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Distributed Repetitive Learning Control for
Cooperative Cadence Tracking in Functional
Electrical Stimulation Cycling

Victor H. Duenas!, Christian A. Cousin?, Courtney Rouse?, Emily J. Fox?2, Warren E. Dixon®

Abstract—Closed-loop control of Functional Electrical Stimu-
lation (FES) coupled with motorized assistance to induce cycling
is a rehabilitative strategy that can improve the motor function
of people with neurological conditions (NCs). However, robust
control methods have limited effectiveness due to the use of
high stimulation intensity, which leads to accelerated fatigue
during cycling protocols. This paper examines the design of
a distributed repetitive learning controller (RLC) that com-
mands an independent learning feedforward term to each of
the six stimulated lower-limb muscle groups and an electric
motor during the tracking of a periodic cadence trajectory.
The switched controller activates lower limb muscles in synergy
during kinematic efficient regions of the crank cycle and provides
motorized assistance only when most needed (i.e., during the
portions of the crank cycle where muscles evoke low torque
output). The controller exploits the periodicity of the desired
cadence trajectory to learn from previous control inputs for each
muscle group and electric motor. A Lyapunov-based stability
analysis guarantees asymptotic tracking via an invariance-like
corollary for nonsmooth systems. The switched controller with
distributed RLC was evaluated in experiments with seven able-
bodied individuals and five participants with NCs. A mean
root-mean-squared (RMS) cadence error of 3.58 4+ 0.43 RPM
(0.07+7.35 % average error) and 4.26 + 0.84 RPM (0.1+8.99 %
average error) was obtained for the healthy and neurologically
impaired populations, respectively.

Index Terms—Functional Electrical Stimulation (FES), FES-
Cycling, Repetitive Learning Control (RLC), Distributed Control

I. INTRODUCTION

Neurological conditions (NCs) that result in movement
disorders greatly affect a person’s independence and mobility.
Rehabilitation technologies aim to improve motor function
using a combination of robotic devices and artificial control
to activate muscles related to a specific task. Functional
electrical stimulation (FES) is a common technology used to
elicit muscle contractions to achieve a motor task. Closed-
loop FES has been implemented to assist upper-limb tasks
[1]-[3], leg tracking experiments [4]-[6], human locomotion
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via exoskeletons and neuroprostheses [7]-[9], and lower-limb
cycling with and without motorized assistance [10]-[14]. FES
applied to lower-limb muscles has allowed individuals with
spinal cord injury (SCI) to stand and step for short distances,
which has improved their sitting balance and posture [15].
Lower-limb FES control generates muscle contractions that
induce exercise-related physiological changes and exploit ther-
apeutic benefits compared to pure ambulation with orthoses
[15]. Active lower-limb cycling with FES significantly im-
proved the walking ability of stroke participants versus active
cycling without FES [16]. Additionally, improvements in joint
movement coordination in the upper limbs with FES [3] and
postural control and muscle strength after lower-limb FES
cycling have been reported for stroke participants [16]. Thus,
FES induced cycling has been suggested as a rehabilitation
strategy for people with NCs to improve motor skills due to
its simplicity, availability, and low risk (e.g., compared to fall
risks in locomotion).

Robotic devices have been used to assist neurologically
impaired individuals in completing repetitive movements, and
to quantify kinematic variables to assess the level of motor
recovery during clinical studies [17], [18]. Repetition of a
movement pattern through robotic control contributes to motor
learning and rehabilitation [17]. It has been hypothesized that
adaptive reorganization of the human motor system after a
neurological lesion can be enhanced by activity and task-
specific practice [19]. Further results have shown that motor
learning is promoted primarily during motor tasks where
robotic assistance is provided only as needed to promote active
engagement, if possible, of the user [18], [20]. Hence, the
development of a cycling protocol that delivers high intensity
repetitive active exercise is desired. Additionally, motorized
assistance can aid in obtaining repeatable exercise by only
assisting the electrically stimulated lower-limb muscles as
needed.

Learning control methods, such as iterative learning control
(ILC) and repetitive learning control (RLC), improve tracking
performance of repetitive or periodic processes by utilizing
control inputs from previous cycles, iterations, or periods
[21]-[23]. The use of learning control does not require an
explicit mathematical model of the uncertainties present in
the system, rather, the control strategy exploits the repeated
or periodic motion to learn the uncertainties. Rehabilitation
tasks such as cycling are repetitive/periodic naturally, and
hence, ILC/RLC is an attactive method to adaptively adjust to
the person’s unique attributes. Compared to adaptive control,
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ILC/RLC methods don’t require the uncertainty in the system
to be linearly parameterizable (LP). This relaxation of the
structure of uncertainty is beneficial given the lack of an exact
model in applications that involve human-machine interaction,
especially for participants with NCs. Lyapunov- and passivity-
based tools have been utilized to synthesize ILC and RLC
controllers for finite interval tasks with states resetting after
each trial [21], [24] and for continuous operation in the time
horizon without resetting [25], [26], respectively. In [27],
an integral of a kernel multiplied by an influence function
estimates a nonlinear repetitive disturbance function; the re-
sulting learning algorithm ensures asymptotic convergence. A
saturated learning-based feedforward term was developed in
[25] to leverage the periodic nature of the desired trajectory
for the control of robot manipulators. An ILC method was
developed in [28] to learn from non-identical tracking tasks.
In [26], a fully saturated learning law and an iterative learning
formulation to prove convergence of the states was developed.
In [29], passivity is used to demonstrate asymptotic stability
of learning and adaptive controllers.

