}\| F \leq

\sqrt{}
d(1 + \epsilon)\| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

This shows that the application of a randomized SVD in each mode of the tensor does not
seriously deteriorate the accuracy compared to using an SVD. Note that the computational
costs of these choices are higher.

Now consider the randomized STHOSVD approximation. For the probabilistic error analy-
sis, it is important to note that at each intermediate step, the partially truncated core tensor
is a random tensor. This is in contrast to the R-HOSVD, where we only needed to account
for \Omega j for each mode because the operations are independent across the modes.

For this theorem, we use the same notation introduced in subsection 2.2 for the STHOSVD,
in that the partially truncated core tensor at step j is \bfscrG (j) = \bfscrX \times j

i=1A
\top
i , giving a partial

approximation \widehat \bfscrX (j)
= \bfscrG (j)\times j

i=1Ai. For convenience, given a processing order \rho we define

(3.4) zj =

\left(\rho j - 1\prod
i=\rho 1

ri

\right) \left(\rho d\prod
i=\rho j+1

Ii

\right) , j = 1, . . . , d.

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

198 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

Theorem 3.2 (randomized STHOSVD). Let \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad] be the output of Al-

gorithm 3.2 with inputs target rank r = (r1, r2, . . . , rd) satisfying rj \leq rank(G
(j - 1)
(j)) for

j = 1, . . . , d, processing order \rho , and oversampling parameter p \geq 2 and

(3.5) rj + p \leq min\{ Ij , zj\} , j = 1, . . . , d.

Then, the approximation error in expectation satisfies

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq

\left(d\sum
j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX)

\right) 1/2

(3.6)

\leq

\Biggl(
d+

\sum d
j=1 rj

p - 1

\Biggr) 1/2

\| \bfscrX - \widehat \bfscrX opt\| F .(3.7)

Proof. We first assume that the processing order is \rho = [1, . . . , d] and then consider the
general case. The first equality in Lemma 2.1 and the linearity of expectations together give

(3.8) \BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| 2F =

d\sum
j=1

\BbbE \{ \bfOmega k\} dk=1
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F =

d\sum
j=1

\BbbE \{ \bfOmega k\} jk=1
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F .

We have used the fact that the jth term in the summation does not depend on the ran-

dom matrices \{ \Omega k\} k>j . We first consider \BbbE \{ \bfOmega k\} jk=1
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F . Since all the \Omega k's are

independent, we can write the expectation in an iterated form as

\BbbE \{ \bfOmega k\} jk=1
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F = \BbbE \{ \bfOmega k\} j - 1

k=1

\Bigl\{
\BbbE \bfOmega j\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F
\Bigr\}
.

The jth term, which measures the difference in the sequential iterates, can be expressed as

\| \widehat \bfscrX (j - 1)
 - \widehat \bfscrX (j)

\| 2F = \| \bfscrG (j - 1)
j - 1

\times
i=1

Ai \times j (I - AjA
\top
j)\| 2F .

Now let

Zj \equiv I\otimes \cdot \cdot \cdot \otimes I\underbrace{} \underbrace{}
d - j \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}

\otimes Aj - 1 \otimes \cdot \cdot \cdot \otimes A1.

If we unfold the difference \widehat \bfscrX (j - 1)
 - \widehat \bfscrX (j)

along the jth mode, using (2.1) we have

(3.9)
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| 2F = \| (I - AjA

\top
j)G

(j - 1)
(j) Z\top

j \| 2F

\leq \| (I - AjA
\top
j)G

(j - 1)
(j) \|

2
F .

The inequality comes as Zj has orthonormal columns for every j since the factor matrices Aj

all have orthonormal columns.D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 199

Now, let \Gamma j = G
(j - 1)
(j) = X(j)Zj for simplicity. We take expectations and bound this last

quantity in (3.9) using Theorem 2.4 (keeping \{ \Omega k\} j - 1
k=1 fixed), as

(3.10) \BbbE \bfOmega j\| (I - AjA
\top
j)\Gamma j\| 2F \leq

\biggl(
1 +

rj
p - 1

\biggr) Ij\sum
i=rj+1

\sigma 2
i (\Gamma j).

We recall the definition and properties of Loewner partial ordering [23, section 7.7]. Let
M,N \in \BbbR n\times n be symmetric; M \preceq N means N - M is positive semidefinite. For S \in
\BbbR n\times m, then S\top MS \preceq S\top NS. Furthermore, \lambda i(M) \leq \lambda i(N) for i = 1, . . . , n. Since Zj has
orthonormal columns, ZjZ

\top
j is a projector so that

\Gamma j\Gamma
\top
j = X(j)ZjZ

\top
j X

\top
(j) \preceq X(j)X

\top
(j),

and the singular values of \Gamma j , which are squared eigenvalues of \Gamma j\Gamma
\top
j , satisfy

(3.11)

Ij\sum
i=rj+1

\sigma 2
i (\Gamma j) \leq

Ij\sum
i=rj+1

\sigma 2
i (X(j)) = \Delta 2

j (\bfscrX).

To summarize, (3.8)--(3.11) combined give

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| 2F \leq d\sum

j=1

\BbbE \{ \bfOmega k\} j - 1
k=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX) =
d\sum

j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX).

The equality follows since the tensor\bfscrX is deterministic. Finally, we have by H\"older's inequality
and (2.2) that

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq

\left(d\sum
j=1

\biggl(
1 +

rj
p - 1

\biggr)
\Delta 2

j (\bfscrX)

\right) 1/2

\leq

\Biggl(
d+

\sum d
j=1 rj

p - 1

\Biggr) 1/2

\| \bfscrX - \widehat \bfscrX \mathrm{o}\mathrm{p}\mathrm{t}\| F .

In the general case, when the processing order does not equal \rho = [1, . . . , d], the proof is
similar. We only need to work with the processed order, and we omit the details.

We make several observations regarding Theorem 3.2. First, the upper bound for the
error is the same for the R-STHOSVD as for the R-HOSVD (Theorem 3.1); however, once
again, we note that the performance of the two algorithms may be different. Second, this
result says that the upper bound for R-STHOSVD is independent of the processing order.
This means that while some processing orders may result in more accurate decompositions,
every processing order has the same worst case error bound. Our recommendation is to pick
a processing order that minimizes the computational cost; see subsection 3.3 for details and
Table 4 for numerical results. Third, the discussion following Theorem 3.1 regarding the choice
of the oversampling parameter is applicable to the R-STHOSVD as well.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

200 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

3.3. Computational cost. We discuss the computational costs of the proposed random-
ized algorithms and compare them against the HOSVD and the STHOSVD algorithms. We
make the following assumptions. First, we assume that the tensors are dense and our imple-
mentations take no advantage of their structure. Second, we assume that the target ranks
in each dimension are sufficiently small, i.e., rj \ll Ij , so that we can neglect the compu-
tational cost of the QR factorization and the truncation steps of the RandSVD algorithm.
Third, we assume that the random matrices used in the algorithms are standard Gaussian
random matrices. If other distributions are used, the computational cost may be lower. Fi-
nally, for the STHOSVD and R-STHOSVD algorithms, we assume that the processing order
is \rho = [1, 2, . . . , d].

