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ABSTRACT

Understanding the extent to which Atlantic sea surface temperatures (SSTs) are predictable is important due

to the strong climate impacts of Atlantic SST on Atlantic hurricanes and temperature and precipitation over

adjacent landmasses. However, models differ substantially on the degree of predictability of Atlantic SST and

upper-ocean heat content (UOHC). In this work, a lower bound on predictability time scales for SST and

UOHC in the North Atlantic is estimated purely from gridded ocean observations using a measure of the

decorrelation time scale based on the local autocorrelation. Decorrelation time scales for both wintertime SST

andUOHC are longest in the subpolar gyre, with maximum time scales of about 4–6 years.Wintertime SST and

UOHC generally have similar decorrelation time scales, except in regions with very deep mixed layers, such as

the Labrador Sea, where time scales for UOHC are much larger. Spatial variations in the wintertime climato-

logical mixed layer depth explain 51%–73% (range for three datasets analyzed) of the regional variations in

decorrelation time scales forUOHCand26%–40%(range for three datasets analyzed) of the regional variations

in decorrelation time scales for wintertime SST in the extratropical NorthAtlantic. These results suggest that to

leading order decorrelation time scales for UOHC are determined by the thermal memory of the ocean.

1. Introduction

The climate of the next few decades, particularly on

regional scales, will depend on natural climate variations

in addition to anthropogenic forcing (e.g., Hawkins and

Sutton 2009; Corti et al. 2015; DelSole 2017). Therefore,

unlike centennial climate predictions, in which the cli-

mate state is largely a response to anthropogenic forcing,

decadal climate predictions require an accurate specifi-

cation of the initial climate state and an adequate repre-

sentation of natural variability in addition to knowledge

of external forcings. Given the inherently chaotic nature

of the atmosphere, prospects for decadal climate pre-

diction lie in the interaction of the atmosphere with slower

parts of the climate system: the ocean, the cryosphere, and

the geosphere. The impact of ocean initialization on de-

cadal climate predictions, termed ‘‘initial-value pre-

dictability,’’ has been intensely studied over recent years;

in particular phases 5 and 6 of the Coupled Model In-

tercomparison Project (CMIP5 and CMIP6) include de-

cadal prediction experiments,whichwere performedusing

numerous participating models (Doblas-Reyes et al. 2013;

Meehl et al. 2014; Boer et al. 2016; Eyring et al. 2016).

The two main approaches for studying initial-value

predictability are 1) initialized predictions and 2) sta-

tistical measures of predictability. In initialized predic-

tions, such as the CMIP5/CMIP6 decadal prediction

experiments, a coupled model initialized with ocean ob-

servations is used to produce an ensemble of forecasts.

Improvements in predictability are inferred by comparing

the skill of the ocean initialized forecastswith the skill from

uninitialized forecasts. In the initialized forecasts, pre-

dictive skill can arise from both ocean initial conditions

and external forcing. In the absence of an initialized ocean,
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the skill comes entirely from external forcing. Note that

the skill of a forecast relative to some reference (e.g.,

persistence or uninitialized simulations) is a quantity

evaluated at a specific lead time. The predictability time

scale is a metric of the time period over which a forecast

has skill.

Initialized predictions suggest that the Atlantic is a

region of enhanced predictability for sea surface tem-

perature (SST; Smith et al. 2007; Keenlyside et al. 2008;

Pohlmann et al. 2009; van Oldenborgh et al. 2012;

Karspeck et al. 2015; Årthun et al. 2017) and upper-

ocean heat content (UOHC; Yeager et al. 2012;

Hermanson et al. 2014). Using decadal prediction ex-

periments with the Community Climate System Model

version 4 (CCSM4), Karspeck et al. (2015) show that the

North Atlantic is the only region where ocean initiali-

zation leads to a statistically significant increase in skill

of SST forecasts (at lead times of both 2–5 and 6–9 years)

compared to an uninitialized model; a similar result was

found by Doblas-Reyes et al. (2013) using the multi-

model mean of CMIP5 models. A number of studies

have suggested that predictability of North Atlantic

SSTs and UOHC is related to variations in the Atlantic

meridional overturning circulation (AMOC; Keenlyside

et al. 2008; Pohlmann et al. 2009; Matei et al. 2012;

Yeager et al. 2012; Hermanson et al. 2014). However, as

detailed in Karspeck et al. (2015), successful decadal

prediction in the North Atlantic may not rely on pre-

diction of the AMOC, but rather on adequate initiali-

zation of the temperature and salinity fields (and hence

geostrophic currents, including the AMOC).

Initialized predictions have also been used to show

that the recent changes in UOHC in the subpolar gyre

are predictable (Yeager et al. 2012; Hermanson et al.

2014). Some studies have suggested that these decadal

changes in subpolar UOHC are related to variations in

the AMOC (Robson et al. 2016) while others have fo-

cused on the importance of changes in the gyre circu-

lation related to the overlying winds (e.g., Bersch 2002;

Häkkinen and Rhines 2004; Sarafanov et al. 2008;

Häkkinen et al. 2011; Piecuch et al. 2017), including

shifts in the Gulf Stream path (Nigam et al. 2018; Ruiz-

Barradas et al. 2018).

Statistical measures of initial value predictability can

be estimated from long control runs of climate models

with time-invariant external conditions (Branstator

et al. 2012; DelSole et al. 2013; DelSole 2017).1 Since

these methods do not require model experiments, these

techniques facilitate the comparison of predictability

properties among multiple models. Branstator et al.

(2012) estimate initial value predictability for UOHC

(defined as average temperature over the upper 300m)

in six atmosphere–ocean general circulation models;

they find that there are large regional variations in

predictability time scales in the North Atlantic, and the

locations of highest predictability are different for each

model. Predictability time scales in the subpolar North

Atlantic range from less than 3 years to more than 15

years, while time scales in the subtropical NorthAtlantic

range from less than 2 years to 10 years.

DelSole et al. (2013) use a similar multivariate re-

gression model trained on climate model simulations,

but they apply the model to observations (with external

forcing removed) as well. They find that the North At-

lantic basin is the region where the regression model has

the highest skill for predicting SST, with significant skill

for up to 6 years for both observations and the ensemble

mean of preindustrial and twentieth-century simula-

tions. However, the skill varies considerably with en-

semble member: one ensemble member has no skill at

any lead time and another has skill for up to 10 years.

The spread in skill is primarily due to model differences,

consistent with the results of Branstator et al. (2012).