Both ILC and RLC methods have been previously imple-
mented in rehabilitation settings with FES. In results such
as [24], [30], and [31] the use of ILC with FES has been
investigated during planar and unconstrained upper arm tasks
for clinical rehabilitation in stroke and multiple sclerosis (MS)
populations. However, most of the developed ILC controllers
required preliminary model identification procedures, the dy-
namics were linearized, and limited information was given
regarding the switching muscle dynamics. In [32], ILC was
implemented for foot trajectory tracking during swing phase
in gait using a drop foot neuroprosthesis. A brain-computer
interface with FES was developed for upper limbs motor
rehabilitation using ILC in [33]. Repetitive Control (RC) was
examined in [34] for tremor suppression at the wrist via FES
by regulating flexor/extensor muscles.

More recently, a distributed or decentralized learning ap-
proach has been developed in the fields of multi-agent systems,
network control, and large-scale systems. In [35], a distributed
ILC approach was realized for trajectory tracking of a group
of quadrotors, where each vehicle learns from its own and its
neighbor’s previous inputs during past repetitions. Consensus-
based learning control was designed to learn periodic un-
certainties where an auxiliary control is designed for each
follower agent to track the leader in [36]. A distributed
adaptive iterative learning technique was implemented for
consensus tracking for a class of nonlinear multiagent systems
in [37]. In [38], a multi-agent formation problem is studied
with switching topologies utilizing a distributed algorithm
where agents learn to execute a cooperative task via repe-
tition. A distributed optimization-based ILC algorithm was
developed in [39] to address a large-scale building temperature
control problem where the centralized system is separated
into several subsystems that share communication. The current
paper leverages the ideas of distributed repetitive learning
to investigate FES-cycling since multiple lower-limb muscles
require activation to achieve a cadence tracking objective.

To produce a coordinated movement during FES-cycling,
switching across lower-limb muscles is required. Switching
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between flexor and extensor muscle groups is desired to
achieve metabolic efficiency and smooth coordination. In [40]
and [10], an electric motor provides assistance during regions
of the crank cycle where electrical stimulation is less effective
at producing torque. Thus, the assist as needed paradigm is
applied to the control of the electric motor while lower-limb
muscles are activated via FES. Switching between lower-limb
muscles and an electric motor makes the overall system a
switched system. The periodic nature of cycling tasks thus
motivates the use of learning control; however, a switched
systems stability analysis is required.

In this paper, a switched controller with distributed RLC
(i.e., an independent learning feedforward input is designed
for each actuator) is developed to achieve cadence track-
ing through the cooperation of six lower-limb muscles and
an electric motor mounted to a stationary recumbent cycle.
The distributed feedforward learning terms compensate for
the periodic dynamics based on the desired cadence track-
ing trajectory. The switched controller is designed using a
nonlinear cycle-rider dynamic model and it is implemented
without the requirement of any identification procedure despite
the parametric uncertainty present in the system. The robust
feedback terms aid in the rejection of disturbances present
in the cycle and in the lower-limbs of the rider. Due to the
construction of a filtered tracking error, the distributed RLC
affects both cadence and position tracking. Global asymptotic
tracking is achieved via a Lyapunov-based stability analysis
using a common Lyapunov function that accounts for the
periodicity of the system, and by invoking a corollary to
the LaSalle-Yoshizawa theorem for nonsmooth systems [41,
Corollary 2]. Experimental results are reported for seven able-
bodied individuals and five participants with different NCs
during a 3 minute cycling protocol.

II. CYCLE-RIDER DYNAMIC MODEL WITH SWITCHED
INPUTS

The stationary cycle-rider system is modeled as a single
degree-of-freedom system with the following dynamics [11]

M(q)i+ Vg, d)q+ G(q)

+P(Qa4)+cdq.+d(t) = Ta(Qadvt)+Te(t)a (D

where ¢ : R>;, — Q denotes the positive clockwise measur-
able crank angle, @ C R denotes the set of crank angles
contained between [0,2x], and ¢ty € R is the initial time;
M : Q — R-( denotes the combined inertial effects of the
rider and the cycle; V: Q xR — R and G: Q — R denote
the centripetal-Coriolis, and gravitational effects, respectively;
P : QxR — R denotes the effects of passive viscoelastic
tissue forces in the rider’s joints; ¢4 € R~ denotes the viscous
damping parameter in the cycle; and d : R>;, — R denotes
the disturbances applied by the rider (e.g., muscle spasms,
etc.) and any other unmodeled effects in the system. The
torque applied about the cycle crank axis by the electric motor
Te : R>y, — R is denoted as

Te(t) £ Beu(t), 2)
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where B, € R is a positive torque constant, and satisfies
B. > ce, where ¢c. € R.o is a known constant, and
Uue : R>4, — R is the motor current control input'. The net
active torque produced by the lower-limb muscle contractions
denoted by 7, : @ x R x R>4, — R is defined as

£ Bulg, Qum(), 3)

meM

a(q,4,t

where B,, Q x R — R represents the uncer-
tain control effectiveness of the involved muscle groups
with subscript m indicating an element of the muscle set
M 2{RQuad, RHam, RGlute, LQuad, LHam, LGlute}
that contains the right (R) and left (L) quadriceps femoris
(Quad), hamstrings (Ham), and gluteal (Glute) muscle
groups respectively, and u,, : R>¢, — R represents the stim-
ulation intensity applied to each muscle group. The unknown
control effectiveness for each muscle group is nonzero and
depends on the relationship between the stimulation intensity
and the evoked force, and the torque transfer relationship
between a muscle’s resultant torque about a joint to torque
about the crank axis [11].

