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ABSTRACT. In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called
the cavity method for studying spin systems on the Bethe lattice, i.e., the random d-regular graph [Eur. Phys. J. B 20 (2001)
217-233]. Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a
number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called
Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In
addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula
for the free energy. The general results have interesting ramifications on several special cases. MSC: 05C80

1. INTRODUCTION

1.1. Disordered systems and the Bethe lattice. In 2001 in a ground-breaking contribution Mézard and Parisi pro-
posed an analytic but non-rigorous technique that they called the cavity method for the study of spin glasses on
the ‘Bethe lattice’’, known in combinatorics as the random d-regular graph [50]. Mézard and Parisi argued that the
Bethe lattice constitutes an attractive halfway point between classical ‘mean-field’ models such as the Sherrington-
Kirkpatrick model with complete interaction between all sites and spatial models such as the Edwards-Anderson
model. Indeed, the Bethe lattice induces a non-trivial metric on the sites, each of which interacts with only a
bounded number of others. But at the same time Mézard and Parisi showed that the model is amenable to analytic
methods, even though matters are significantly more complicated than in the fully connected case. They went on
to argue that the spin glass on the Bethe lattice exhibits many of the properties expected of real glassy systems,
such as replica symmetry breaking and the proliferation of pure states.

From the original contribution [50] sprang a truly enormous body of work that has had a transformative impact
on an astounding variety of subjects, ranging from physics to combinatorics to machine learning. Many of the
applications may appear unexpected, even surprising. Almost all of them hinge on the cavity method. Prominent
success stories include the development of ‘low-density parity check codes’, a rare example of a statistical physics
idea leading directly to an eminently useful, and widely used, algorithm [59]. A further example is a new algorithm
for the compressed sensing problem, a fundamental signal processing task [61]. Other important cavity method-
based contributions pertain to classical problems in mathematics, such as phase transitions in random graphs and
other random structures [43, 48, 49]. The cavity method has also been used to put forward predictions in machine
learning, including the capacity of the Hopfield model or on restricted Boltzmann machines [47].

Due to these numerous ramifications, vindicating the cavity method rigorously has become an important re-
search task at the junction of mathematical physics, combinatorics and computer science. There has been a lot of
progress recently, e.g., [10, 34, 21, 54]; we shall review the literature in greater detail in Section 2.5. However, much
of this work is concerned with special cases, mostly the ‘replica symmetric’ scenario where there is just a single
pure state.

The aim of the present paper is to move past such assumptions and special cases. We confirm several of the
key hypotheses of Mézard and Parisi, particularly the decomposition into pure states and the validity of the Belief
Propagation recurrence, the mainstay of the cavity calculations. Further, we obtain a general variational formula
for the free energy that is perfectly in line with the Mézard-Parisi ansatz. Additionally, we show that the free energy
can be computed from the Belief Propagation representation of the pure states of the model. We obtain these
results not merely for a specific model, but for a broad family of models on the Bethe lattice. The prime example
is, of course, the diluted spin glass model. But in addition, since the proof techniques that we develop are generic,

ISometimes the d-regular infinite tree is referred to as the ‘Bethe lattice’. However, as Mézard and Parisi point out, the d-regular infinite
tree does not provide a particularly useful framework for the study of spin interactions because almost all sites belong to the boundary of the
tree. The random d-regular graph, which they and hence we call the Bethe lattice, provides a useful way out: while the local geometry around
a given vertex is just a d-regular tree, at long distances this tree ‘wraps around’.
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the results apply to models that are of eminent interest in other areas, particularly combinatorics, such as the Potts
antiferromagnet or the hard-core model. Crucially, the results apply universally to all parameter values (such as
degree, inverse temperature) of the respective models.

We should point out, however, that the present results fall short of fully corroborating the Mézard-Parisi ansatz.
Most importantly, while we prove that general random factor graph models possess pure state decompositions
represented by (approximate) Belief Propagation fixed points, an important prediction of the Mézard-Parisi ansatz
pertains to the relative geometry of these fixed points. Roughly speaking, Mézard and Parisi predict three differ-
ent scenarios, depending on the parameter values (such as temperature). In the replica symmetric case, there is
just one single pure state (or possibly a small bounded number due to inherent symmetries). Moreover, in the I-
step replica symmetry breaking scenario an unbounded number of pure states occur, each represented by a Belief
Propagation fixed point. But these fixed points are predicted to exhibit a strong symmetry property that ensures,
e.g., that the empirical distributions of the Belief Propagation messages in the different pure states are (nearly)
identical. Finally, in the full replica symmetry breaking scenario we also expect an unbounded number of pure
states and assorted Belief Propagation fixed points, which are arranged hierarchically in the fashion of an ultra-
metric tree. While in the present paper we prove the existence of a pure state decomposition and of associated
Belief Propagation fixed points, our methods do not suffice to establish these more precise predictions as to the
geometry and relative weights of the pure states. A full verification of these predictions remains an important open
problem as it would, among other things, lead to a significantly simplified variational formula for the free energy.
For a more detailed discussion of the Mézard and Parisi ansatz, replica symmetry breaking, and ultrametricity we
refer to [48, 56, 57].

Technically the paper builds upon and continues two intertwined threads of prior work. First, we bring to
bear a variant of the ‘regularity method’ from combinatorics that we developed recently [11, 16, 26] in order to
establish the pure state decomposition and to vindicate the Belief Propagation equations. Second, we seize upon
Panchenko’s work on asymptotic Gibbs measures and the interpolation method, particularly in order to derive the
variational formula for the free energy [55, 56]. Both of these methods were previously applied with great success
to random graphs of Erd6s-Rényi type. This line of work crucially exploited the relative geometric flexibility of the
Erd6s-Rényi model, whose Poisson degree distribution facilitates coupling arguments. By contrast, the geometry
of the Bethe lattice is rigid. While this entails that the specification of the model, the cavity equations and their
solution are quite ‘clean, the rigidity poses substantial technical challenges that the present paper resolves.

Before presenting the main results of the paper, which cover a broad family of problems that we call random
factor graph models, in Section 2, we illustrate the results and the concepts around which they revolve with the
spin glass model from the original contribution of Mézard and Parisi. We also work out an additional application
to the hard-core model and the independence number of the random regular graph. Several further applications,
including the Potts model and the MAX g-CuUT problem, are worked out in Section 7.

1.2. The diluted spin glass. For integers d = 3, n > 0 such that dn is even, let G = G(n, d) be the uniformly random
d-regular graph on the vertex set V,, = {vy,...,v,}. With each edge e € E(G) comes a standard Gaussian /.. The
random variables (J¢)ccg(g) are mutually independent. For a given inverse temperature > 0, the diluted spin
glass on G is the probability distribution on {+1}"” defined by

H 1+tanh(BJyw)o,0w
Z(6) yuer@) 2

Hg(o) = ) (1.1)
where the partition function Z(G) ensures normalization. 2 Without the couplings J, this would just be the ferro-
magnetic Ising model on G. But since the J, are independent Gaussians, some will be positive and others negative.
In effect, some edges induce ferromagnetic and others antiferromagnetic interactions, causing frustration. Thus,
Ug is a spin glass model, the well-known diluted spin glass on the Bethe lattice.

There are two fundamental problems associated with this and numerous similar models: first, to character-
ize the structure of the Boltzmann distribution pg. Does it exhibit long-range correlations? Does it decompose
into one or several ‘pure states, and if so, how can we characterize them? Second, to calculate the quantity
lim,—oo }—IZ[E[logZ (G)], which we call the free energy density. Its fundamental importance is due to the fact that
other important observables derive from it. Moreover, the singularities of the function f — lim;_., %[E[log Z(G)]
constitute the phase transitions of the model.

The expression (1.1) is equivalent to the possibly more familiar formula ug (o) x exp (ﬁz et w).
2



Bethe states and the Boltzmann distribution. With respect to the first problem, Mézard and Parisi hypothesized
that the Boltzmann distribution always decomposes into one or a moderate (albeit not necessarily bounded) num-
ber of pure states. Further, they hypothesized that these pure states are characterized by fixed points of a recur-
rence called Belief Propagation. Our first theorem confirms this hypothesis.

To be precise, writing dv for the set of neighbors of a vertex v, let .# (G) be the set of all families (Vi—.) yev,,,ueov
such that v,,_., € [0,1]. We call v,,_., the message from u to v. The messages need not be symmetric, i.e., possibly
Vyu—y # Vy—y. Furthermore, Belief Propagation is the operator BP : 4 (G) — .4 (G), v — ¥, where

Mwesnu1+2tanh(BTyw) (Vy—y —1/2)
Y oeien Hweonu 1 +20 tanh(BJ0) Vi—p —1/2)°

(1.2)

Y —_—
Vy—u =

The motivation behind this operator, and the origin of the name ‘cavity method,, is this. Suppose we fix a vertex v in
a d-regular graph along with a neighbor u. Now suppose we remove the vertex u, thereby creating a ‘cavity’. Then
the ‘ideal’ message ug,,—» that we would like to compute is just the marginal probability ug-,,;, (1) that u takes spin
1 in the subgraph obtained by removing v. If the Boltzmann distribution pg is free from long-range correlations,
then these ideal messages should plausibly be a fixed point of the BP operator. Indeed, if we remove v, then very
likely its former neighbors will be mutually far apart in the resulting graph. In effect, the joint distribution of their
spins should factorize. If so, then a straightforward calculation verifies that the ideal messages are a fixed point of
BP. In fact this reasoning goes back to Bethe’s classical work [16].

However, generally spin glass models do exhibit long-range correlations, a phenomenon called replica sym-
metry breaking (see, e.g., [18, 27] for proofs that replica symmetry breaking occurs in certain models). Yet the
fundamental hypothesis of Mézard and Parisi holds that the phase space {+1}"" always decomposes into Bethe
states Sy, ..., Sy in such a way that the conditional distributions pgl-|Sy] are free from long-range correlations. For-
mally, this means that if we pick a pair of vertices (v;, vj) uniformly at random, then typically the conditional joint
distribution HG,v;,v; [-1S] of the spins of v; and v; is close to the product distribution g, (-1Sp) ® B6,v; (-1Sp), i.e.,

1
= Y e (180 - tew CISw ® o, 18w = 0D (13)

n l<i<jsn

In effect, within each Bethe state the ‘ideal’ messages are predicted to be an approximate fixed point of the BP
operator. To be precise, for adjacent vertices u, v we write Ug,y—[Sp] = te-u,»(11Sp) for the conditional probability
given Sy, that v takes spin 1 in the subgraph of G with u removed. Then we expect that

1Z . .
;Z Z ”H‘G,viau[sh]_IJG,viau[Sh]”Tvzo(l) where  ({g,y—ulSr) vev,,ucav = BP(UG,v—ulSkD vev, ueov- (1.4)

i=1uedv;

Further, the cavity method predicts that the Boltzmann marginals can be obtained from the messages by a formula
quite similar to (1.2):

1 [Tweow; 1 +2tanh(B)) (ug,w [Snl —1/2)
= . (11Sp) — d . =o(1). 1.5
n,zz1 Ho.0, (1151) Y petr1y [Tweaw; 1 +20 tanh(B)) (e, w [Sp] —1/2) o) (1.5)

The following theorem establishes these conjectures rigorously. We say that G enjoys a property with high proba-
bility (‘w.h.p.’) if the probability that the property holds tends to one as n — co.

Theorem 1.1. For any d = 3, 3 > 0 the following is true. Let L = L(n) — oo be any integer sequence that tends to
infinity. Then there exists a decomposition So = So(G),S1 = 51(G),...,S¢ = S¢(G), ¢ = ¢(G) < L, of the phase space
{+1}" into non-empty sets such that ug(So) = o(1) and such that with high probability (1.3)-(1.5) are satisfied for
h=1,...,¢.

Crucially, and in contrast to much prior work in this area, Theorem 1.1 applies indiscriminately to all d, 8. While it
is expected that in the ‘high-temperature’ regime (small §) there is just a single pure state, it is widely conjectured
that for large d and f the number of pure states is unbounded. Thus, we do not expect that it will be possible to
replace the unbounded L in Theorem 1.1 by a constant. Yet Theorem 1.1 shows that the number of states can be
upper bounded by an arbitrarily slowly growing function L(n).
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The free energy. The Bethe states and their associated messages contain all the information needed to compute
the free energy. To be precise, once more following the ideas of Mézard and Parisi, we can set up a recurrence for
computing the difference E[log Z(G(n + 1, d))] — E[log Z(G(n, d))], which in turn enables us to write a formula for
%[E[logZ (G(n,d))] by telescoping. To set up such a recurrence it is necessary to crack the rigid geometry of the
random regular graph open a little bit. To this end, we resort to the idea of creating a few ‘cavities’. Specifically, we
delete a few random vertices and edges from G(n, d). Formally, let ® > 0 and let X, Y be two independent Poisson
variables with mean w. Moreover, let u;,...,ux and v;wy,..., vy wy be sequences of uniformly random vertices
and edges of G, chosen independently. With S;,..., S, the decomposition from Theorem 1.1, we introduce weights
x -1

zern=pcSw)-[]| Y. [ 1+20tanh(BJw,) (ke v—u;[01Sk] —1/2)

=1 \o€{tl} vedu;

Y -1
[T (1 +4tanh(BJy;w,) (W6,v0;—w; [LISh] = 1/2) (ig,w;—v; [LIS] — 1/2))

i=1

and zg = Zfz:l zg, . Further, let €(G) be the set of all vertices of degree less than d in the graph G, obtained
from G by removing u;,..., ux and vy ws,..., vy wy. Then with high probability each c € € (G) has degree precisely
d -1, and we write ¢’ for the erstwhile d’th neighbor of ¢. Further, with ¢1,¢z,... a sequence of uniformly and
independently chosen elements of € (G) and (J;);>1 a sequence of independent standard Gaussians, we let

BG)=E Z H1+20tanh(ﬁ]l)(pﬁcl_,c [Sh]—1/2)’6
h=1 %6 ge{xl}i=
d d
-5E 10g1+4tanh(ﬁ]1)z —(u@cﬁd [11Sk] = 1/2) (K¢, ¢, [1|Sh]—1/2)’6 —Elogz.

The expression 8(G) mirrors our recurrence for the difference E[log Z(G(n + 1,d))] — E[log Z(G(n, d))]. Having cre-
ated a moderate number of cavities, we insert a new (n + 1)st vertex, connected to d randomly chosen ‘cavities’.
The first summand above represents the ensuing change in the free energy. But this operation adds d more edges,
whereas a random regular graph with n + 1 vertices only has d/2 more edges than one with 7 vertices. Therefore, a
correction term is needed. Hence the second summand.

Crucially, the functional %8(G) depends only on the pure state decomposition from Theorem 1.1 and the associ-
ated messages. The following theorem shows that this information suffices to compute the free energy.

Theorem 1.2. Foralld = 3,8 >0 we have
1
lim —E[log Z(G)] = liminfliminf E[28(G)].
n—oo pn w—00 N—00

Entirely in line with the ideas developed in [50], Theorem 1.2 establishes a direct conceptual link between Belief
Propagation and the pure state decomposition from Theorem 1.1 and the free energy for all d, 5. Of course, in order
to evaluate %(G) it is necessary to actually determine the pure state decomposition along with the corresponding
Belief Propagation messages. The shape of this decomposition, and the practical difficulty of computing it, will
depend significantly on the parameters d, 8. Alternatively, as we see next, it is possible to derive a variational
formula for the free energy.