While most predictability studies are based on

models, a few studies have made statistical predictions

based purely on observations (Alexander et al. 2008;

Zanna 2012; Ho et al. 2013; Newman 2013; Huddart

et al. 2017). One method for estimating observed pre-

dictability time scales for SST is to use a linear inverse

model (LIM) derived from SST observations. Pre-

dictability for decadal SST variations from LIMs is

generally 3–4 years over most of the North Atlantic

domain, with predictability generally being larger in

subpolar regions (Zanna et al. 2012; Newman 2013;

Huddart et al. 2017). Furthermore, the skill of LIMs is in

many cases found to be comparable to that of initialized

models, suggesting that predictions from a LIM are a

useful benchmark for interannual to decadal SST pre-

dictions (Newman 2013; Huddart et al. 2017). Similar

results regarding predictability in the Atlantic basin have

been found using other statistical methods, such as au-

toregressive models and constructed analog models (Ho

et al. 2013). Statistical models can also be used to help

understand dynamics behind predictability. For example,

statistical models demonstrate that in the Atlantic basin

coupling between the tropics and extratropics plays

only a small role in setting predictability time scales

(Huddart et al. 2017), in contrast to the Pacific basin

where coupling between the tropics and extratropics

plays a much larger role (Newman 2007; Alexander et al.

2008; Newman et al. 2016; Dias et al. 2019).

1 DelSole and Tippett (2018) propose a generalized framework

for predictability valid when there are variations in external

forcing.
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In this paper, we estimate predictability time scales of

Atlantic SST and UOHC purely from ocean observa-

tions. A central question in this paper is whether spatial

variations in predictability time scales can be explained

by spatial variations in the ocean mixed layer depth

(MLD). According to the null hypothesis of SST vari-

ability, the ocean mixed layer integrates stochastic at-

mospheric forcing, resulting in a red SST spectrum

with a dominant time scale directly proportional to the

MLD (Frankignoul and Hasselmann 1977). In this

framework, the fact that the North Atlantic has longer

predictability time scales than other basins may simply

be explained by the deep MLDs in the North Atlantic.

We consider a linear dependence of predictability time

scales with MLD to be a simple null hypothesis to ex-

plain spatial variations in predictability time scales; we

will evaluate this null hypothesis in our study.

In section 2 we introduce the diagnostics and datasets

that we will use for SST and UOHC and define a mea-

sure of the decorrelation time scale, which we use to

quantify predictability of SST and UOHC. We compute

decorrelation time scales for UOHC and wintertime

SST in section 3 and compare them quantitatively in

section 4. In section 5, we determine to what extent

spatial variations in decorrelation time scales can be

explained by spatial variations in the wintertime clima-

tologicalMLD. In section 6 we determine to what extent

decaying versus oscillatory variations play a role in set-

ting decorrelation time scales forUOHCandwintertime

SST. Finally, in section 7 we conclude and discuss how

our results relate to prior studies.

2. Methods

In this section we describe the diagnostics that we will

use for SST and UOHC. Then, we introduce a measure

of the decorrelation time scale, which we use to quantify

predictability of SST and UOHC.

a. Diagnostics for SST and upper-ocean heat content

Although SST is the ocean variable that most directly

interacts with the atmosphere, predictability time scales

for SST may underestimate ocean memory. SST memory

is lost in the summertime due to the formation of the

seasonal thermocline. In winter when the mixed layers

deepen, anomalies isolated beneath the seasonal thermo-

cline can become entrained in the mixed layer. This pro-

cess, often referred to as the ‘‘reemergence mechanism’’

(Alexander and Deser 1995), can lead to enhanced pre-

dictability for wintertime SSTs (Namias and Born 1970; de

Coëtlogon and Frankignoul 2003; Deser et al. 2003).

As our goal is to estimate predictability of SST and

UOHC on interannual time scales, we define measures

of SST and UOHC that minimize the effects of seasonal

variations, specifically the loss of ocean memory in

summer. For SST, we focus on wintertime SST (SSTw),

where wintertime is defined as the January–March av-

erage SST. We define our measure of UOHC as the

average temperature in the layer between the surface

and a depth D:

H[
1

D

ð0
2D

udz , (1)

where u is potential temperature. We defineD to be the

wintertime climatological MLD, which is calculated by

forming a monthly climatology of MLD and taking the

January–March average of this quantity at each spatial

location. An alternative choice is the maximum clima-

tological MLD; our results are unchanged for this defi-

nition of D. The layer from the ocean surface to 2D

reflects the portion of the ocean that comes in contact

with the atmosphere seasonally, and H covaries with

SST on interannual time scales (Buckley et al. 2014,

2015). Averaging over this layer implicitly accounts for

reemergence because anomalies that are isolated below

the seasonal thermocline in summer are included in H

for all months. We express the ocean heat content in

units of temperature rather than Joules for convenience,

as this choice allows us to more easily compare time

series of SST andH. However, our results do not depend

on this choice because 1)D is constant in time and 2) our

predictability measure is based on the autocorrelation

function, which does not depend on the magnitude of

the anomalies.

Our analysis of predictability of SST andHwill utilize

six different gridded observational products. As our

analysis requires long time series for SST and H, and

data products have substantial uncertainties, which are

generally larger for earlier periods, we choose several

data products to help understand the uncertainty. [See

Kennedy (2014) for a review of uncertainty in SST data

products and Boyer et al. (2016) for a review of un-

certainty in ocean temperature products.] We use

monthly SST from Extended Reconstructed SST ver-

sion 5 (ERSST v5; Smith et al. 2008), Hadley Center SST

(HadISST; Rayner et al. 2003), and COBE SST2

(Hirahara et al. 2014). We calculate H from monthly

fields of gridded temperature from Ishii (Ishii et al.

2006), EN4.2.1 (Good et al. 2013), and the ocean tem-

perature data product from Cheng (Cheng et al. 2017).

All analyses will be restricted from 1945 to present, and

the specific periods used for each product are listed in

Tables 1 and 2. Our results are unchanged if we instead

restrict all products to the period of 1945–2012, which is

common to all data products.
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The wintertime climatological MLDD is an important

parameter in our study, but the MLD is a diagnostic that

cannot directly be measured. We use three different es-

timates of D, two based on the gridded data products

(Ishii and EN42) and one from the Argo MLD climatol-

ogy of Holte et al. (2017), henceforth Argo MLD. In all

cases the MLD is based on a threshold method in which

the MLD is given by the depth at which the density

exceeds a near-surface reference density by an amount

Dr. For Ishii and EN4 (Figs. 1a,b), we use a fixed density

threshold of Dr5 0:125kgm23 applied to the monthly

gridded observations (see Fig. 1 caption for details). The

advantage of calculating MLDs from the gridded obser-

vational products is that D is consistent with the tem-

perature field of the gridded product. However, because

the griddedproducts are spatially and temporally smoothed

fields, we must apply a large density threshold (Toyoda

et al. 2015). For the Argo MLD product (Fig. 1c) we use

theMLDbased on the variable density threshold of 0.28C
density equivalent applied to individual Argo profiles

(see figure caption for details). The advantage of the

Argo MLD product is that it is based directly on Argo

profiles (Argo 2019) and can be considered a best esti-

mate of the MLD based on data. The disadvantages are

that it is restricted to the Argo period (from 2000 to the

present) and the MLD field has missing points because

Argo floats cannot travel in shallow regions.