The stimulation intensity w,, is applied to each muscle
group in regions of the crank cycle where the torque transfer
ratios are above a predefined threshold. The switching con-
trol design yields an autonomous, state-dependent, switched
control system. The portion of the crank cycle over which a
particular muscle group is stimulated is denoted by Q,, C
Q,vm € M, where the muscle groups are activated as
described in [11] so that Q,; £ U Q.. The portions of

the crank cycle over which the electnc motor is switched on
is denoted as Q. C Q, such that Q, £ Q\Q,, (i.e., when no
muscle group is stimulated, the electric motor is active). Based
on the system’s state, a piecewise constant switching signal can
be developed for each muscle group, o, € {0, 1}, Vm € M
and for the electric motor, o, € {0,1} as

L1 AR .
om(q>={0 oe(q>={ Tgele

0 ifg¢ Q.
Using (4), the stimulation input to the muscle groups and the
motor input can be defined as

if g€ Qn
ifq¢Qm’

Uy (1)

uc(t) =

Fmow(a) (V0 + Wan() . )
Keoe(a) (1) + Wae(0)) ©

respectively, where k,,,k. € Rso, Vm € M are positive,
constant control gains, v : R>; — R is a subsequently
designed control input, and Wd,m, Wd,e : Ryyy = R, Vm €
M are the repetitive learning control laws designed for each
muscle and the electric motor, respectively. Substituting (2),

(3), (5), and (6) into (1) and rearranging terms yields

M(q)i+V (¢, @)i+G(a)+P(q,d)+cad+d = By (v -+ Wa)
()

I'Throughout this paper, the subscript e indicates the electric motor.
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where B, € R>( is a lumped, switched control effectiveness
term defined as

Q) = Z Bm(‘];d)kmgm(Q) + Bekege(Q)a (8)
meM

and Wy : R>;, — R is the lumped feedforward learning term.
The subscript 0 € N £ {1,2,3,.N}, N C N, N € Ry
indicates the index of B,, which switches according to the
crank position and A is the finite set of all possible switching
indices. There are a total of N subsystems consisting of
the activation of a combination of the muscle groups and
the electric motor. The known sequence of switching states,
which are the limit points of Q,,, Vm € M, is defined as
{qn}, n € {0, 1, 2, ...}, and the corresponding sequence
of unknown switching times {¢, } is defined such that each
t, denotes the instant when ¢ reaches the corresponding
switching state ¢,. The switching signal o is assumed to
be continuous from the right (ie., o(¢) = lim _, +o(q))
and designed to produce forward pedaling using state-based
muscle activation. The following assumption and properties of
the switched system in (7) will be exploited in the subsequent
control design and stability analysis:

Assumption 1. The disturbance term d is bounded as |d| < &g,
where £; € R-( is a known constant.

Property 1. ¢, < M < cpr, where ¢, cpr € Ry are known
constants [42]. Property 2. |[V| < ¢y |¢|, where ¢y € Rygisa
known constant [42]. Property 3. |G| < c¢, where cg € Rsq
is a known constant [42]. Property 4. |P| < cp1 + cp2 g,
where cp1, cpa € Ry are known constants [11]. Property
5. 1M — V = 0 by skew symmetry [42]. Property 6. The
lumped switching control effectiveness is bounded as ¢, <
B, < cp, Vo € N, where ¢, cg € Ry are known constants.

III. CONTROL DEVELOPMENT

The objective is to design a controller to track a desired
crank cadence. A measurable auxiliary tracking error, denoted

by e; : R>;, — R is defined as?
t
A
er2 [ (aile) - ) de, ©
to
where g : R>4, — R denotes the desired crank position and

its first two time derivatives are bounded such that |g4(t)| < &
and |gu(t)| < &, where &1, &3 € R are known positive
constants.

Remark 1. The desired crank trajectory is periodic in the sense
that qa(t) = qa(t — 1), qa(t) = Ga(t = T), Ga(t) = Ga(t = T)
with known period T'.

To facilitate the subsequent control development, filtered
tracking errors es : R>;; — R and r : R>; — R are defined
as

A .
es = e +aie; (10)

2The control objective is quantified using the second time derivative of
e1(t). Functional dependencies are omitted henceforth, unless they add clarity.
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A
T =

Y

where aj,as € Rso are positive, constant control gains.
Taking the time derivative of (11) and premultiplying by M,
substituting for (7), using the second time derivative of (10)
and then performing some algebraic manipulation yields

€2 + g€

M7= =Vr+Wi+x+ Na— Bs (VJFVAVd)*e% (12)

where the auxiliary signals Wy : R>¢) — R, x: R>;) = R,
and Ng: R>;, — R are defined as

Wa &) Wa (13)
i€ A
= ) (Mi(qa)ia + Vi(qa, da)da + Gi(ga)) ,
i€ A
X & M(q)(da+ (01 + a2) é2) + V(g 4)(da — afer
+ (o1 + az) e2) + G(q) + P(q,q) + cad
—Wg4— Ng + e, (14)
Ny = cp1+ (cp2+ca)da+d. (15)

for i € A, where A 2{M, Motor}. The auxiliary signal in

(15) can be upper bounded as
Nqg <0, (16)

where © € Ry, is a known positive constant. By using
Properties 1-5, (10), and (11), the Mean Value Theorem can
be used to develop an upper bound for (14) as

x < p(llzIDI1=1),

R>;, — R3 is a composite vector of error signals

(17)
where z :
defined as

A T
z=[eq e 1|,

(18)

and p(-) € R is a known positive, radially unbounded, nonde-
creasing function. Based on (13) and the explicit boundedness
of the periodic desired trajectory

