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ABSTRACT

Understanding the extent to which Atlantic sea surface temperatures (SSTs) are predictable is important due
to the strong climate impacts of Atlantic SST on Atlantic hurricanes and temperature and precipitation over
adjacent landmasses. However, models differ substantially on the degree of predictability of Atlantic SST and
upper-ocean heat content (UOHC). In this work, a lower bound on predictability time scales for SST and
UOHC in the North Atlantic is estimated purely from gridded ocean observations using a measure of the
decorrelation time scale based on the local autocorrelation. Decorrelation time scales for both wintertime SST
and UOHC are longest in the subpolar gyre, with maximum time scales of about 4-6 years. Wintertime SST and
UOHC generally have similar decorrelation time scales, except in regions with very deep mixed layers, such as
the Labrador Sea, where time scales for UOHC are much larger. Spatial variations in the wintertime climato-
logical mixed layer depth explain 51%-73% (range for three datasets analyzed) of the regional variations in
decorrelation time scales for UOHC and 26%-40% (range for three datasets analyzed) of the regional variations
in decorrelation time scales for wintertime SST in the extratropical North Atlantic. These results suggest that to
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leading order decorrelation time scales for UOHC are determined by the thermal memory of the ocean.

1. Introduction

The climate of the next few decades, particularly on
regional scales, will depend on natural climate variations
in addition to anthropogenic forcing (e.g., Hawkins and
Sutton 2009; Corti et al. 2015; DelSole 2017). Therefore,
unlike centennial climate predictions, in which the cli-
mate state is largely a response to anthropogenic forcing,
decadal climate predictions require an accurate specifi-
cation of the initial climate state and an adequate repre-
sentation of natural variability in addition to knowledge
of external forcings. Given the inherently chaotic nature
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of the atmosphere, prospects for decadal climate pre-
diction lie in the interaction of the atmosphere with slower
parts of the climate system: the ocean, the cryosphere, and
the geosphere. The impact of ocean initialization on de-
cadal climate predictions, termed ‘‘initial-value pre-
dictability,” has been intensely studied over recent years;
in particular phases 5 and 6 of the Coupled Model In-
tercomparison Project (CMIPS5 and CMIP6) include de-
cadal prediction experiments, which were performed using
numerous participating models (Doblas-Reyes et al. 2013;
Meehl et al. 2014; Boer et al. 2016; Eyring et al. 2016).
The two main approaches for studying initial-value
predictability are 1) initialized predictions and 2) sta-
tistical measures of predictability. In initialized predic-
tions, such as the CMIP5/CMIP6 decadal prediction
experiments, a coupled model initialized with ocean ob-
servations is used to produce an ensemble of forecasts.
Improvements in predictability are inferred by comparing
the skill of the ocean initialized forecasts with the skill from
uninitialized forecasts. In the initialized forecasts, pre-
dictive skill can arise from both ocean initial conditions
and external forcing. In the absence of an initialized ocean,
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the skill comes entirely from external forcing. Note that
the skill of a forecast relative to some reference (e.g.,
persistence or uninitialized simulations) is a quantity
evaluated at a specific lead time. The predictability time
scale is a metric of the time period over which a forecast
has skill.

Initialized predictions suggest that the Atlantic is a
region of enhanced predictability for sea surface tem-
perature (SST; Smith et al. 2007; Keenlyside et al. 2008;
Pohlmann et al. 2009; van Oldenborgh et al. 2012;
Karspeck et al. 2015; Arthun et al. 2017) and upper-
ocean heat content (UOHC; Yeager et al. 2012;
Hermanson et al. 2014). Using decadal prediction ex-
periments with the Community Climate System Model
version 4 (CCSM4), Karspeck et al. (2015) show that the
North Atlantic is the only region where ocean initiali-
zation leads to a statistically significant increase in skill
of SST forecasts (at lead times of both 2-5 and 6-9 years)
compared to an uninitialized model; a similar result was
found by Doblas-Reyes et al. (2013) using the multi-
model mean of CMIP5 models. A number of studies
have suggested that predictability of North Atlantic
SSTs and UOHC is related to variations in the Atlantic
meridional overturning circulation (AMOC; Keenlyside
et al. 2008; Pohlmann et al. 2009; Matei et al. 2012;
Yeager et al. 2012; Hermanson et al. 2014). However, as
detailed in Karspeck et al. (2015), successful decadal
prediction in the North Atlantic may not rely on pre-
diction of the AMOC, but rather on adequate initiali-
zation of the temperature and salinity fields (and hence
geostrophic currents, including the AMOC).

Initialized predictions have also been used to show
that the recent changes in UOHC in the subpolar gyre
are predictable (Yeager et al. 2012; Hermanson et al.
2014). Some studies have suggested that these decadal
changes in subpolar UOHC are related to variations in
the AMOC (Robson et al. 2016) while others have fo-
cused on the importance of changes in the gyre circu-
lation related to the overlying winds (e.g., Bersch 2002;
Hikkinen and Rhines 2004; Sarafanov et al. 2008;
Hikkinen et al. 2011; Piecuch et al. 2017), including
shifts in the Gulf Stream path (Nigam et al. 2018; Ruiz-
Barradas et al. 2018).

Statistical measures of initial value predictability can
be estimated from long control runs of climate models
with time-invariant external conditions (Branstator
et al. 2012; DelSole et al. 2013; DelSole 2017).l Since
these methods do not require model experiments, these

! DelSole and Tippett (2018) propose a generalized framework
for predictability valid when there are variations in external
forcing.
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techniques facilitate the comparison of predictability
properties among multiple models. Branstator et al.
(2012) estimate initial value predictability for UOHC
(defined as average temperature over the upper 300 m)
in six atmosphere—ocean general circulation models;
they find that there are large regional variations in
predictability time scales in the North Atlantic, and the
locations of highest predictability are different for each
model. Predictability time scales in the subpolar North
Atlantic range from less than 3 years to more than 15
years, while time scales in the subtropical North Atlantic
range from less than 2 years to 10 years.

DelSole et al. (2013) use a similar multivariate re-
gression model trained on climate model simulations,
but they apply the model to observations (with external
forcing removed) as well. They find that the North At-
lantic basin is the region where the regression model has
the highest skill for predicting SST, with significant skill
for up to 6 years for both observations and the ensemble
mean of preindustrial and twentieth-century simula-
tions. However, the skill varies considerably with en-
semble member: one ensemble member has no skill at
any lead time and another has skill for up to 10 years.
The spread in skill is primarily due to model differences,
consistent with the results of Branstator et al. (2012).