Avariational formula. The variational formula comes in terms of an optimization problem on a space that resem-
bles the graphon space from the theory of graph limits [46]. To be precise, let v : [0, 112 = [0,1], (s,x) — Vs, and
v':10,1]*> — [0,1], (s, x) — v} , be measurable maps. We define the cut distance between v,v' by

LLVS,X(w) _V:p(s),(p’(x) (a))dxds 5

where @, ¢’ : [0,1] — [0, 1] are measurable maps that preserve the Lebesgue measure and S, X < [0, 1] are measur-
able. Obtain the space £ by identifying any v, v’ with 2(v,v') = 0. Then & endowed with the cut distance is a
compact metric space. In addition, write © for the space of probability measures on K.
The formula for the free energy comes as a variational problem on a subspace ©* of ©. Let N, M = 0 be integers.
For p1 € & we define a randomly perturbed p*"'™ € & as follows. Let (x;,;);,j>1 be a family of uniform random
4

2a(v,v) = inf sup
@9’ $,X<[0,1]




variables on [0,1] and let (J; ;);,j=1 be a family of standard Gaussians, all mutually independent. Then for s € [0, 1]
we define

N d M
Zs= 1‘[( Y. [l1+2tanh(B1; ) (psx, —1/2)) [T(1+4tanh(BT i n,1) (Ko, n, — 1/2) (o xisno — 1/2).
i=1

i=1\oefx1} j=1

Further, let
0 1
t=1t(s) = inf{@ €[0,1] :f zydu= sf zudu}, and ,u:'()gV'M) = U €R.
0 0

Now, suppose that 77 € © is a distribution, and write p” € £ for a sample from 7. Then we let D* be the set of all
7 € D such that the perturbed p™* V"M has distribution 7 again for all N, M > 0.

The definition of ©*, which is an adaptation of the one stated by Panchenko [55] in the case of models of
Erdés-Rényi type, mirrors a natural combinatorial invariance property of the graph G, , with the random cavities.
Indeed, because the numbers X, Y of deleted edges and vertices are Poisson with a large mean w, for any fixed
N, M the random graph G, , with X deleted vertices and Y deleted edges is close in total variation to the one
with merely X — N deleted vertices and ¥ — M deleted edges. Furthermore, because adding or removing a small
number of edges only affects the Boltzmann weights by a bounded factor, we should expect that the Bethe states
of these two factor graphs remain the same. But, of course, the relative probability masses of the Bethe states will
be different. Accordingly, the weights z; mirror the changes in the weights of the Bethe states upon re-insertion
of N vertices, each with d incident edges, and another M edges into G, ,,. Once we take w and n to infinity, the
closeness of the two random factor graphs in total variation translates into the statement that the distribution of
the messages emitted by the cavities of G, belongs to D*.

Finally, define a functional 2 : & — R by letting

%(u)=[E[log( > fol

d
oe{£l} i

]‘[1 1+ 20 tanh(BJ, ) (s, x; ; — 1/2)ds)

i=

d ! d
-2 log(l +4tanh(BJ11) fo sy = 1/2) (s r, — 1/2)ds) |- 7 log2.

We are ready to state the variational formula for the free energy.
1
Theorem 1.3. Foralld =3 and >0 we have lim —E[log Zg(G)] = min E[B (™).
n—oon neED*

Theorem 1.2 provides the combinatorial interpretation of the optimal 7 for Theorem 1.3: it is the kernel repre-
senting the messages (Ug,c—¢'[*ISk]) ce(6),n=1,...,¢ Sent out by the cavities on the individual Bethe states.

,,,,,

1.3. The hard-core model. As a second application we discuss the hard-core model on the random regular graph
G = G(n,d). This is a probability distribution on the collection of independents sets of G parametrized by A > 0, the
fugacity. Formally, encoding subsets of the vertex set by their indicator vectors, we define

ALin1 0
Z(G)

1_[ l—l{l}iEGVj}Uin (o €{0,11""),

l<i<j<n

ug(o) =

with Z(G) the partition function that turns yg into a probability measure. Thus, ug(o) = 0 unless the 1-entries of
o form an independent set in G, in which case the weight of ¢ is proportional to A taken to the power of the size of
the independent set.

The hard-core model, of great prominence in statistical physics, is of eminent importance in combinatorics as
well because it is closely related to the problem of finding the size of the largest independent set of the random
regular graph. For d large, this problem was solved by Ding, Sly, and Sun [35] using an intricate version of the
second-moment method guided by insights from the 1-step replica symmetry breaking (1RSB) version of the cavity
method. But according to the physics predictions [14], the 1RSB method runs into an inherent obstacle for small
d as the model exhibits a continuous phase transition to a more complicated ‘full replica symmetry breaking’ (full
RSB) phase. In Corollary 1.5 below we will derive a formula for the largest independent set size that holds for all d
and that accommodates the full RSB scenario.

But let us first deal with the free energy of the hard-core model, in and of itself a well-known problem. To
derive a variational formula for the free energy, obtain £, from the space of all measurable functions [0,1]*> —
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[0,A/(1+ A)] by identifying any v,v' with 25 (v,v') = 0. Then £ is a compact. In addition, we let ©, be the space
of probability measures on £,. Similarly to the spin glass problem, the formula for the free energy comes as a
variational problem on a subspace ’DI of ©,. This subspace is defined as follows. Let (x; j); j>1 be a family of
independent random variables, uniformly distributed on [0, 1], and let N, M = 0 be integers. Then for u € &) we
define a random /J*(N’M) € R, as follows. For s € [0,1] let

M

N d
zs=[] (1 +A]]1 _#s,xi,j) [T = tsxiina s xiin,) and E=t(s) = inf{@ €1[0,1] :j: zﬁ’y;ﬁ”ds = Sfol zﬁ{ﬁ"’du}
i=1 j=1 i=1
and set
B = g€

Further, suppose that 7 € D is a distribution, and write u” € &) for an element chosen from 7. Then we let D} be
the set of all 7 € D such that u” and p™* ™M are identically distributed for all N, M = 0. Finally, let 2 : &) — R be
the function defined by

B =E

1d d 1
log(1+/1f I1 1—ps_x1_jds)——log(1—f us,xl‘lps,xlyzds”.
0 j=1 2 0

The variational formula for the free energy reads as follows.
Theorem 1.4. Foralld =3 and A > 0 we have
1
lim —[E[]OgZ(G)] = (Dd,/lv with q)d,/l = min E[@(””)]
n—oon neDy

In the limit A — oo the distribution ug 1 concentrates on the maximum independent sets of the random graph.
As an application of Theorem 1.4 we therefore obtain the following result on the size of the largest independent
set, i.e., the independence number a(G) of the random graph.

1
Corollary 1.5. Foralld =3 we have r}im —Ela(G)] = ]}im A @ga+1—DPan).
—oon —00

The formula in Corollary 1.5 may not be easy to evaluate; in particular, it may be difficult to obtain a numerical
estimate for a given value of d. Nonetheless, since the proofs show that the optimal 7 in Theorem 1.4 is closely
related to the Belief Propagation fixed points on G, it should be possible to extract combinatorial information
about the independent set problem on random graphs. In any case, Theorem 1.4 and Corollary 1.5 put a lid on the
complexity of the problem.

1.4. Organization. In Section 2 we present the main results of the paper, which cover a broad family of random
factor graph models. At the end of Section 2 we are in a position to discuss related work in detail. Sections 3-6
deliver the proofs of these general results. Finally, in Section 7 we show how Theorems 1.1-1.4 and Corollary 1.5
follow from the general results in Section 2. In addition, we work through several more applications that have each
received considerable attention in their own right, such as the Potts antiferromagnet.

2. RANDOM FACTOR GRAPHS

In this section we present the main results of the paper, which cover a broad class of models called random factor
graphs. The class encompasses many well-studied examples of problems on random regular graphs or hyper-
graphs, including the spin glass model from the previous section. Some other cases, such as the hard-core model
or extremal cuts, can be dealt with by taking limits; we will come to that in Section 7.

2.1. Definitions. To define random factor graph models, we consider a finite set Q # @ whose elements we call
spins. Moreover, for an integer k = 2 we let (¥, P) be a probability space of weight functions v : Q% — (0,1). We
always denote by ¥ an element of ¥ chosen from the distribution P. The space ¥ may be finite or infinite. In the
latter case we assume that

E[exp(1/ IIlil’]lC Y (0))] <oo. 2.1
oeQ)

Furthermore, we always assume that the distribution P is invariant under permutations of the coordinates. That

is, for any v € ¥ and for any permutation « of {1,..., k} the function y* : 0 — y(0x,,...,0«,) belongs to ¥ as well

and ¥* has the same distribution as . Additionally, let p be a probability distribution on Q with p(w) > 0 for all
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w € Q. Further, let d = 3,n > 0 be integers and set m = |dn/k]|. Let V,, = {vy,..., v,} be a set of variable nodes and
let F,,, ={ay,...,an} be a set of constraint nodes.

Definition 2.1. Suppose that k divides dn. The random factor graph G = G(n, d, p, P) consists of

* a weight functiony 4, € ¥ drawn from the distribution P independently foreachi =1,...,m and
» an independent uniformly random bijection dg : Fp, x {1,...,k} — V,; x {1,...,d}.

The definition resembles the pairing model of random regular graphs [41]. Accordingly, we use standard graph-
theoretic terminology. For instance, we call x; € V;, and a; € Fy, adjacent if there exist s € [d] and k € [k] such that
dglaj, t) = (x;, ). We also use the symbol dg(a;j, ) for the variable node x; such that dg(aj, ) = (x;, s). Further, we
write dg x; for the set of all a; € Fy, that x; is adjacent to, and similarly for a;. We omit the index and just write
0x;,0a; etc. where the reference to the random graph is apparent. In particular, G induces a bipartite graph on the
variable and constraint nodes, and thereby the shortest path metric on V, U F,,,. Hence, by extension of the above
notation, we write a{; u for the set of all nodes at distance precisely ¢ from u and Vé u for set of all variable nodes
at distance at most ¢ from u.

We let .# be the event that G is simple, i.e., that there do not occur multiple edges between any variable and
constraint nodes. Moreover, we denote by G the conditional distribution of G given .. Let us make a note of the
following well known fact.

Fact 2.2 ([41]). We haveP (G € #] ~exp|—(d—1)(k—1)/2—1{k =2}(d — 1)*/4].

The random factor graph induces a probability distribution on Q'7. To define it, we introduce the shorthand
Wa,(0) =yq4,(0(0(a;,1)),...,0(0(a;, k) fori € [m] and o € QVn. Thus, ¥4, (0) is the weight that constraint node a;
gives to o. Further, we introduce the total weight

m
v0) =[]veq(0) @eQ").
i=1

by multiplying up all the weight functions of the constraint nodes. The total weights v (o) give rise to the partition
function and the Boltzmann distribution:

n velo) n \
ZG)= ) yem][]powx)), pe0) = ———[] plox)) (ceQ™) 2.2)
7€QVn i=1 Z(G) i=1

Since all the weight functions ¥ € ¥ are strictly positive, the Boltzmann distribution is a well-defined probability
measure on the phase space Q"".

We set out to investigate the structure of the Boltzmann distribution p¢(-) and to compute the partition func-
tion Z(G) or, more specifically, its logarithm, which we call the free energy. In Section 2.2 we will prove the main
result of the paper, which provides that the Boltzmann distribution decomposes into a convex combination of
relatively simple distributions called Bethe states. But before we come to that, let us look at an example.

Example 2.3 (the k-spin model). LetQ = {+1}, let k = 2 be an integer and let f > 0 be a real parameter. The k-spin
model is a generalization of the spin glass model from the previous section, which corresponds to the special case
k = 2. The weight functions of the k-spin model read

1 k
wﬁ,,(al,...,ak)z5(1+tanh(ﬁ])]_[0i) JeR).
i=1
Thus, ¥ = {wg ;: ] € R}, and the distribution P on ¥ is defined by choosing ] from the standard Gaussian distribu-
tion. This distribution clearly satisfies (2.1). Geometrically, this model lives on a generalized Bethe lattice where all
variable nodes, representing the sites, have degree d, while all constraint nodes, representing the interactions, have
degreek.

The hard-core model from Section 1.3 cannot be expressed as a factor graph model directly because of the
requirement that all weight functions be strictly positive. But it is possible to arrive at the hard-core model by
taking suitable limits; see Section 7 for details.



2.2. Bethe states. The Belief Propagation message-passing scheme provides the mainstay of the physicists’ non-
rigorous cavity method. Our first main result vindicates its use by showing that the Boltzmann distribution of any
random factor graph model can be described in terms of Belief Propagation fixed points.

To introduce Belief Propagation let .# (G) be the message space, consisting of all families

v=Wy—a,Va-v) veVy,,acF,:vedga

of probability measures v,_.4, v,—, on Q. For adjacent a, v we interpret v,_., as a ‘message’ from v to a, and v4_.,
as a message in the reverse direction. We equip .# (G) with the metric

1
D@ =2 T Ve Valry+ Vas Vel
v,a:vedga

Belief Propagation is the operator BP : 4 (G) — .# (G) that maps v to ¥ defined by

p(o’) Hbeau\a Vb-»y(a) {/a_.y(O') _ Zregﬁa I{TU = UW/a(T) Hweaa\v Vw—’a(Tw) . 2.3)

> e PO [pesvra Vo—v(T) , YreraVa(@) Nwesarvw Vw—a(Tw)

Further, a point v € . (G) is an e-Belief Propagation fixed pointif 2, (v,BP(v)) < €.

For a thorough discussion and motivation of Belief Propagation we refer to [48]. The punch line is that on acyclic
factor graphs a Belief Propagation fixed point computation provably yields the marginals of the Boltzmann distri-
bution as well as the free energy. Since the random graph G contains only very few short cycles, one may therefore
expect that Belief Propagation renders meaningful information on random factor graphs as well, provided that the
Boltzmann distribution is free of long-range correlations.

Alas, in general long-range correlations do occur. Nevertheless, we will prove that the Boltzmann distribution
still decomposes into a convex combination of relatively few ‘Bethe states’, characterized by Belief Propagation
fixed points. To be precise, suppose that @ # S < Q"7 is an event. Let v be a variable node and let a € dgv. Then we
define pg,y—q(-1S) as the conditional marginal of v given S under the Boltzmann distribution of the factor graph
G - a obtained from G by removing the constraint node a. In formulas, with (-, ug(-1S)) denoting the expectation
with respect to o drawn from ug(-|S), we have

Vy—alo) =

(Mo y =alya(o), uc(-1S))
(1 a(e),uc(-19)

Similarly, we let g, q—» (-1S) be the conditional marginal of v under the Boltzmann distribution of the factor graph
obtained from G by removing all constraint nodes b € dgv \ a and disregarding the prior of v:

UGv—alo|S) = (ceQ). (2.4)

(o, =0} (p(0) [Tpeana V@), k6 (-19)
(1 (p(@ ) Mpeona Vb)), uG(-19))

We refer to pg,p—a(:15), G,a—v (-1S) as the standard messages given S.

HGa—v(0]8) = (0 e). (2.5)

Definition 2.4. Lete > 0. An event S < Q" is an e-Bethe state of G if the following two conditions hold.
BS1: the standard messages given S are an ¢-Belief Propagation fixed point.
BS2: if¢,¢' <1/e and ifI < V,, ] < Fy, are independent uniformly random sets of sizes |11 = ¢, |J| = ¢', then for
every o € Q" we have
E[(1tvv e 1U0J UL 0, =0y}, piG(-19))

_ P ) [Macoy ¥a(0) Iwesarv Pw—a(OwlS) . Va(0) [Twesa Bw—a(0wlS)
vel erﬂ P(X) Haeau Zregﬁﬂ Wa('[) Hwe@a\v ,UWHH(TWIS) aco] ZreQ"“ Va (1) Hweaa NWHH(TLUlS)

<e.  (2.6)

Thus, on a Bethe state the standard messages form an approximate Belief Propagation fixed point. Further-
more, locally around a bunch of randomly chosen variable and constraint nodes the Boltzmann distribution is
characterized by the standard messages. In particular, setting £ = 0 and ¢’ = 1 in BS2, we see that the conditional
joint distribution pg ,4(-1S) of the variables around a typical random constraint node a reads

Va(0) [Twesa bw—alOwlS) da
KGoa(0|S) = +0(¢e) (0 QY. 2.7
“ 2 reqia ¥Wa(D [wesa Hw—a(Tw!S)
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Additionally, setting £ =1 and ¢’ = 0, we find that the local distribution around a typical variable node v, i.e., the
distribution g 92, (-1S) induced on the second neighborhood of v, reads

PO ) acov Va(0) wesa Bw—aldw!S)

+0(e) @ eQry (2.8
Z){EQ P acov nggau Va(®) [Mwesa bw—a(TwlS)

He,vuozv (0 |8) =

Thus, for most variable nodes v the conditional Boltzmann marginal yg,, (- |S) satisfies

p0)acov ba—v(01S)

+ O(¢) (ce). 2.9)
2 yea PO [acov Ha—v(X1S)

uG,v(o [S) =

Apart from the conditioning on S, the formulas (2.7)-(2.9) coincide with the ones known in the acyclic case [48].