Wa(®Il < B,

where 3, € R is a known positive bounding constant. Given
the cadence open-loop error system in (12), the control input
is designed as

19)

v 2 ar+ (ke + k(220 + kal Wall) sgn(r),  20)

where ki, ko, k3, k4 € Ry are selectable positive gain con-
stants, sgn(-) : R — [—1,1] is the signum function, and
Wd : R>¢, — R is the distributed repetitive learning control
law designed as

Wa(t) 2 > Wait)= > Wam+Wae, 2D
i€ A meM

Wim 2 om (Satgm (Wd,m(t _ T)) n kL,mr) L (22)

Wie 2 o, (Satgﬁ (dee(t - T)) + kL,er) .23

4

where kr; € Ry, Vi € A are learning control gains, and
satg, () is defined as

fOI’|E7;‘ S Bz

,Vie A
for |Z;| > 5;

satg, (Z;) & =i
= {sgn@)@

The closed-loop error system is obtained by substituting (20)
into (12) which yields

My = —V?‘+X+Nd+Wd+Wd_e2_BU(Wd+k1r
o (ks + ksp(I=DII21 + kallWal) sgn(r)), — @4)

where Wd € R is the learning estimation error defined as
Wi =3ieaWai & Xiea (Wai — Wd,i) = Wy — Wa.
Based on the periodicity and boundedness of Wy, Wy(t) =

Yieasats,(Wai(t)) = >, c 4 satg,(Wai(t—T)). Hence, by
exploiting (21), the following expression can be developed for
Wa

Wa o= 3 W

€A
= Y satg,(Wai(t —T))
€A
— Z Om (satgm(VAVd,m(t -T))+ kL,mT)
meM

—0, (satﬁe (Wd@(t - T)) + kL7er) )

To incorporate the repetitive learning error term in the subse-
quent stability analysis, an auxiliary function @ : R>;, — R
is defined as

(25)

t

A 1 .

Q23 oo [ (sats Wai(e)) — saty, (W) *ds.
i€ A il

(26)

IV. STABILITY ANALYSIS

Theorem 1. The controller in (20) with the repetitive learn-
ing law in (21) ensures global asymptotic cadence tracking
provided the control gains are selected to satisfy the following
sufficient conditions

1 (C] 1 1+¢
ay, a0 > =, ko> —, ks3> —, k4> B.
2 cy Cp Cb

27)

Proof: Let V; : R* x R>¢ — R be a nonnegative,
continuously differentiable, function defined as

1 1 1
Vi2 e+ e+ -Mr?+Q. (28)
2 2 2
The function in (28) satisfies the following inequalities:
Myl < Valy:t) < Aellyll?,
where )\ e min(3, 3¢m, 50—), A2 &

2k 4
max(%,%cM,ﬁu),W € Aand y 2 [27 /Qr]T where

Page 4 of 12
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Qu 2 Yl p(sats,(Wai(9)) — sats, (Wa()))2dep.
Let y(t) be a Filippov solution to the differential inclusion
y € KI[h](y), where K[| is defined as in [43], and A is
defined by using (10), (11) and (24) as h £ [hy hy hz hy)
where hi 2 ey — aier, ha £ 7 — ages, h3
1{ VT+X+Nd+Wd+Wd—€2—B(Wd
far (k2 + ksp(llzlDlz]l + ka|[Wall)sgn(r)}, ha
s Sicallsata, (Wailt)  —  sats, (Wai(1)® -
(satp,(Walt — T)) — sats,(Waslt — T))?). The
control input in (20) includes the signum function and
the discontinuous lumped control effectiveness B,; hence,

>+ s

the time derivative of (28) exists almost everywhere
(a.e.), ie., for almost all ¢{. Based on [4]1, Lemma 1],
the time derivative of (28), Vily(t),t) € Vily(t),t),

where Vi is
along the Filippov trajectories of y =

= mfeaVE K|:€1€2’f’

the generalized time derivative of (28)
h(y) is defined as

1] (ers 2, v 207 ).

QF

S1nce Vi(y,t) is continuously _differen-
table in y, OVi = {VW}, thus V; T

1

€2

[elv €2, M?", ZiE.A (QkL ) 2\/ QLv ] C;ﬁ

L

2\/1QL

Therefore, after substituting for (10), (11) and (24), and using
Property 5, the generalized time derivative of (28) can be
expressed as

l~/1 a'Ce‘ ejes — ale% — ageg + T(Wd + Wd +x + Ny
K[B,|Wy — K[Bykyr

—K[Bysgn(r)] (k2 + ksplllzDl12l + ka | Wal ) )

3 2,3 (sats, (Waa(t)) — sats, (Waa(0))?

i€ A Lyi
- (satp,(Wa,i(t = T))
;4 2kL %
—satg,(Wa,(t —T)))?, (29)
where K[sgn(r)] = SGN(r), and K[B,| C [cs,cp]. Sub-

stituting for (16), (17), and (25), and using Property 6 and
Young’s inequality, an upper bound for (29) can be developed
as

N a.e. 1 1
o < —<a1—2>e%—<a2—2)e
= (kzcy = ©) || = (ksco — 1) p(llz[D1=l[7]
(k4Cb —1—cp) [Wallr|

+Z ~(sats, (Was(t)) = sats, (Was(1)))?

JrVVd’I" — Z le

ieA Sl
By employing the following property

(Waslt) = Waas®) 2 (sata, (Waalt)) — sats,(Was(0)

— kyepr?