While most predictability studies are based on
models, a few studies have made statistical predictions
based purely on observations (Alexander et al. 2008;
Zanna 2012; Ho et al. 2013; Newman 2013; Huddart
et al. 2017). One method for estimating observed pre-
dictability time scales for SST is to use a linear inverse
model (LIM) derived from SST observations. Pre-
dictability for decadal SST variations from LIMs is
generally 3—4 years over most of the North Atlantic
domain, with predictability generally being larger in
subpolar regions (Zanna et al. 2012; Newman 2013;
Huddart et al. 2017). Furthermore, the skill of LIMs is in
many cases found to be comparable to that of initialized
models, suggesting that predictions from a LIM are a
useful benchmark for interannual to decadal SST pre-
dictions (Newman 2013; Huddart et al. 2017). Similar
results regarding predictability in the Atlantic basin have
been found using other statistical methods, such as au-
toregressive models and constructed analog models (Ho
et al. 2013). Statistical models can also be used to help
understand dynamics behind predictability. For example,
statistical models demonstrate that in the Atlantic basin
coupling between the tropics and extratropics plays
only a small role in setting predictability time scales
(Huddart et al. 2017), in contrast to the Pacific basin
where coupling between the tropics and extratropics
plays a much larger role (Newman 2007; Alexander et al.
2008; Newman et al. 2016; Dias et al. 2019).
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In this paper, we estimate predictability time scales of
Atlantic SST and UOHC purely from ocean observa-
tions. A central question in this paper is whether spatial
variations in predictability time scales can be explained
by spatial variations in the ocean mixed layer depth
(MLD). According to the null hypothesis of SST vari-
ability, the ocean mixed layer integrates stochastic at-
mospheric forcing, resulting in a red SST spectrum
with a dominant time scale directly proportional to the
MLD (Frankignoul and Hasselmann 1977). In this
framework, the fact that the North Atlantic has longer
predictability time scales than other basins may simply
be explained by the deep MLDs in the North Atlantic.
We consider a linear dependence of predictability time
scales with MLD to be a simple null hypothesis to ex-
plain spatial variations in predictability time scales; we
will evaluate this null hypothesis in our study.

In section 2 we introduce the diagnostics and datasets
that we will use for SST and UOHC and define a mea-
sure of the decorrelation time scale, which we use to
quantify predictability of SST and UOHC. We compute
decorrelation time scales for UOHC and wintertime
SST in section 3 and compare them quantitatively in
section 4. In section 5, we determine to what extent
spatial variations in decorrelation time scales can be
explained by spatial variations in the wintertime clima-
tological MLD. In section 6 we determine to what extent
decaying versus oscillatory variations play a role in set-
ting decorrelation time scales for UOHC and wintertime
SST. Finally, in section 7 we conclude and discuss how
our results relate to prior studies.

2. Methods

In this section we describe the diagnostics that we will
use for SST and UOHC. Then, we introduce a measure
of the decorrelation time scale, which we use to quantify
predictability of SST and UOHC.

a. Diagnostics for SST and upper-ocean heat content

Although SST is the ocean variable that most directly
interacts with the atmosphere, predictability time scales
for SST may underestimate ocean memory. SST memory
is lost in the summertime due to the formation of the
seasonal thermocline. In winter when the mixed layers
deepen, anomalies isolated beneath the seasonal thermo-
cline can become entrained in the mixed layer. This pro-
cess, often referred to as the “reemergence mechanism”
(Alexander and Deser 1995), can lead to enhanced pre-
dictability for wintertime SSTs (Namias and Born 1970; de
Coétlogon and Frankignoul 2003; Deser et al. 2003).

As our goal is to estimate predictability of SST and
UOHC on interannual time scales, we define measures
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of SST and UOHC that minimize the effects of seasonal
variations, specifically the loss of ocean memory in
summer. For SST, we focus on wintertime SST (SST"),
where wintertime is defined as the January—March av-
erage SST. We define our measure of UOHC as the
average temperature in the layer between the surface
and a depth D:

1 0
H=5J_D0dz, )

where 0 is potential temperature. We define D to be the
wintertime climatological MLD, which is calculated by
forming a monthly climatology of MLD and taking the
January-March average of this quantity at each spatial
location. An alternative choice is the maximum clima-
tological MLD; our results are unchanged for this defi-
nition of D. The layer from the ocean surface to —D
reflects the portion of the ocean that comes in contact
with the atmosphere seasonally, and H covaries with
SST on interannual time scales (Buckley et al. 2014,
2015). Averaging over this layer implicitly accounts for
reemergence because anomalies that are isolated below
the seasonal thermocline in summer are included in
for all months. We express the ocean heat content in
units of temperature rather than Joules for convenience,
as this choice allows us to more easily compare time
series of SST and H. However, our results do not depend
on this choice because 1) D is constant in time and 2) our
predictability measure is based on the autocorrelation
function, which does not depend on the magnitude of
the anomalies.

Our analysis of predictability of SST and H will utilize
six different gridded observational products. As our
analysis requires long time series for SST and H, and
data products have substantial uncertainties, which are
generally larger for earlier periods, we choose several
data products to help understand the uncertainty. [See
Kennedy (2014) for a review of uncertainty in SST data
products and Boyer et al. (2016) for a review of un-
certainty in ocean temperature products.] We use
monthly SST from Extended Reconstructed SST ver-
sion 5 (ERSST v5; Smith et al. 2008), Hadley Center SST
(HadISST; Rayner et al. 2003), and COBE SST2
(Hirahara et al. 2014). We calculate H from monthly
fields of gridded temperature from Ishii (Ishii et al.
2006), EN4.2.1 (Good et al. 2013), and the ocean tem-
perature data product from Cheng (Cheng et al. 2017).
All analyses will be restricted from 1945 to present, and
the specific periods used for each product are listed in
Tables 1 and 2. Our results are unchanged if we instead
restrict all products to the period of 1945-2012, which is
common to all data products.
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TABLE 1. Sensitivity of the decorrelation time scale 7, to method and data product. Each of the three data products for H is listed along
the top row and left column, leading to a matrix comparing the data products. Shown is a comparison of T, for H for Ishii, EN4, and Cheng.
All the data products were regridded on the same 1° grid, and 75 is compared between products for all points in the ETNA. The R* values
and the slopes of the linear fits are listed in the table, where the slope m is calculated with the convention that the product listed along the

top is x and the product listed on the left is y. The diagonal of the matrix gives the sensitivity of each product to the use of H" compared to

the use of yearly averages H. A slope of more than one indicates that T is larger for H than H".

Product Ishii

EN4 Cheng

Ishii (1945-2012)
EN4 (1945-2017)
Cheng (1945-2016)

R*=084,m=1.1
R?>=0.80,m = 0.7
R?>=065m =09

R>=080,m =13
R>=080,m=12
R>=068,m=10

R>=065m=1.1
R>=068,m=1.0
R>=078,m=1.1

The wintertime climatological MLD D is an important
parameter in our study, but the MLD is a diagnostic that
cannot directly be measured. We use three different es-
timates of D, two based on the gridded data products
(Ishii and EN4%) and one from the Argo MLD climatol-
ogy of Holte et al. (2017), henceforth Argo MLD. In all
cases the MLD is based on a threshold method in which
the MLD is given by the depth at which the density
exceeds a near-surface reference density by an amount
Ap. For Ishii and EN4 (Figs. 1a,b), we use a fixed density
threshold of Ap =0.125kgm ™ applied to the monthly
gridded observations (see Fig. 1 caption for details). The
advantage of calculating MLDs from the gridded obser-
vational products is that D is consistent with the tem-
perature field of the gridded product. However, because
the gridded products are spatially and temporally smoothed
fields, we must apply a large density threshold (Toyoda
et al. 2015). For the Argo MLD product (Fig. 1c) we use
the MLD based on the variable density threshold of 0.2°C
density equivalent applied to individual Argo profiles
(see figure caption for details). The advantage of the
Argo MLD product is that it is based directly on Argo
profiles (Argo 2019) and can be considered a best esti-
mate of the MLD based on data. The disadvantages are
that it is restricted to the Argo period (from 2000 to the
present) and the MLD field has missing points because
Argo floats cannot travel in shallow regions.