In addition, (2.6) implies that if we pick a few variable and/or constraint nodes randomly, then the joint distri-
bution of their neighborhoods approximately factorizes. Applied to £ = 2, ¢’ = 0, this means that once we condition
on S, the joint distribution of two randomly chosen variable nodes is close to a product distribution:

B Y i, C19 -t (19 @ p6, (19)], = O (2.10)
1<i<j=n
in statistical physics jargon, the conditional distribution pg(-|S) is replica symmetric.
Confirming the picture sketched by the cavity method and vindicating the use of Belief Propagation for the study
of the Boltzmann distribution, the following theorem shows that w.h.p. the Boltzmann distribution of a random
factor graph decomposes into a relatively small number of Bethe states.

Theorem 2.5. For any function L = L(n) — oo there exists € = €(n) — 0 such that the following is true. There exists
a decomposition Sy = Sy(G), S1 = S1(G),...,S¢ = S¢(G), £ = 4(G) < L, of Q" into non-empty sets such that ug(Sp) < €
such that with high probability Si,...,S, < Q" are e-Bethe states. The same statement holds with G replaced by G.

An important feature of Theorem 2.5 is that the upper bound L on the size of the Bethe state decomposition
can be an arbitrarily slowly growing function of n. Thus, the Gibbs measure can generally be decomposed into
relatively few Bethe states, within which long-range correlations are negligible and where short-range correlations
are characterized by Belief Propagation.

2.3. Thefreeenergy. Apartfrom the structure of the Boltzmann distribution, a second key challenge is the compu-
tation of the free energy. More specifically, arguably the single most important quantity associated with a random
factor graph model is the free energy density

r}ilrgo%[E[logZ(G)]. (2.11)

Of course, it comes as no surprise that computing (2.11) generally poses a formidable challenge. In fact, even the
existence of the limit remains an unresolved problem in several interesting cases.

The next theorem provides a formula for (and en passant establishes the existence of) the limit (2.11) in terms
of the Bethe state decomposition from Theorem 2.5 for a broad class of models. We merely require a certain
‘convexity condition’. This condition can be stated neatly in terms of a space that resembles the graphon space
from combinatorics [46]. Specifically, let % be the space of all measurable maps [0, 112 — 2(Q) modulo equality
(Lebesgue-)almost everywhere. We call these maps strong kernels. For (s,x) € [0,1] and p € £ we let ug x € 2(Q)
denote the function value of u at (s, x). Further, for y, i’ € # we define the cut distance

LLﬂs,x(w)_I«lip(s),(p/(x)(w)dXdS; (212)

D0 (u,u’) = inf sup
9" $,x<[0,1]
weQ)
where the infimum is over all measurable ¢, ¢’ : [0,1] — [0,1] that preserve the Lebesgue measure and where the
supremum runs over all measurable S, X c [0, 1]. Strictly speaking, 2n(-, -) is a pre-metric (as possibly 2o(u,v) =0
even though u # v). We therefore let £ be the metric space where any two y, v with 2o (u, v) = 0 are identified. Then
R is a compact Polish space [40]. Additionally, we write ®© for the space of all probability distributions on £.
Crucially, the convexity assumption that we require comes solely in terms of the distribution P on the set ¥ of
weight functions. Namely, let x = (x;);>; be a sequence of independent uniformly random points in [0, 1], chosen
independently of w € W. Writing E [ -] for the expectation on x, ¥, we make the following assumption.
9



For all u, 4’ € & and for every integer £ > 1,

1k ¢
E (1— > w(a)fo Hﬂs,xi(ai)ds)
i=1

oeQk

+ (k- 1E

1k ¢
(1— > 1//(0)[0 Hu’s,xi(ai)dS) ]
i=1

oeQk

(POS)

¢
(1— Y wo) ,sth(Uh) I1 ufg,xi(ai)dS) :
oeQk ie[kI\{h}

k
=) E
h=1

We will see in Section 7 that POS is easily verified for several interesting models, including the spin glass model
from Section 1.

To obtain the formula for the free energy, we will represent the Bethe state decomposition of the random factor
graph by a point in K. Specifically, let X,Y be random variables with distribution Po(w) for an integer w > 0,
mutually independent and independent of G. Then with S;,...,S, the decomposition promised by Theorem 2.5
we introduce fori =1,...,7¢,

X -1
2(;,;':#(;(51')']_[(2 p [ X Yrw=xva@ [] Hw—aTwlS) (2.13)

i=1\xeQ aedv; reQoa weda\v;

-1
H( Z Va; (T) H Bw—a; (TwlSi) ,

7€Q9% weda;

and we let Zg = Zle Z¢,;- It will emerge that combinatorially Z¢ ;/Zg represents the probability mass of the Bethe
state S; in the factor graph G’ where we remove the first Y constraint nodes a, ..., ay as well as the first X vari-
able nodes vy, ..., vx along with their adjacent constraint nodes. While this removal operation has no discernible
impact on the free energy (so long as w = o(n)), it enables us to set up a recurrence for computing this quantity.

The recurrence comes in terms of the messages sent out by those variable nodes that are left with degree d — 1
after the removal operation. We thus set up a kernel that captures these messages. Specifically, let vy,,..., vy, be
the variable nodes of degree d — 1 in the factor graph G’ and let by,..., b; be their G-neighbors that got deleted.
Then we define the kernel fig x v : [0,1]2 — 2 (Q) by letting

fe.x,y (s, %) — Z > 1{r 1<x<t, ) ZGn<SzZG=< ), th}quh —p 18- (2.14)
i=1j=1 h<j h<j

Recalling that G, X,Y are random, we write 7, € © for the distribution of fig, x,y. Analogously, we write 7 4, .»

for the distribution of fig x,y defined for the simple random factor graph.

Finally, we introduce a functional on the space © that encodes the recurrence for computing the free energy
from the Bethe state decomposition. Namely, let (x;,;); j=1 be a family of random variables that are uniform on
[0,1], let (h;) ;=1 be a family of random variables that are uniform on {1,..., k}, let (y;);>1 be a sequence of samples
from P, and let p” € 8 be a sample from 7 € ®, all mutually independent; then

QB(n):[E[logf > p(a)l_[ Y () ]"[ By, (Tpds—d(1-k~ l)logf > wl(r)np”l (rj)ds|. (2.15)

geQ) i=17eQk. TeQk
Th =0
We obtain the following expression for the free energy.
Theorem 2.6. Assume that condition POS is satisfied. Then
1 1
lim —E[log Z(G)] = liminfliminf B (), lim —E[log Z(G)] = liminfliminf B (7, ,, ).
n—oon w—00 N—00 n—oon w—00 N—00

In particular, the limit on the left hand side exists, and it can be computed from the Bethe state decomposition.

2.4. A variational formula. We proceed to state a variational formula for the free energy of the random factor
graph models akin to the one from Theorem 1.3 for the spin glass model. Namely, we express the limit (2.11)
variationally as the infimum of 9(%) over # chosen from a certain subspace ©* < ©. The definition of D* is
an adaptation to the Bethe lattice of the invariance property that Panchenko [55] put forward in the case of the
Erdés-Rényi model.
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To define the subspace ®* let u € &, let s € [0, 1] and let N, M = 0 be integers. We introduce the random variable

N

z(s) = H
i=1

M

11

i=1

d
Z p(o) H Z Hth, =03 q;,5(T) H s xiaiepon (Th) (2.16)
h#h;

oeQ j=lreQk

k
Z Yan+i (1) H .Us,xdk(NHHj (T])
1eQk j=1

Further, let
1

0
t=t(s) :inf{@e [0,1] :f z(w)du = sf z(u)du} and M =y, (2.17)
0 0
Thus, for each u € & we obtain a random u*™™ € &. Further, given 7 € © we can apply this operation to a
randomly chosen kernel u” € £, thus obtaining a random kernel u™* ™" We denote the distribution of g*®-M
by a* WM Now, let D* be the set of all densities 7 € © such that 7* ™M = 5 for all N, M = 0. Then we obtain the

following self-contained formula for the free energy.

Theorem 2.7. Assume that POS holds. Then
1 1
lim —E[logZ(G)] = lim —E[log Z(G)] = min %B(n).
n—oopn n—oon TED*

Admittedly, the variational formula may not be easy to evaluate. But Theorem 2.7 places a lid on the complexity
of the problem, and Theorem 2.6 provides an explicit combinatorial interpretation of the minimizer in terms of
Belief Propagation fixed points and Bethe states.

2.5. Discussion and related work. Over the past two decades an enormous amount of research, based on both
rigorous and non-rigorous techniques, has been devoted to random factor graph models. Much of this work has
been sparked by the cavity method advanced in the original contribution of Mézard and Parisi [50]. A survey of
this literature up until about 2008 can be found in [48]. More recently models of Bayesian inference problems such
as the stochastic block model have received a great deal of attention as well; this literature is surveyed in [1, 53, 61].

Rigorous work on random factor graphs and the cavity method can broadly be split into two categories. First,
contributions that investigate physics predictions on specific models. Many of these contributions, particularly
the earlier ones, rely on ‘classical’ techniques such as the second moment method, albeit frequently with physics-
inspired twists. Examples include work on the k-SAT threshold [4, 7, 22, 23, 33], which culminated in the proof of
the k-SAT threshold conjecture for large k [34], the Potts model and the random graph coloring problem [5, 12, 17,
36] or the hard-core model [28, 35]. Some recent work is based on the powerful but technically demanding idea of
‘spatial coupling’, which has led to important results in, e.g., coding theory [39] and random constraint satisfaction
problems [3]. A second line of work focused on the mathematical vindication of the cavity method in general, with
applications to specific models of interest. Examples include work on the role of spatial mixing [8, 29, 30, 31], the
use of the interpolation method [15, 45, 58], phase transitions in inference problems [13, 21], and contributions
based on the asymptotic analysis of the Boltzmann distribution such as the influential work of Panchenko [55] as
well as [11, 16]. The present paper belongs to this second category.

In the following we discuss the main results and methods of the paper and how they compare to prior mathe-
matical research. Subsequently we compare the present work with the physics intuition and discuss directions for
future research.

Mathematical work. We regard Theorem 2.5 as the main result of the paper. The theorem confirms in great gen-
erality one of the key assumptions behind the cavity method and explains the success of Belief Propagation as a
device for analyzing random regular factor graph models. Indeed, the existence of a Bethe state decomposition has
been conjectured explicitly, e.g., by Mézard and Montanari [48, Chapter 19]; see also Dembo and Montanari [29].
In a prior paper [25] we constructed a Bethe state decomposition for random factor graph models of Erd6s-
Rényi type, where the constraint nodes independently choose k-tuples of adjacent variable nodes. While we will
be able to use some of the general tools developed in that work, the main argument breaks in the case of the Bethe
lattice due to its rigid geometry. Indeed, the construction of the Bethe state decomposition hinges on coupling
arguments involving, e.g., a coupling of a factor graph with n variable and m constraint nodes and another one with
11



parameters n’' and m’ such that n = n'+ 0(1), m = m’ + O(1). Due to the Poisson degree distribution and the Stein-
Chen property, such arguments are pretty straightforward in the Erdés-Rényi case. One might say that the Erdés-
Rényi graph resembles a gentle climbing wall with footholds supplied by the irregularity of the Poisson degree
distribution. By contrast, the Bethe lattice with its regular degree makes for a smooth cliff. As a consequence, the
Bethe lattice requires new ideas, leading to a rather subtle but ultimately elegant argument. The upshot is that
this proof, which we present in Section 4, can be expected to generalize to other random graph models with given
degrees. Apart from the appeal of such lattice-like models from a physics perspective, these models play a vital
role, e.g., in coding theory, where a suitably chosen degree sequence is apt to greatly boost performance [59].

Similarly, the variational formula for the free energy provided by Theorem 2.7 is a generalization and adapta-
tion of the formula established by Panchenko [55] for models of Erd6s-Rényi type with spins Q = {+1}. Panchenko’s
proof relies on two ingredients: an interpolation argument and a coupling argument. So does ours. But while the
interpolation argument, an adaptation of the technique of Franz and Leone [37], goes through without too much
trouble, the coupling argument does not. Once more the rigidity of the Bethe lattice poses substantial challenges
that require subtle new arguments. A further, albeit relatively minor extension is that the present work applies to
relatively general models with two or more spins, subject only to the condition POS. A further similarity between
Panchenko’s work and ours is the embedding of discrete Boltzmann distributions into a compact metric space,
which enables us to pick convergent subsequences. While Panchenko resorts to the Aldous-Hoover represen-
tation, here we use the cut metric and the associated kernel space, which is convenient to link the combinatorial
representation of the measures in terms of messages directly with the free energy formula. That the Aldous-Hoover
representation is closely related to graph limits is, of course, a well known fact [32].

Furthermore, Bayati, Gamarnik and Tetali [15] applied the interpolation method to factor graph models, in-
cluding ones with regular degrees, to establish the existence of the limit lim,,_.o %[E[log Z(G)] in certain cases via a
super-additivity argument. In the process they also used arguments based on ‘cavities), i.e., the removal of a small
but linear number of vertices from the graph; a similar trick was used in [24] as well. But here, particularly in the
construction of the Bethe state decomposition, we need to tread much more carefully. In particular, while removal
of a small linear number of vertices does not shift the free energy too much, here we can only afford the creation of
a very small number of cavities in order to avoid a distortion of the Boltzmann distribution, an extremely volatile
object.

Theorem 2.6, which expresses the free energy density in terms of the Bethe state decomposition, is a synthesis
of Theorems 2.5 and 2.7. The proof shows that the free energy can be expressed in terms of a particular distribution
on kernels [0,1]%2 — 2 (Q), namely the one that encodes the Bethe state decomposition of the random factor graph
or, more specifically, the associated Belief Propagation messages. No corresponding result was previously known
even in the conceptually simpler Erdds-Rényi case.

Apart from the interpolation method and coupling arguments, the proofs of Theorems 2.5-2.7 rely on some of
the techniques that we developed in [11, 21, 26, 16], particularly the cut metric and its ramifications. The cut met-
ric, which we apply to kernel representations of probability distributions, was originally developed in the context
of the regularity method [38] and the theory of graph limits in combinatorics [46]. Here we use the cut metric and
certain assorted results, such as the ‘pinning lemma’ (Lemma 3.15 below) from [21] as tools, e.g., in the construc-
tion of the Bethe state decomposition.

While the present paper is concerned with diluted models where each node has a (fixed) bounded number of
neighbors, there is also a substantial literature on fully connected models. The prime example, of course, is the
Sherrington-Kirkpatrick model. The monographs of Panchenko [57] and Talagrand [60] provide an overview of
this literature. In particular, the TAP equations, the (simplified) fixed point equations that correspond to the Belief
Propagation equations in the fully connected case, have been established in several cases [9].

In Section 7 we work out several application of the general results to specific models, such as the spin glass
model from Section 1. Pointers to related work on the specific problems can be found there.