The computational cost of both HOSVD and STHOSVD was discussed in [40] and is
reproduced in Table 1. In this paper, we also provide an analysis of the computational cost
of R-HOSVD and R-STHOSVD, which is summarized in Table 1. The table includes the
costs for a general tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id with target rank r = (r1, r2, . . . , rd) as well as
for the special case when \bfscrX \in \BbbR I\times I\times \cdot \cdot \cdot \times I with target rank r = (r, r, . . . , r). For ease of
notation, denote the product

\prod j
k=i Ik by Ii:j , and similarly

\prod j
k=i rk = ri:j for 1 \leq i \leq j \leq d.

The dominant costs of each algorithm lie in computing the SVD of the unfoldings (the first
term in each summation) and forming the core tensor (the second term in each summation).
We can see from Table 1 that the savings in randomizing both algorithms is roughly r/I.
Since by assumption r \ll I, the randomized algorithms are expected to be much faster. See
subsection 6.2 for experiments exploring this.

Table 1
Computational cost for the HOSVD, R-HOSVD, STHOSVD, and R-STHOSVD algorithms. The first term

in each expression is the cost of computing an SVD of the mode unfoldings, and the second is the cost of forming
the core tensor.

Algorithm Cost for \bfscrX \in \BbbR I1\times \cdot \cdot \cdot \times Id Cost for \bfscrX \in \BbbR I\times \cdot \cdot \cdot \times I

HOSVD \scrO
\Bigl(\sum d

j=1 IjI1:d +
\sum d

j=1 r1:jIj:d
\Bigr)

\scrO
\Bigl(
dId+1 +

\sum d
j=1 r

jId - j+1
\Bigr)

R-HOSVD \scrO
\Bigl(\sum d

j=1 rjI1:d +
\sum d

j=1 r1:jIj:d
\Bigr)

\scrO
\Bigl(
drId +

\sum d
j=1 r

jId - j+1
\Bigr)

STHOSVD \scrO
\Bigl(\sum d

j=1 Ijr1:j - 1Ij:d +
\sum d

j=1 r1:jIj+1:d

\Bigr)
\scrO

\Bigl(\sum d
j=1 r

j - 1Id - j+2 + rjId - j
\Bigr)

R-STHOSVD \scrO
\Bigl(\sum d

j=1 r1:jIj:d +
\sum d

j=1 r1:jIj+1:d

\Bigr)
\scrO

\Bigl(\sum d
j=1 r

jId - j+1 + rjId - j
\Bigr)

Processing order. The error in the approximation obtained using the R-STHOSVD depends
on the choice of the processing order; see the numerical experiment in subsection 6.2. However,
Theorem 3.2 suggests that the worst case error is independent of the processing mode. For
this reason, we choose a processing order that minimizes the computational cost. Since the
dominant cost at each step j is a randomized SVD with a cost of \scrO (r\rho 1:\rho jI\rho j :\rho d), we can
minimize this cost by choosing to process the modes in decreasing order of sizes; i.e., we
process the largest modes first. Note that this is in contrast to the approach taken by [40]
for the STHOSVD, in that they process in the order of increasing mode sizes to minimize the
cost of the standard SVD at each step.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 201

4. Adaptive randomized tensor decompositions. In the algorithms described in the pre-
vious section, we had to assume prior knowledge of the target rank. This knowledge may
not be available, or may be difficult to estimate, in practice. Given a tensor \bfscrX , it is often
desirable to produce a decomposition \widehat \bfscrX that satisfies

\| \bfscrX - \widehat \bfscrX \| F \leq \varepsilon \| \bfscrX \| F ,

where 0 < \varepsilon < 1 is a user-defined parameter. Note that there may not be a unique tensor\widehat \bfscrX that satisfies this inequality, but it is desirable to find a tensor with a small multirank
that does satisfy this inequality. We first explain the adaptive randomized algorithm to find
a low-rank matrix approximation and then explain how this can be extended to the tensor
case.

Several adaptive randomized range finders for matrices have been proposed in the litera-
ture [22, 44]. Given a matrix X and a tolerance \varepsilon > 0, the goal is to find a matrix Q with
orthonormal columns that satisfies

(4.1) \| X - QQ\top X\| \leq \varepsilon \| X\| .

The number of columns of Q is taken to be the rank of the low-rank approximation. The
adaptive algorithms begin with a small number of columns of the random matrix \Omega to esti-
mate the range Q and then sequentially increase the number of columns of \Omega until the matrix
Q satisfies (4.1). In our paper, we use a version of the adaptive randomized range finding
algorithm first proposed by [32] and subsequently refined in [44, Algorithm 2]. We use [44, Al-
gorithm 2] in our paper and assume that it can be invoked as Q = AdaptRangeFinder(X, \varepsilon , b),
where X is the matrix to be approximated, \varepsilon is the requested relative error tolerance, and b
is a blocking integer to determine how many columns of \Omega to draw at a time.

Adaptive R-HOSVD. We now explain how the adaptive range finder can be used for com-
puting tensor factorizations. For the R-HOSVD, we apply this adaptive matrix algorithm to
each mode unfolding X(j). This gives a factor matrix Aj for each mode j = 1, . . . , d. Given

some tolerance \varepsilon , the approximation error \| \bfscrX - \widehat \bfscrX \| F \leq \varepsilon \| \bfscrX \| F can be achieved if we choose
the factor matrices Aj to satisfy

\| X(j) - AjA
\top
j X(j)\| F = \| \bfscrX \times j (I - AjA

\top
j)\| F \leq \varepsilon \| \bfscrX \| F /

\surd
d.

Thus, we have apportioned an equal amount of error tolerance to each mode unfolding. Com-
bined with Lemma 2.1, this ensures that an overall relative error \varepsilon is achieved. This approach
is summarized in Algorithm 4.1. Suppose we want a more flexible approach, in which a differ-
ent tolerance \epsilon j is chosen for mode j = 1, . . . , d. This may be necessary if we know in advance
that we want to avoid compressing along some modes. In general, we may use any sequence
\epsilon j , so long as it satisfies (

\sum d
j=1 \epsilon

2
j) = \varepsilon 2. Indeed, setting \epsilon j = 0 for selected modes ensures

that no compression is performed across those modes. Note that the choice \epsilon j = \varepsilon /
\surd
d for

j = 1, . . . , d automatically satisfies this equality.
Adaptive R-STHOSVD. The same approach can be extended to the R-STHOSVD al-

gorithm. We define the intermediate tensors \bfscrX (j) = \bfscrX \times j
i=1AiA

\top
i for j = 1, . . . , d and

\bfscrX (0) = \bfscrX . Analogously, we define the intermediate core tensor \bfscrG (j) = \bfscrX \times j
i=1A

\top
i withD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

202 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

Algorithm 4.1. Adaptive R-HOSVD.