In all cases D is very deep in the Labrador Sea, Ir-
minger Sea, and Iceland basin; relatively deep south of
the Gulf Stream; and quite shallow elsewhere (Fig. 1). In
the Labrador and Irminger Seas, D is significantly larger
for Ishii and EN4 (maximum about 1500 m; Figs. 1a,b)
than for the Argo MLD product (maximum around
1000 m; Fig. 1c), which is consistent with the fact that a
variable density threshold results in a smaller density
criteria and therefore shallower MLDs in cold regions.

2 As the Cheng product does not include salinity, we cannot
calculate potential density from this product and thus cannot
calculate MLDs.

The value of D in the Argo MLD product (Fig. 1c) is also
more patchy, which is the result of calculating MLD di-
rectly from in situ profiles rather than from a highly
smoothed monthly temperature field (as in Ishii and EN4).

Gridded temperature fields and D are used to calcu-
late H according to Eq. (1). For Ishii and EN4, D is
based on the MLD calculated from the respective grid-
ded product (e.g., Fig. 1a for Ishii and Fig. 1b for EN4);
for Cheng we use D based on the Argo MLD climatol-
ogy (Fig. 1c). Both annual average values of H, hence-
forth H, and wintertime average values of H, henceforth
HY, are calculated from the monthly fields.

Previous work using an ocean state estimate demon-
strates that SST and H are highly correlated on interannual
time scales (Buckley et al. 2014). We now show that a close
correspondence between wintertime SST and H is also
seen in the Ishii gridded product. The Ishii product is
chosen for this analysis since Ishii includes COBE SST2
observations, leading to a consistent product that can be
used to compare SST and H. Figure 2 shows the squared
correlation (at each grid point) between SST* and H".
The squared correlation between SST” and H" is gener-
ally quite high; the mean value of the squared correlation
over the North Atlantic domain is 0.83. Correlations are
lowest in the Labrador Sea and east of Iceland. Other re-
gions of relatively low correlations include the eastern
subpolar gyre and isolated regions in the North Atlantic
and South Atlantic subtropical gyres (e.g., the region south
of the Grand Banks). Correlations are very high in the
tropics. Low correlations between SST* and H" generally
occur where D is deep.

b. Measure of predictability time scales

To estimate the predictability time scales for winter-
time SST and H, we use a measure of the decorrelation
time scales, as defined by DelSole (2001):

+oo 00
Tzzk; p§:1+2k§1pi, ()

where p, is the autocorrelation (for SST or H) at discrete
lag k; when considering yearly/wintertime average data,
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TABLE 2. As in Table 1, but for a comparison of 7, for SST* between ERSST, HadISST, and COBE SST2.

Product ERSST

HadISST COBE SST2

ERSST (1945-2017)
HadISST (1945-2017)
COBE SST2 (1945-2016)

R>=061,m =09
R*=079,m=17

R>=0.79,m =06
R?>=0.60,m = 0.5

R*=061,m=11

R?=0.60,m = 2.0

as is done here, k is the number of years. For an expo-
nentially decaying autocorrelation function, 75 is equal
to the familiar e-folding time scale. The time scale 75 is
chosen in contrast to other possible measures of the
decorrelation time scale (e.g., Schubert et al. 1992;
DelSole 2001) because it accurately estimates pre-
dictability in the presence of oscillatory variability. As
shown in DelSole (2001), T, measures fundamental as-
pects of time series and arises naturally in statistical
sampling theory.

In this paper, T, will be interpreted as a lower bound
on the predictability time scale. This interpretation is
motivated by the fact that autocorrelations out to lag 7,
tend to be significant, and therefore a linear regression
model can make skillful predictions at least as long as 7.
Itis alower bound because it is based purely on the local
autocorrelation function. Including additional pre-
dictors, such as nonlocal SST or variations in the
AMOC, may improve skill (and thus correspond to
longer predictability time scales). For instance, a LIM
that captures covariability between multiple spatial
patterns may have more skill at individual points than a
regression model fitted to data at each point. Thus, our
diagnostic 75 is best understood as a lower bound on
predictability, one which may be a useful benchmark
against which to evaluate dynamical models or more
sophisticated statistical measures of predictability
[such a comparison is made in the framework of atmo-
spheric predictability in Schubert et al. (1992)]. For
these reasons, we henceforth refer to 7, as the decor-
relation time scale.

If we know the exact value of our autocorrelation
function, we can integrate over all lags to find 75, but
for a finite length time series we can only calculate the
sample autocorrelation function. For a sufficiently long
time series, we can instead integrate from lag — ks« to k.,
as long as we can chose a value of k+ that is much longer
than the time scale that we are trying to estimate but
much shorter than the length of the time series. For the
observational records that we are using, which are on the
order of 70 years, it is not possible to find such a value of
k. To resolve this dilemma, we fit an autoregressive
(AR) model to the time series of SST, H, and H". The
AR parameters are then used to calculate the theoreti-
cal autocorrelation function, p, at discrete lags k. Our
estimate of T, is found by replacing p, with p, in Eq. (2).

We try AR orders between 1 and 3 and find little sen-
sitivity to AR order, particularly for AR orders greater
than 1, so we choose an AR order of 2. Prior to com-
puting the AR fits we remove a quadratic function (in
time) from the time series of SST and H at each spatial
location. As a result of both the limited data period
available and the removal of the longest time scales
(due to removal of a quadratic), the resulting decorre-
lation time scales may underestimate predictability of
SST and H.

3. Decorrelation time scales for upper-ocean heat
content and SST

In this section we calculate decorrelation time scales
for H and wintertime SST based on gridded observa-
tional products. Decorrelation time scales for H based
on Ishii, EN4, and Cheng are shown in Fig. 3 (showing
the extratropical North Atlantic) and Fig. S1 (showing
the entire Atlantic domain; see the online supplemental
material). The largest decorrelation time scales, around
4-6 years, are seen in the subpolar gyre, in particular in
the Labrador Sea, Irminger Sea, and Iceland basin.
Decorrelation time scales are around two years south of
the Gulf Stream path, but elsewhere in the subtropical
gyres they are about a year. The black contours in Fig. 3
and in Fig. S1 show contours of D, and it is apparent that
the largest decorrelation time scales are found where D
is deep.