In all cases D is very deep in the Labrador Sea, Ir-

minger Sea, and Iceland basin; relatively deep south of

theGulf Stream; and quite shallow elsewhere (Fig. 1). In

the Labrador and Irminger Seas,D is significantly larger

for Ishii and EN4 (maximum about 1500m; Figs. 1a,b)

than for the Argo MLD product (maximum around

1000m; Fig. 1c), which is consistent with the fact that a

variable density threshold results in a smaller density

criteria and therefore shallower MLDs in cold regions.

The value ofD in the Argo MLD product (Fig. 1c) is also

more patchy, which is the result of calculating MLD di-

rectly from in situ profiles rather than from a highly

smoothedmonthly temperature field (as in Ishii andEN4).

Gridded temperature fields and D are used to calcu-

late H according to Eq. (1). For Ishii and EN4, D is

based on the MLD calculated from the respective grid-

ded product (e.g., Fig. 1a for Ishii and Fig. 1b for EN4);

for Cheng we use D based on the Argo MLD climatol-

ogy (Fig. 1c). Both annual average values of H, hence-

forthH, and wintertime average values ofH, henceforth

Hw, are calculated from the monthly fields.

Previous work using an ocean state estimate demon-

strates that SST andH are highly correlated on interannual

time scales (Buckley et al. 2014).We now show that a close

correspondence between wintertime SST and H is also

seen in the Ishii gridded product. The Ishii product is

chosen for this analysis since Ishii includes COBE SST2

observations, leading to a consistent product that can be

used to compare SST and H. Figure 2 shows the squared

correlation (at each grid point) between SSTw and Hw.

The squared correlation between SSTw and Hw is gener-

ally quite high; the mean value of the squared correlation

over the North Atlantic domain is 0.83. Correlations are

lowest in the Labrador Sea and east of Iceland. Other re-

gions of relatively low correlations include the eastern

subpolar gyre and isolated regions in the North Atlantic

and SouthAtlantic subtropical gyres (e.g., the region south

of the Grand Banks). Correlations are very high in the

tropics. Low correlations between SSTw andHw generally

occur where D is deep.

b. Measure of predictability time scales

To estimate the predictability time scales for winter-

time SST and H, we use a measure of the decorrelation

time scales, as defined by DelSole (2001):

T
2
5 �

1‘

k52‘
r2k 5 11 2 �

‘

k51

r2k , (2)

where rk is the autocorrelation (for SST orH) at discrete

lag k; when considering yearly/wintertime average data,

TABLE 1. Sensitivity of the decorrelation time scaleT2 to method and data product. Each of the three data products forH is listed along

the top row and left column, leading to amatrix comparing the data products. Shown is a comparison ofT2 forH for Ishii, EN4, andCheng.

All the data products were regridded on the same 18 grid, and T2 is compared between products for all points in the ETNA. TheR2 values

and the slopes of the linear fits are listed in the table, where the slopem is calculated with the convention that the product listed along the

top is x and the product listed on the left is y. The diagonal of the matrix gives the sensitivity of each product to the use ofHw compared to

the use of yearly averages H. A slope of more than one indicates that T2 is larger for H than Hw.

Product Ishii EN4 Cheng

Ishii (1945–2012) R2 5 0.84, m 5 1.1 R2 5 0.80, m 5 1.3 R2 5 0.65, m 5 1.1

EN4 (1945–2017) R2 5 0.80, m 5 0.7 R2 5 0.80, m 5 1.2 R2 5 0.68, m 5 1.0

Cheng (1945–2016) R2 5 0.65, m 5 0.9 R2 5 0.68, m 5 1.0 R2 5 0.78, m 5 1.1

2 As the Cheng product does not include salinity, we cannot

calculate potential density from this product and thus cannot

calculate MLDs.
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as is done here, k is the number of years. For an expo-

nentially decaying autocorrelation function, T2 is equal

to the familiar e-folding time scale. The time scale T2 is

chosen in contrast to other possible measures of the

decorrelation time scale (e.g., Schubert et al. 1992;

DelSole 2001) because it accurately estimates pre-

dictability in the presence of oscillatory variability. As

shown in DelSole (2001), T2 measures fundamental as-

pects of time series and arises naturally in statistical

sampling theory.

In this paper, T2 will be interpreted as a lower bound

on the predictability time scale. This interpretation is

motivated by the fact that autocorrelations out to lag T2

tend to be significant, and therefore a linear regression

model canmake skillful predictions at least as long asT2.

It is a lower bound because it is based purely on the local

autocorrelation function. Including additional pre-

dictors, such as nonlocal SST or variations in the

AMOC, may improve skill (and thus correspond to

longer predictability time scales). For instance, a LIM

that captures covariability between multiple spatial

patterns may have more skill at individual points than a

regression model fitted to data at each point. Thus, our

diagnostic T2 is best understood as a lower bound on

predictability, one which may be a useful benchmark

against which to evaluate dynamical models or more

sophisticated statistical measures of predictability

[such a comparison is made in the framework of atmo-

spheric predictability in Schubert et al. (1992)]. For

these reasons, we henceforth refer to T2 as the decor-

relation time scale.

If we know the exact value of our autocorrelation

function, we can integrate over all lags to find T2, but

for a finite length time series we can only calculate the

sample autocorrelation function. For a sufficiently long

time series, we can instead integrate from lag2k* to k*,

as long as we can chose a value of k* that is much longer

than the time scale that we are trying to estimate but

much shorter than the length of the time series. For the

observational records that we are using, which are on the

order of 70 years, it is not possible to find such a value of

k*. To resolve this dilemma, we fit an autoregressive

(AR) model to the time series of SSTw,H, andHw. The

AR parameters are then used to calculate the theoreti-

cal autocorrelation function, erk at discrete lags k. Our

estimate of T2 is found by replacing rk with erk in Eq. (2).

We try AR orders between 1 and 3 and find little sen-

sitivity to AR order, particularly for AR orders greater

than 1, so we choose an AR order of 2. Prior to com-

puting the AR fits we remove a quadratic function (in

time) from the time series of SST and H at each spatial

location. As a result of both the limited data period

available and the removal of the longest time scales

(due to removal of a quadratic), the resulting decorre-

lation time scales may underestimate predictability of

SST and H.

3. Decorrelation time scales for upper-ocean heat
content and SST

In this section we calculate decorrelation time scales

for H and wintertime SST based on gridded observa-

tional products. Decorrelation time scales for H based

on Ishii, EN4, and Cheng are shown in Fig. 3 (showing

the extratropical North Atlantic) and Fig. S1 (showing

the entire Atlantic domain; see the online supplemental

material). The largest decorrelation time scales, around

4–6 years, are seen in the subpolar gyre, in particular in

the Labrador Sea, Irminger Sea, and Iceland basin.

Decorrelation time scales are around two years south of

the Gulf Stream path, but elsewhere in the subtropical

gyres they are about a year. The black contours in Fig. 3

and in Fig. S1 show contours ofD, and it is apparent that

the largest decorrelation time scales are found where D

is deep.