Input: d-mode tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id , tolerance \varepsilon \geq 0, blocking integer b \geq 1
Output: \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad]
1: for j = 1 : d do
2: Aj = AdaptRangeFinder(X(j),

\varepsilon \surd
d
, b)

3: end for
4: Form \bfscrG = \bfscrX \times d

j=1A
\top
j

\bfscrG (0) = \bfscrG . Furthermore, we choose the processing order \rho = [1, 2, . . . , d] for simplicity. In this
case, we choose the factor matrices Aj in order to ensure that the successive iterates satisfy

\| \bfscrX (j - 1) - \bfscrX (j)\| F = \| \bfscrG (j - 1)
j - 1

\times
i=1

Aj \times j (I - AjA
\top
j)\| F \leq

\varepsilon \surd
d
\| \bfscrX \| F , j = 1, . . . , d.

Applying the first part of Lemma 2.1, we obtain

\| \bfscrX - \bfscrX (d)\| 2F =
d\sum

j=1

\| \bfscrX (j - 1) - \bfscrX (j)\| 2F \leq \varepsilon 2\| \bfscrX \| 2F .

The details are provided in Algorithm 4.2, which uses a general processing order. As with
R-HOSVD, we may elect to use the same error tolerance \varepsilon /

\surd
d for each mode unfolding or

use a different tolerance \epsilon j for iterate j = 1, . . . , d.

Algorithm 4.2. Adaptive R-STHOSVD.

Input: d-mode tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id , processing order \rho , tolerance \varepsilon \geq 0, blocking integer
b \geq 1

Output: \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad]
1: Set \bfscrG \leftarrow \bfscrX
2: for j = 1 : d do
3: A\rho j = AdaptRangeFinder(G(\rho j),

\varepsilon \surd
d
, b)

4: Update G(\rho j) \leftarrow A\top
\rho jG(\rho j)

5: end for
6: \bfscrG \leftarrow G(\rho d), in tensor format

5. Structure-preserving decompositions. In this section, we are interested in computing
a low-rank decomposition in the Tucker format in which the core tensor \bfscrG \in \BbbR r1\times \cdot \cdot \cdot \times rd has
entries that are explicitly taken from the original tensor \bfscrX \in \BbbR I1\times \cdot \cdot \cdot \times Id . That is, \bfscrX \approx
\bfscrG \times d

j=1Aj whereAj \in \BbbR Ij\times rj with j = 1, . . . , d are the factor matrices (that do not necessarily
have orthonormal columns). We call such a decomposition structure-preserving since the core
tensor retains favorable properties (e.g., sparsity, nonnegativity, binary or integer counts)
of the original tensor. This generalizes a related decomposition proposed for matrices inD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 203

[8]. Related to the structure-preserving decompositions, prior work includes a higher-order
interpolatory decomposition [33, 13, 30] of the form

\bfscrX \approx \bfscrG
d

\times
j=1

Cj , \bfscrG = \bfscrX
d

\times
j=1

C\dagger
j ,

where the matrices \{ Cj\} dj=1 have entries from the original tensor (specifically, columns selected

from the appropriate mode-unfoldings), and \dagger represents the Moore--Penrose pseudoinverse.

5.1. Algorithm. We first explain our algorithm for a matrix X and then generalize it
to tensors. We compute a basis Q using the randomized range finding algorithm. Instead of
computing the low-rank approximation QQ\top X, as was done in Algorithm 2.1, we first identify
a set of well-conditioned rows of Q. This is implemented as a selection operator denoted by
the matrix P, which contains columns from the identity matrix. We then use the low-rank
representation

X \approx Q(P\top Q) - 1P\top X = A\widehat X,

where A = Q(P\top Q) - 1 and \widehat X = P\top X. We see that the matrix A does not have orthonormal
columns, but is well conditioned, and that the matrix \widehat X contains rows from the matrix
X as determined by the selection operator P. We use strong rank-revealing QR (sRRQR)
factorization [20, 15] for subset selection; other possibilities are discussed in section SM2.

The idea behind our algorithms is the following: at each step, given the core tensor \bfscrG , we
first unfold this tensor and use a randomized range finder on the unfolding to obtain a basis
Qj . Then, we use the sRRQR algorithm to determine the selection operator that identifies
well-conditioned rows of Qj ; we use this same selection operator to select rows of G(j) which
then determines the core tensor for the next step. The details of the algorithm are provided
in Algorithm 5.1. A few things are worth noting. First, the algorithm is structure-preserving
in two ways: the core tensor at each step contains elements from the original tensor, so that
the final core tensor also has entries from the original tensor; and the low-rank approximation
reproduces certain elements of the tensor exactly (in exact arithmetic). Second, in contrast to
Algorithms 3.1 and 3.2, the factor matrices do not have orthonormal columns; if orthonormal
columns are desired, a postprocessing step can be performed (a thin QR factorization of
each factor matrix to obtain the basis, followed by an aggregation step in which the core
tensor is multiplied with all the triangular factors). Third, the resulting tensor is of rank
(r1+ p, . . . , rd+ p), which is also in contrast to other algorithms that produce decompositions
of the rank (r1, . . . , rd). Once again, these factors can be recompressed using a postprocessing
step; see, for example, [28].

Algorithm 5.1 is particularly beneficial for sparse tensors. Although sparse tensors can
be efficiently stored in an appropriate tensor format (e.g., [2]), a straightforward application
of either Algorithm 3.1 or Algorithm 3.2 produces dense intermediate tensors that may be
prohibitively expensive to store, even though the final decomposition may be economical in
terms of storage costs. On the other hand, in Algorithm 5.1, each intermediate core tensor
is sparse and only contains entries from the original tensor. Therefore, the intermediary core
tensors can be efficiently stored in the same sparse tensor format. Additionally, the sparse
tensor format permits cheaper tensor and matrix product computations.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

204 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

Algorithm 5.1. Structure-preserving STHOSVD (SP-STHOSVD).

Input: d-mode tensor \bfscrX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times Id , target rank vector r \in \BbbN d,
oversampling parameter p \geq 0 satisfying (5.2), processing order \rho

Output: \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad]
1: Set \bfscrG = \bfscrX
2: for j = 1 : d do
3: Draw Gaussian matrix \Omega \rho j \in \BbbR z\prime j\times (r\rho j+p), where z\prime j is as defined in (5.1)
4: Form Y \leftarrow G(\rho j)\Omega \rho j

5: Thin QR factorization Y = Q\rho jR
6: Use strong RRQR on Q\top

\rho j with parameter \eta = 2,

Q\top
\rho j

\bigl[
S1 S2

\bigr]
= Z

\bigl[
N11 N12

\bigr]
,

where S =
\bigl[
S1 S2

\bigr]
is a permutation matrix, Z is an orthogonal matrix, and N11 is

upper triangular
7: Let P\rho j = S1 \in \BbbR I\rho j\times (r\rho j+p) which contains the columns from the identity matrix
8: Form A\rho j = Q\rho j (P

\top
\rho jQ\rho j)

 - 1

9: Update G(\rho j) \leftarrow P\top
\rho jG(\rho j)

10: end for
11: Set \bfscrG = G(\rho d), in tensor format

Computational cost. For simplicity, we assume a processing order of \rho = [1, 2, . . . , d]. The
two dominant costs of Algorithm 5.1 for each mode are obtaining the basis Qj and computing
an sRRQR to determine Pj . Let nnz(\bfscrG (j)) denote the number of nonzeros in the core tensor at
step j. Letting \ell j = rj+p, the cost of forming the product of the (unfolded) core tensor with a

random matrix\Omega j over all dmodes is\scrO (
\sum d

j=1 nnz(\bfscrG
(j))\ell j). Computing an sRRQR of an Ij\times \ell j

matrix with parameter \eta = 2 (the parameter was called f in [20]) costs \scrO (Ij\ell 2j) per mode.