The black dots in Fig. 3 and Fig. S1 show grid points
where the decorrelation time scale is not significantly
different from white noise on interannual time scales
(see the appendix for details). In these regions there is
no interannual predictability, although there may be
predictability on shorter time scales (which could be
examined by looking at monthly H anomalies). One can
see that the interannual predictability of H is mostly
restricted to the extratropics. Therefore, for the rest of
our analysis we will consider only the extratropical
North Atlantic (ETNA; north of 20°N).

Results shown in Fig. 3 and Fig. S1 are from yearly
averages for H (H) but results using wintertime averages
for H (H") are quite similar (Table 1). Yearly average
values of H include temperature anomalies in the sum-
mertime seasonal thermocline, which are likely unrelated to
the deeper (and presumably more predictable) temperature
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(a) Ishii (1945-2012)

(b) EN4 (1945-2017)

0 200

400 600 800 1000

FIG. 1. The wintertime (January—March) climatological MLD D
from (a) Ishii, (b) EN4.2.1, and (c) the Argo MLD climatology
(Holte et al. 2017). In all cases the MLD is based on a threshold
method in which the MLD is given by the depth at which the
density exceeds the density at a near-surface reference depth z, by
an amount Ap. If there is no depth level where the threshold is
exceeded, then the MLD is set to the ocean depth. For Ishii and
EN4, we calculate the potential density from the potential tem-
perature and absolute salinity according to the TEOS-5 algorithms.
The MLDs are calculated by applying a density threshold of
Ap =0.125kgm 3 to the gridded monthly data; the reference depth
Z, 1s the cell center of the topmost grid cell (located at about 5m).
Then, a monthly climatology of MLD is calculated, and D is given
by the January-March average of this field at each grid point. For
the Argo MLD product we use the MLD based on the variable
density threshold of 0.2°C density equivalent applied to individual
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anomalies formed during the winter. Therefore, consider-
ation of only wintertime H anomalies could potentially lead
to increased decorrelation time scales, but in practice de-
correlation time scales based on yearly average H tend to be
somewhat larger (see Table 1), simply as a result of sup-
pressing noise by averaging over more months. The results
from the three different data products are quite consistent.
If we regrid all estimates of 7, onto a common 1° grid and
compute linear fits for all points in the ETNA between the
various data products, we find R” values between 0.65 and
0.80 and slopes between 0.7 and 1.3 (see Table 1).

Now we present results showing the decorrelation
time scales for SST* based on ERSST, HadISST, and
COBE SST2 (Fig. 4). The largest decorrelation time
scales, around 3-5 years, are seen in the subpolar gyre.
Decorrelation time scales are around two years south of
the Gulf Stream path, but elsewhere in the subtropical
gyre they are about a year. The spatial pattern of de-
correlation time scales is generally similar for SST* and
H, except for in the Labrador Sea where decorrelation
time scales for SST" are much shorter than those for H.
The black dots in Fig. 4 show grid points where the de-
correlation time scale is not significantly different from
white noise on interannual time scales (see the appendix
for details). In these regions there is no interannual SST
predictability, although there may be predictability on
shorter time scales (which could be examined by looking
at monthly SST anomalies). One can see that the in-
terannual predictability of SST” is mostly restricted to
the subpolar gyre.

The results from the three different data products are
quite consistent. If we regrid all estimates for 7, onto a
common 1° grid and compute linear fits for all points in
the ETNA between the various data products, we find
R? values between 0.60 and 0.79 and slopes between 0.5
and 2.0 (see Table 2). The deviation of the slopes from
one is due to COBE SST2 having significantly larger
decorrelation time scales than the other two products.

—

Argo profiles; the reference depth z, = 10m. In this case the
density threshold changes based on the local reference tempera-
ture and salinity: the threshold is 0.03kgm ™3 for a reference tem-
perature of 8°C and salinity of 35 psu, but the density threshold is
smaller for colder reference temperatures. Additionally, we use the
gridded product in which the monthly MLD climatology at each
grid point is given by the mean of all profiles found in this month in
the grid box. The value of D is calculated by simply taking the
maximum of the Argo-based MLD climatology at each grid point.
A simple maximum is used rather than the January—March average
to maximize the points where D can be calculated due to data
availability.
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FIG. 2. Squared correlation at each grid point between SST* and
H" for the Ishii data product. The heavy black contour (over the

Labrador Sea) shows the region where the standard deviation of
the wintertime (January—March average) MLD exceeds 250 m.

4. Comparing decorrelation time scales for
upper-ocean heat content and SST

We now explore the relationship between decorrela-
tion time scales for SST and H using the Ishii data
product. To present results that are most comparable,
wintertime values are used for both SST and H, but re-
call that decorrelation time scales for H" are very sim-
ilar (but slightly smaller) than those for H (Table 1).
Figure 5a shows a scatterplot comparing T, for SST" to
T, for H" for all points in the ETNA. A linear fit ex-
plains 61% of the variance, and the slope of the line is
one, indicating that 7, for SST" is comparable to 75 for
H"Y for most points in the ETNA.

Now we explore the points where the linear re-
lationship between T, for SST” and H" does not hold.
The triangles (squares) in Fig. 5a are points that are
more than two standard deviations above (below) the
best-fit line. There are significantly more triangles than
squares, indicating that there are many more outliers
where T is larger for H" than for SST*. The points in
Fig. Sa are shaded (grayscale) to reflect their value of D,
and it is apparent that points where T, for H" is signif-
icantly larger than T, for SST" are generally located
where D is deep. This is what one would expect, as av-
eraging from the surface to a depth D is a more effective
low-pass filter when D is deep.

Figure 5b shows the spatial distribution of the outliers
from the linear fit. All of the outliers are in the subpolar
gyre, and the outliers where 7 is larger for " than for
SST” are concentrated in the Labrador Sea and in the
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FIG. 3. The decorrelation time scale T, (colors) for H based on
(a) Ishii, (b) EN4, and (c) the Cheng OHC product. The black dots
show the points where the decorrelation time scale does not exceed
the time scale predicted from white noise on interannual time scales at
the 90% confidence level; see the appendix for details. The black
contours show the wintertime climatological MLD D at levels of 500
and 1000 m. For Ishii and EN4, D is based on a density criterion ap-
plied to the gridded observations. For Cheng, D is based on an Argo
MLD climatology (Holte et al. 2017). Starred points P3 in (a) and P4
in (b) correspond to points P3 and P4 shown in Figs. 9a and 9b.

eastern subpolar gyre off the coast of the British Isles.
These points, particularly those in the Labrador Sea,
align with the regions where the squared correla-
tion between SST" and H" is low (see Fig. 2). To
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FIG. 4. The decorrelation time scale 7, for SST* based on
(a) ERSST, (b) HadISST, and (c) COBE SST2. The black dots
show the points where the decorrelation time scale does not exceed
the time scale predicted from white noise on interannual time
scales at the 90% confidence level; see the appendix for details.
Starred points P5 in (a) and P6 in (b) correspond to points P5 and
P6 shown in Figs. 9c and 9d.

understand why 7> is so much larger for H" than for
SST” in these regions, we choose two characteristic
points, one in the Labrador Sea and one in the eastern
subpolar gyre; these points are labeled on both the
scatterplot (Fig. 5a) and the spatial map (Fig. 5b). The
time series of SST" and H" at these points are shown in
Figs. 5Sc and 5d. It is apparent that depth averaging is an
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effective low-pass filter, which leads to the enhanced
predictability for H" compared to SST" in these
regions.