The black dots in Fig. 3 and Fig. S1 show grid points

where the decorrelation time scale is not significantly

different from white noise on interannual time scales

(see the appendix for details). In these regions there is

no interannual predictability, although there may be

predictability on shorter time scales (which could be

examined by looking at monthlyH anomalies). One can

see that the interannual predictability of H is mostly

restricted to the extratropics. Therefore, for the rest of

our analysis we will consider only the extratropical

North Atlantic (ETNA; north of 208N).

Results shown in Fig. 3 and Fig. S1 are from yearly

averages forH (H) but results using wintertime averages

for H (Hw) are quite similar (Table 1). Yearly average

values of H include temperature anomalies in the sum-

mertime seasonal thermocline, which are likely unrelated to

the deeper (and presumablymore predictable) temperature

TABLE 2. As in Table 1, but for a comparison of T2 for SST
w between ERSST, HadISST, and COBE SST2.

Product ERSST HadISST COBE SST2

ERSST (1945–2017) R2 5 0.61, m 5 1.1 R2 5 0.79, m 5 0.6

HadISST (1945–2017) R2 5 0.61, m 5 0.9 R2 5 0.60, m 5 0.5

COBE SST2 (1945–2016) R2 5 0.79, m 5 1.7 R2 5 0.60, m 5 2.0

15 MAY 2019 BUCKLEY ET AL . 3009



anomalies formed during the winter. Therefore, consider-

ation of only wintertimeH anomalies could potentially lead

to increased decorrelation time scales, but in practice de-

correlation time scales based on yearly averageH tend to be

somewhat larger (see Table 1), simply as a result of sup-

pressing noise by averaging over more months. The results

from the three different data products are quite consistent.

If we regrid all estimates of T2 onto a common 18 grid and

compute linear fits for all points in the ETNA between the

various data products, we find R2 values between 0.65 and

0.80 and slopes between 0.7 and 1.3 (see Table 1).

Now we present results showing the decorrelation

time scales for SSTw based on ERSST, HadISST, and

COBE SST2 (Fig. 4). The largest decorrelation time

scales, around 3–5 years, are seen in the subpolar gyre.

Decorrelation time scales are around two years south of

the Gulf Stream path, but elsewhere in the subtropical

gyre they are about a year. The spatial pattern of de-

correlation time scales is generally similar for SSTw and

H, except for in the Labrador Sea where decorrelation

time scales for SSTw are much shorter than those forH.

The black dots in Fig. 4 show grid points where the de-

correlation time scale is not significantly different from

white noise on interannual time scales (see the appendix

for details). In these regions there is no interannual SST

predictability, although there may be predictability on

shorter time scales (which could be examined by looking

at monthly SST anomalies). One can see that the in-

terannual predictability of SSTw is mostly restricted to

the subpolar gyre.

The results from the three different data products are

quite consistent. If we regrid all estimates for T2 onto a

common 18 grid and compute linear fits for all points in

the ETNA between the various data products, we find

R2 values between 0.60 and 0.79 and slopes between 0.5

and 2.0 (see Table 2). The deviation of the slopes from

one is due to COBE SST2 having significantly larger

decorrelation time scales than the other two products.

FIG. 1. The wintertime (January–March) climatological MLDD

from (a) Ishii, (b) EN4.2.1, and (c) the Argo MLD climatology

(Holte et al. 2017). In all cases the MLD is based on a threshold

method in which the MLD is given by the depth at which the

density exceeds the density at a near-surface reference depth zo by

an amount Dr. If there is no depth level where the threshold is

exceeded, then the MLD is set to the ocean depth. For Ishii and

EN4, we calculate the potential density from the potential tem-

perature and absolute salinity according to the TEOS-5 algorithms.

The MLDs are calculated by applying a density threshold of

Dr5 0:125kgm23 to the griddedmonthly data; the reference depth

zo is the cell center of the topmost grid cell (located at about 5m).

Then, a monthly climatology of MLD is calculated, and D is given

by the January–March average of this field at each grid point. For

the Argo MLD product we use the MLD based on the variable

density threshold of 0.28C density equivalent applied to individual

 
Argo profiles; the reference depth zo 5 10m. In this case the

density threshold changes based on the local reference tempera-

ture and salinity: the threshold is 0:03 kgm23 for a reference tem-

perature of 88C and salinity of 35 psu, but the density threshold is

smaller for colder reference temperatures. Additionally, we use the

gridded product in which the monthly MLD climatology at each

grid point is given by the mean of all profiles found in this month in

the grid box. The value of D is calculated by simply taking the

maximum of the Argo-based MLD climatology at each grid point.

A simplemaximum is used rather than the January–March average

to maximize the points where D can be calculated due to data

availability.
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4. Comparing decorrelation time scales for
upper-ocean heat content and SST

We now explore the relationship between decorrela-

tion time scales for SST and H using the Ishii data

product. To present results that are most comparable,

wintertime values are used for both SST and H, but re-

call that decorrelation time scales for Hw are very sim-

ilar (but slightly smaller) than those for H (Table 1).

Figure 5a shows a scatterplot comparing T2 for SST
w to

T2 for Hw for all points in the ETNA. A linear fit ex-

plains 61% of the variance, and the slope of the line is

one, indicating that T2 for SST
w is comparable to T2 for

Hw for most points in the ETNA.

Now we explore the points where the linear re-

lationship between T2 for SST
w and Hw does not hold.

The triangles (squares) in Fig. 5a are points that are

more than two standard deviations above (below) the

best-fit line. There are significantly more triangles than

squares, indicating that there are many more outliers

where T2 is larger for H
w than for SSTw. The points in

Fig. 5a are shaded (grayscale) to reflect their value ofD,

and it is apparent that points where T2 for H
w is signif-

icantly larger than T2 for SSTw are generally located

where D is deep. This is what one would expect, as av-

eraging from the surface to a depthD is a more effective

low-pass filter when D is deep.

Figure 5b shows the spatial distribution of the outliers

from the linear fit. All of the outliers are in the subpolar

gyre, and the outliers where T2 is larger for H
w than for

SSTw are concentrated in the Labrador Sea and in the

eastern subpolar gyre off the coast of the British Isles.

These points, particularly those in the Labrador Sea,

align with the regions where the squared correla-

tion between SSTw and Hw is low (see Fig. 2). To

FIG. 2. Squared correlation at each grid point between SSTw and

Hw for the Ishii data product. The heavy black contour (over the

Labrador Sea) shows the region where the standard deviation of

the wintertime (January–March average) MLD exceeds 250m.

FIG. 3. The decorrelation time scale T2 (colors) for H based on

(a) Ishii, (b) EN4, and (c) the Cheng OHC product. The black dots

show the points where the decorrelation time scale does not exceed

the time scale predicted fromwhite noise on interannual time scales at

the 90% confidence level; see the appendix for details. The black

contours show the wintertime climatological MLDD at levels of 500

and 1000m. For Ishii and EN4, D is based on a density criterion ap-

plied to the gridded observations. For Cheng,D is based on an Argo

MLD climatology (Holte et al. 2017). Starred points P3 in (a) and P4

in (b) correspond to points P3 and P4 shown in Figs. 9a and 9b.
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understand why T2 is so much larger for Hw than for

SSTw in these regions, we choose two characteristic

points, one in the Labrador Sea and one in the eastern

subpolar gyre; these points are labeled on both the

scatterplot (Fig. 5a) and the spatial map (Fig. 5b). The

time series of SSTw andHw at these points are shown in

Figs. 5c and 5d. It is apparent that depth averaging is an

effective low-pass filter, which leads to the enhanced

predictability for Hw compared to SSTw in these

regions.