The physics perspective. The seminal work of Mézard and Parisi [50] marks the starting point of a substantial body
of physics work. Highlights include the Survey Propagation algorithm and precise predictions on phase transitions,
including satisfiability thresholds in combinatorial problems [43, 51, 49].
The results provided by Theorem 2.5-2.7 are perfectly in line with the physics predictions. But we should com-
ment on a subtle point that is apt to cause confusion. Namely, it has been pointed out that within the replica
12



symmetric phase of certain models the support of the Boltzmann distribution may decompose into an exponen-
tially large number of tiny ‘clusters’ [49, 43], a phenomenon called ‘dynamic replica symmetry breaking’. Indeed,
it has been conjectured that each of these tiny clusters induces a Bethe state [48]; for the special case of the ran-
dom graph coloring problem, this can be verified rigorously [12]. At first glance this proliferation of Bethe states
may appear to contradict Theorem 2.5, where the number of Bethe states is upper-bounded by an arbitrarily slowly
growing function L(n). Yet the Bethe state decomposition is not unique, and despite the abundance of tiny clusters,
U itself is replica symmetric (i.e., condition (2.10) holds for S = Q") throughout the dynamic RSB phase. In effect,
Theorem 2.5 would render just a single Bethe state that comprises all of the tiny clusters. By contrast, beyond the
dynamic RSB phase, within the so-called condensed phase, Theorem 2.5 would yield a non-trivial decomposition.
The existence of a condensed phase has been established rigorously in several examples [18, 21].

The variational formula for the free energy furnished by Theorem 2.7 is in line with the physics work, which
does, however, provide additional clues as to the structure of the minimizer of the functional 28(-). Specifically,
three different scenarios are expected to occur, depending on the model and the choice of its parameters. First,
the replica symmetric scenario with a single (or a bounded number of) Bethe states. Second, the so-called ‘one-
step replica symmetry breaking’ scenario, where there are an unbounded number of ‘independent’ Bethe states.
Third, the ‘full replica symmetry breaking’ scenario, where the Bethe states form a hierarchical structure; see [48]
for a detailed discussion. Clearly, in order to better evaluate the variational formula it would be very valuable
to establish this additional structural information rigorously; in the Erdés-Rényi case first attempts have been
undertaken in [56].

2.6. Organization. In Section 3 we introduce the necessary pieces of notation and state some basic results that we
will need. Then in Section 3.3 we revisit the cut metric. While much of what we need on this subject already appears
in earlier papers, there are a few general preparations that we need to make and that we carry out in that section.
Subsequently Section 4 deals with the proof of Theorem 2.5. In Sections 5 and 6 we then prove Theorem 2.7 about
the variational formula for the free energy. Section 6 also contains the proof of Theorem 2.6. Finally, in Section 7
we work through a few applications, including the spin glass and hard-core models from Section 1.

3. PRELIMINARIES

3.1. Basics. For an integer ¢ = 1 we use the shorthand [¢] = {1,..., ¢}. Furthermore, the symbols O(-),Q(-),... refer
to the limit n — oo by default. To indicate asymptotics with respect to another variable K tending to infinity, we
write Og (), Qk(+), etc. Further, where set operations involve singletons, we usually omit braces. For instance, if
x € X, then we just write X \ x rather than X \ {x}.

For a finite set & we let 22(%) be the set of all probability distributions on &, endowed with the total variation
distance. More generally, if (%,%l) is a measurable space, then 22(Z’) = 22(%',2l) denotes the set of all probability
measures on this space. Further, for probability measures 7,7’ € (%) we let I'(zt, ') be the set of all couplings of
7, 7'. Thus, y € (7, ') is a probability distribution on & x & with marginals 7,7’

Suppose that & is a finite set, that n = 1 is an integer and that y € 22(Z"*). Then we denote by o, ot g2k a
sequence of independent samples from p. We omit the superscript ¢ where it is evident from the context. Further,
if £:(%™¢ — Ris a function, then we write <f(01,...,¢ré),p> for the expectation of f with respect to independent
samples from y; thus,

[ .
<f(01,...,0'[),u>= Y o f@h. o) ] u@h.
ol,...clexn i=1

Suppose that Q,V # @ are finite sets. For a distribution u € 22(Q") and a set I c V we denote by y; the joint
distribution of the coordinates I. That is,

pro)= Y 1Viel:1;=0}u) (IcV,oeQh.
TeQ"
For o € Q! we use the shorthand u(o) = py(o). Moreover, if I = {iy,..., i;} we usually write y;, _;, instead of py;, i
Additionally,if Ic Vandt € QV, then we let 77 = (7;) ;¢ be the restriction of 7 to I.

We keep the notation from Section 2; in particular, Q2 continues to denote a finite set of spins, p is a probability
distribution on Q, W is a measurable space of functions Q* — (0,1), and P is a probability distribution on ¥. In
addition throughout the paper we denote by

xir-i?i;Sivxi,j,x’i,j;xg,jrxi,j (i,j=1)
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uniformly distributed random variables with values in [0, 1]. Additionally,
VYLV YWy (62D
denote elements of ¥ drawn from the distribution P. Further,
hihij bk (G,j21)

are uniformly distributed random variables with values in [k]. All of the above random variables are mutually
independent as well as independently of any other sources of randomness. These random variables yield random
functions that will play an important role: for i = 1 we let

d

, Q4 LR, o~ Z p(x) H Hok(j-v+h;,; = X)W, j(0),
XEQ j=1
dk 2

P; Q% SR, o~ ng(x) Hl“"ku—wi,j = 0¥, ;(0).
X€ J=

3.2. Factor graphs. In Section 2 we already introduced the random factor graph model G(n, d, p, P). To facilitate
the proofs we need the following abstract definition.

Definition 3.1. Suppose that (% ,2) is a measurable space. An ¥ -factor graph G = (V, F, (0a) gcF, W 3) acF, ) consists
of

e afinite set V ofvariable nodes,

* afinite set F of constraint nodes,

e asetdacV foreachac F,

e afunctiony,: goa _, [0,00) foreach a€ F and

o a probability measurep on &V, called the prior.

A factor graph induces a bipartite graph on V U F, where x € V is adjacent to a € F iff v € da. Accordingly, for
a variable node v we let dv c F be the set of adjacent constraint nodes (i.e., a € dv iff v € da). The bipartite graph
defines a metric on V U F, the shortest path metric. For a variable or constraint node u we let u= Oé u be the set

of all nodes at distance precisely ¢ from u. Moreover, Vlu=Vn(uulU;<, 8" u) denotes the set of all variable nodes
at distance no more than ¢ from u.
Further, for an assignment o € Q¥ and a € F we use the notation v ,(0) = ¥4(05,) and we define

v60) = [[val0ss) and  Z(G) =f Ye(o)dp(o).

aeF xv
Providing that Z(G) > 0, we introduce a probability measure ug on ", the Boltzmann distribution, by letting
¥g(o)
Z(G)

Mostly the factor graphs that we deal with will have a finite space & = Q and the prior p will be the product
measure p = ® ey Py. In this case we introduce the standard messages given an event S < Q" as in Section 2: for a
constraint node a and v € da we let

(Mo y=0tya0),uc(-19)
(1ya(0), uc(-18))

(Mo =0} (pu(0) [Tpeona¥b(0)), uG(-15))
(1/(py(@ ) TTpeona V@), G (-1S))

In the case that S = QV is the entire phase space, we omit the conditioning from the notation and just write g, ,—q
and pg,q—y, respectively.

dug(o) = dp(o).

(c€eQ), (3.1)

HGv—alO|S) =

UG a—v(o|S) = (€. (3.2)

3.3. The cut metricrevisited. The cut metric, defined in (2.12), plays a key role in the proofs of the main results. In
this section we summarize a few basic facts about the cut metric. Although some have been proved in prior work,
we will need to provide a few extensions and adaptations for our purposes. In addition to the continuous version
from (2.12), we also need a discrete version of the cut metric, which we present in Section 3.3.2.
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3.3.1. The continuous cut metric. We remember that Z denotes the space of all measurable maps [0, 112 - 2(Q),
up to equality almost everywhere; we call such maps strong kernels. The cut distance (2.12) induces a pre-metric
on this space [40]. Moreover, on the space £ obtained by identifying points at cut distance 0 the cut distance yields
a metric. The elements of K are called weak kernels. We drop the attribute and just speak of kernels where there is
no danger of confusion.

Proposition 3.2 ([26]). Endowed with the cut distance R is a compact Polish space.

We continue to write ® for the space of all probability measures on K. This space is endowed with the weak
topology. Since £ is a compact Polish space, so is ©. Hence, there is a natural metric on ®© that induces the weak
topology, the L;-Wasserstein metric. We take license to denote this metric by 2n(-, -) as well. Thus, recalling that
['(w,7') is the set of all couplings of 77, 7' € D, we have

Do, ') = inf{fR R@D (i) dy(u,p) iy e F(n,ﬂ')}.

For 7 € ® we let p” € & denote a sample. We just write u where 7 is apparent.

By comparison to other metrics on the space of measurable functions [0, 112 — 2(Q) the cut metric is extremely
weak; this is highlighted by the compactness of the space & provided by Proposition 3.2. Yet the cut metric is suf-
ficiently strong to ensure that certain functions that will be of vital interest to us are continuous. Indeed, suppose
that m, n > 0 are integers and that f: Q""" — R is a function. Then for p € # we define the random variable

1 1m n
<frl1>: Z f(U)f f Hnlisi,xj(Ui,j)dsl‘“dsm-
geQmxn 0 0

i=1j=1
Because we average out the s; and the x; are uniform, the random variables (f, ) and ( f,v) are identically dis-
tributed if 25 (i, v) = 0. Thus, we may safely write ( f, i) for u € &

Lemma3.3. Forany f:Q™" >R, ¢=1themappec KR—E [(f,u)g] is continuous with respect to the cut metric.

The proof of Lemma 3.3 can be found in the appendix. For a probability distribution 7 € © we let ( f,7) be the
random variable { f, u™ ), with p” chosen independently of the x;. Since D carries the weak topology, Lemma 3.3
implies

Corollary 3.4. Forany f: Q™" >R, ¢=1themapne® —E [<f,7'[>[] is continuous.

We recall the functional 48(-) from (2.15).

Corollary 3.5. The map n € ® — %B(m) is continuous.

Proof. Thanks to the tail bound (2.1), we can approximate the logarithms in (2.15) by polynomials. Therefore, the
assertion follows from Corollary 3.4. ]

The set ©* of 7 € D that are invariant under the (N, M)-operation is a closed subset of ®. To see this, and
to interpret the *(IN, M)-operation nicely in terms of operations that are continuous under the cut metric, we
introduce the following general transformation. Suppose that f : Q"V — (0,00) is a function and that u € # . Then
we define arandom f * € £ as follows. Letting

f N 1 !
zs=2"= 3 fO) []psz, 00, 2=zl = fo I,

oeQN i=1

we introduce
0
t=t/H= inf{@ €[0,1] :f zudu = sz}.
0

Now, f * s x = tr,x. We emphasize that f * p € & israndom, dependent on X1, ..., Xx. The kernel is characterized
by the identity

1 pl 1 1 1
ffgs,x-f*us,x(w)dsdxzz Y f(a)f f Zsx - Msx(@)zgdsdx  forall g:[0,11% — [0,1], w € Q.
0 JO 0 JO

geQN
Further, since the X; are uniform, we have 2g(f * y, f * v) = 0 if 20(u,v) = 0. Hence, the *-operation extends to
weak kernels. Furthermore, for a distribution 7 we let f * & be the distribution of f * u”.
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Lemma 3.6. For any function f : Q¥ — (0,00) the map & — ®, u— f * u is continuous.

The proof of Lemma 3.6 can be found in the appendix.

The = (N, M)-operation is an application of the above *-operation to a particular random function f. To define
this random function, we need one more piece of notation. Namely, for functions f: QM*N — R, g: QM*L — R we
define

feg: QM N+ g o— (@i icm,jen) - & (04, j+Nieimn,jerr) -

In words, we stick the first N ‘columns’ of o into f and the last L columns into g and multiply the results. Recalling
the random functions v¥;, @; from Section 3.1, we obtain the following.

Lemma 3.7. Forany p € f the random u*\N"™M € & is distributed as (EBﬁ.\il P, @?/:11 W) * .

Proof. This is immediate from the construction of p*®™M), O

Corollary 3.8. For any N, M the map p € & — u*N'M is continuous with respect to the cut metric.

Proof. Since ® carries the weak topology, which is induced by the Wasserstein metric, the assertion follows from
Lemmas 3.6-3.7 and (2.1). ]

As a further immediate consequence of Lemma 3.7 we obtain
Corollary 3.9. A distributionn € © belongs to®* if and only if m = (EB?LI P;® EB?/:II W;) =7 forall N, M.

In particular, Corollaries 3.8 and 3.9 imply that the map 7 — 7*™'*M) is continuous for all N, M = 0. Consequently,
D* is a closed subset of ©.

3.3.2. The discrete version. Apart from the ‘continuous’ installment of the cut metric, defined on kernels, we also
need a discrete variant, defined on probability measures on discrete sets. To be precise, with Q # @ our finite set of
spins and V another finite set of size n = 1, we define a metric Ag(:, ) on 2(QV) as follows. Recalling that I'(u, v)
is the set of all couplings of probability measures u,v on QV, we let

1 v
Ag(p,v)_zygl(g}w max %(U;EB)/(U,T)(I{U,—w}—l{r,—w}) for u,ve 2(Q"). (3.3)
BcQVxQV ’

weQ)
Fact 3.10 ([25]). Ag(-,-) is a metricon 2(QV).

We refer to Ag(-, -) as the discrete cut metric.

Suppose that V is a finite set. A measure u € 22(Q") can be represented by a point 1 € #. Indeed, assume
without loss that V = [n] and that Q = [g]. Then the set Q" can be ordered lexicographically as ¢V,...,0'@"). We
define ji € £ by letting

n qﬂ
fsx = Z Z 1{(i—-1/n<x< i/n}l{ Z ,u(a(h)) <s< Z u(a(h))}(i G-
iz1j=1 h<j h=j i

Comparing (3.3) with the definition (2.12) of the continuous cut metric, we see that
Do, v) < Ao(,v) (wveQ). (3.4)

The discrete cut metric encodes a great deal of information about the discrete measures. A particularly impor-
tant case occurs when a measure u € 22(Q") is close to a product measure. To be precise, we say that u is £-extremal
if Ao (u, ey y) < €. Inwords,  is close to the product measure with the same marginals. In addition, p € 21"
is (g, £) -symmetric if

1
W Z ”:Um,---,w —Huy ®"'®”W ||TV<E‘ (3.5)

V1, V€V

Informally, if we choose ¢ coordinates randomly, then their joint distribution typically ‘nearly’ factorizes. The
following statement shows that these concepts are essentially equivalent, up to a moderate loss in the parameters.

Proposition 3.11 ([25]). For any Q of size 1 < |Q| < oo, any0 < € <1/2 and any ¢ = 2 there exists ny > 0 such that for
alln> ny and all ue 2(QV) the following two statements hold.
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() Ifu is (€/9)3-symmetric, then u is e -extremal.
(ii) Ifuis £3/(128|Q)* -extremal, then U is (g, 0)-symmetric.

It is an elementary observation that probability measures that are close in the discrete cut metric cannot have
very different marginals. Formally, we have the following.

Lemma 3.12. For any two probability measures j1,v on Q¥ we have ¥ ey |ty — vy llTv < 21Q1A0 (1, V).

Proof. There exists w € Q such that

Y () - y(w))vo_—Zuuy Volrv. (3.6)
eV 21Q1 ey

LetI={i€V:p;(®) =v;)}and B=Q" x QY. Then for any coupling y € T'(, v),

Yo Y ylonMoi=w-lri=0) =) (1) —viw) V0. 3.7)
i€l (0,71)€B iev
Combining (3.6) and (3.7) completes the proof. (|

The converse bound, that close marginals imply closeness in the cut metric, holds for extremal measures.

Lemma 3.13. For any two -extremal 1,V € 2(QVY) we have 90 wv)=2e+) yev iy —vullty.