Although differences between decorrelation time
scales for H" and SST" are expected in regions of deep
D, the Labrador Sea remains a unique region in that it
has such low predictability time scales for SST”, gener-
ally less than two years, despite very persistent anoma-
liesin H. There are several factors that may explain this.

1) Large spatial gradients in MLDs: Regions of deep
convection are characterized by weak vertical gradients
and deep MLDs, but there are strong lateral gradients
in properties. These lateral gradients are baroclinically
unstable, leading to a rapid growth of baroclinic eddies
that act to restratify the near-surface layer (Send and
Marshall 1995; Jones and Marshall 1997; Marshall and
Schott 1999; Frajka-Williams et al. 2014). The input of
buoyant waters from boundary currents adjacent to
regions of deep convection is also important in this
restratification process (Straneo 2006; Schmidt and
Send 2007). Time scales for restratification in the
Labrador Sea are thought to be rapid (from weeks to
months). While air-sea heat fluxes are quite large over
the Labrador Sea and may play a role in restratification,
near surface restratification occurs more rapidly than
can be accounted for by air-sea heat fluxes alone,
indicating the importance of lateral mixing (Send and
Marshall 1995; Jones and Marshall 1997). Wintertime
SST anomalies are rapidly destroyed by restratification,
but since the restratification is restricted to the near-
surface layers (top few hundred meters at most),
anomalies in H" remain mostly intact. Therefore,
restratification processes may explain the much longer
decorrelation time scales of H" compared to that of
SST™.

2) Large temporal variability in MLD: Figure 2 shows
that low correlations between SST” and H" gener-
ally align with regions where MLDs vary strongly
from one winter to the next. Temporal variability of
wintertime MLDs also may lead to decorrelation
time scales for H" that are much larger than for
SST”. Ifin a given winter the MLD is shallower than
D, H will include thermal anomalies from the pre-
vious winter, stored below this year’s wintertime
mixed layer. This effect will result in decorrelation
time scales for " that overestimate the true upper
ocean predictability (which would be seen if we al-
lowed D to vary from one year to the next) and are
significantly larger than decorrelation time scales
for SST¥. We do not expect any comparable impact
on decorrelation time scales for H” during years
when the wintertime MLD is deeper than D, as in
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FIG. 5. A comparison of the decorrelation time scale T, for SST* and H* using the Ishii data product. (a) A
scatterplot showing the relationship between T, for SST* and T for H" for all points in the ETNA. The points are
shaded (grayscale) to reflect their value of D. The solid red line shows the linear fit, and the black dash-dotted line is
the one-to-one line. The slope and R values for the fit are given in the bottom-right corner. The circles are points
that are within the two standard deviations of the best-fit line, and the triangles (squares) are points that are more
than two standard deviations above (below) the best-fit line. (b) The spatial distribution of the outliers, where black
triangles (squares) indicate points that are more than two standard deviations above (below) the best-fit line. Colors
show the squared correlation (at each grid point) between H" and SST*. Two points of interest, P1 and P2, are
chosen and the locations of these points are shown in both the scatterplot in (a) and the spatial map in (b). (c),(d)
The time series of SST" (red) and H" (black) at points P1 and P2, respectively.

this case H" anomalies will still reflect thermal
anomalies in the mixed layer.

In summary, generally decorrelation time scales for
wintertime SST and H are similar, but in the Labrador
Sea decorrelation time scales for SST are much shorter.
This is likely due to large spatial and temporal varia-
tions in wintertime MLDs and modification of SST by
rapid near-surface processes. However, the gridded

observational datasets utilized here lack the temporal and
spatial resolution to fully understand the dynamics op-
erating in the Labrador Sea.

5. Can mixed layer depth variations explain spatial
variations in decorrelation time scales?

In this section we explore our null hypothesis that
spatial variations in decorrelation time scales are related
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FIG. 6. How decorrelation time scales for H are related to D: (left) Scatterplots comparing the decorrelation time scale 75
for H to D for all points in the ETNA for (a) Ishii, (b) EN4, and (c) Cheng. The dash-dotted gray lines show values of T,
above which 7, can be distinguished from white noise on interannual time scales (see the appendix). The red line is a linear
fit between T, and D, and the values of R* and the slope 1 and the corresponding value of the damping parameter « [see
Eg. (3)] are given in the top-left corner of each plot. Green (black) points are outliers that are more than two standard
deviations above (below) the best-fit line. (right) Spatial distribution of the outliers based on the linear fit for (d) Ishii,
(e) EN4, and (f) Cheng. Green (black) points are points more than two standard deviations above (below) the best-fit line,
indicating points with higher (lower) than expected predictability. Colors show a spatial map of the wintertime climatological
MLD D, and light gray, gray, and dark gray contours show ocean bathymetry at depths of 1, 2, and 3 km, respectively.

to variations in the wintertime climatological MLD D.
We first consider the linear relationship between the
decorrelation time scale for H and D and then consider
the relationship between the decorrelation time scale for
wintertime SST and D. Then, we use the slopes of the
linear relationships to estimate the damping parameter.

a. Relationship between decorrelation time scale for
H and D

Figures 6a—c show scatterplots between D and T for
all points in the ETNA based on H from the Ishii, EN4,

and Cheng data products. The red lines show a linear fit
between T, and D; linear fits demonstrate that between
51% and 74% of the spatial variations in 7, can be
explained by spatial variations of D. The strong linear
relationship between D and 7, matches the expecta-
tion from stochastic climate models in which the ocean
simply thermodynamically integrates stochastic atmo-
spheric forcing (Frankignoul and Hasselmann 1977).
The slopes of the lines indicate that an increase in D by
1km results in an increase in the decorrelation time
scale of 3.1-4.2 years. The precise values of R* and the
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FIG. 7. Sensitivity of relationship between 7, for H and D to the MLD product used: (a),(b) As in Figs. 6a and 6b
and (c),(d) as in Figs. 6d and 6e, but D is from the Argo MLD climatology (Holte et al. 2017). This value of D is used
for both the values of D in the scatterplot and in the calculation of H according to Eq. (1).

slope of the linear regression are somewhat sensitive to
the MLD product. If the calculations for Ishii and EN4
are repeated using D from the Argo MLD climatology
(Holte et al. 2017), R* decreases (Figs. 7a,b), likely be-
cause the Argo MLD product is more patchy. Further-
more, since D from the Argo MLD product is shallower
than D calculated from Ishii and EN4, the slope of the
line increases (Figs. 7a,b) and becomes more similar to
that from Cheng (which uses D from the Argo MLD
climatology).