(Wd,i + kL71;T)2. 30)
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as proven in [25, Appendix I], and canceling terms, (30) can
be rewritten as

kicy + 9

= (kscop(llzID1121 = p(llzID1I=]) I
— (kacy — 1 —cp) [Walllr],

kL mzn) T2 _ (k2Cb _ (_)) ‘T‘|

—~

€2V

where the minimum learning gain k1, ,:n € Rs is defined as
kL min £ min{ky ;}, Vi € A. Provided the gain conditions
in (27) are satisfied, the inequality in (31) can be further upper
bounded as

a

Vi < =6zl (32)

where 6 € R is defined as

§Amm{<a12>,<a22),<klcb+ L’2 )}

By invoking [41, Corollary 21, lexl, lez], |r| — 0 as t — oo.

Since V7 > 0 and V1 < 0, Vi € Lo, hence, e, eq,7,Q €
L. From (21), Wd € Lo, which along with the fact that
Wy € Lo from (19), implies that W € L. Then from (20),
v € L, and from (5) and (6), U, u. € Lo, Which implies
TayTe € Loo. Since ey, 69,7 € L, then é1,é5 € Lo, from
(10) and (11), and hence, ¢, € L, which implies § € L,
from (7). |

V. EXPERIMENTS

The cadence controller developed in (20) with the dis-
tributed repetitive learning-based feedforward control in (21)
was implemented on both able-bodied individuals and people
with NCs to quantify the performance. The switched control
input was commanded as stimulation intensities u,, in (5) to
activate the right and left quadriceps (RQ, LQ), hamstrings
(RH, LH), and gluteal (RG, LG) muscle groups, and as current
U in (6) to the electric motor.

A. Subjects

Seven able-bodied individuals (5 male, 2 female) with ages
ranging between 22 and 43 years old participated in the FES-
cycling protocol at the University of Florida. Participants with
NCs (2 male, 3 female) were either recruited through the UF
Health Integrated Data Repository (UF Consent2Share project)
and completed the FES-cycling protocol at the University of
Florida or were enrolled at Brooks Rehabilitation in Jack-
sonville, FL. Demographics of the participants with NCs are
listed in Table I. The participants with NCs were medically
stable and met the inclusion criteria. Prior to participation,
written informed consent was obtained from all participants, as
approved by the Institutional Review Board at the University
of Florida. The participants with NCs self-reported their motor
function and mobility status. Both able-bodied participants
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and people with NCs were instructed to avoid voluntarily
contributing. The able-bodied individuals were not informed
of the cycling objective of the protocol. The neurologically
impaired individuals were informed of the cycling cadence
objective, but no feedback regarding the performance was
provided throughout the experiments. Subject A is a paraplegic
due to SCI (T8-T9 complete) with previous limited experience
with FES technologies. Subject A used a wheelchair full-
time for mobility. Subject B is a participant with Spina Bifida
(SB) (L5-S1 level) and Arnold Chiari malformation. Subject
B used a wheelchair part-time for mobility and a walker for
ambulation at home. Subject C is a participant with relapsing
remitting MS and used a single point cane for ambulation.
Subject C presented tremor in her lower extremities during
ambulation. Subject D is a quadriplegic due to a SCI (C5-C7,
and incomplete T12) with previous experience with upper- and
lower-limb cycling and used an electric-powered wheelchair
for mobility. Subject E is a post hemorrhagic stroke participant
with left side impairment and minor loss of sensory perception.
Subject E used a single point cane for ambulation and had an
ankle foot orthosis.

Table T
DEMOGRAPHICS OF PARTICIPANTS WITH A NEUROLOGICAL CONDITION.

Subject Age  Sex Injury Months Since Injury
A 28 F SCI T8-T9 135
B 25 M SB L5-S1 Since Birth
C 28 F MS 96
D 32 M SCI C5-C7, T12 76
E 48 F Hemorrhagic Stroke 16

B. Experimental Setup

Testing was performed using a recumbent tricycle (Ter-
raTrike Rover) mounted on an indoor trainer and adapted
with orthotic boots. A brushed 24 VDC electric motor was
coupled to the drive chain. An optical encoder (US Digital)
measured the crank position. The controller was implemented
on a personal computer (Windows 10 OS) running a real-
time target (QUARC 2.5, Quanser) via MATLAB/Simulink
2015b (MathWorks Inc) with a sample rate of 500 Hz. The
Quanser Q8-USB data acquisition board was used to read the
encoder and to interface with an analog motor driver and a
filter card (Advanced Motion Controls)® that commanded the
current control to the electric motor. The filter card provided
additional inductance to the motor and reduced the electromag-
netic interference. A current-controlled 8-channel stimulator
(RehaStim, Hasomed GmbH) delivered biphasic, symmetric,
rectangular pulses to the participant’s muscle groups. Self-
adhesive PALS® electrodes (3” by 5”)* were placed on each
muscle group in both extremities according to the electrode’s
manufacturer manual. For some participants, electrodes (2” by
4) were placed on the gluteal muscle groups based on per-
sonal preference. The stimulation current amplitude was fixed
at 90 mA for the quadriceps, 80 mA for the hamstrings, and 70

3The servo drive and filter card were provided in part by the sponsorship
of Advanced Motion Controls.

4Surface electrodes for the study were provided compliments of Axelgaard
Manufacturing Co., Ltd.
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mA for the gluteal muscle groups. The stimulation frequency
was fixed at 60 Hz, and the pulsewidth was computed by u,,, in
(5) and (20)-(22) and commanded to the stimulator via serial
port communication. Anatomical lengths of the participant’s
lower extremities were recorded utilizing visible landmarks
as in [11]. These measurements were used to determine the
stimulation pattern (i.e., the crank angles where the muscle
groups were electrically stimulated).