Proof. Assume without loss that V = [n] and let fi = @}_, u; and ¥ = @', v;. Since y, v are e-extremal, we have
Aoy, ) <eg, Ao(v,Vv) <e. (3.8)

Lety; € 22(Q x Q) be an optimal coupling of p;,v;, i.e., |u; = villtv = X2 vi(0,7). Theny = ®:’:1 vi is a coupling
of 1,v. Further, for any I c [n],Bc Q" x Q",w € Q we have

Y. Y Yo,n o =wi-1{r; = w)

i€l (o,T)eEB

<Y Y ylonloi#1}< Z i = Vil

iel (o,T)eB

Hence, Ag (i, V) < Z” i =villty, and thus the assertion follows from (3.8) and the triangle inequality. O

We also make a note of the following enhanced triangle inequality.

Lemma 3.14 ([25]). Suppose that ym,vm,...,ym,vw) are probability measures on QY and that u;, ..., uy =0 are
numbers such L‘hath:1 u; =1. Then

14 14 14
Ag (Z uip®, > u,-v(i)) <) uiAo (v,
i=1 i=1 i=1
Finally, we come to an important fact, intimately related to the Szemerédi regularity lemma from combina-
torics. Namely, any probability distribution u € 22(QV) is close in the cut metric to a mixture of a ‘small’ number of
product measures. To state this results precisely, suppose that I ¢ V and that o € Q/. Let

st ={reqV:1;=0}

be the sub-cube of Q" where the entries of the coordinates in I coincide with o. Further, assuming that u € 22(Q")
and p(S"9) > 0, we let

ph? = 18] (3.9)

be the corresponding conditional distribution of . (If u(S""?) = 0, then we agree that " is the uniform distribu-
tion on S"?.) The following key lemma shows that u! is likely £-symmetric for suitably random I, 0.

Lemma 3.15 ([21, Lemma 3.5]). For any set Q) of size 1 < |Q| < co and any € > 0 there exist ng > 0 and a random
variable 0 < 0 < 2e*1og|Q| such that for all n > ny and all u € 2(QV) the following holds. Let I c V be a uniformly
random subset of size @ and choose o € Q! from . Then P [,uI"’ is e-symmetric] > 1 —¢.

We can apply Lemma 3.15 multiple times to obtain a decomposition of the set Q" into sub-cubes Sy, ..., S, such
that u[-|S;] is e-symmetric. To obtain these sub-cubes we just choose the set I randomly as in Lemma 3.15 and let
o range over all |Q2|? possible assignments of I. We then obtain the following version of the regularity lemma.

Corollary 3.16 ([11]). For any finite set Q) # @ and any € > 0 there exist L, ny such that for all n > ny the following is
true. For any e 2(QV) there exists a partition of Q" into pairwise disjoint sets Sy, ...,S¢, £ < L, such that u(Sy) < €
and such that u(-|S;) is e-symmetric foreach1 <i < ¢.
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3.3.3. Contiguity. Suppose that Q # @ is a finite set and let ¢ = 1. A probability distribution v on Q" is c-contiguous
with respect to another probability distribution p if

v(o) < culo) forallo e Q".
Moreover, u, v are mutually c-contiguous if each is c-contiguous with respect to the other.

Lemma 3.17. Foranyc=1,0 > 0 there exists € > 0 such that for all large enough n the following is true. Assume that
pePQM ise-extremal and that v is c-contiguous with respect to . Then v is § -extremal and Ag (4, v) < 9.

Proof. Choose 0 < € <1 <« { < 0 and assume that n > ny(¢) is sufficiently large and that u is e-extremal. Applying
Corollary 3.16 to the measure v, we obtain a partition Sy, Sy,..., Sy of the cube Q" into pairwise disjoint sets such
that v(Sp) < n and such that v(-|S;) is n-symmetric for every i = 1,...,¢. Moreover, ¢ is bounded by a number
L(n,Q) > 0 that depends on 1 and |Q| only.

Suppose that for every 1 < i < ¢ with v(S;) = n/¢ we have

n
lv;(-18) — pjllry < n. (3.10)
-1

J

Then Lemma 3.13 yields Ag(v(-1S;), ) <21+ (. Hence, Lemma 3.14 shows that
Ao(v,u) <4n+{<9o. (3.11)

Further, (3.10) implies that Z;?:I lvj—ujlltv < {+2n. Hence, letting i = ®_ | pi, V = Q! v; and applying Lemma 3.13
a second time, we obtain Ag(fi, V) < { +27. Thus, invoking the e-extremality of 1 and (3.11), we conclude that

Ao, V) < Ao, 1)+ Aa(, ) + Ao (@, V) < 4n+) + €+ ({ +2n) < 6. (3.12)

In summary, if (3.10) is satisfied, then (3.11) and (3.12) yield Ag(v, 4) < and Ag(v, V) < §, as claimed.

Thus, we are left to establish (3.10). Assume for contradiction that there is 1 < i < ¢ with v(S;) = /¢ and
ijl Ivj(-1S:) = pjlltv > {n. Then there exist J < [n] and w € Q such that Z]-E]vj(wls,') —pjlw) > ¢n/(21Q)). In
other words, the random variable X (o) = }_ jegHoj=w} satisfies

(X, v(-18)) = (X, ) > {n/ 21Q)). (3.13)
Due to the n-symmetry of v(-|S;) and the e-symmetry of u, the second moments work out as

XX-D,vCISH= Y, (UHoj=0;=0hv(-IS))<nn+(X,v(-[$)), (X(X=1),p) sen+(X,u)’. (3.14)
bI'€rj#]

Combining (3.13) and (3.14) with Chebyshev’s inequality and keeping in mind that € « 11 < {, we conclude that
the event B = {X(0) = (X, u) + {/(41Q))} satisfies

v(B|S;) =3/4, w(B) <e'’t, (3.15)
However, if v is c-contiguous with respect to y, then (3.15) yields
ce'* = cu(B) = v(B) = v(B|S)v(S;) = 3n/(40) = 3n/(4L(1,Q)),

which contradicts the choice of the parameters ¢, 7. ]

Corollary 3.18. Foranyd > 0 there exists € > 0 such that the following is true. Suppose that p is € -extremal and that
S c Q" is an event such that ((S) = 8. Then pu(-1S) is § -extremal and Aq (u(-1S), p) < 6.

Proof. Since u(olS) < u(o)/u(S) for every o, the conditional distribution p(-|S) is 1/e-contiguous with respect to
u. Thus, the assertion follows from Lemma 3.17 immediately. ([
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4. BETHE STATE DECOMPOSITIONS

In this section we prove Theorem 2.5. Before getting into the details, why might we expect the statement of the
theorem to be correct? In order to construct the desired decomposition of the phase space Q" we could at-
tempt to apply Lemma 3.15. The lemma shows that if we randomly pick a set I c V,, of a moderate size of, say,
I = O(loglogn), we will likely obtain a decomposition (sho) oseql such that (2.10) is satisfied for most of its parts.
Formally, Lemma 3.15 guarantees that with high probability,

1

= X (M6, C18™) = 60, 187 @ 60, 1" i) = 001, @1

l<i<jsn
Proposition 3.11 extends (4.1) from pairwise independence to independence of bounded numbers of randomly
chosen variable nodes. Thus, the pinning operation eliminates long-range correlations.

But why should short-range correlations be described by Belief Propagation? Recalling the standard messages
from (2.4)—(2.5), Belief Propagation (2.3) asserts that with high probability,

tep—a@|S") o [ X lYirxe=0typ@ [ 1ey—pTy ! S"7) +0(0). 4.2)
bedv\ateQob yeo
This last formula expresses the notion that once we remove x and its adjacent constraints dx, the spins assigned to
the variables y at distance two from x in G are (essentially) stochastically independent. This is very much in line
with the absence of long-range correlations: in G — (x U dx), the variables y likely are far apart from one another
as G contains only few short cycles. (For a more detailed discussion of the intuition behind Belief Propagation we
refer to [48, Chapter 14].)

Yet (4.2) does not follow from (4.1) directly. Indeed, (4.1) merely states that the joint two randomly chosen
variables of G are likely approximately independent. But being second neighbors of x, the y variables in (4.2) are
anything but a uniformly random family of variable nodes. For random factor graph models of Erdds-Rényi type,
this difficulty is easily overcome [25] because the random factor graph obtained by removing x U dx has essentially
the same distribution as the original model (of order n—1). In effect, the original factor graph is distributed nearly
the same as the factor graph of order n — 1 plus a new variable plus adjacent constraints connected to a uniformly
random family of variable nodes, and (4.1) applies to these random attachments. Of course, this trick does not work
on the Bethe lattice, where the variables y stand out as they have degree less than d. To cope with this difficulty,
we will consider an auxiliary model in which a random number of variable nodes along with their neighborhoods
are removed. Moreover, we will apply Lemma 3.15 not merely to the entire original factor graph G but also to
the variable nodes that have degree d — 1 after the removal operation, which will enable us to establish the Belief
Propagation equations on the reduced factor graph. Finally, we will use the decorrelation property (4.1) together
with the tools from Section 3.3 to stitch the factor graph back up, i.e., to get back to the original model with no
variables and constraints removed. Let us now carry out this strategy in detail.

4.1. The construction. We aim to show that the Boltzmann distribution ug is well approximated by a collection
of no more than L Belief Propagation fixed points for an arbitrarily slowly growing L = L(n). As (4.2) shows, for a
given variable node v the corresponding fixed point equations involve the messages sent by the constraint a € 0v,
which in turn are determined by the messages sent out by the variables w at distance precisely two from v. Thus,
to express a single application of the Belief Propagation operator we require information about the variable nodes
at distance two from v. Therefore, in addition to the Boltzmann distribution g we will consider an enhanced
measure (I that captures the joint distribution of the second neighborhoods.

To be precise, let G = (V, F, (0a) e, (W a) acr, p®™) be a factor graph. Then its Boltzmann distribution pg ‘lives’
on the space Qg = QY. In addition, recalling that Vé v consists of all variable nodes at distance at most two from
v, consider the space

O¢ =[] "¢
veV
of second neighborhood assignments, whose elements we denote as 7 = (7(v, w))

induces an embedding

. The factor graph G

veV,weviy

Q6 — Qq, 0—6=(6WW) ey pevz,,  Whered(x,y)=0(y).

Thus, u¢ induces a probability distribution fig on Q. For a variable v we denote by fig , € @(QVZG") the marginal
distribution of fi; on the v-factor of Q.
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The enhanced measure i will play a vital role in the construction of the Bethe state decomposition. Indeed, by
comparison to the Erdés-Rényi case, the rigid geometry of the random regular graph causes significant difficulties.
More precisely, while the Belief Propagation messages are defined in terms of removing one or a few constraints,
such operations clearly destroy regularity. Hence, we need to create a bit of wiggling room. To this end, we remove
some variable nodes along with their adjacent constraint nodes, thereby leaving a few variable nodes with degree
d — 1 rather than d. We refer to these variables as ‘cavities’ Clearly, this operation loses some information and
would therefore by itself not suffice to prove Theorem 2.5. However, what saves the day is that the enhanced
measure fig contains the extra information needed to stitch the graph back up without losing track of the Bethe
decomposition.

Unsurprisingly, the construction is subtle and involves several steps. It requires a number of carefully chosen
parameters. Specifically, given a slowly diverging monotonically increasing positive integer sequence L = L(n) —
oo as in Theorem 2.5, we choose a sequence 0 < ¢ = (L) = o(1) that tends to zero monotonically sufficiently slowly,
a further sequence w = w(¢) — oo that tends to infinity monotonically sufficiently slowly, as well as sequences
0<Id=9w)=01),0<{=C{(D)=01),0<B=pO)=00),0<a=a(f)=0(1),0<n=n(a) =0(1) and 0 < ¢ =
£(n) = o(1) that tend monotonically to zero slowly enough. In summary, the pecking order reads

lxllexl/nxllaxl/fxl/{x1/d<xw<x1/{ < Lxloglogn, (4.3)

and we always assume tacitly that n > ny is sufficiently large.

We are ready to begin the construction. Let G, be the random factor graph obtained from G as follows. Let
0. be a copy of the random variable 8 promised by Lemma 3.15; 0. is independent of G. Further, let U, be a
random set of 0, variable nodes of G and draw o . from u¢ independently of 8. and U ... Now, obtain G. from G
by changing the prior distribution to

pe.@)= ] lou=0.,0 [ plow. (4.4)
uel, uo?U., veU V32U,
Additionally, let @ be a random variable with distribution Po(w) A 2w, independent of everything else, and let
W = {Vy_@+1,..., Un}. Finally, obtain G, from G, by removing the variable nodes in W along with their adjacent
constraint nodes.

Thus, in G/, we pin the spins of the variable nodes in U, and their neighbors to the values observed under o »,
which is drawn from pg. Additionally, we create cavities by removing the last w variable nodes along with their
adjacent constraints. The following lemma shows that the removal of the variable nodes in W does not shift the
marginals of the enhanced Boltzmann distribution much.

Lemma 4.1. With probability at least 1 — w™'° over the choice of 0., o . and G the following statements are true.

(i) both ug, and fig, are&'*-extremal.
(ii) we havey. ey, \wuorw) lftG..v = fg.,plTv < On.

Proof. By construction, fig, is identical to the measure obtained through the pinning procedure of Lemma 3.15
applied to the U, -components of the space Q. Hence, Lemma 3.15 and Proposition 3.11 imply that fig, is £'/4-
extremal with probability at least 1 — {174, Since pg, is a projection of fig, , we obtain (i).

Further, let 7 = V,, \ (W Ud*W). If fig, is ¢'/*-extremal, then by the definition of the cut metric the distribution
fig,,v induced on the neighborhoods of 7 is 2¢ 1/4_extremal, because |7 | = n/2. Additionally, there is C = C(w)
such that g,y is C-contiguous with respect to i 5 with probability at least 1 — o™ '1. This follows from (2.1),
because G/, is obtained from G. by removing no more than dw constraint nodes. Therefore, (ii) follows from (i)
and Lemma 3.17, provided that ¢, w,J are chosen appropriately in accordance with (4.3). (Il

The following proposition, which establishes the Belief Propagation equations on G, constitutes the main tech-
nical step of the proof.
Proposition 4.2. With probability at least 1 — a°, G, enjoys the following properties.
(i) the standard messages (g’ y—a» LG.,a—v) veV(G.),acov JOrm an a’? -Belief Propagation fixed point.
(i) we have

p(0v) [acor ¥a(0) [Mwesa te,,w—aOw) 9d
a " n.

Y L |ug@-

<
VEV(G’*) UGQVZU ZXEQ p(X) HuEaV Z-[egaa;-[”:)c Wa(T) Hwe@a “G’*,Wﬂa(rw)
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Before we prove Proposition 4.2 in Section 4.2, let us indicate how the theorem follows. As a final preparation we
need the following basic fact.

Lemma 4.3. For any factor graph G, for any variable node v, any S c 0v and any o € Q we have

<1{0'u =o}/ l_[aesU/a(U),Mc,uuaZv)

UG-sv(0) =
v <1/Ha€SWa(0')v/JG,vu62v>

Proof. The partition function works out to be

ZG-9= Y I waosa) [l poulon)

5€QV(G aeF(G\S veV(G)
. [acr6 Yal00a) [vevic) PG, (0w) _ 2@ {1 [Twanc ).
0eQV (@ [aes¥a(0sa) acs
Hence, for any 7 € QV(@,
1
pe-s@=—— [l wasad) [ pcolo)
Z(G=9) 4er@Gns o veV(G) Y
_ZG) 1 [lacr) ¥VaTod) [lvevc) PG,v(0w) e (1)

Z(G-98) Z(G) [aes¥a(Taa) <1/Hae8 Ya HG>Ha€S Va(Toa) ,

and the average in the denominator involves variables in v U v only. ]

Proof of Theorem 2.5. For any assignment y €  =[],eyp, QY of the variables in U, and their neighborhoods let

S =10eQ¢:VveU,, weViv:ov,w) = y(v,w).