In calculating the linear fits, all points in the ETNA
are included, regardless of whether or not the values of
T, can be distinguished from white noise on interan-
nual time scales (dash-dotted gray lines in Figs. 6a—c,
7a, and 7b show values of T, above which T, can be
distinguished from white noise on interannual time
scales). All points are included since points where D is
shallow and there is no interannual predictability are
part of the observed relationship between 7, and D; in
fact, if there were places with large D where there was
no interannual predictability, these points would not
match the expectation from the null hypothesis and
would require explanation.

Now we explore the points that do not follow the
scaling of 7, with D. The green (black) points in
Figs. 6a—c, 7a, and 7b indicate outliers that are more than
two standard deviations above (below) the best-fit line.
There are significantly more outliers above the line than
below the line, indicating that there are more points with
higher than expected predictability than lower than ex-
pected predictability. Figures 6d—f show the spatial dis-
tribution of the outliers; the spatial distribution of the
outliers is quite similar when the calculations for Ishii
and EN4 are repeated using D from the Argo MLD
climatology (Figs. 7c,d). The outliers are mostly con-
fined to the subpolar gyre, except for a few points with
higher than expected predictability in the slope waters
west of the Gulf Stream. Points with higher than ex-
pected predictability are almost all confined to shallow
bathymetry: the North American continental shelf, the
Grand Banks, and the Reykjanes Ridge, a concurrence
that needs further investigation, particularly in the
context of previous work suggesting that interactions of
ocean currents with bathymetry are an important pro-
cess in generating upper ocean temperature variability
(e.g., Nigam et al. 2018). There are very few points with
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lower than expected predictability, and their locations
are not robust between the different data products, so it
is somewhat difficult to determine their origin. There
does seem to be some tendency for points with lower
than expected predictability to occur in regions with
large spatial and temporal gradients in D. This may be
due to rapid restratification as a result of lateral mixing
by eddies, which is expected to lead to decorrelation
time scales shorter than those predicted by local values
of D (Send and Marshall 1995; Jones and Marshall 1997;
Marshall and Schott 1999; Frajka-Williams et al. 2014).

b. Relationship between decorrelation time scale for
wintertime SST and D

We now consider the relationship between variations
in D and T for wintertime SST; in considering this re-
lationship we use D based on the Argo MLD climatol-
ogy for all three SST data products. Figures 8a—c show a
scatterplot between D and T, for SST" for all points in
the ETNA. (As before fits are for all points in the
ETNA; gray dash-dotted lines show the value of T,
above which 75 can be distinguished from white noise on
interannual time scales.) The linear fit between D and T,
indicates that an increase in D by 1 km results in an in-
crease in the decorrelation time scale of 1.3-2.5 years.
As expected, the slope of the line is significantly shal-
lower than that for H because predictability time scales
for SST” are generally less than those for H. We find
that 26%-40% of the spatial variations of T, for SST*
can be explained by spatial variations in D. There are
several reasons for the smaller percent variance of 7,
explained by D for SST" compared to H:

1) Predictability time scales for H are expected to be
proportional to D according to stochastic climate
models (e.g., Frankignoul and Hasselmann 1977;
Deser et al. 2003; de Coétlogon and Frankignoul
2003), but there is not the same expectation for SST,
which is also influenced by surface processes, as
discussed in section 4.

2) SST is a noisier field than H, as depth averaging acts
as a low-pass filter (see section 4). Additionally, for H
we are able to further suppress noise by averaging
over a year rather than just averaging over the
wintertime months.

3) For the fit between T, and D for the SST analysis, we
use D from the Argo MLD climatology, which is
relatively patchy. Our analysis with Ishii and EN4
shows that the portion of the variance of 7, explained
by D decreases somewhat when D from the Argo
MLD product is used compared to the smoother
values of D based on the gridded data products (cf.
Figs. 6a,b and 7a,b).
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4) In the Labrador Sea, predictability for SST" is quite
small, despite very large values of Dj; in contrast
predictability for H is quite large, as discussed in
section 4. If the Labrador Sea is excluded from our fit
between 7, and D, the percent variance explained
increases by 6%-10% and the slopes increase by
about 0.5yrkm ™' (due to the removal of low values
of T, with large values of D).

The points above suggest that decorrelation time scales
for SST" exhibit a weaker scaling with D than the time
scales for H due to both complex surface dynamics
(particularly in the Labrador Sea) and noise (in both
the SST fields and the MLD field).

Now we explore the points that do not follow the
scaling of decorrelation time scale with D. The green
(black) points in Figs. 8a—c indicate outliers that are
more than two standard deviations above (below) the
best fit line. There are significantly more outliers above
the line than below the line, indicating that there are
more points with higher than expected predictability
than lower than expected predictability. Figures 8d—f
show the spatial distribution of the outliers. The outliers
almost all have higher than expected predictability and
are located in the region with large decorrelation time
scales south of Greenland. There is a small region of
points with lower than expected predictability in the
Labrador Sea, consistent with the fact that while D is
deep and decorrelation time scales for H and H" are
long, decorrelation time scales for SST" are short in this
region (see also Fig. 5).

¢. The damping parameter

The slopes of the fitted lines between T, (for H and
SST") and D can be written in the units of a damping
parameter «. From Frankignoul et al. (1998), a charac-
teristic time scale can be related to « as

p,C.D
=21

o

, ®)

where p, =1035kgm™ is a reference density and C,, is

the heat capacity. Inverting this relationship and setting
7/D = m, where m is the slope of our fit between T, and
D, we can make a gross estimate of a. The values of
a calculated by this method can be understood as the
best-fit damping parameter, under the assumption that
the damping parameter is constant over the entire do-
main. Using this relation results in values of « ranging
from 33 to 44 Wm 2K ™! for H (Figs. 6a—c). If the cal-
culations for Ishii and EN4 are repeated using D from
the Argo MLD climatology, « for Ishii and EN4 de-
creases to 36-37Wm 2K~ ! (Figs. 7a,b), values more
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FIG. 8. How decorrelation time scales for wintertime SST are related to D: (left) Scatterplots comparing the
decorrelation time scale T for SST" to D (from the Argo MLD product) for all points in the ETNA for (a) ERSST,
(b) HadISST, and (c) COBE SST2. The dash-dotted gray lines show values of T, above which T can be distin-
guished from white noise on interannual time scales (see the appendix). The red line is a linear fit between 7, and D,
and the values of R* and the slope m and the corresponding value of the damping parameter « [see Eq. (3)] are given
in the top-left corner of each plot. Green (black) points are outliers that are more than two standard deviations
above (below) the best fit line. (right) Spatial distribution of the outliers based on the linear fit for (d) ERSST,
(e) HadISST, and (f) COBE SST2. Green (black) points are points more than two standard deviations above the
best fit line, indicating points with higher (lower) than expected predictability. Colors show a spatial map of D from

the Argo MLD product (Holte et al. 2017).

similar to that of Cheng (o = 33 Wm ™ 2K '), which uses
D from the Argo MLD climatology. Values of « for
SST” are significantly larger, ranging from 54 to
109Wm 2K ™! (Figs. 8a—c).