Although differences between decorrelation time

scales for Hw and SSTw are expected in regions of deep

D, the Labrador Sea remains a unique region in that it

has such low predictability time scales for SSTw, gener-

ally less than two years, despite very persistent anoma-

lies inH. There are several factors that may explain this.

1) Large spatial gradients in MLDs: Regions of deep

convection are characterized byweak vertical gradients

and deep MLDs, but there are strong lateral gradients

in properties. These lateral gradients are baroclinically

unstable, leading to a rapid growth of baroclinic eddies

that act to restratify the near-surface layer (Send and

Marshall 1995; Jones and Marshall 1997; Marshall and

Schott 1999; Frajka-Williams et al. 2014). The input of

buoyant waters from boundary currents adjacent to

regions of deep convection is also important in this

restratification process (Straneo 2006; Schmidt and

Send 2007). Time scales for restratification in the

Labrador Sea are thought to be rapid (from weeks to

months). While air–sea heat fluxes are quite large over

theLabrador Sea andmay play a role in restratification,

near surface restratification occurs more rapidly than

can be accounted for by air–sea heat fluxes alone,

indicating the importance of lateral mixing (Send and

Marshall 1995; Jones and Marshall 1997). Wintertime

SST anomalies are rapidly destroyed by restratification,

but since the restratification is restricted to the near-

surface layers (top few hundred meters at most),

anomalies in Hw remain mostly intact. Therefore,

restratification processes may explain the much longer

decorrelation time scales of Hw compared to that of

SSTw.

2) Large temporal variability in MLD: Figure 2 shows

that low correlations between SSTw and Hw gener-

ally align with regions where MLDs vary strongly

from one winter to the next. Temporal variability of

wintertime MLDs also may lead to decorrelation

time scales for Hw that are much larger than for

SSTw. If in a given winter theMLD is shallower than

D, H will include thermal anomalies from the pre-

vious winter, stored below this year’s wintertime

mixed layer. This effect will result in decorrelation

time scales for Hw that overestimate the true upper

ocean predictability (which would be seen if we al-

lowed D to vary from one year to the next) and are

significantly larger than decorrelation time scales

for SSTw. We do not expect any comparable impact

on decorrelation time scales for Hw during years

when the wintertime MLD is deeper than D, as in

FIG. 4. The decorrelation time scale T2 for SSTw based on

(a) ERSST, (b) HadISST, and (c) COBE SST2. The black dots

show the points where the decorrelation time scale does not exceed

the time scale predicted from white noise on interannual time

scales at the 90% confidence level; see the appendix for details.

Starred points P5 in (a) and P6 in (b) correspond to points P5 and

P6 shown in Figs. 9c and 9d.
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this case Hw anomalies will still reflect thermal

anomalies in the mixed layer.

In summary, generally decorrelation time scales for

wintertime SST and H are similar, but in the Labrador

Sea decorrelation time scales for SST are much shorter.

This is likely due to large spatial and temporal varia-

tions in wintertime MLDs and modification of SST by

rapid near-surface processes. However, the gridded

observational datasets utilized here lack the temporal and

spatial resolution to fully understand the dynamics op-

erating in the Labrador Sea.

5. Can mixed layer depth variations explain spatial
variations in decorrelation time scales?

In this section we explore our null hypothesis that

spatial variations in decorrelation time scales are related

FIG. 5. A comparison of the decorrelation time scale T2 for SST
w and Hw using the Ishii data product. (a) A

scatterplot showing the relationship between T2 for SST
w and T2 forH

w for all points in the ETNA. The points are

shaded (grayscale) to reflect their value ofD. The solid red line shows the linear fit, and the black dash-dotted line is

the one-to-one line. The slope and R2 values for the fit are given in the bottom-right corner. The circles are points

that are within the two standard deviations of the best-fit line, and the triangles (squares) are points that are more

than two standard deviations above (below) the best-fit line. (b) The spatial distribution of the outliers, where black

triangles (squares) indicate points that aremore than two standard deviations above (below) the best-fit line. Colors

show the squared correlation (at each grid point) between Hw and SSTw. Two points of interest, P1 and P2, are

chosen and the locations of these points are shown in both the scatterplot in (a) and the spatial map in (b). (c),(d)

The time series of SSTw (red) and Hw (black) at points P1 and P2, respectively.

15 MAY 2019 BUCKLEY ET AL . 3013



to variations in the wintertime climatological MLD D.

We first consider the linear relationship between the

decorrelation time scale for H and D and then consider

the relationship between the decorrelation time scale for

wintertime SST and D. Then, we use the slopes of the

linear relationships to estimate the damping parameter.

a. Relationship between decorrelation time scale for
H and D

Figures 6a–c show scatterplots between D and T2 for

all points in the ETNA based onH from the Ishii, EN4,

and Cheng data products. The red lines show a linear fit

between T2 and D; linear fits demonstrate that between

51% and 74% of the spatial variations in T2 can be

explained by spatial variations of D. The strong linear

relationship between D and T2 matches the expecta-

tion from stochastic climate models in which the ocean

simply thermodynamically integrates stochastic atmo-

spheric forcing (Frankignoul and Hasselmann 1977).

The slopes of the lines indicate that an increase in D by

1km results in an increase in the decorrelation time

scale of 3.1–4.2 years. The precise values of R2 and the

FIG. 6. Howdecorrelation time scales forH are related toD: (left) Scatterplots comparing the decorrelation time scaleT2

forH toD for all points in the ETNA for (a) Ishii, (b) EN4, and (c) Cheng. The dash-dotted gray lines show values of T2

above whichT2 can be distinguished fromwhite noise on interannual time scales (see the appendix). The red line is a linear

fit between T2 andD, and the values of R2 and the slopem and the corresponding value of the damping parameter a [see

Eq. (3)] are given in the top-left corner of each plot. Green (black) points are outliers that are more than two standard

deviations above (below) the best-fit line. (right) Spatial distribution of the outliers based on the linear fit for (d) Ishii,

(e) EN4, and (f) Cheng. Green (black) points are points more than two standard deviations above (below) the best-fit line,

indicatingpointswithhigher (lower) thanexpectedpredictability.Colors showa spatialmapof thewintertime climatological

MLDD, and light gray, gray, and dark gray contours show ocean bathymetry at depths of 1, 2, and 3km, respectively.
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slope of the linear regression are somewhat sensitive to

the MLD product. If the calculations for Ishii and EN4

are repeated using D from the Argo MLD climatology

(Holte et al. 2017), R2 decreases (Figs. 7a,b), likely be-

cause the Argo MLD product is more patchy. Further-

more, sinceD from the Argo MLD product is shallower

than D calculated from Ishii and EN4, the slope of the

line increases (Figs. 7a,b) and becomes more similar to

that from Cheng (which uses D from the Argo MLD

climatology).