Cadence trials with only the motor being activated were
implemented to familiarize the participants with NCs with
different operating speeds. Afterwards, open-loop stimulation
pulse trains were delivered to the participants with NCs to
determine the minimum threshold that elicits visible muscle
contractions. The experiment duration f; was 3 minutes.
The desired cadence trajectory ¢y smoothly approached a
steady state value of 50 RPM during the time interval, ¢ €
[0,t1], t1 = 16 seconds, during which, only the motor was
activated (i.e., o, = 1, ¢ € Q. for the whole crank cycle).
The cadence trajectory remained constant at 50 RPM for a
transition time interval of 10 seconds, ¢ € [t1,¢; + 10], where
the regions of the crank cycle for which electrical stimulation
was delivered (i.e., ¢ € Q,,,) increased until it reached a steady
state value. After the transition interval, the desired cadence
began its periodic trajectory as described below. The width
of the stimulation regions is determined by a time-varying
positive threshold A,, € [0,1], Vm € M that reaches a
constant value at the end of the transition interval and remains
invariant until the end of the experiment (i.e., t € [t1+10, t4)).
The design of A,, smoothly integrates electrical stimulation
at the beginning of the experiment to avoid demanding high
stimulation intensities.

The periodic crank velocity tracked by the learning
controller in (21) had an amplitude of 50 £ 5 RPM and
a period of T' = 12 seconds and was commanded for
t € [t1+ 10, tg4]. To facilitate the selection of gains in (5), (6),
(20), (22), and (23), separate gains were selected for each
muscle group and the electric motor, without loss of generality.
The control gains introduced in (5), (6), (10), (11), (20), (22),
and (23) were selected as follows: k,,, € [0.45,0.5], k. = 10,
a; € [0.625,0.75], as € [1.5,1.75], k1., € [65,520],
kom € [5,28], ks, € [0.01,0.08], ks, € [0.5,1.5],
kie = 1, ke £ 03, ks = 0001, kye = 0.001,
kp.m = [kr,rqs kL@, kr,rH, kL,LH, kL.RG, kL 1G] €
[[15,90], [15,90], [12,80], [16,80], [12,75], [14,75]], and
kp.e €[0.15,0.18].

C. Results

The FES-cycling experiments were successfully completed
by all the enrolled participants. Table II summarizes the av-
erage cadence tracking error €1, the average position tracking
error é1, the cadence RMS error, and the cadence percent error
(% error) during ¢ € [t1,t4] seconds for the healthy individuals
(S1-S7). Table III reports the results for the participants with
NCs (A-E). The cadence RMS error was calculated over a
moving time interval window corresponding to the period
of the desired trajectory, i.e., 12 seconds. Figure 1 shows
the switching of the stimulation intensities u,,, the muscle
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Figure 1. FES stimulation intensities u, (solid lines) and muscle learning
feedforward terms Wy ., (dashed lines) delivered to the right (R) and left
(L) quadriceps (a), hamstrings (b), and gluteal (c) muscle groups, and motor
current input ue (solid line) and motor learning feedforward term VAVdYB
(dashed line) delivered to the electric motor (d) over one crank cycle for
Subject S4. This figure illustrates the switching of the control inputs designed
in (5)-(6).
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Figure 2. Tracking performance for Subject A quantified by the cadence RMS
error with a moving time interval window of 12 seconds (same as the period
T of ¢4 for t € [t1 + 10,t4]) (top), the average cadence tracking error &1
(middle), and the average position error é1 (bottom).

learning feedforward inputs Wd,m, the motor current input .,
and the electric motor learning feedforward input VAdee over a
single crank cycle for Subject S4 after 2 minutes of cadence
tracking. Figure 2 shows the cadence tracking performance
quantified by the cadence RMS error (top), the cadence
tracking error é; (middle), and the position tracking error
é1 (bottom) of Subject A. Figure 3 illustrates the stimulation
intensities delivered to the muscle groups u,,, and the electric
motor current input u, for the entire experiment duration for
Subject A.

To assess the effect of the distributed feedforward repetitive
learning control component, two trials with different learning
gains were performed for Subject S5 (selected randomly
from the healthy individuals). Figure 4 depicts the distributed
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Figure 3. Stimulation intensity delivered to each muscle group u,, (top) and
the electric motor current input u. (bottom) for Subject A.

Table 11
TRACKING RESULTS FOR HEALTHY PARTICIPANTS: AVERAGE CADENCE
TRACKING ERROR €1, AVERAGE POSITION TRACKING ERROR €1, CADENCE
RMS ERROR (MOVING WINDOW OF 12 S), AND CADENCE PERCENT ERROR
REPORTED AS MEAN VALUE & STANDARD DEVIATION (STD)

Subject €; (RPM) é1 (deg) RMS (RPM) % Error
S1 0.04+3.57  0.01+£3.28 3.574+0.30 0.06+7.26
S2 0.05£3.76  0.00+4.35 3.75+0.27 0.08£7.61
S3 0.07£3.57 0.25£11.65 3.55+0.39 0.08+7.22
S4 0.04+4.04  0.02+9.24 4.01+£0.55 0.05+8.26
S5 0.07£3.22  0.02+3.84 3.23£0.20 0.12£6.52
S6 0.06£3.44  0.02+3.24 3.43+0.45 0.11+7.04
S7 0.00+3.63  0.76£14.90 3.571+0.64 0.01+7.40

Mean 0.03+3.61  0.15+8.43 3.58+0.43 0.07£7.35

muscle and electric motor learning feedforward terms (i.e.,
Wd,m and Wd,e) for the two trials. Figure 4 (a)-(d) illustrates
the first trial where the muscle learning gains were set to
kr m = [20;20;18; 18; 15; 15] and & ,, = 85. Figure 4 (e)-(h)
depicts the second trial where the muscle learning gains were
doubled compared to the first trial and k; ,, = 65. For both
trials the electric motor learning gain was set to ky, . = 0.18.
Figure 5 shows the corresponding tracking performance of the
two trials quantified by the cadence RMS error and the position
tracking error é;. Figure 5 (a)-(b) corresponds to the first trial
and Figure 5 (c)-(d) for the second trial.