Expressing the slope in the units of « is not intended to
suggest that calculating « based on the fits between 7,

and D is an accurate method for calculating the damping
parameter; instead the goal is merely to express m in
units that are familiar to the reader. Namely, the ca-
nonical value of the damping by air-sea heat fluxes de-
rived by Frankignoul et al. (1998) is a, =20 Wm *K !,
although values are somewhat higher in the subpolar
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gyre and vary seasonally (values are larger in the win-
tertime). Differences between our calculations and that
of Frankignoul et al. (1998) include:

1) Frankignoul et al. (1998) estimate only atmospheric
damping «,, whereas we calculate the total damping
rate by the atmosphere and ocean. Some studies
suggest that oceanic damping is as large or larger
than atmospheric damping (Hall and Manabe 1997),
which explains why our calculated values of a are
generally larger than 20Wm 2K .

2) Our value of a depends linearly on the chosen value
of D. We chose D as the wintertime climatological
MLD, a quantity that is quite large in the subpolar
gyre, which also contributes to our relatively large
values of a.

3) Frankignoul et al. (1998) consider damping of monthly
SST anomalies, whereas we consider wintertime SST
and H. As a result of the formation of the seasonal
thermocline, H and SST" anomalies are damped to
the atmosphere more slowly since the atmospheric
damping is essentially zero during the summertime
when anomalies are isolated below the seasonal
thermocline. This process is expected to lead to a
value of «, smaller than that of Frankignoul et al.
(1998), but this effect is relatively modest since
damping is smaller in the summer (Frankignoul and
Kestenare 2002).

The above differences suggest that our value of « should
not match that of Frankignoul et al. (1998) and that it
should be larger than 20Wm 2K™!, as indeed it is,
particularly for SST¥. However, the sensitivity of our
calculated value of « to the choice of D as well as the
particular data products used (« for SST" varies by
almost a factor of 2 between the three different data
products) suggests that « cannot be tightly constrained
from calculations of decorrelation time scales.

6. Are there oscillatory variations in SST or
upper-ocean heat content?

The value of T, measures the decorrelation time scale of
SST/H, but it does not distinguish between different types
of variability that may be leading to the measured value of
T>. For example, does 75 simply indicate damping with an
e-folding time scale given by 7, or does oscillatory be-
havior play a role? The goal of this section is to determine
the extent to which decaying versus oscillatory behavior of
the autocorrelation function is important in setting de-
correlation time scales for H and SST”. For an AR2
model, this question can be answered analytically based on
the AR coefficients (von Storch and Zwiers 2002). Figure 9
is a scatterplot showing the AR coefficients, ¢; and ¢,,
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from the AR?2 fit to time series of H (Fig. 9a) and SST"
(Fig. 9c) for all the points in the ETNA. Points above
the black parabola have exponentially decaying auto-
correlation functions; the further from the parabola,
the more strongly the autocorrelation function decays.
The points below the parabola have (decaying) oscil-
latory behavior; the farther from the parabola, the
stronger the oscillations are. One can see that there are
numerous points in the ETNA for which time series of
H and SST” are in the regime with oscillatory behavior.
Two points with the most oscillatory behavior for H are
chosen: P3 from the Ishii product is located south of the
Gulf Stream (labeled on Fig. 3a), and P4 from the EN4
product is located in the central subpolar gyre (labeled on
Fig. 3b). The autocorrelation function of these most ex-
treme points shows only modest oscillatory behavior,
with an autocorrelation of about —0.25 after about
3 years (Fig. 9b). For SST" there are very few points that
are a significant distance below the parabola, and all of
these points lie in regions of seasonal sea ice: P5 from
ERSST is located in Denmark Strait (labeled on Fig. 4a)
and P6 from HadISST is located off the coast of Labrador
(labeled on Fig. 4b). The autocorrelation function for
these points exhibits very weak oscillatory behavior, with
an autocorrelation of about —0.2 after about 2-3 years
(Fig. 9d). Therefore, we conclude that on the time scales
resolved by our observational products, oscillatory be-
havior does not play a significant role for variability in
either H or SST". Instead, T, is mainly controlled by the
decay of SST/H anomalies, and is expected to be quite
similar to the familiar e-folding time scale.

7. Conclusions

In this work, a lower bound for predictability time
scales for SST and UOHC is estimated purely from ocean
observations, and the degree to which spatial variations in
the MLD can explain predictability time scales is quan-
tified. Two diagnostics are used for SST/UOHC: winter-
time SST and the temperature averaged over the layer
from the surface to the wintertime climatological MLD
(integral denoted as H); both diagnostics quantify the
ocean memory on interannual time scales and are de-
signed to minimize the effects of seasonal variations,
specifically the loss of SST memory in the summertime
due to the formation of the seasonal thermocline.
Gridded observational products are used to estimate
predictability for wintertime SST and H in the North
Atlantic using a measure of the decorrelation time
scale based on the local autocorrelation function
(DelSole 2001). Decorrelation time scales for both
wintertime SST and H are longest in the subpolar gyre,
with maximum decorrelation time scales of 4-6 years.
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FI1G. 9. Scatterplots for the AR2 coefficients, ¢, and ¢,, for all points in the ETNA. (a) The
AR?2 coefficients for the fits to H from Ishii (magenta), EN4 (green), and Cheng (blue). (c) The
AR?2 coefficients for the fits to SST* from ERSST (magenta), HadISST (green), and COBE
SST2 (blue). The triangle identifies the range of coefficients for which an AR2 process is sta-
tionary; the fact that all the points lie within the triangle indicates that the time series of / and
SST" are stationary. The black parabola separates AR2 processes with exponentially decaying
autocorrelation functions (above the parabola) from those with quasi-oscillatory behavior
(below the parabola). The equation of the parabola is ¢? + 4¢, = 0 (von Storch and Zwiers
2002). The shaded gray ellipse shows the AR2 coefficients that cannot be distinguished from
white noise at the 90% confidence level (see the appendix and Fig. A1). For both H and SST",
we chose several points that are the farthest below the parabola and examine their autocor-
relation function to see the strength of the oscillations. P3 (from Ishii, located south of the Gulf
Stream, labeled in Fig. 3a) and P4 (from EN4, located in the central subpolar gyre, labeled in
Fig. 3b) are labeled in (a), and their autocorrelation functions are shown (b). P5 (from ERSST,
located south of Greenland, labeled in Fig. 4a) and P6 (from HadISST, located off the coast of
Labrador, labeled in Fig. 4b) are labeled in (c), and their autocorrelation functions are shown in (d).