In calculating the linear fits, all points in the ETNA

are included, regardless of whether or not the values of

T2 can be distinguished from white noise on interan-

nual time scales (dash-dotted gray lines in Figs. 6a–c,

7a, and 7b show values of T2 above which T2 can be

distinguished from white noise on interannual time

scales). All points are included since points where D is

shallow and there is no interannual predictability are

part of the observed relationship between T2 and D; in

fact, if there were places with large D where there was

no interannual predictability, these points would not

match the expectation from the null hypothesis and

would require explanation.

Now we explore the points that do not follow the

scaling of T2 with D. The green (black) points in

Figs. 6a–c, 7a, and 7b indicate outliers that aremore than

two standard deviations above (below) the best-fit line.

There are significantly more outliers above the line than

below the line, indicating that there aremore points with

higher than expected predictability than lower than ex-

pected predictability. Figures 6d–f show the spatial dis-

tribution of the outliers; the spatial distribution of the

outliers is quite similar when the calculations for Ishii

and EN4 are repeated using D from the Argo MLD

climatology (Figs. 7c,d). The outliers are mostly con-

fined to the subpolar gyre, except for a few points with

higher than expected predictability in the slope waters

west of the Gulf Stream. Points with higher than ex-

pected predictability are almost all confined to shallow

bathymetry: the North American continental shelf, the

Grand Banks, and the Reykjanes Ridge, a concurrence

that needs further investigation, particularly in the

context of previous work suggesting that interactions of

ocean currents with bathymetry are an important pro-

cess in generating upper ocean temperature variability

(e.g., Nigam et al. 2018). There are very few points with

FIG. 7. Sensitivity of relationship between T2 forH andD to theMLD product used: (a),(b) As in Figs. 6a and 6b

and (c),(d) as in Figs. 6d and 6e, butD is from theArgoMLD climatology (Holte et al. 2017). This value ofD is used

for both the values of D in the scatterplot and in the calculation of H according to Eq. (1).
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lower than expected predictability, and their locations

are not robust between the different data products, so it

is somewhat difficult to determine their origin. There

does seem to be some tendency for points with lower

than expected predictability to occur in regions with

large spatial and temporal gradients in D. This may be

due to rapid restratification as a result of lateral mixing

by eddies, which is expected to lead to decorrelation

time scales shorter than those predicted by local values

ofD (Send andMarshall 1995; Jones andMarshall 1997;

Marshall and Schott 1999; Frajka-Williams et al. 2014).

b. Relationship between decorrelation time scale for
wintertime SST and D

We now consider the relationship between variations

in D and T2 for wintertime SST; in considering this re-

lationship we use D based on the Argo MLD climatol-

ogy for all three SST data products. Figures 8a–c show a

scatterplot between D and T2 for SST
w for all points in

the ETNA. (As before fits are for all points in the

ETNA; gray dash-dotted lines show the value of T2

above whichT2 can be distinguished fromwhite noise on

interannual time scales.) The linear fit betweenD andT2

indicates that an increase in D by 1km results in an in-

crease in the decorrelation time scale of 1.3–2.5 years.

As expected, the slope of the line is significantly shal-

lower than that for H because predictability time scales

for SSTw are generally less than those for H. We find

that 26%–40% of the spatial variations of T2 for SST
w

can be explained by spatial variations in D. There are

several reasons for the smaller percent variance of T2

explained by D for SSTw compared to H:

1) Predictability time scales for H are expected to be

proportional to D according to stochastic climate

models (e.g., Frankignoul and Hasselmann 1977;

Deser et al. 2003; de Coëtlogon and Frankignoul

2003), but there is not the same expectation for SST,

which is also influenced by surface processes, as

discussed in section 4.

2) SST is a noisier field than H, as depth averaging acts

as a low-pass filter (see section 4). Additionally, forH

we are able to further suppress noise by averaging

over a year rather than just averaging over the

wintertime months.

3) For the fit between T2 andD for the SST analysis, we

use D from the Argo MLD climatology, which is

relatively patchy. Our analysis with Ishii and EN4

shows that the portion of the variance ofT2 explained

by D decreases somewhat when D from the Argo

MLD product is used compared to the smoother

values of D based on the gridded data products (cf.

Figs. 6a,b and 7a,b).

4) In the Labrador Sea, predictability for SSTw is quite

small, despite very large values of D; in contrast

predictability for H is quite large, as discussed in

section 4. If the Labrador Sea is excluded from our fit

between T2 and D, the percent variance explained

increases by 6%–10% and the slopes increase by

about 0.5 yr km21 (due to the removal of low values

of T2 with large values of D).

The points above suggest that decorrelation time scales

for SSTw exhibit a weaker scaling with D than the time

scales for H due to both complex surface dynamics

(particularly in the Labrador Sea) and noise (in both

the SST fields and the MLD field).

Now we explore the points that do not follow the

scaling of decorrelation time scale with D. The green

(black) points in Figs. 8a–c indicate outliers that are

more than two standard deviations above (below) the

best fit line. There are significantly more outliers above

the line than below the line, indicating that there are

more points with higher than expected predictability

than lower than expected predictability. Figures 8d–f

show the spatial distribution of the outliers. The outliers

almost all have higher than expected predictability and

are located in the region with large decorrelation time

scales south of Greenland. There is a small region of

points with lower than expected predictability in the

Labrador Sea, consistent with the fact that while D is

deep and decorrelation time scales for H and Hw are

long, decorrelation time scales for SSTw are short in this

region (see also Fig. 5).

c. The damping parameter

The slopes of the fitted lines between T2 (for H and

SSTw) and D can be written in the units of a damping

parameter a. From Frankignoul et al. (1998), a charac-

teristic time scale can be related to a as

t5
r
o
C

p
D

a
, (3)

where ro 5 1035 kgm23 is a reference density and Cp is

the heat capacity. Inverting this relationship and setting

t/D5m, where m is the slope of our fit between T2 and

D, we can make a gross estimate of a. The values of

a calculated by this method can be understood as the

best-fit damping parameter, under the assumption that

the damping parameter is constant over the entire do-

main. Using this relation results in values of a ranging

from 33 to 44Wm22K21 for H (Figs. 6a–c). If the cal-

culations for Ishii and EN4 are repeated using D from

the Argo MLD climatology, a for Ishii and EN4 de-

creases to 36–37Wm22K21 (Figs. 7a,b), values more
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similar to that of Cheng (a5 33Wm22K21), which uses

D from the Argo MLD climatology. Values of a for

SSTw are significantly larger, ranging from 54 to

109Wm22K21 (Figs. 8a–c).