Combining both the dominant costs gives a total cost of \scrO (
\sum d

j=1 nnz(\bfscrG
(j))\ell j +

\sum d
j=1 Ij\ell

2
j).

This analysis shows that the computational cost of SP-STHOSVD is significantly smaller
than the other algorithms presented thus far, particularly with a sparse tensor. Even when
the original tensor is dense, there is a savings in computational cost compared to STHOSVD
since a full SVD is not computed, and compared to R-STHOSVD since the core tensor \bfscrG (j)

is only multiplied once per iteration. We use the processing order in subsection 3.3.

5.2. Error analysis. We now present the error analysis for Algorithm 5.1. There are two
major difficulties here in extending the proofs of Theorems 2.2 and 2.3. First, we have to work
with an oblique projector \Pi j = Qj(P

\top
j Qj)

 - 1P\top
j , whereas in the previous analysis we used

an orthogonal projector. As a consequence, we can no longer use the Pythagorean theorem
to obtain Lemma 2.1; instead we have to employ the triangle inequality, resulting in a weaker
bound. Second, we have to work with the factor matricesAj which no longer have orthonormal

columns. Let us define \ell i = ri+p, g(I, r) =
\sqrt{}
1 + 4r(I - r) and fp(r) =

\sqrt{}
1 + r

p - 1 , and given

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 205

a processing order \rho we also define

(5.1) z\prime j =

\left(\rho j - 1\prod
i=\rho 1

\ell i

\right) \left(\rho d\prod
i=\rho j+1

Ii

\right) , j = 1, . . . , d.

We are able to derive the following error bound.

Theorem 5.1. Let \widehat \bfscrX = [\bfscrG ;A1, . . . ,Ad] be the output of Algorithm 5.1 with inputs target

rank r = (r1, . . . , rd) satisfying rj \leq rank(G
(j - 1)
(j)) for j = 1, . . . , d, a processing order of

\rho = [1, 2, . . . , d], and oversampling parameter p \geq 2 satisfying

(5.2) rj + p < min\{ Ij , z\prime j\} , j = 1, . . . , d.

Furthermore, let \eta = 2 be the sRRQR parameter. Then,
1. the matrices \{ Aj\} dj=1 each contain an \ell j \times \ell j identity matrix and

1 \leq \| Aj\| 2 \leq g(Ij , \ell j), j = 1, . . . , d,

2. \widehat \bfscrX exactly reproduces
\prod d

i=1 \ell i entries of the original tensor \bfscrX (in exact arithmetic),
and

3. the expected approximation error satisfies

\BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq d\sum

j=1

\Biggl(
j\prod

k=1

g(Ik, \ell k)

\Biggr)
fp(rj)\Delta j(\bfscrX)

\leq
d\sum

j=1

\Biggl(
j\prod

k=1

g(Ik, \ell k)

\Biggr)
fp(rj)\| \bfscrX - \widehat \bfscrX opt\| F .

Proof. We tackle each item individually.
1. Consider the factor matrices Aj = Qj(P

\top
j Qj)

 - 1 for j = 1, . . . , d. Since Pj contains
columns from the identity matrix, it is easy to verify that Aj contains the identity matrix as
its submatrix. The lower bound on \| Aj\| 2 follows immediately from this fact. For the upper
bound, since Qj has orthonormal columns,

(5.3) \| Aj\| 2 = \| (P\top
j Qj)

 - 1\| 2 \leq g(Ij , \ell j).

The last step follows from [15, Lemma 2.1], where \eta = 2 is used as the tuning parameter for
the sRRQR algorithm.

2. Let Ij be the chosen index set for each Pj , j = 1, . . . , d. Then, if we pick the corre-

sponding elements from \widehat \bfscrX , denoted by \widehat \bfscrX (I1, . . . , Id), we have

\widehat \bfscrX (I1, . . . , Id) = \widehat \bfscrX d

\times
j=1

P\top
j =

\Biggl(
\bfscrG

d

\times
j=1

Aj

\Biggr)
d

\times
j=1

P\top
j = \bfscrG .

Note that the last equality comes as P\top
j Aj = (P\top

j Qj)(P
\top
j Qj)

 - 1 = I for j = 1, . . . , d. Then

as \bfscrG consists of elements of the original tensor \bfscrX by construction, \widehat \bfscrX reproduces
\prod d

j=1 \ell j
elements of \bfscrX .D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

206 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

3. Next, let \bfscrG (j) = \bfscrX \times j
i=1P

\top
i denote the partially truncated core tensor after the jth

step of Algorithm 5.1. Also let \widehat \bfscrX (j)
= \bfscrG (j)\times j

i=1Ai be the jth partial approximation of \bfscrX .
Then, by the triangle inequality and the linearity of expectations, we have

(5.4) \BbbE \{ \bfOmega k\} dk=1
\| \bfscrX - \widehat \bfscrX \| F \leq d\sum

j=1

\BbbE \{ \bfOmega k\} dk=1
\| \widehat \bfscrX (j - 1)

 - \widehat \bfscrX (j)
\| F .

Consider the term \| \^\bfscrX (j - 1) - \^\bfscrX (j)\| F . We can simplify \^\bfscrX (j)
as

\^\bfscrX (j)
= \bfscrG (j)

j

\times
i=1

Ai =
\Bigl(
\bfscrG (j - 1) \times j P

\top
j

\Bigr) j

\times
i=1

Ai

= \bfscrG (j - 1)
j - 1

\times
i=1

Ai \times j AjP
\top
j = \bfscrG (j - 1)

j - 1

\times
i=1

Ai \times j \Pi j .

Therefore, \^\bfscrX (j - 1) - \^\bfscrX (j)
= \bfscrG (j - 1)\times j - 1

i=1 Ai\times j (I - \Pi j). Repeated use of the submultiplicativity
inequality \| MN\| F \leq \| M\| F \| N\| 2 gives

(5.5) \| \^\bfscrX (j - 1) - \^\bfscrX (j)\| F \leq \| \bfscrG (j - 1) \times j (I - \Pi j)\| F
j - 1\prod
i=1

\| Ai\| 2.

Now, observe that \Pi jQjQ
\top
j = QjQ

\top
j , implying that I - \Pi j = (I - \Pi j)(I - QjQ

\top
j). Therefore,

once again using the submultiplicativity inequality, we get

(5.6)
\| \bfscrG (j - 1) \times j (I - \Pi j)\| F = \| \bfscrG (j - 1) \times j (I - \Pi j)(I - QjQ

\top
j)\| F

\leq \| \bfscrG (j - 1) \times j (I - QjQ
\top
j)\| F \| I - \Pi j\| 2.