Then (S(x))yea is a decomposition of Q¢ into no more than g'*4*~18+ sub-cubes, corresponding to the neigh-

borhood assignments of the 0. variable nodes in U.. As Lemma 3.15 shows, by choosing the functions from (4.3)
appropriately we can guarantee that g'!*4*~1)8+ < I We are going to show that the decomposition (S(y)), meets
the requirements of the theorem w.h.p.

For y € Z let G.[x] be the random factor graph G. given that o.(w) = y(v,w) forall ve U, and all w € 2
Also let G, [y] be the factor graph obtained from G.[y] by removing the variables in W along with their adjacent
constraint nodes. Further, let &y be the event that the following four conditions are satisfied.

El: Both ug,[y) and fig, [y are /8 extremal.
E2: We have

<9n. (4.5)

Z ”:aG*[X],U_.aG;[)C],v v

veVy\ (WUaz w)

E3: On G.[y] the standard messages form an a®?-BP fixed point and

)IDY

VEWURRW 5eqV2v

ploy) Hae@vWa(U)HweauﬂG’* [x],WHa(Uw) 9d
<a“n. (4.6)
Yseq P Tlacov ZTEQM;”:S Va(@ [Tweoa Ue, [x],w—»a(Tw)

Ky (0) =

0d /4

n constraint nodes a in G such that min  qr ¥ ,(0) < al’*, nor are there

n constraint nodes a such that min .« ¥ 4(0) <e&.

E4: There are no more than a?
more than £2°

Then (2.1), Lemma 4.1 and Proposition 4.2 yield E [¥, ug(1) (1 - 18,) | E4] < a®. Thus, Markov’s inequality shows

P <&t 4.7

Y pe((1-18y)) = a*
4

Hence, we are left to argue that S(y) is an e-Bethe state of G if the event & occurs. As a first step, we are going
to show that the standard messages of G', [x], G« [x] are close: given &), we claim

Y Y Y |He.me—al@ - 6 ,0ma@)] + |16, 10 00) ~ g, 1,0 @) < a¥n (4.8)
oeQuvgWuUo, W acdv
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To see this, recall that ug, [y],»—a is the marginal of v in the factor graph G. [x] —a and that g, [,y « is the marginal
of v in the factor graph obtained from G. [y] by removing all b € dv\a and disregarding the prior. Hence, Lemma 4.3
shows that

<1{0',, = O'}/Wa(o'):,uG*[)(],VZU>
<1/1,Ua(0')nuG*[)(],V2U>
<1{ay =0} (p0) [Ipesvia Wb(ﬂ)),llc*[x],vzv>

K6, (y,v—al0) = , (4.9)

HG.[y,a—v(0) = , (4.10)

<1/(p(0u) [peona¥p(0), kg, [x],v2y>

and analogously for G, [y]. Providing 9 < a“, we obtain (4.8) from (4.5), (4.9), (4.10) and E2, E4. Further, the
estimate (4.8) and the fact that the standard messages of G'.[y] are an a®?-BP fixed point imply that the standard
messages of G.[y] are an n1-BP fixed point. Thus, we have established BS1.

In order to prove BS2, we estimate the derivatives of a term like in (4.6) as follows:

1
min .5, reqia ¥a (T

Hence, (4.5), (4.6), (4.8) and E4 and the bound |W Ud*W| = O(logn) yield

0 PO ) lacov ¥a(0) lwesaVwlo(w))
vy (0) Z)(EQ P acov Xreqoa Wa(T) [Twesa Vw (T (W)

)2d :

Z Z 'u ) P0)lacov Va(0) [wesa MG, 141, w—al0 (W) <an @.1D)
G* - . .
VeVy geqV2v I Z)(EQ p() [Tacov Zregaa wa(T)Hweaa IJG*[X],WHH(T(W))
Additionally, we claim that
Y Y Jue.i@ ¥5(0) [weon H6. 1y, w—b0 (W) e @12)
G* - . .
beFy geob W Y reqor Wb (@) [weon M6, 11, w—b(T (W)

To see this, suppose that b satisfies min .o« ¥ (0) = €, that b € v for a variable node v such that

P0) [acov ¥V a(0) [weaarv H6. 131, w—a(0w) d
> |ue.po) - <a (4.13)
reqv?y 2xeq P [lacov Xreqoa Wa (D) U1y = K}Hwesarv K6, ,w—a(Tw)
and that
p(0) [aconn Ha. (x,a—v(0) 1/4

K. (y1,v—b(0) = n (4.14)

0;) iy 2 ke P(K) L aeqn\b H6. y1,a—v (K)

o« Ty = alya(1) . —a(Tw)
Z Z L. [x],a—»v(a) _ Zrem v Ya(@ [ Mwesarv L6 [xl,w—a\lw < 711/4' (4.15)

acdvoeQ 2 reqoa Wa(D) [lwesav K. L w—a(Tw)

All but £'%n constraint nodes b enjoy these properties, due to E4, (4.11) and because the standard messages of
G..[x] form an 1-BP fixed point. For any such b and any o € Q% we obtain
e, inop@) = Y Uigp =0,y v2y(T)
TeQV?Y
(4.13) U1y = 01p(0) [Tacow ¥a (@) [wesarv Ka. [l w—a (Tw)

al +0(a)
Tegv"z,, Y e aeon Xpeqoa Wa(T') {7}, =} [ Tweoav HaG. [)(],w—’a(T,w)

4.15) P )W p(0) [Tweon\v H6.1x1,w—b(Ow) [lacov\b K. (y),a—v(0v) Xreqoa ¥ a (D) [Twesarv K6, (y),w—a(Tw)
T Treamw PE)YLE) Tweonw e, (1, w—b®w) Tlacanib 6. 1x1,a—vK) Xreqoa ¥ a(T) [Twesarv K6, (y1,w—a(Tw)
+0(a%
_ po)Yp(0) [wesn\v LG, [X],wab(gw) [Taconp Ma, la—v(0y)
" Yream PEDYLE) Tweon\v 46, 1y, w—b & w) Tlacav\b K6 [y1,a—v (K)
419 ¥b0) [lweon H6. 1y, w—b0w)
T Y eaor Wb ) weab B6. 1y),w—b K w)

whence (4.12) follows by averaging on b.

+0(a%)

+0(a%),
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Finally, BS2 follows from (4.11), (4.12), the ¢ u 8—extremality of fig, ;- Indeed, let I, J be random sets of at most
1/¢ variable/constraint nodes. For each b € J pick a variable node v, € db. Because fig, [y is ¢ 1/8_extremal, Propo-
sition 3.11 yields

E <at. (4.16)

vV

e, rotwpben — Q@ Ae.w
velu{vy:be]}

Furthermore, (4.11) and (4.12) imply that with probability at least 1 — &2 over the choice of I, J we have

(@) i w—b(@ (W)

vbel: Y |ug.ip()- Y(0) [Tweob 6. 1x),w—b 3
oeQdb 2 reqov Wb (1) [wean Ka. (1, w—b (T (W)

Yyvel: Z LG, 15 (0) — P(Uv)Hae@vqla((f)HweaaﬂG*[x],w—»a(O‘(W)) <
ogeQViy - ZX€Q P Hacov Xreqoa Wa(T) [wesa M6, 1y, w—a(T(W))

If these estimates hold, then for any configuration o € Q! UAJUGT 6 obtain
®  feipu©) win
velu{vy,:be]}
P ) [acoy ¥al0) Ilwesarv He. ), w—a(Ow) ¥a(0) [Twesa 16, iy w—a(0w)

£
- . <-.
vel erﬂ PO Macov Xreqoa Wa (@) [wesa\v M6, 1y, w—a(Tw) acj Y reqia ¥a () Ilwesa b6, 1y, w—a(Tw) 2

Thus, BS2 follows from (4.16) and (4.17).
Finally, to obtain the Bethe state decomposition of the simple factor graph G, we merely recall that P [G € .¥] =
Q(1) by Fact 2.2. Hence, the claim about G follows immediately form the statement for G and Bayes’ rule. ]

4.2. Proof of Proposition 4.2. By construction, the random factor graph G/, comprises a pairing of variable clones
(vi, h) € Vi, x [d] and constraint clones (aj, h) € Fy, x [d]. But since we obtained G, from G, by removing some
variable nodes W along with their adjacent constraint nodes, not all of the variable clones (v;, h) with i < n—w are
paired. We call variables with at least one unpaired clone cavities. Let € be the set of all cavities.

The basic idea behind the proof is as follows. We will add a new variable node v* along with new adjacent
constraint nodes by, ..., b; to G),. Apart from v™*, these new constraint nodes are adjacent to some of the cavities.
The fresh randomness afforded by this construction will facilitate the study of the standard messages from v™* to
the b; as well as the reverse messages. Then we will argue that v* is essentially indistinguishable from a randomly
chosen variable node of G, thereby extending the analysis to almost all the messages of G,.

Formally, since w is a Poisson variable with mean w truncated at 2w, w.h.p. we have w/2 < |€]| < 2d(k — 1)w.
Given that |€| = d(k — 1), obtain G; from G, by re-inserting one variable node v; = v,_y+1 along with d new
constraint nodes b,...,b,. For each of these constraint nodes a random clone (b;, h;), h; € [k], is paired with a
random clone v,. In addition, the b; are paired randomly to k — 1 cavities. The weight functions v, are chosen
independently from P. The following lemma shows that the distributions of G, and G are reasonably close.

Lemma 4.4. For any event& we haveP |G, € ] < a 'P[G; € &] + O(a'?).

Proof. We need to get a grip on the conditional distribution of the second neighborhood of v, in G given G,.
This is non-trivial because of the revised prior of G. introduced by the pinning operation (4.4); for the assignment
o . is correlated with the neighborhood of v, in G. To begin, let o be the event that no constraint node of G is
connected by two edges with the variable nodes v,,_y+1,..., V; and that all cavities have degree precisely d — 1.
Then (4.3) guarantees that

PGe]=1-0w?/n)=1-0(n"""?). (4.18)
Further, given «f the total number of cavities of G/, is equal to d(k — 1)w, and thus
Pl€lzw/2|)=1-0™"). (4.19)

Let &' be the event that «f occurs, that |€| = w/2 and that the weight functions of all constraints adjacent to v
take a minimum value of at least @ ~1/24%) We condition on the event «¢’, which occurs with probability 1+ O(al%
dueto (2.1), (4.18) and (4.19).
Let A1, A5 be two possible outcomes of the depth-two neighborhoods of v, in G given G',. Thus, A4, A5 specify
the weight functions of the d constraints adjacent to v, the pairing of the clones of v, to those of these constraint
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nodes, and the pairing of these d constraint nodes and the cavities €. In addition, let G’ be the random factor
graph obtained from G’, by restoring the prior to p®”. Then we can set up a coupling (I';,T') of G given G', A, <’
and of G given G', A5, .o/’ such that under T the two random factor graphs differ in no more than 2dk edges: the
coupling simply switches the pairings occurring in .47 but not in .43, and vice versa. In effect, on </’ the Boltz-
mann distributions ur,, pr, are mutually a1 -contiguous. Consequently, since the priors are amended according
to samples from these respective Boltzmann distribution, we conclude that for any two outcomes .#4;,.4; of the
second neighborhood of v* and for any possible outcome g of G,,

PG, =gl MG ' <a'P|G, =g| M,G,']. (4.20)
Combining (4.18)—(4.20), we conclude that for any possible g and for any 2w/3 < wg < 3w/2,
PG, =glo=wi]<a 'P[G; =glw=wo+1]+0('™). (4.21)

Finally, the assertion follows from (4.21) because dry(w,w + 1) = O(w~'"?) = 0(@?**°) and P [2w/3 < w < 3w/2] =
1—exp(—Qw)) =1-0(a?). O

Lemma 4.4 shows that studying the messages received by and emanating from v, is about as good as studying
the messages of a random variable node of G',. The randomness involved in the attachment process will help, but
is not yet quite sufficient to actually verify the Belief Propagation equations. Namely, we also need to make sure
that the Boltzmann distribution of the cavities is extremal in order to argue that typically the joint distribution of
the variables where the new constraints by, ..., b; are anchored factorizes. Unfortunately, we do not know a priori
that extremality holds. Indeed, while going from G to G/, renders the Boltzmann distribution ¢!/4-extremal (by
Lemma 4.1), the cavities are too few in number to conclude that their joint distribution is extremal.

Hence, we will apply a second round of pinning. But this time we will pin the cavities directly. To be precise,
recalling the random variable 0, = 8; from Lemma 3.15, let €, < € be a random subset of size 8, A €. Further,
draw a sample o from K. - The choice of €,,0 is independent of the choice of the constraints b, ..., by, and
o is independent of €,.. Now, obtain G/ from G/, by changing the prior to

per(0) x pg (o) [] Ho=o, ()} (4.22)
YEG

Thus, we pin the cavities y € 6, to the spins observed under o, which are independent of by, ..., b;.
Lemma4.5. The joint distribution pigr « of the cavities is { -symmetric with probability at least 1 — .

Proof. Since |€| = w/2 with probability 1 —exp(—Q(w)), the assertion follows immediately from Lemma 3.15 and
the construction of G,. O

Additionally, obtain G} from G, by changing the prior as per (4.22) as well, i.e.,

per(0) ox pg:(0) [] Ho=0o, ()} (4.23)
YEC

We are ready to verify the Belief Propagation equations for v, on G7.
Lemma 4.6. With probability 1 — O(a®) the random factor graph G} has the following properties:

2 reqir; UTw, = 03w, () [Mweoni\ v, et w—b; (Ty)
fe oy, (0) = T WP PG b V2 g7 ield),oeQ,
’ 2 reqor; Wi (T [Tweob;\v, Het,w—b; (Tw)

(4.24)

( ) p(U)Hj¢iZT€Qabj I{TUJr ZU}ij(T)Hweabj\m l‘lGI,w—J?j(Tw) < 70d Vie [d] X0
+ 5 p. ) — =4 : o ’
Helv—b Lyea POz X eqov; Wi, (DUT v, = X3 T Tweoj\v. Hetw—b; (Tw)

(4.25)

d
He: (o) — p(o) Hizl Y, (0) Hwe@b,—\m MG w—b; (Ow) < a7°d Vo e szw‘

Z)CeQ p(x) H?:l 2 eqori U, = X3Wp, (0 [weon; v, Het,w—b; (Tw)

(4.26)
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Proof. Lemma 4.5 shows that pgr  is {-symmetric with probability at least 1 — . Suppose it is. Then Proposi-
tion 3.11 shows that e is (B,d(k — 1))-symmetric. We may also assume that |6| = w/2, an event that occurs
with probability at least 1 — exp(—Q(w)) by the construction of G,. Additionally, due to (2.1) we may assume that

minyy, (0) 2 a forall i € [d]. 4.27)

oeQk
According to (3.2), the standard message g+ p, .., is defined as the marginal of v, in the factor graph obtained
from G} by removing bs, ..., b; and replacing the prior of v, by the uniform distribution. By construction, this

factor graph is obtained from G/, by adding the variable node v, and constraint node b; and replacing the prior of
v+ by the uniform distribution. Therefore,

Y reqon Hry, = alyy, (7) <1{Vw €0bi\vy:0oy = Tw},'uG;/'cg>

MGt by —v, (0) = (o €Q). (4.28)

Y ot W, (1) <1{Vw €Ob1\ vy 10y = rw},ycx,@

Further, the neighbors db; \ v* are chosen uniformly from € (without replacement). Because |€| = w/2 and HG! ¢
is (B, d(k — 1))-symmetric, we conclude that

Pl o — Q  Herw

wedby\v*

sﬁ1’3] >1-p3. (4.29)
TV
Combining (4.27), (4.28) and (4.29), we obtain the estimate

Y reqom Uty = 0y (D [weon \x+ M, w(Tw)
ZreQabl Yp, (7) Hweabl\v+ NG;’,w(Tw)

E

K6+ py—v+ (0) = < Y4, (4.30)