Expressing the slope in the units ofa is not intended to

suggest that calculating a based on the fits between T2

andD is an accurate method for calculating the damping

parameter; instead the goal is merely to express m in

units that are familiar to the reader. Namely, the ca-

nonical value of the damping by air–sea heat fluxes de-

rived by Frankignoul et al. (1998) is aa5 20Wm22K21,

although values are somewhat higher in the subpolar

FIG. 8. How decorrelation time scales for wintertime SST are related to D: (left) Scatterplots comparing the

decorrelation time scaleT2 for SST
w toD (from theArgoMLDproduct) for all points in the ETNA for (a) ERSST,

(b) HadISST, and (c) COBE SST2. The dash-dotted gray lines show values of T2 above which T2 can be distin-

guished fromwhite noise on interannual time scales (see the appendix). The red line is a linear fit betweenT2 andD,

and the values ofR2 and the slopem and the corresponding value of the damping parametera [see Eq. (3)] are given

in the top-left corner of each plot. Green (black) points are outliers that are more than two standard deviations

above (below) the best fit line. (right) Spatial distribution of the outliers based on the linear fit for (d) ERSST,

(e) HadISST, and (f) COBE SST2. Green (black) points are points more than two standard deviations above the

best fit line, indicating points with higher (lower) than expected predictability. Colors show a spatial map ofD from

the Argo MLD product (Holte et al. 2017).
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gyre and vary seasonally (values are larger in the win-

tertime). Differences between our calculations and that

of Frankignoul et al. (1998) include:

1) Frankignoul et al. (1998) estimate only atmospheric

damping aa, whereas we calculate the total damping

rate by the atmosphere and ocean. Some studies

suggest that oceanic damping is as large or larger

than atmospheric damping (Hall and Manabe 1997),

which explains why our calculated values of a are

generally larger than 20Wm22K21.

2) Our value of a depends linearly on the chosen value

of D. We chose D as the wintertime climatological

MLD, a quantity that is quite large in the subpolar

gyre, which also contributes to our relatively large

values of a.

3) Frankignoul et al. (1998) consider damping ofmonthly

SST anomalies, whereas we consider wintertime SST

and H. As a result of the formation of the seasonal

thermocline, H and SSTw anomalies are damped to

the atmosphere more slowly since the atmospheric

damping is essentially zero during the summertime

when anomalies are isolated below the seasonal

thermocline. This process is expected to lead to a

value of aa smaller than that of Frankignoul et al.

(1998), but this effect is relatively modest since

damping is smaller in the summer (Frankignoul and

Kestenare 2002).

The above differences suggest that our value of a should

not match that of Frankignoul et al. (1998) and that it

should be larger than 20Wm22K21, as indeed it is,

particularly for SSTw. However, the sensitivity of our

calculated value of a to the choice of D as well as the

particular data products used (a for SSTw varies by

almost a factor of 2 between the three different data

products) suggests that a cannot be tightly constrained

from calculations of decorrelation time scales.

6. Are there oscillatory variations in SST or
upper-ocean heat content?

The value ofT2 measures the decorrelation time scale of

SST/H, but it does not distinguish between different types

of variability that may be leading to the measured value of

T2. For example, does T2 simply indicate damping with an

e-folding time scale given by T2 or does oscillatory be-

havior play a role? The goal of this section is to determine

the extent to which decaying versus oscillatory behavior of

the autocorrelation function is important in setting de-

correlation time scales for H and SSTw. For an AR2

model, this question can be answered analytically based on

theARcoefficients (von Storch andZwiers 2002). Figure 9

is a scatterplot showing the AR coefficients, f1 and f2,

from the AR2 fit to time series ofH (Fig. 9a) and SSTw

(Fig. 9c) for all the points in the ETNA. Points above

the black parabola have exponentially decaying auto-

correlation functions; the further from the parabola,

the more strongly the autocorrelation function decays.

The points below the parabola have (decaying) oscil-

latory behavior; the farther from the parabola, the

stronger the oscillations are. One can see that there are

numerous points in the ETNA for which time series of

H and SSTw are in the regime with oscillatory behavior.

Two points with the most oscillatory behavior forH are

chosen: P3 from the Ishii product is located south of the

Gulf Stream (labeled on Fig. 3a), and P4 from the EN4

product is located in the central subpolar gyre (labeled on

Fig. 3b). The autocorrelation function of these most ex-

treme points shows only modest oscillatory behavior,

with an autocorrelation of about 20.25 after about

3 years (Fig. 9b). For SSTw there are very few points that

are a significant distance below the parabola, and all of

these points lie in regions of seasonal sea ice: P5 from

ERSST is located in Denmark Strait (labeled on Fig. 4a)

and P6 fromHadISST is located off the coast of Labrador

(labeled on Fig. 4b). The autocorrelation function for

these points exhibits very weak oscillatory behavior, with

an autocorrelation of about 20.2 after about 2–3 years

(Fig. 9d). Therefore, we conclude that on the time scales

resolved by our observational products, oscillatory be-

havior does not play a significant role for variability in

eitherH or SSTw. Instead, T2 is mainly controlled by the

decay of SST/H anomalies, and is expected to be quite

similar to the familiar e-folding time scale.

7. Conclusions

In this work, a lower bound for predictability time

scales for SST andUOHC is estimated purely from ocean

observations, and the degree towhich spatial variations in

the MLD can explain predictability time scales is quan-

tified. Two diagnostics are used for SST/UOHC: winter-

time SST and the temperature averaged over the layer

from the surface to the wintertime climatological MLD

(integral denoted as H); both diagnostics quantify the

ocean memory on interannual time scales and are de-

signed to minimize the effects of seasonal variations,

specifically the loss of SST memory in the summertime

due to the formation of the seasonal thermocline.

Gridded observational products are used to estimate

predictability for wintertime SST and H in the North

Atlantic using a measure of the decorrelation time

scale based on the local autocorrelation function

(DelSole 2001). Decorrelation time scales for both

wintertime SST andH are longest in the subpolar gyre,

with maximum decorrelation time scales of 4–6 years.
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Decorrelation time scales for wintertime SST and H are

generally similar, except in regions with very deep mixed

layers, such as the Labrador Sea, where time scales forH

are much larger. Oscillatory variations are found to play

little role in setting predictability time scales for winter-

time SST and H; instead decorrelation time scales are

controlled mainly by the decay rate of anomalies.