We note that \Pi j \not = I since rank(\Pi j) \leq rank(Qj) = rj + p < min\{ Ij , z\prime j\} , and \Pi j \not = 0 since Qj

has orthonormal columns and P\top
j Qj is invertible. Therefore, we can use [38, Theorem 2.1] to

conclude \| I - \Pi j\| 2 = \| \Pi j\| 2. Once again, using [15, Lemma 2.1], we get

\| I - \Pi j\| 2 = \| \Pi j\| 2 = \| (P\top
j Qj)

 - 1\| 2 \leq g(Ij , \ell j).

Combining this inequality with (5.3), (5.5), and (5.6), we have

\| \widehat \bfscrX (j)
 - \widehat \bfscrX (j - 1)

\| F \leq \| \bfscrG (j - 1) \times j (I - QjQ
\top
j)\| F

j\prod
i=1

g(Ii, \ell i).

Taking expectations, and using the independence of the random matrices, we obtain

\BbbE \{ \bfOmega k\} dk=1
\| \widehat \bfscrX (j)

 - \widehat \bfscrX (j - 1)
\| F = \BbbE \{ \bfOmega k\} j - 1

k=1
\BbbE \bfOmega j\| \bfscrG (j - 1) \times j (I - QjQ

\top
j)\| F

j\prod
i=1

g(Ii, \ell i)

= \BbbE \{ \bfOmega k\} j - 1
k=1

\BbbE \bfOmega j\| (I - QjQ
\top
j)G

(j - 1)
(j) \| F

j\prod
i=1

g(Ii, \ell i)

\leq

\Biggl(
j\prod

i=1

g(Ii, \ell i)

\Biggr)
fp(rj)\BbbE \{ \bfOmega k\} j - 1

k=1

\left(Ij\sum
i=rj+1

\sigma 2
i (G

(j - 1)
(j))

\right) 1/2

.

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 207

In the last step, we have used (2.5) and kept the random matrices \{ \Omega k\} j - 1
i=1 fixed. By construc-

tionG
(j - 1)
(j) is a submatrix of the mode-unfoldingX(j). Arguing as in the proof of Theorem 3.2,

we can show
\sum Ij

i=rj+1 \sigma
2
i (G

(j - 1)
(j)) \leq \Delta 2

j (\bfscrX) for j = 1, . . . , d and, therefore,

\BbbE \{ \bfOmega k\} dk=1
\| \widehat \bfscrX (j)

 - \widehat \bfscrX (j - 1)
\| F \leq

\Biggl(
j\prod

i=1

g(Ii, \ell i)

\Biggr)
fp(rj)\BbbE \{ \bfOmega k\} j - 1

k=1
\Delta j(\bfscrX).

Plugging this into (5.4) and using (2.4), we get the desired bound.

In this result, we have assumed the standard processing order \rho = [1, . . . , d]. The analy-
sis can be extended to other processing orders; however, note that in this case the upper
bound derived here will depend on the processing order, which is in contrast to the bound
in Theorem 3.2. Although the error bound in Theorem 5.1 can be much higher than that
in Theorem 3.2, numerical results suggest that the bound is somewhat pessimistic and, in
practice, Algorithm 5.1 produces accurate low-rank decompositions.

6. Numerical results. In this section, we study the accuracy and the computational cost
of our algorithms on several synthetic and real-world tensors. Most of our results were run on
a desktop with a 3.4 GHz Intel Core i7 processing unit and 16GB memory. A few experiments
were run on the NCSU Mathematics Department HPC Cluster with 72GB memory (see sup-
plementary materials). We used two tensor packages in MATLAB, namely Tensor Toolbox
[2] and Tensorlab [43].

6.1. Test problems. We briefly describe the different tensors that we use to validate our
algorithms.

1. Hilbert tensor. Our first test tensor is a synthetic, supersymmetric tensor (invariant
under the permutation of indices), where each entry is defined as

(6.1) \bfscrX i1i2...id =
1

i1 + i2 + \cdot \cdot \cdot + id
, 1 \leq ij \leq Ij , j = 1, . . . , d.

We call this the Hilbert tensor, which generalizes the Hilbert matrix (d = 2). When d = 5
and each Ij = 25, this tensor has 255 = 9, 765, 625 nonzero entries. The singular values of
each mode-unfolding decay rapidly, which suggests that the randomized algorithms proposed
in this paper are likely to be accurate.

2. Synthetic sparse tensor. For our second example, we construct a three-dimensional
sparse tensor \bfscrX \in \BbbR 200\times 200\times 200 as the sum of outer products as

(6.2) \bfscrX =

10\sum
i=1

\gamma

i2
xi \circ yi \circ zi +

200\sum
i=11

1

i2
xi \circ yi \circ zi,

where xi,yi, zi \in \BbbR n are sparse vectors for all i, and \circ denotes the outer product. The sparse
vectors are all generated using the sprand command with 5\% nonzeros each. In this instance,
the tensor \bfscrX has 185, 211 nonzeros in total. Furthermore, \gamma is a user-defined parameter which
determines the strength of the gap between the first ten terms and the last terms.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

208 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

3. Olivetti dataset. The classification of facial images, or ``tensorfaces"" as popularized by
[41], has two main steps. The first is a compression phase, where a higher order SVD is applied
to a training images dataset, arranged as a tensor, to compute a low-rank decomposition. The
second step is a classification phase, in which the decomposed tensor is used to classify images
in the test dataset. We focus on the first step to efficiently decompose the tensor formed
using training images from the Olivetti dataset [1]. This dataset contains 400 images (64\times 64
pixels) of 40 people in 10 different poses and can be expressed as a three-dimensional tensor
\bfscrX \in \BbbR 40\times 4096\times 10, in which the three modes represent people, pixels, and poses, respectively.

4. FROSTT database. Our final test problems come from the formidable repository of
sparse tensors and tools (FROSTT) database [36]. From this database, we choose two repre-
sentative large, sparse tensors whose features are summarized in Table 2. The NELL-2 dataset
[6] is a portion of the Never Ending Language Learning knowledge base from the ``Read the
Web"" project at Carnegie Mellon University. NELL is a machine learning system that relates
different entities, creating a three-dimensional dataset whose modes represent entity, relation,
and entity. The Enron dataset [35] contains word counts in emails released during an inves-
tigation by the Federal Energy Regulatory Commission. Here, the modes represent sender,
receiver, word, and date, respectively.

Table 2
Summary of sparse tensor examples from the FROSTT database---we include the details for both the full

datasets and the condensed datasets used in our experiments.

Original tensor Order Size Nonzeros

NELL-2 3 12092\times 9184\times 28818 76, 879, 419
Enron 4 6066\times 5699\times 244268\times 1176 54, 202, 099

Condensed tensor Order Size Nonzeros

NELL-2 3 807\times 613\times 1922 19, 841
Enron 3 405\times 380\times 9771 6, 131

Although our implementation of SP-STHOSVD is capable of handling both full tensors
in Table 2, the tensors are too large to compute the approximation error. In order to be
able to compute this error, we first pared down the tensors, which allows us to compare the
performance of our SP-STHOSVD algorithm with other algorithms. For the NELL-2 dataset
[6], we subsample every 15 elements in each mode to obtain a tensor \bfscrX \in \BbbR 807\times 613\times 1922. For
the Enron dataset [35], we first condense the dataset to three dimensions by summing over
the fourth mode. Then we subsample this tensor by taking every 15 elements from the first
two modes and every 25 from the third mode. This results in a tensor \bfscrX \in \BbbR 405\times 380\times 9771.