Figure 6 illustrates the muscle and electric motor learning
feedforward terms VAVd,m and Wdye for Subject A (a)-(d) and
Subject S3 (e)-(h). The differences in amplitude, symmetry,

Table III
TRACKING RESULTS FOR PARTICIPANTS WITH NCS: AVERAGE CADENCE
TRACKING ERROR €1, AVERAGE POSITION TRACKING ERROR €1, CADENCE
RMS ERROR (MOVING WINDOW OF 12 S), AND CADENCE PERCENT ERROR
REPORTED AS MEAN VALUE & STANDARD DEVIATION (STD)

Subject é; (RPM) é1 (deg) RMS (RPM) % Error
A 0.04+3.90  0.02+6.57 3.8940.30 0.05+7.93
B 0.02+4.53  0.04+4.93 4.48+0.77 0.03+9.35
C 0.064+3.89  0.05+16.40 3.80+0.81 0.1548.00
D 0.02+5.24  0.88+33.55 5.07+1.34 0.21+10.96
E 0.03+4.08  0.08+4.95 4.061+0.64 0.06+£8.37
Mean 0.03+4.36  0.21%£17.24 4.261+0.84 0.1+£8.99
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and duration of the learning feedforward inputs can be con-
trasted for a participant with a movement disorder (Subject A)
and an able-bodied individual (Subject S3).
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Figure 4. Effect of modifying muscle learning gains Ky, ,,, on dem and
Wd,e during two different trials for Subject S5. For the first and second trials,
the muscle learning feedforward terms Wd,m are shown for the right (R) and
left (L) quadriceps (a & e), hamstrings (b & f), and gluteal (¢ & g) muscle
groups, and the electric motor learning feedforward term Wd’e (d & h).

D. Discussion

The experimental results conducted in healthy normals
and participants with NCs demonstrate the feasibility of the
controllers developed in (5) and (6) with distributed repetitive
learning inputs designed in (22) and (23) to cooperatively track
a desired cadence trajectory. The average cadence tracking
error €1 is 0.03 4+ 3.61 RPM for seven able-bodied individuals
and 0.03+4.36 RPM for five participants with NCs. The
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average position tracking error é; is 0.154+8.43° for able-
bodied individuals and 0.21417.24° for the participants with
NCs (see Tables II-III).

The average cadence and position tracking errors are sim-
ilar to the results reported in FES-cycling literature such as
[10], [11], [40], [44]. The cadence tracking performance for
both healthy and neurologically impaired individuals in this
study is consistent with the cadence performance reported
in [10], where a robust approach was employed, and with
[44], where a RISE-based approach was implemented, ex-
ploiting the stimulation of antagonistic biarticular muscles.
The cycling experiments performed in [10] included healthy
normals only and in [44] several able-bodied participants and
one subject with Parkinson’s disease. The implementation of
the distributed repetitive learning control adds a feedforward
term to each of the lower-limb muscle groups stimulation
intensities and electric motor current based on its past inputs.
By the construction of r in (11), the muscle and electric
motor learning feedforward terms have a proportional-integral-
derivative (PID) form and affect both cadence and position
tracking.

The feedforward repetitive learning control term has a
significant effect in the tracking performance as depicted in
the two trials (using different muscle learning gains ky, ,,) for
Subject S5 in Figure 5. The cadence RMS error and position
error in Figure 5 (a) and (b), respectively, depicts the tracking
performance of the first trial. After 100 seconds, oscillations
of both the cadence RMS error (Figure 5 (a)) and position
tracking error (Figure 5 (b)) occur due to the high robust
gain k1 ,,, which results in higher stimulation intensities. The
muscle learning feedforward terms de in Figure 4 (a)-(c)
grew consistently reaching a maximum of 225 us at the end
of the first trial. The first trial resulted in increased stimulation
intensities u,,, that induced discomfort, which may potentially
result in early experiment termination particularly for partici-
pants with greater sensitivity to the stimulation. Also, it is well
known that higher stimulation intensities result in increased
muscle fatigue which inherently limits the experiment duration
due to the rapid decay of muscle force. The cadence tracking
percent error during the first trial shown in Figure 5 (a)
is 0.03+7.52%. Alternatively, the cadence RMS error and
position tracking error in Figure 5 (c) and (d), respectively,
illustrate a steady tracking performance during the second
trial. In the second trial the muscle learning gains kr, ,, were
doubled compared to the first trial. The cadence RMS error
in Figure 5 (c) drops below 3 RPM intermittently and never
crosses 4 RPM. The position tracking error é; in Figure 5 (d)
decreases in amplitude from period to period. Consistently,
the muscle learning feedforward terms W,Lm in Figure 4 (d)-
(f) illustrate steady learning inputs across all muscle groups
reaching maximums of 90 us for the quadriceps, 80 s for the
hamstrings, and 100 us for the gluteal muscle groups. Steady
stimulation inputs result in smoother cadence tracking and
prevents over-stimulation of the muscles, potentially enabling
longer cycling sessions. The cadence tracking percent error
during the second trial shown in Figure 5 (c) is 0.124+6.52%.