Our decorrelation time scales are generally similar to

predictability time scales calculated from observations

using other statistical techniques, such as linear inverse

models (LIMs). Predictability for decadal SST varia-

tions from LIMs is generally 3–4 years over most of the

North Atlantic domain, with predictability generally

being larger in subpolar regions (Zanna et al. 2012;

FIG. 9. Scatterplots for the AR2 coefficients, f1 and f2, for all points in the ETNA. (a) The

AR2 coefficients for the fits toH from Ishii (magenta), EN4 (green), and Cheng (blue). (c) The

AR2 coefficients for the fits to SSTw from ERSST (magenta), HadISST (green), and COBE

SST2 (blue). The triangle identifies the range of coefficients for which an AR2 process is sta-

tionary; the fact that all the points lie within the triangle indicates that the time series ofH and

SSTw are stationary. The black parabola separates AR2 processes with exponentially decaying

autocorrelation functions (above the parabola) from those with quasi-oscillatory behavior

(below the parabola). The equation of the parabola is f2
1 1 4f2 5 0 (von Storch and Zwiers

2002). The shaded gray ellipse shows the AR2 coefficients that cannot be distinguished from

white noise at the 90% confidence level (see the appendix and Fig. A1). For bothH and SSTw,

we chose several points that are the farthest below the parabola and examine their autocor-

relation function to see the strength of the oscillations. P3 (from Ishii, located south of the Gulf

Stream, labeled in Fig. 3a) and P4 (from EN4, located in the central subpolar gyre, labeled in

Fig. 3b) are labeled in (a), and their autocorrelation functions are shown (b). P5 (from ERSST,

located south of Greenland, labeled in Fig. 4a) and P6 (from HadISST, located off the coast of

Labrador, labeled in Fig. 4b) are labeled in (c), and their autocorrelation functions are shown in (d).
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Newman 2013; Huddart et al. 2017). The similarity of

our results to those from LIMs suggests that our con-

sideration of a predictability measure based on the local

autocorrelation (e.g., the decorrelation time scale) is

likely not a significant limitation in the Atlantic basin.

This is further supported by results from LIMs that

suggest nonlocal SST variability has little influence on

SST predictions in a given region of the Atlantic (Huddart

et al. 2017). Our conclusion that oscillatory variations play

little role in predictability of wintertime SST and H is

supported by results from statistical models that suggest

predictability in theAtlantic, while higher thanmost other

basins, only slightly exceeds that of a persistence forecast

(DelSole et al. 2013).

While our results generally agreewith other studies on

the magnitude of predictability time scales in the North

Atlantic, there are some differences in the detailed

spatial patterns. For example, Zanna et al. (2012) find

that forecast skill compared to climatology is quite low

in the subpolar region south of Greenland, but we find

that this region has relatively high values of T2 (greater

than 2 years). This result may be due to the analysis of

wintertime SST (in our study) versus annual-average

SST [in Zanna et al. (2012)], the different time periods

studied [Zanna et al. (2012) start analysis in 1870

whereas we start in 1945], or the truncation of the SST

variability using empirical orthogonal functions in the

LIM. The spatial patterns of predictability time scales

for SST inHuddart et al. (2017) are more similar to ours,

but this study uses decadal filtering to construct the LIM,

so results are not directly comparable to our study. It

would be interesting to create a LIM to predict winter-

time SST or wintertime/annual average H (with no ad-

ditional filtering) and see how these results compare to

our decorrelation time scales.

Spatial variations in the wintertime climatological

MLD explain 51%–74% of the regional variations in

decorrelation time scales for UOHC and 26%–40% of

the regional variations in decorrelation time scales for

SST in the extratropical North Atlantic. These results

suggest that to leading order decorrelation time scales

for H are determined by the thermal memory of the

ocean. Interestingly, decorrelation time scales for

UOHC that are significantly larger than expected based

on the local mixed layer depth tend to be located in

regions with shallow bathymetry. Decorrelation time

scales for wintertime SST have a weaker relationship

with the MLD, as a result of both noise and surface

processes. In particular, in the Labrador Sea, decorre-

lation time scales for wintertime SST are much shorter

than expected from the local MLD.

The suggestion that a large portion of the spatial

variations in predictability time scales can be explained

by variations in the wintertime climatological MLD

raises the question of whether SST and UOHC vari-

ability in the ocean can simply be explained by stochastic

atmospheric forcing. Addressing this question is the

subject of ongoing work. The fact that the damping pa-

rameter calculated from our decorrelation time scales is

significantly larger than the canonical atmospheric

damping parameter (e.g., Frankignoul et al. 1998) sug-

gests that oceanic damping is important, as found by

Hall and Manabe (1997) and argued by Zhang (2017).

Where dynamical oceanic process (e.g., ocean currents)

are important in creating SST and UOHC anomalies

remains to be explored in detail, but both our results and

other studies suggest oceanic processes are more im-

portant in the subpolar gyre (e.g., Buckley et al. 2014,

2015; Karspeck et al. 2015; Robson et al. 2014; Menary

et al. 2015; O’Reilly et al. 2016; Delworth et al. 2017;

Piecuch et al. 2017; Zhang 2017).

Our observationally based results do not indicate

the same degree of variation in the magnitude and

spatial patterns of predictability time scales that are

typically seen in CMIP5 models. Whether this is due

to model deficiencies or may be related to the limited

sampling period of ocean observations is currently not

clear. Our results suggest that the predictability di-

agnostics that have been used for CMIP5 models,

particularly temperature averaged over depth layers

that are constant in space [e.g., top 300m used in

Branstator et al. (2012)] may not be the best measures

of ocean memory. Calculating predictability time scales

for wintertime SST and H for CMIP5/CMIP6 control

integrations and historical runs is a subject of ongoing

study.

One of the most significant caveats of our study is that

weonly have about 70 years of observations and remove a

quadratic function (in time) from our data prior to anal-

ysis. Therefore, we can only resolve variations up to de-

cadal time scales. If longer variations play a substantial

role in ocean predictability, then our results are surely an

underestimate of ocean predictability.
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APPENDIX

Determining the Level of T2 That Can Be
Distinguished from White Noise on Interannual

Time Scales

In our analysis, we use yearly time resolution observa-

tions (wintertime average SST and yearly and wintertime

average H), and thus we are only able to measure in-

terannual predictability. The point of this appendix is to

evaluate what value of T2 is required in order to demon-

strate statistically significant interannual predictability.

From a theoretical perspective, theminimumvalue ofT2 is

one, and this value will occur when the autocorrelation

decreases to zero at a lag of one year. However, due to

finite sampling it is possible to get larger values of T2 even

for white noise time series, which have no interannual

predictability. Thus, we generate probability distribution

functions for T2 based on white noise input (for time series

of SST and H) and compute thresholds for T2. Where T2

calculated from the data exceeds the threshold from white

noise, we conclude that there is interannual predictability.

Where T2 does not exceed the threshold, the variability

cannot be distinguished from white noise on interannual

time scales.

We first generate a time series of white noise with the

same length as the number of years of the observational

dataset of SST orH. The specific lengths of the time series

of SST andH for each product are given in Tables 1 and 2,

but in all cases the time series are about 70 years. Then, to

be consistent with the approach taken for the analysis of

the data, a quadratic function (in time) is removed from

the time series and AR fits are computed (using AR order

of 2). We repeat this experiment 10000 times in order to

get distributions for the AR parameters resulting from

white noise. Figure A1a shows a histogram of the AR2

coefficients, f1 and f2, based on the AR2 fit to the white

noise time series. The gray line shows the 90% confidence

ellipsoid for the AR parameters. Then, T2 is computed

from theARparameters; the distribution ofT2 for anAR2

model is shown in Fig. A1b.We chose our threshold forT2

to be the 90%quantile of the distribution;whenT2 exceeds

this threshold we state that it can be distinguished from

white noise.
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