Moreover, the factor graph G} — by is obtained from G’/ by adding v, and bs,...,b;. Hence, (4.27) implies that
Het—p,¢ 18 (2/@)?*-contiguous with respect to Mg - Since gy « is ¢-symmetric, Proposition 3.11 and Lemma 3.17
vield Ao (ug+_p, ¢ He" <) < B- Because the neighborhood db, is random, Lemma 3.12 therefore yields

E Z ””G’*’,w ~ MGt w—b

weoby\vy

=0 4.31)

Combining (4.27), (4.30) and (4.31), we obtain (4.24).
The proofs of (4.25) and (4.26) are similar. Indeed, i+ ,, —p, is the marginal of v, in G} — by, which is obtained
from G by adding b», ..., by. Hence,

ZTEQ{U+)U62U+ p(a)l{rm = U} <1{Vw € 62 Vy 1Oy = Tw})ﬂG;’fg> H?IZ Wbi (T)
Kt v—b, (0) = :
% equeratn, P ) (YW € Py 100 = Tuh g e )T, Wi, (7)

Invoking the (B, d(k —1))-symmetry of pgr and (4.27), we obtain

v+ }Ud% v o)l{t =0 t-i_ AT 1" T
E /JGI,IM_,bI (o) — ZTEQ“*} 2 vy P( )1 7 d} Hl—Z 1//hl( )Hw€62v+ ,UG*'W( w) < ‘61/4_
2 equavazes PO ) I W, (0 Myeszo, Ber,w(Tw)
Moreover, reordering the sums and products, we simplify the last expression and find
P(U) Hd: Z db; 1{r .= O'}’l[/bi (T)H ob;\v, MG, (Tw)
E|tiG2 0,1y (0) - e i md Y SN CE )
ZXEQ p() Hi:2 Zregabi Hry, = xlyy, (1) Hweabi\m :uG’*’,w(Tw)

Further, (4.27) ensures that for each i € [d] the distribution K6t —b; ¢ is (2/ a)dk-contiguous with respect to G.
Consequently, since the neighbors of b; are chosen randomly from the set € of cavities, Proposition 3.11 and
Lemma 3.17 yield

d

Y E

i=2

> ”IJG;’,W — K6t w—b; “ = 0(p). (4.33)

weob;\vy v

Combining (4.32) and (4.33), we obtain (4.25).
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Movingon to (4.26), we consider o € (2{1’+}‘J‘32 V" Since G} isobtained from G’ by adding v, along with by, ..., by,
we have the exact formula

p(©) <1{Vw€ Pvtioy= Uw,[JGr*r>H?:1wbi ()

p:(0) = (@eQ" "),

2yeaP(Y) <H?:1 2 eqov Htyr = YWy, (D) [weop v+ HOw = Tw}»,UG;’>

Since 0?v™" is a random set of cavities, the (8, d(k — 1))-symmetry of Uer and (4.27) ensure that

p0) [yeor v+ He' (0 T Wy, (0)
E|pg: (0) - e e el <B4, (4.34)
2yea PO T2, X eqon; HTor = X3Wp, (0 [weon\ v+ B, w(Tw)
Finally, to complete the proof we combine (4.33) and (4.34). |

We set up the random factor graph G so as to facilitate the verification of the BP equations. But in a sense the
model is a bit ‘out of whack’ because the prior is pinned according to a configuration ¢, drawn from g rather
than ug;; see (4.23). Thus, with 8, = 8; and €, < € as before, draw o, ; from pg- and let G!* be the random
factor graph obtained from G by changing the prior to

P+ (@) o pg, (0) [] Ho=0o. (w)

weeé

Hence, o ., takes v,, by,..., b, into account.
Corollary 4.7. With probability 1 — O(a®®) the bounds (4.24)-(4.26) hold with G} replaced by G} ™.

Proof. The only difference between G * and G lies in the choice of the configuration to which the variable nodes
in €, get pinned. But since G/ is obtained from G’/ by the mere addition of d constraint nodes by, ..., by, (2.1)
shows that o, is a~!-contiguous with respect to the distribution of ¢, with probability 1 — O(a®?). Thus, the
assertion follows from Lemma 4.6. O

We are finally ready to go back to the random factor graph G/. Indeed, basically the only difference between
G:* and G is that the former has one more variable node, along with d adjacent constraint nodes. But since the
number of variable nodes of G is random, this difference should hardly be noticeable. Also G’ is invariant under
permutations of its variable nodes. Thus, whatever we can prove for the last variable node v, of GI* carries over
to a random variable node of G,. The following corollary makes this precise.

Corollary 4.8. With probability 1 — O(a’®) we have

Y cqov Uty = oty ()1 b (Tw)

Y XY (ke p0) - T Yo by Gt b Tl _ | eod g g5
VeV, bedv geQ 2 reqor Wb [weonvv e, w—bTw)
()11 > reqia Hry =0ty (D[] 7 w—aTw)

Z Z Z NG’*’,qu(U) _ p aedv\b 27eQd v Va weda\v L6 ,w—a\Tw S 4.36)

veV, bedvoeQ Z){EQ P Haconb Xreqoa Ty = X3 a(®) [Twesarv M6 w—a(Tw)
Z Z g (@) — p0) [ 1acov¥alo) Hweaa\vﬂGZ,WAa(Uw) < na®d (4.37)

VeV geqrud®x * Z)(EQ P [acow ZTEQM Uty = Y}va@ Hwesarv NG;’,wﬁu(Tw)

Proof. Consider the event & that in G, for the variable node v, with the largest index the estimate

)IDY

beOVy— OEQ

Y reqir UT(Vn-o) = 039 p (1) [Tweonv,_p H6!, w—p(T(W))

69
<a (4.38)
ZTEQan Y (@) Iwesn Un—o NGZ,w—»b(TW)

HG! b—vy_ (0)—

holds. Since G} * is obtained from G} by the same process that produces G, from G/,, Lemma 4.4 and Corollary 4.7
show that P [G’*’ €& ] =1-0(a"). But since the distribution of G/ is invariant under permutations of the n— O(w)
variable nodes of degree d, we can replace v;,_ in (4.38) by a random variable node of degree d. Thus, we obtain
(4.35). The two bounds (4.36) and (4.37) follow analogously. (]

To complete the proof of Proposition 4.2, we finally need to get from G’/ back to G',. Thus, we need to undo the
additional pinning of the cavities that was required to verify the BP equations (4.35)-(4.37). The elegant insight
that makes this possible is that (4.35)-(4.37) really just describe a property of the joint distribution of the second
neighborhoods of the variable nodes v;, i # n — w. Indeed, by Lemma 4.3 the standard messages, defined via the
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removal of a few constraints adjacent to a single variable node v, can be expressed easily in terms of the joint
distribution of the second neighborhood of v. Furthermore, Lemma 4.1 implies that the enhanced measure fig

describing the second neighborhood distributions is ¢ }/4-extremal, with ¢ is near the top of the pecking order (4.3).
In effect, fig is impervious to the additional pinning required to go from G, to G'|. Let us formalize this argument
to finish the proof of Proposition 4.2.

Proof of Proposition 4.2. By Lemma 4.1 the measure i+ is ¢!/4-extremal with probability 1 —w~!. Consequently,
since G/, is obtained by deleting O(w) constraints, Lemma 3.17 and (2.1) ensure that i is 9-extremal with prob-
ability 1 - 0. Furthermore, gy is nothing but the conditional distribution fig given the event S, that the spins
of the 6 cavities €, coincide with the ones of the reference configuration o ... Since o is drawn from fi¢ , with
probability at least 1 — { we have

ﬂ(;; (S4)= Cq_el-
If so, and if fig is 9-extremal, then (4.3) and Corollary 3.18 imply that Ao (dgr, fig;) < f. In summary,

P [AD (B fig) = ,3] =1-20.
In addition (2.1) ensures that with probability at least 1 — a'°,

< nat0%04, (4.39)

{aeF(G;) :miny,(0) < a}
oeQk

Further, by Corollary 4.8 the bounds (4.35)-(4.37) hold with probability 1 — O(a ).
Thus, we are left to prove statements (i) and (ii) under the assumption that Ao(figr, A, ) < f and that (4.35)—
(4.37) and (4.39) hold. Applying Lemma 3.12, we obtain

Z HIUG’*’,U —Hae,,v

< 0(p). (4.40)
veV ™

Further, Lemma 4.3 shows that the messages pg" y—.4) H6!,a—v @04 U@ y—a» K@, a—p Can be expressed in terms
of the marginal distributions ﬂG;/'U and ﬂGI* p of the depth-two neighborhood. Indeed, according to (3.1)-(3.2), for
anyaedvandoeQ,

(1o, =0} 1ya(@), figr,y) (1iy =0}/ (p(@) Tpcana V@), g, )
N ’ ﬂGZ,a—»v(g) =
(Uva©) gy

and analogously for G,. Hence, the total variation bound (4.40) and (4.39) imply that

Z Z HI’LG'*/,V—'G ~HG.,v—a

veV aedv

Combining (4.37) and (4.39)-(4.41), we obtain assertion (ii). Further, (4.35), (4.39) and (4.41) readily yield

#G’l,v—»a(a) =

)

(1(p@ ) Tpeana b @), figr,, )

= 0(na%%), (4.41)

+H o = Ua
v /“LG*,a v /JG*,a Uy

Y reqon HT(0) = oty (M) [weo 1 w—b (T (W)
Z Z Z e ,b_q/(o')_ TEQ L4 we b\U/JG*,w b SO(H(XGOd). (4.42)
veVbedvoe| 2 reqor V(0 [weon\v K, w—b(T(W))
Moreover, combining (4.36), (4.39), (4.40) and (4.42), we obtain
(@) [acon\b b6 ,a—v(0)
Y5 Y ug @) - PO ach\b Bl ao < 0(na™?) (4.43)
VeV bedv oeQ * Z)Ceﬂ P [aconn ﬂG;,aﬁv(X)
Finally, (4.42) and (4.43) show that the standard messages are a O(a*°?)-BP fixed point. (|

5. THE FREE ENERGY: UPPER BOUND
5.1. Outline. In this section we derive the following upper bound on the free energy.
Proposition 5.1. Assume that POS is satisfied. Then
1 1
limsup —E [log Z(G)] < inf %(n), limsup —E[log Z(G)| < inf %AB(n).
n—oo N neED* n—oo N neD*
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The proof of Proposition 5.1 consists of two parts. First, we will prove that any u € % yields an upper bound on
E[log Z(G)]. Specifically, recalling the notation from Section 3.1, let

n
B (1) =[Elog<®‘l’i,ﬂ>, A" (W :[Elog< ) 1»”l,i'”>'

i=1 1<i<(k-1)dnlk
Then we have the following generic upper bound, which may be of interest in its own right.

Proposition 5.2. Assume thatPOS is satisfied. ThenE [log Z(G)] < o(n) + %' (w) — B" (W) forany pe X .

The proof of Proposition 5.2, based on the interpolation method, is relatively standard, although the fact that we
deal with regular graphs requires a bit of care. The details are carried out in Section 5.2. This is the only place where
condition POS is required.

The second step toward the proof of Proposition 5.1 is to show that for ¢ drawn from 7 € ®* the upper bound
from Proposition 5.2 boils down to the expression 28(x).

Proposition 5.3. For any € ©* we have %(n) = E[B'(u™) — B" (u™)].
We prove Proposition 5.3 in Section 5.3.

Proof of Proposition 5.1. The first assertion is immediate from Propositions 5.2 and 5.3. To obtain the second asser-
tion, we apply Azuma’s inequality and (2.1) to see that n~%5! [log Z(G) — Elog Z(G)| converges to zero in probability.
Hence, Fact 2.2 and Bayes’ rule show that Elog Z(G) = Elog Z(G) + o(n), and thus the second assertion follows from
the first. ]

5.2. Proof of Proposition 5.2. We construct a family of random factor graph models parametrized by ¢ € [0, 1]. The
free energy of the model at ¢ = 1 will be easy to compute, and we will see that it is (nearly) equal to %' (u) — B" ().
The model with ¢ = 0 essentially coincides with G. Furthermore, we will show that the derivative of the free energy
is non-negative for all ¢, thus obtaining the desired upper bound on Elog Z(G).

To construct this interpolating family, fix 4 € £ and a small € > 0. For ¢ € [0, 1] let

m;=Po((1-t)exp(—g)dn/k),
m/, = Po(texp(—¢€)dn),
m/ =Po((1- 1) (k-1 exp(—e)dn/k),
all three mutually independent and independent of everything else. Given km; + m/, < dn, we define the random

factor graph G; as follows.

INT1: the set of variable nodes is 7 = {s} U V};, and the set of spins is Z = QuU [0, 1].
INT2: the set of constraint nodes is

! ! ' "
gt:{“1’---’“mna1’---»“m't’“1’-'-’“,"';}-

INT3: each constraint node a; independently chooses a weight function ¢, from P, and the a; are joined to
the variable nodes vy, ..., v, by arandom pairing of V,, x [d] and {ay, ..., am,} * [k].

INT4: each of the constraint nodes a, i € [m}], is adjacent to the variable node s and one further variable
node from vy, ..., vy; the links between the a; and the v; are constructed by choosing a random pairing
between the h'-clone of each a;. and the clones in V}, x [d] that are not paired to a constraint node aj,. The
weight function associated with a; reads

Vg (s0)= ) Ury =oty;@) [] pow @n)
' reQt h#h, "

INT5: the constraint nodes a, i € [m}], are unary, adjacent to s only. Their weight functions read

k
wa;/(s) = Z w’l’(‘[) l_[ /“Ls,x;’h(Th)-
h=1 ’

1€Qk

INT6: the prior p is a product measure

n
dp(o) =los€[0,1,V1i<i<n:o, cQ[]p(oy)dos
i=1
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thus, for each v; € V}, a spin from Q is chosen independently from p, and o is uniform on [0, 1].
Thus, the total weight, partition function and Boltzmann distribution of G, read

my m; m]
v, 0)=[]va ) 1‘[ wa; (0) H wa;f ), (05€10,1], 0y, €Q),
n i .
Z(Gy) = Z wG,(a)das H pox), dpg, (0) = 1”G;W)dqo(a). (5.1)
Oy reeos n€Q Z(Gy)

The following lemma establishes the monotonicity of the free energy in ¢; its proof is the only place where we use
condition POS.

Lemma 5.4. Suppose that POS is satisfied. Then uniformly for all t € (0,1) we have

10
EE[E[logZ(GI)] =o(D).

Proof. We recall the derivative of the Poisson density: forany 1 >0, £ =1,

iI]J’[Po(/l) l]= i)L—[e (- = A ex (—A)—/l—[ex (-A)=P[Po(1) =¢—-1]-P[Po(1) = 1] (5.2)
oA o o P -1 P o P - - ‘
The variable ¢ affects the distribution of G; by way of the variables m;, m);, m’/. Specifically, let
Ae =01 -1 exp(—-e)dn/k, A, = rexp(—€)dn, A =1 -0 (k—-1)exp(-e)dn/k.