6.2. Numerical experiments. We now describe the experiments performed on the test
tensors introduced in the previous subsection.

6.2.1. Fixed rank. Our first experiment compares the accuracy of the HOSVD and
STHOSVD algorithms with their randomized counterparts, R-HOSVD and R-STHOSVD (Al-
gorithms 3.1 and 3.2). As inputs, we take \bfscrX as defined in (6.1) with d = 5 modes and Ij = 25
for j = 1, . . . , d. For each algorithm, we use the target rank (r, r, r, r, r), where r varies from
1 to 25, and the same oversampling parameter p = 5 was used in every mode. Since this
is a supersymmetric tensor, the processing order of modes does not affect the results, so weD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 209

take the processing order \rho = [1, 2, 3, 4, 5]. The relative error is plotted in Figure 1, where
we can see that the approximation error of all four algorithms is very similar and that the
randomized algorithms are also highly accurate. The comparison of the cost in subsection 3.3
implies that the proposed randomized algorithms are less expensive compared to their deter-
ministic counterparts. To illustrate this, we report the runtime of the HOSVD, R-HOSVD,
STHOSVD, and R-STHOSVD algorithms on \bfscrX as the size of each dimension increases. For
inputs, we fixed the target rank to be (5, 5, 5, 5, 5) and the oversampling parameter as p = 5,
and we used processing order \rho = [1, 2, 3, 4, 5] in the sequential algorithms. The runtime in
seconds, averaged over three runs, is shown in Table 3. The analysis of the computational
cost implies that the randomized algorithms should be a factor of I/(r+ p) = 2.5 faster than
the nonrandomized algorithms. This is evident in our results. Also, the sequential algorithms
are significantly faster than the HOSVD/R-HOSVD algorithms.

0 5 10 15 20 25
10−15

10−12

10−9

10−6

10−3

100

Target rank

R
el
at
iv
e
E
rr
o
r

Hilbert Tensor Error

HOSVD
STHOSVD
R-HOSVD
R-STHOSVD

0 5 10 15 20 25
10−15

10−12

10−9

10−6

10−3

100

Target rank

R
el
at
iv
e
E
rr
o
r

Error bound comparison

R-STHOSVD
R-HOSVD
Error Bound

Figure 1. Left: Relative approximation error for 5-mode Hilbert tensor \bfscrX \in \BbbR 25\times 25\times 25\times 25\times 25 defined in
(6.1), with target rank (r, r, r, r, r) and oversampling parameter p = 5. Right: Actual relative error for \bfscrX
from the R-HOSVD and R-STHOSVD algorithms compared to the calculated error bound as the target rank
(r, r, r, r, r) increases. Both algorithms use oversampling parameter p = 5, and R-STHOSVD uses the processing
order \rho = [1, 2, 3, 4, 5].

Table 3
Runtime in seconds of the HOSVD, R-HOSVD, STHOSVD, and R-STHOSVD algorithms on the Hilbert

tensor \bfscrX with d = 5, averaged over three runs. Each algorithm is run with target rank (5, 5, 5, 5, 5), and the
randomized algorithms use oversampling parameter p = 5. The STHOSVD and R-STHOSVD algorithms use
the processing order \rho = [1, 2, 3, 4, 5].

HOSVD R-HOSVD STHOSVD R-STHOSVD
25 3.0030 1.2609 0.6455 0.2875

Ij 35 14.5255 5.5288 3.1974 1.2090
1 \leq j \leq d 45 70.0536 17.3744 15.0629 3.5587

50 101.4981 27.7725 21.9745 5.5606

We now compare the numerical performance of the R-HOSVD and R-STHOSVD algo-
rithms to the theoretical bounds derived in Theorems 3.1 and 3.2. Since the upper bound
obtained using both theorems is the same (see Theorems 3.1 and 3.2), we display this bound
only once. We run both algorithms with increasing target rank (r, r, r, r, r), oversamplingD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

210 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

parameter p = 5, and processing order \rho = [1, 2, 3, 4, 5]. From the right panel of Figure 1,
we can see the error in STHOSVD and R-STHOSVD are both comparable to the theoretical
bound, which shows that the analysis captures the behavior of the error quite well.

We now present an experiment that justifies the choice of processing order described in
subsection 3.3. We consider the Olivetti dataset described in subsection 6.1. In Table 4, we
compare the relative error and runtime of R-STHOSVD, averaged over three runs, for all six
different processing orders \rho . To account for the randomness, we set the same initial seed for
each run, take the target rank as (20, 40, 5), and take the oversampling parameter as p = 5.
We can see that all processing orders have comparable relative errors, so we instead focus
on the runtime. Our heuristic, which involves processing the modes in decreasing size per
mode, has the shortest average time as expected from the analysis in subsection 3.3. It is
clear from the runtime that processing the largest mode first (mode 2 in this case) had the
fastest runtime, and processing the smallest mode first had the slowest runtime.

Table 4
Relative error and average runtime in seconds of R-STHOSVD on the Olivetti dataset for different process-

ing orders. The runtime was averaged over three runs, and the R-STHOSVD used a target rank of (20, 40, 5)
and an oversampling parameter of p = 5 as inputs.

Processing order [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]

Relative error 0.1652 0.1608 0.1669 0.1633 0.1576 0.1602

Average time (sec) 0.0774 0.0933 0.0271 0.0246 0.1094 0.0952

6.2.2. Adaptive algorithms. We now demonstrate the performance of the adaptive algo-
rithms, Algorithms 4.1 and 4.2, on the Olivetti dataset, with a processing order \rho = [2, 1, 3].
We initialize the adaptive R-STHOSVD algorithm with different desired relative tolerances \epsilon
and obtain an approximate decomposition. In Table 5, we display the rank of this decompo-
sition r (the size of the core tensor) as well as the actual relative error of the decomposition.
In each instance, we observe that the resulting error of the decomposition is lower than the
desired error. Next, with r as the target rank, we compute a low-rank decomposition using
STHOSVD with the same processing order. The resulting error of this decomposition is only
slightly smaller than the error in the adaptive algorithm, suggesting that the adaptive algo-
rithm is capable of adaptively estimating the target rank. Numerical experiments for adaptive
R-HOSVD are presented in the supplementary materials.

Next, we consider the relative error obtained by only compressing two modes of the tensor,
namely the people and pixels (modes 1 and 2, respectively), formed using the Olivetti dataset.
We only present results corresponding to the sequentially truncated algorithms here in the form
of ``heat"" plots which display the relative error as a function of the target rank; see Figure 2.
In general, we see that the error decreases with increasing rank for both the randomized
and deterministic algorithms. We also compare the performance of the adaptive randomized
STHOSVD algorithm (Algorithm 4.2) by displaying the target rank obtained for a given
relative error \epsilon . For all the fixed rank algorithms discussed above, the oversampling parameter
was p = 5, and the processing order was \rho = [2, 1, \ast]. The third mode is not compressed,
indicated here by the asterisk.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 211

Table 5
A comparison of the adaptive R-STHOSVD algorithm (Algorithm 4.2) to STHOSVD. We first obtained

the rank of the core tensor with the requested relative error tolerance from the adaptive algorithm. Then we
compared the actual error of the approximation from the adaptive R-STHOSVD to that of an STHOSVD with
the same rank. The processing order for all runs was \rho = [2, 1, 3]. *Each STHOSVD was computed with the
corresponding rank found in the second column.