The distributed repetitive learning control is able to adapt for
participants with NCs. In Figure 6 (a) and (c), the quadriceps
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Figure 5. Tracking performance for Subject S5 during two trials with different muscle learning gains kr, ,,,. The cadence RMS error is depicted in (a) for
the first trial and (c) for the second trial. The position tracking error é; is depicted in (b) for the first trial and (d) for the second trial.
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Transactions on Cybernetics

and gluteal learning feedforward terms VAVd’m illustrate high
amplitude and asymmetric profiles. These learning inputs may
be representative of the lack of neurological motor control
and muscle weakness of Subject A (SCI participant). The
learning feedforward terms for the right quadriceps (Wd7 RQ)
and glutes (VAV(L ra) had higher magnitudes with mean values
of 82 us and 89 us than their left counterparts. In Figure 6
(e)-(h), the muscle and electric motor learning feedforward
terms Wd}m and Wd,e denote steady and more symmetric
profiles for Subject S3 (able-bodied participant) with mean
magnitudes for all muscle groups between 40-50 ps. These
learning inputs may be representative of adequate muscle
strength and symmetry between both participant’s legs.

The stability analysis ensures asymptotic tracking, however
there are factors during experiments such as muscle fatigue,
disturbances in the cycle, and electromechanical delay, which
degrade the tracking performance for both able-bodied indi-
viduals and participants with NCs. Nevertheless, the switched
controller was able to accommodate for participants with
movement disorders as a result of neurological conditions such
as SCI, SB, MS, and post stroke. For the SCI participants,
Subjects A (paraplegic) and D (quadriplegic), the lack of
muscle mass and strength, intermittent spasms, and the lack
of neurological motor control resulted in increased stimulation
intensities with a mean value across all muscle groups of 105
ws and 135 ps, respectively. The percentage of time during
which Subjects A and D were actively stimulated was 34% and
31%, respectively, to achieve a balance between the muscles’
contribution and the motorized assistance. The kinematics of
the participants also determines the stimulation pattern, thus
affecting the muscle activation times. Subject B, a participant
with SB, evoked visible active contractions with 30% of the
stimulation intensities required for the SCI participants. The
percentage of time during which Subject B was actively stimu-
lated was 32%. Subject C, a participant with MS, required 25%
of the stimulation intensities required for the SCI subjects.
Subject C was actively stimulated 45% of the time. Subject
E, a post stroke participant, had residual motor control on
her left affected side and full neurological motor control in
her contralateral side; however, the subject was asked to not
contribute voluntarily during the cadence experiments. Subject
E was actively stimulated for 46% of the time with 20% of the
stimulation intensities delivered to the SCI participants. The
percentage of time during which the pacticipants with NCs
were actively stimulated suggests an adequate balance between
the FES and motorized contributions to maintain the desired
cadence. Moreover, stimulation times have a high impact in the
rate of muscle fatigue, which affects cycling duration and thus
the amount of dose of rehabilitative stimulation. Futhermore,
experiments in a longitudinal study can help to elucidate the
clinical significance of longer stimulation times in people with
different conditions.

The results for able-bodied individuals and participants with
NCs show that by switching the control effort between the
stimulation intensities delivered to the six muscle groups and
the electric motor, desirable cadence and position tracking
was achieved. The developed controller showed robustness and
appropriate tracking performance despite the challenges faced
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during experiments. Clinical trials with a larger population of
participants with NCs are required to investigate the long-term
impact of the control methodology developed in this paper. For
example, in [45] a FES-cycling study with 25 SCI participants
found important gains in neurological, motor, and sensory
function and increased muscle volume and strength during
29.1 months. A cycling protocol that adopts the distributed
repetitive learning approach for power tracking to monitor the
torque contribution of the muscles may lead to a more suitable
rehabilitation approach like in strength training.

VI. CONCLUSION

A nonlinear controller that switches among lower-limb mus-
cles and an electric motor with distributed learning feedfor-
ward inputs was designed to yield global asymptotic cadence
tracking. The switched muscle and electric motor distributed
learning compensates for the periodic dynamics of the desired
cadence trajectory. The robust feedback terms in the switched
controller aid in rejecting disturbances present in the motorized
cycle and rider. The controller is implemented on a nonlinear
rider-cycle system with parametric uncertainties and without
the need to perform any identification procedures despite the
wide range of participants enrolled in the experiments. Global
asymptotic tracking was achieved with the aid of a corollary
to the LaSalle-Yoshizawa theorem for nonsmooth systems in
[41].

The distributed repetitive learning switched controller was
tested in experiments with seven able-bodied individuals and
five participants with NCs such as SCI, SB, MS, and post
stroke. For the healthy control group and for the neurologically
impaired population, a mean RMS (computed over a time
window equal to the period 7' = 12 seconds) cadence error of
3.5840.43 RPM (0.06£7.35 % average error) and 4.26+0.84
RPM (0.1+8.99 % average error) was obtained, respectively.
The results obtained in people with NCs demonstrate the
ability of the switched controller to yield consistent repetitive
cadence despite lower-limb asymmetries, muscle spasticity,
muscle atrophy, tremor, muscle weakness, hypersensitivity,
and absence of neurological motor control.

Long-term clinical trials with a larger and broader pop-
ulation including people with Parkinson’s disease, traumatic
brain injury, and cerebral palsy, etc. are needed to expand the
findings of this study. For future extensions, the distributed
learning control technique can be applied for different tracking
objectives in FES-based exercise such as power control (i.e.,
track a desired torque output), which may be more suitable
for intense strength training for certain participants with NCs.
Further, a cycling protocol where participants with residual
neurological motor control can voluntarily contribute to the
pedaling may be desirable to test the distributed learning
method.
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