Decorrelation time scales for wintertime SST and H are Our decorrelation time scales are generally similar to

generally similar, except in regions with very deep mixed
layers, such as the Labrador Sea, where time scales for H
are much larger. Oscillatory variations are found to play
little role in setting predictability time scales for winter-
time SST and H; instead decorrelation time scales are
controlled mainly by the decay rate of anomalies.

predictability time scales calculated from observations
using other statistical techniques, such as linear inverse
models (LIMs). Predictability for decadal SST varia-
tions from LIMs is generally 3—4 years over most of the
North Atlantic domain, with predictability generally
being larger in subpolar regions (Zanna et al. 2012;
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Newman 2013; Huddart et al. 2017). The similarity of
our results to those from LIMs suggests that our con-
sideration of a predictability measure based on the local
autocorrelation (e.g., the decorrelation time scale) is
likely not a significant limitation in the Atlantic basin.
This is further supported by results from LIMs that
suggest nonlocal SST variability has little influence on
SST predictions in a given region of the Atlantic (Huddart
et al. 2017). Our conclusion that oscillatory variations play
little role in predictability of wintertime SST and H is
supported by results from statistical models that suggest
predictability in the Atlantic, while higher than most other
basins, only slightly exceeds that of a persistence forecast
(DelSole et al. 2013).

While our results generally agree with other studies on
the magnitude of predictability time scales in the North
Atlantic, there are some differences in the detailed
spatial patterns. For example, Zanna et al. (2012) find
that forecast skill compared to climatology is quite low
in the subpolar region south of Greenland, but we find
that this region has relatively high values of 7, (greater
than 2 years). This result may be due to the analysis of
wintertime SST (in our study) versus annual-average
SST [in Zanna et al. (2012)], the different time periods
studied [Zanna et al. (2012) start analysis in 1870
whereas we start in 1945], or the truncation of the SST
variability using empirical orthogonal functions in the
LIM. The spatial patterns of predictability time scales
for SST in Huddart et al. (2017) are more similar to ours,
but this study uses decadal filtering to construct the LIM,
so results are not directly comparable to our study. It
would be interesting to create a LIM to predict winter-
time SST or wintertime/annual average H (with no ad-
ditional filtering) and see how these results compare to
our decorrelation time scales.

Spatial variations in the wintertime climatological
MLD explain 51%-74% of the regional variations in
decorrelation time scales for UOHC and 26%-40% of
the regional variations in decorrelation time scales for
SST in the extratropical North Atlantic. These results
suggest that to leading order decorrelation time scales
for H are determined by the thermal memory of the
ocean. Interestingly, decorrelation time scales for
UOHC that are significantly larger than expected based
on the local mixed layer depth tend to be located in
regions with shallow bathymetry. Decorrelation time
scales for wintertime SST have a weaker relationship
with the MLD, as a result of both noise and surface
processes. In particular, in the Labrador Sea, decorre-
lation time scales for wintertime SST are much shorter
than expected from the local MLD.

The suggestion that a large portion of the spatial
variations in predictability time scales can be explained
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by variations in the wintertime climatological MLD
raises the question of whether SST and UOHC vari-
ability in the ocean can simply be explained by stochastic
atmospheric forcing. Addressing this question is the
subject of ongoing work. The fact that the damping pa-
rameter calculated from our decorrelation time scales is
significantly larger than the canonical atmospheric
damping parameter (e.g., Frankignoul et al. 1998) sug-
gests that oceanic damping is important, as found by
Hall and Manabe (1997) and argued by Zhang (2017).
Where dynamical oceanic process (e.g., ocean currents)
are important in creating SST and UOHC anomalies
remains to be explored in detail, but both our results and
other studies suggest oceanic processes are more im-
portant in the subpolar gyre (e.g., Buckley et al. 2014,
2015; Karspeck et al. 2015; Robson et al. 2014; Menary
et al. 2015; O’Reilly et al. 2016; Delworth et al. 2017,
Piecuch et al. 2017; Zhang 2017).

Our observationally based results do not indicate
the same degree of variation in the magnitude and
spatial patterns of predictability time scales that are
typically seen in CMIP5 models. Whether this is due
to model deficiencies or may be related to the limited
sampling period of ocean observations is currently not
clear. Our results suggest that the predictability di-
agnostics that have been used for CMIP5 models,
particularly temperature averaged over depth layers
that are constant in space [e.g., top 300m used in
Branstator et al. (2012)] may not be the best measures
of ocean memory. Calculating predictability time scales
for wintertime SST and H for CMIP5/CMIP6 control
integrations and historical runs is a subject of ongoing
study.

One of the most significant caveats of our study is that
we only have about 70 years of observations and remove a
quadratic function (in time) from our data prior to anal-
ysis. Therefore, we can only resolve variations up to de-
cadal time scales. If longer variations play a substantial
role in ocean predictability, then our results are surely an
underestimate of ocean predictability.
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FIG. Al. Histograms of AR parameters and 75 for white noise
(with the same length of the observational time series). Distribu-
tions come from 10 000 repetitions (see the appendix). (a) The AR2
coefficients, ¢; and ¢,, from white noise. The colors show a his-
togram of the coefficients and the gray ellipse shows the 90%
confidence level. (b) A histogram for 75. The solid black line shows
the median, and the dashed black line shows the 90% quantile of
the distribution.

APPENDIX

Determining the Level of T, That Can Be
Distinguished from White Noise on Interannual
Time Scales

In our analysis, we use yearly time resolution observa-
tions (wintertime average SST and yearly and wintertime
average H), and thus we are only able to measure in-
terannual predictability. The point of this appendix is to
evaluate what value of 75 is required in order to demon-
strate statistically significant interannual predictability.
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From a theoretical perspective, the minimum value of 75 is
one, and this value will occur when the autocorrelation
decreases to zero at a lag of one year. However, due to
finite sampling it is possible to get larger values of T even
for white noise time series, which have no interannual
predictability. Thus, we generate probability distribution
functions for T, based on white noise input (for time series
of SST and H) and compute thresholds for 7,. Where T,
calculated from the data exceeds the threshold from white
noise, we conclude that there is interannual predictability.
Where T, does not exceed the threshold, the variability
cannot be distinguished from white noise on interannual
time scales.

We first generate a time series of white noise with the
same length as the number of years of the observational
dataset of SST or H. The specific lengths of the time series
of SST and H for each product are given in Tables 1 and 2,
but in all cases the time series are about 70 years. Then, to
be consistent with the approach taken for the analysis of
the data, a quadratic function (in time) is removed from
the time series and AR fits are computed (using AR order
of 2). We repeat this experiment 10000 times in order to
get distributions for the AR parameters resulting from
white noise. Figure Ala shows a histogram of the AR2
coefficients, ¢, and ¢,, based on the AR2 fit to the white
noise time series. The gray line shows the 90% confidence
ellipsoid for the AR parameters. Then, 7, is computed
from the AR parameters; the distribution of 75 for an AR2
model is shown in Fig. A1b. We chose our threshold for 7,
to be the 90% quantile of the distribution; when 7, exceeds
this threshold we state that it can be distinguished from
white noise.
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