Error tolerance \epsilon Corresponding rank \bfr Actual error Rank-\bfr STHOSVD error*

0.25 (3, 10, 1) 0.1995 0.1995
0.2 (10, 23, 1) 0.1799 0.1796
0.15 (22, 51, 5) 0.1421 0.1403
0.1 (32, 114, 8) 0.0965 0.0946
0.05 (38, 237, 10) 0.0400 0.0381
0.01 (40, 381, 10) 0.0057 0.0055

Figure 2. Relative error for \bfscrX as target rank increases using the STHOSVD, compressing pixels and people
(modes 2 and 1), plotted with rank given by the Adaptive R-STHOSVD (Algorithm 4.2) with the desired relative
error tolerance \epsilon . The processing order was \rho = [2, 1, \ast], and the oversampling parameter was p = 5.

6.2.3. Algorithms for sparse tensors. We now test our randomized algorithms on sparse
tensors. First, consider the synthetic sparse tensor \bfscrX defined in (6.2). For three different
\gamma values \gamma = 2, 10, 200, we compare the SP-STHOSVD algorithm to the STHOSVD and R-
STHOSVD algorithms by plotting the relative error as the target rank (r, r, r) increases. Note
that we are only comparing to the sequentially truncated algorithms in Figure 3, since they
have lower cost and comparable errors. As inputs to our test algorithms, we used oversampling
parameter p = 5 and processing order \rho = [1, 2, 3]. We can see that the error for the sparse
algorithm is only slightly higher for smaller values of r, suggesting that the error analysis in
Theorem 5.1 may be pessimistic.

We now test our SP-STHOSVD algorithm on the real-world sparse tensors. Note that this
algorithm does not have a truncation step, which means that the rank of the resulting approx-
imation given target rank (r, r, r) will be (r+p, r+p, r+p). To compare the approximations of
SP-STHOSVD with R-STHOSVD, we use a target rank (r+p, r+p, r+p) with an additional
oversampling parameter p = 5. We ran the SP-STHOSVD and the R-STHOSVD algorithmsD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

212 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

0 50 100 150 200
Rank

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

0 50 100 150 200
Rank

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

0 50 100 150 200
Rank

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

Figure 3. Relative error for synthetic sparse tensor \bfscrX defined in (6.2) with \gamma = 2, 10, 200 and increasing
target rank (r, r, r). We compare the SP-STHOSVD algorithm (Algorithm 5.1) to the STHOSVD and R-
STHOSVD algorithms with inputs of oversampling parameter p = 5 and processing order \rho = [1, 2, 3].

on the condensed Enron tensor (details in Table 2) with processing order \rho = [3, 1, 2] and
increasing target rank (r, r, r). The relative errors obtained are shown in Table 6. We can
see that the error for SP-STHOSVD is higher than that of the R-STHOSVD, as is antici-
pated from the theory. We also compared the runtime of these two algorithms averaged over
three runs to see their respective costs, which are also shown in Table 6. We see that the
SP-STHOSVD, in addition to preserving the structure, has significantly lower computational
costs. We repeated the previous experiment for the condensed NELL-2 dataset and saw similar
results; see supplementary materials Table SM3.

Table 6
The relative error and runtime of both SP-STHOSVD and R-STHOSVD on the tensors defined in Table 2

as the target rank (r, r, r) increases. The processing order was \rho = [3, 1, 2], and the oversampling parameter
was p = 5. Note that, for simplicity, the rank is the same for each mode, and that the input rank for the
R-STHOSVD was (r + p, r + p, r + p), and so the approximations have the same size.

Relative error Runtime in seconds
Target rank SP-STHOSVD R-STHOSVD SP-STHOSVD R-STHOSVD

20 0.6015 0.2081 0.4086 31.5615
45 0.3854 0.1259 0.7965 34.5802
70 0.3548 0.0870 1.3276 36.6431
95 0.2038 0.0632 2.3465 39.3095
120 0.1503 0.0458 2.8175 39.7169
145 0.0976 0.0332 3.5659 42.0969
170 0.0756 0.0239 6.2158 45.8429
195 0.0578 0.0180 6.8285 50.2907

7. Conclusion. In this paper, we developed new randomized algorithms and analysis for
low-rank tensor decompositions in the Tucker form. Specifically, we proposed adaptive al-
gorithms for problems where the target rank is not known beforehand and algorithms that
preserve the structure of the original tensor. We also provided probabilistic analysis of random-
ized compression algorithms, R-HOSVD and R-STHOSVD, as well as for the newly proposedD

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 213

algorithms. We showed, through the analysis and numerical examples, that using randomized
techniques still allows for accurate approximations to tensors, and that the approximation
error is comparable to deterministic algorithms, with much lower computational costs.

Acknowledgment. The authors would like to thank Ilse Ipsen for reading through the
paper and giving useful feedback.

REFERENCES

[1] AT\&T Laboratories at Cambridge, Olivetti Database of Faces, https://cs.nyu.edu/\sim roweis/data.
html, 2002.

[2] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and factored tensors,
SIAM J. Sci. Comput., 30 (2007), pp. 205--231, https://doi.org/10.1137/060676489.

[3] K. Batselier, W. Yu, L. Daniel, and N. Wong, Computing low-rank approximations of large-scale
matrices with the tensor network randomized SVD, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1221--
1244, https://doi.org/10.1137/17M1140480.

[4] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor decomposition,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 876--901, https://doi.org/10.1137/17M1112303.

[5] D. J. Biagioni, D. Beylkin, and G. Beylkin, Randomized interpolative decomposition of separated
representations, J. Comput. Phys., 281 (2015), pp. 116--134.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr., and T. M. Mitchell,
Toward an architecture for never-ending language learning, in AAAI'10: Proceedings of the 24th AAAI
Conference on Artificial Intelligence, AAAI, Menlo Park, CA, 2010, pp. 1306--1313.

[7] M. Che and Y. Wei, Randomized algorithms for the approximations of Tucker and the tensor train
decompositions, Adv. Comput. Math., 45 (2019), pp. 395--428.

[8] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low rank ma-
trices, SIAM J. Sci. Comput., 26 (2005), pp. 1389--1404, https://doi.org/10.1137/030602678.

[9] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, Tensor networks
for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions,
Found. Trends Machine Learning, 9 (2016), pp. 249--429.

[10] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P. Mandic,
Tensor networks for dimensionality reduction and large-scale optimization: Part 2. Applications and
future perspectives, Found. Trends Machine Learning, 9 (2017), pp. 431--673.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition,
SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253--1278, https://doi.org/10.1137/S0895479896305696.

[12] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-(R1, R2, . . . , RN)
approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324--1342, https:
//doi.org/10.1137/S0895479898346995.

[13] P. Drineas and M. W. Mahoney, A randomized algorithm for a tensor-based generalization of the
singular value decomposition, Linear Algebra Appl., 420 (2007), pp. 553--571.

[14] P. Drineas and M. W. Mahoney, RandNLA: Randomized numerical linear algebra, Commun. ACM,
59 (2016), pp. 80--90.

[15] Z. Drma\v c and A. K. Saibaba, The discrete empirical interpolation method: Canonical structure and
formulation in weighted inner product spaces, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1152--1180,
https://doi.org/10.1137/17M1129635.

[16] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika,
1 (1936), pp. 211--218.

[17] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz, Randomized CP Tensor Decompo-
sition, preprint, https://arxiv.org/abs/1703.09074, 2017.

[18] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation
techniques, GAMM-Mitt., 36 (2013), pp. 53--78.D

ow
nl

oa
de

d
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://cs.nyu.edu/~roweis/data.html
https://cs.nyu.edu/~roweis/data.html
https://doi.org/10.1137/060676489
https://doi.org/10.1137/17M1140480
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/030602678
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/17M1129635
https://arxiv.org/abs/1703.09074

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

214 R. MINSTER, A. K. SAIBABA, AND M. E. KILMER

[19] M. Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput., 37 (2015),
pp. A1139--A1173, https://doi.org/10.1137/130938700.

[20] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization,
SIAM J. Sci. Comput., 17 (1996), pp. 848--869, https://doi.org/10.1137/0917055.

[21] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Ser. Comput. Math. 42,
Springer, Berlin, 2012.

[22] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217--288,
https://doi.org/10.1137/090771806.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2012.
[24] B. Huber, R. Schneider, and S. Wolf, A randomized tensor train singular value decomposition, in

Compressed Sensing and Its Applications, Springer, New York, 2017, pp. 261--290.
[25] J. Jacod and P. Protter, Probability Essentials, Springer, Berlin, 2012.
[26] T. G. Kolda, A counterexample to the possibility of an extension of the Eckart--Young low-rank approxi-

mation theorem for the orthogonal rank tensor decomposition, SIAM J. Matrix Anal. Appl., 24 (2003),
pp. 762--767, https://doi.org/10.1137/S0895479801394465.

[27] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455--500, https://doi.org/10.1137/07070111X.

[28] D. Kressner and L. Peri\v sa, Recompression of Hadamard products of tensors in Tucker format, SIAM
J. Sci. Comput., 39 (2017), pp. A1879--A1902, https://doi.org/10.1137/16M1093896.

[29] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Machine Learning, 3
(2011), pp. 123--224.

[30] M. W. Mahoney, M. Maggioni, and P. Drineas, Tensor-CUR decompositions for tensor-based data,
SIAM J. Matrix Anal. Appl., 30 (2008), pp. 957--987, https://doi.org/10.1137/060665336.

[31] O. A. Malik and S. Becker, Fast Randomized Matrix and Tensor Interpolative Decomposition Using
CountSketch, preprint, https://arxiv.org/abs/1901.10559, 2019.

[32] P.-G. Martinsson and S. Voronin, A randomized blocked algorithm for efficiently computing rank-
revealing factorizations of matrices, SIAM J. Sci. Comput., 38 (2016), pp. S485--S507, https://doi.
org/10.1137/15M1026080.

[33] A. K. Saibaba, HOID: Higher order interpolatory decomposition for tensors based on Tucker represen-
tation, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1223--1249, https://doi.org/10.1137/15M1048628.

[34] A. K. Saibaba, Randomized subspace iteration: Analysis of canonical angles and unitarily invariant
norms, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 23--48, https://doi.org/10.1137/18M1179432.

[35] J. Shetty and J. Adibi, The Enron Email Dataset Database Schema and Brief Statistical Report,
Information Sciences Institute Technical Report, University of Southern California, Los Angeles, CA,
2004.

[36] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis, FROSTT: The Formidable
Repository of Open Sparse Tensors and Tools, http://frostt.io/, 2017.

[37] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, Low-Rank Tucker Approximation of a Tensor
from Streaming Data, preprint, https://arxiv.org/abs/1904.10951, 2019.

[38] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42
(2006), pp. 309--323.

[39] C. E. Tsourakakis, MACH: Fast randomized tensor decompositions, in Proceedings of the 2010 SIAM
International Conference on Data Mining, SIAM, Philadelphia, 2010, pp. 689--700, https://doi.org/
10.1137/1.9781611972801.60.

[40] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A new truncation strategy for the higher-
order singular value decomposition, SIAM J. Sci. Comput., 34 (2012), pp. A1027--A1052, https://doi.
org/10.1137/110836067.

[41] M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: Tensorfaces, in
Proceedings of the 7th European Conference on Computer Vision, Springer, Berlin, 2002, pp. 447--460.

[42] N. Vervliet and L. De Lathauwer, A randomized block sampling approach to canonical polyadic
decomposition of large-scale tensors, IEEE J. Selected Topics Signal Process., 10 (2016), pp. 284--295.

[43] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab 3.0, https:
//www.tensorlab.net, 2016.

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/130938700
https://doi.org/10.1137/0917055
https://doi.org/10.1137/090771806
https://doi.org/10.1137/S0895479801394465
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/16M1093896
https://doi.org/10.1137/060665336
https://arxiv.org/abs/1901.10559
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1048628
https://doi.org/10.1137/18M1179432
http://frostt.io/
https://arxiv.org/abs/1904.10951
https://doi.org/10.1137/1.9781611972801.60
https://doi.org/10.1137/1.9781611972801.60
https://doi.org/10.1137/110836067
https://doi.org/10.1137/110836067
https://www.tensorlab.net
https://www.tensorlab.net

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED ALGORITHMS FOR TUCKER DECOMPOSITIONS 215

[44] W. Yu, Y. Gu, and Y. Li, Efficient randomized algorithms for the fixed-precision low-rank matrix
approximation, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1339--1359, https://doi.org/10.1137/
17M1141977.

[45] J. Zhang, A. K. Saibaba, M. E. Kilmer, and S. Aeron, A randomized tensor singular value decom-
position based on the t-product, Numer. Linear Algebra Appl., 25 (2018), e2179.

[46] G. Zhou, A. Cichocki, and S. Xie, Decomposition of Big Tensors with Low Multilinear Rank, preprint,
https://arxiv.org/abs/1412.1885, 2014.

D
ow

nl
oa

de
d

03
/0

3/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/17M1141977
https://doi.org/10.1137/17M1141977
https://arxiv.org/abs/1412.1885

	Introduction
	Background
	Notation and preliminaries
	HOSVD/STHOSVD
	Best approximation
	Randomized SVD

	Randomized HOSVD/STHOSVD
	Algorithms
	Error analysis
	Computational cost

	Adaptive randomized tensor decompositions
	Structure-preserving decompositions
	Algorithm
	Error analysis

	Numerical results
	Test problems
	Numerical experiments
	Fixed rank
	Adaptive algorithms
	Algorithms for sparse tensors

	Conclusion