Recall that m,, m) are conditional Poisson variables Po(1;) and Po(1)), respectively, given that km; + m) < dn.
Since € > 0 is independent of n, (5.2) shows that for any two integers m;, m’t >1,
10

10
—5.7 [m;=m;, m},=m}] =exp(-Q(n)) + —5.F [Po(Ay) = my P [Po(A}) = m)]

10
=exp(=Q(m) + — =P [Po(Ay) = my] P [Po(A}) = m}]
=exp(-Q(n) + P [Po(As) = my] =P [Po(A;) = m, — 1)) P [Po(A}) = m}] exp(—e)d/k
+(P[Po(A)) = m;—1] =P [Po(A}) = m}])-P[Po(A,) = m] exp(—€)d. (5.3)

Further, given the event km; + m < dn — k let G, be the random factor graph obtained from G; by adding one
more constraint node a,,,+1 as per INT3. Slmllarly, given km; + m// < dn—1 obtain G from G, by adding ) +1
according to INT4. Additionally, obtain G|’ from G, by adding a unary a,,,, as described in INT5. Since m; is

independent of m/, m”, (5.2) and (5.3) yield
m; my 1 a m; my
EllogZ(G)||m),|=|m,|| - —=P||m, |=|m,
" " not " 1
m; m; m; m;

10
— =, El0gZ(G)] = exp (-Q(n) + >

mg,m,m{ =1
(+m<dn—k

=exp(—Q(n)) —exp(—¢) — [[Elog (G ) — kElog Z(G,[l) + (k—1)Elog Z(Glt") (5.4)
Z(Gy) Z(Gy) Z(Gy)
Hence, it suffices to prove that forall0< < 1,
E [log Z(G)) —kE [log Z(G; +(k-DE [log Z(G/) (5.5)
Z(Gy) Z(Gy) Z(Gy)
By the definition of the Boltzmann distribution (5.1),
L(;’t) _ Z(G") ’ Z(G”’)
ZG) <Wam,+1’I~LGt>r 76y <w“m;+1"ucf>’ ZGh <1//a p 1"“Gf>
Hence,
! ¢
log 72ty =108 (Vo) == X 7 Y (1 Vaprtic,) (5.6
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Further, in terms of the kernel representation fig, of the Boltzmann distribution we obtain

¢
¢
E| (1= Yam.obiG,) | = (1 - Y w0 H - )dz) : (5.7)
oeQk
Combining (5.6) and (5.7) yields
¢
Z(G') 1
E|lo =-E 1- (o) (op)dz]| |. (5.8)
[ gZ(G[) [Z>1£( U%kw o H,uGlzx, )
Due to (2.1) and Fubini’s theorem, we can exchange the sum and the expectation in (5.8); indeed, (2.1) yields
Y E (1 - ) ylo) ]‘[pc, 2% (a,)dz) <) E|max|l- w(0)|° | <oo.
r>1 oeQk 0 (=1 loeak
Thus, (5.8) becomes
¢
Z(G})
E|log Z [E 1- ) w(o) H,uGtle (opdz]| |. (5.9)
Z(Gt) [>1 geQk 0
Following similar steps, we obtain expansions for the other two terms from (5.5) as well:
¢
Z(G)) 1 & 1
[1 og——~|=-22 > JE||1- X v ,UG,th(Uh)HHzx,((Tl)dZ , (5.10)
Z(Gy) kiziim ¢ seak i#h
¢
Z(G/I/)
log—— Z Lel|1- Y wo) ]‘[ple(a )dz| |. (5.11)
Z(Gt) [>1 UEQk 0
Finally, the assertion follows from POS and (5.5), (5.9), (5.10) and (5.11). O
Proof of Proposition 5.2. Integrating ¢ from 0 to 1 and applying Lemma 5.4, we obtain for any € > 0,
Ellog Z(Gy)] < E[log Z(G1)] + o(n). (5.12)
Letting
1my
= log l_[ Z 1[1 (o) H K 7 (op)dz,
i=1geQk h=1
we claim that for a certain number ¢ = ¢(P) >0,
Elog Z(G) +E[Y] <Elog Z(G,) + ecn. (5.13)

Indeed, at ¢ = 0 the variable node s is adjacent to the constraint nodes a?, i € [m{], only. Hence, Go decomposes
into connected components, one of which comprises s and the a}. Let G be this component, and let G;, be the
remainder of Gy. Then by construction we have Elog Z (G(’)’ ) =E[Y]. Thus, (5.12) yields

Ellog Z(G})] +E[Y] = E[log Z(Go)] < E[log Z(Gy)] + o(n). (5.14)

Furthermore, G() consists of the variable nodes v1,..., v, and the constraint nodes ay, ..., am,,, where m; is a Pois-
son variable Po(exp(—¢)dn/k) conditioned on taking a value of at most dn/k. Thus, we can construct a random
factor graph with the same distribution as G from G, by simply adding dn/k—m;, further random k-ary constraint
nodes as per INT3. Since all weight functions y € ¥ take values in (0, 2), we obtain ¢ = ¢(P) > 0 such that

Elog Z(G) <Elog Z(Gy) + ecn. (5.15)

Combining (5.14) and (5.15), we obtain (5.13).
We further claim that there is a constant ¢’ = ¢/(P) > 0 such that

%[E[Y] <ecd +o(1)+B" (). (5.16)

Indeed, 28" (1) = E[Y | my = (k—1)dn/k]. In other words, we can think of %”(u) as the free energy of G given

that my = (k—1)dn/k. Thus, obtain G’ from G by addmg (k—1)dn/k— m{ more constraint nodes according to

INTS5, or by removing some random constraint nodes if my > (k—1Ddn/k. Then A" (w) =Elog Z(Gy"). Since my is a

Poisson variable with mean exp(—¢)(k — 1)dn/k, with probablhty 1—exp(—Q(n)) we do not need to add or remove
30



more than 2e(k — 1)dn constraint nodes. The tail bound (2.1) therefore implies together with the Chernoff bound
that (5.16) is satisfied for a certain ¢’ = ¢/(P).
By similar arguments, for a certain ¢” = ¢” (P) we have

%[E[logZ(Gl)] <% (w+ec” +0(). (5.17)

Indeed, %' () is nothing but the conditional expectation of log Z(G1) given that m = dn. Hence, if we pad G, by

adding the missing dn — m| constraint nodes a; according to INT4, then the total number of constraints added

does not exceed 2edn with probability 1 — exp(—Q(#n)). Hence, (5.17) follows from (2.1) and the Chernoff bound.
Finally, combining (5.12)—(5.17), we conclude that

1
—Elog Z(G) < B' (u) — B" (w) +ec” + 0o(1)
n
for a certain ¢’ = ¢"(P) > 0. Since this is true for any fixed ¢ > 0, the assertion follows. O

5.3. Proof of Proposition 5.3. Following Panchenko [55], who worked with factor graphs of Erdds-Rényi type, we
are going to use the invariance property of 7 € ©* under the * (N, M)-operation to simplify %', 8" separately.

Lemma5.5. Suppose thatnw € ©*. Then
dlk-1)n
k

Proof. Let ¢ =E [log{w,,n)] for brevity. We claim that for any integer m = 0,
og (@ w;,m)
<®;Z1 V’i’n>

Then (5.18) follows by summing (5.19) on0 < m < d(k —1)n/k.
Thus, we are left to prove (5.19). Since 7 € D*, Corollaries 3.4 and 3.9 imply that for any integer £ > 1,

m+1 X ¢ m ; !
[E[(<@i_1 WL’H>) :E[<M@u]m+l,ﬂ>
<®;’n:11”j’”>

<®ini1'/’i'”>
m l
<1”m+1’@1”i * ”>
i=1

E[%"(n")] = E [log(w,,7)]. (5.18)

E|l = . (5.19)

=E :[E[<1”m+1'”>[]:[E[<w1'7[>[]'

Consequently, for all £ = 1 we have

m+1 4
(&7 V’ir”)) =E[U‘<‘l’1r”>)!]- (5.20)

(@, v
Further, because the continuous function z € [-1, 1] — |z]| is @ uniform limit of polynomials, (5.20) yields
l
(1 B (@ Wi»”))
<®;Zl V’i’ 7[>

)

=E|(1-(w,,m))’|

Therefore, invoking (2.1), we obtain

1 (EBT?%'”))g 1 ¢ ¢
-E{(l1-———— = —-E|(1- T < E [max|1— (0)]" | <oo.
e | A (U E IR
Hence, by (5.20) and Fubini’s theorem,
l
( (’TIIV’NT) 1 <€BT{1V’;””> 1 ¢
Eflog——t—"L ==Y —E||[1- 22| (==Y —E|(1-(y,7) | =¢,
g<®ﬁ1‘”i’n> Zzlé <®;11V’i’”> IZ’zlé [( <WI >)] (p
which is (5.19). O

Lemma 5.6. Suppose thatw € ©*. ThenE[%'(u™)] = Elog{¢,, 7).
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Proof. We use a similar argument as in the proof of Lemma 5.5. This time we set ¢ = Elog(¢,, 7). It suffices to
show that for every n = 0,

<®?:+11 ‘pi’”>
<®?:1 ‘pi'ﬂ>

As in the proof of Lemma 5.5, we use that 7 € ©* and apply Corollaries 3.4 and 3.9 to obtain for any ¢ = 1,

(@ gy O 0 ‘ " ‘
=E —®¢n+1’n (pn+l’®(pi*n
(@.0pm) '

<®;l:1(pl"”> i=1
Hence, forany ¢ = 1,
¢
(1_ <ea;l:;¢i,n>)
<®?:1 ‘pi’”>

Further, approximating the absolute value by polynomials, we obtain from (5.22) that

E |log =¢. (5.21)

E =E =E[(p,m)]. 622

E =E[(1- (¢, m))]. (5.23)

¢
(@ @) ¢
d e | el
i=1 (pi,ﬂ>
Thus, (5.21) follows from (5.23) and Fubini’s theorem. O

Finally, Proposition 5.3 is immediate from Lemmas 5.5 and 5.6.

6. THE FREE ENERGY: LOWER BOUND

6.1. Outline. In this section we prove the following lower bound on the free energy that matches the upper bound
from Proposition 5.1. The lower bound does not require the assumption POS.

Proposition 6.1. We have
1 1
liminf—E [logZ(G)] = inf %B(n), liminf—E [log Z(G)] = inf %B(n).
n—oo n neD* n—oo n neED*

Theorem 2.7 follows immediately from Propositions 5.1 and 6.1.

The proof of Proposition 6.1 is based on a kind of coupling argument that is colloquially referred to as the
‘Aizenman-Sims-Starr’ scheme. This technique has been applied with great success to random factor graphs of
Erddés-Rényi type, where the degree distribution is approximately Poisson [24, 16, 55]. The basic idea is to couple a
random factor graph with »n variable nodes with a random factor graph with n + 1 variable nodes and to calculate
the difference of their free energies very precisely. This coupling is very easy to set up in the Erdds-Rényi case due
to the Stein-Chen property of the Poisson distribution.

However, in the case of random regular graphs matters are more intricate. Due to the rigid local structure there
is no obvious way of coupling random regular factor graphs with n and n + 1 variable nodes. As in Section 4, we
therefore resort to the idea of creating a bit of wiggling room by carving out a few cavities, in such a way that the
free energy does not change significantly. But the details of the construction are delicate.

Let n,w be integers and let X,Y be two independent Poisson variables with mean w. The protagonist of the
proof is the random factor graph G, ,, defined as follows. Let

Nyo=kv(n-X) andlet Apu=Be(dNyo/k—dNpo/k))
be independent of Y. Further, set
My =dV (ldNyw/k] A (LldNpw! k) + Ao —dX —Y)).

Then G, has N, , variable nodes v;, i € [N, 4], and M, constraint nodes a;, i € [M,,,,]. The weight functions
¥4, are chosen independently from P. Furthermore, the variable and constraint nodes are linked through a ran-
dom (one-to-one) pairing
FMn,w X [k] - VNn,w X [d]
Since kM, ,, < dN,,, by construction, such a pairing exists, but some variable clones may go unpaired. We are
going to harness these unpaired ‘cavities’ to set up a coupling of G, and G,+1 .
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To this end, consider a further random factor graph Gn_w with N, ., variable nodes and M, now = Mn+1,0 —d con-
straint nodes. The weight functions are chosen independently from P, and the connections between the constraint
and variable nodes are induced by a random pairing

Fy, 1kl — Vy,, x [d].

Rather than coupling G, and G, , directly, we will couple G, and @n,w aswell as G,41,, and G’n,w.

This construction leads to an approximate formula for the free energy of G, that comes in terms of the kernel
representation of the Boltzmann distribution of Gn,w. To be precise, let % be the set of variables vi € Vn,,,, with at
least one unpaired clone in G nw- Consider the random kernel

Pno =g, € R

representing the joint distribution of the cavities %. Further, let # no €D be the distribution of p,, . To deal with
the conditioning on the event ., we also introduce versions G, 4, G, of the above random factor graphs condi-
tionalon.%. Let pn0 = fig, ¢ € R be the kernel representation of the corresponding Boltzmann distribution, and
let 7, € © be the law of p, . In Section 6.2 we will derive the following formula.

Proposition 6.2. For any € > 0 there exists w > 0 such that

o Z(Gp+1,0) . .

liminf £ log% -E log(tpppn,w>—log< D Wl,i’pn,w> = —¢,
e Mip,o<i<Mp,,

o Z(Gn+1,0) _ -

liminf £ logm -E log<(p1,pn,w>—log<M g%M Wl,i’Pn,w> >—¢.

There are still two gaps to fill toward the proof of Proposition 6.1. First, the estimate of the free energy provided
by Proposition 6.2 does not quite match the functional 8(7t,, ). Second, the distribution 7, , € © does not gen-
erally belong to the subspace ©*. The following proposition deals with the second issue, which holds the key to
resolving the first. Recall that the topology of © is induced by the Wasserstein metric 2n(-, -). We introduce a
relaxed version of ©* by letting

@;N,Mz {ne@:@g(ﬂ,n*(”‘“’)) <eforallu<Nand w=< M}.

Since (2.1) and Lemma 3.6 show that the map 7 — a*W) ig continuous, @: N isa closed subspace of the com-
pact Polish space ©.

Proposition 6.3. Forany e, L > 0 there is wg > 0 such that for every w > w for large enough n we have
Fonw finw€D% ) ;-

The proof of Proposition 6.3 can be found in Section 6.3. Finally, in Section 6.4 we derive Proposition 6.1 from
Propositions 6.2 and 6.3.

6.2. Proof of Proposition 6.2. We assume throughout that w > wy for a big enough wy = wy(d, P) and that 7 suffi-
ciently large.

Obtain the random factor graph G,n,w from (A;n,m by adding M,, - M n,0 New random constraint nodes a;, M, o <
i < M,,, whose weight functions are drawn from P independently and that are linked with the variable nodes via a
random pairing with the cavities € of Gn,w.

Further, if an_w < dNp,—d(k—1), then obtain G’,;,w from Gn,w by adding one new variable node ¥ = vy, ,+1
along with d random constraint nodes &, ..., 44 adjacent to ¥ whose weight functions are drawn independently
from P. To be precise, the clones of ¥ are paired each with a uniformly random clone iz,- of a;fori=1,...,d, and the
remaining d(k — 1) clones of the d; are paired with randomly chosen cavities of Cn,w. If an,w >dNy,—dk-1),
then obtain G}, , from G, by just adding a new isolated variable node 7.

Obtain G, ,,, G}, , analogously from Gn,» while conditioning on the event that the outcome is simple. If it is
impossible to add the required number of constraint nodes in such a way that the resulting factor graph is simple,
then do not add any.
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Lemma 6.4. Forw >0 we have
|Elog Z(G ) —Elog Z(G), ,)| = o(1), |[Elog Z(Gps1,0) ~Elog Z(G), )| = 0, (1),
|Elog Z(Gp,w) —Elog Z(G), ,))| = 0w (1), |Elog Z(Gp+1,0) —Elog Z(G), )| = 00 (1). (6.1)
Proof. Sinced=3and k=2,
Mpw—ldNyolkl <dNyylk+1+dlk—d—|dNy,/kl<2-d(1—-1/k) < 1/2.
Because the left-hand side is an integer, we conclude that M, now < ldNny/ k). Similarly,
My = (ldNpw/ k] +Apy—dX-Y)<2-d(1-1/k) <1/2.

Thus, M,,, = ]\A/[n,w. Hence, G, and G’ are identically distributed.
Moving on to the second claim, we consider the event </ that the last variable node is adjacent to precisely d
distinct constraint nodes. Then

P[Gni1,0 €| =1-0w/n), (6.2)

while G, , € o with certainty. Given </ and given that X + Y < \/n, say, the subgraph G141, Obtained from G414,
by deleting # along with its adjacent constraint nodes is distributed precisely as G, and therefore G}, , and
G+1,0 can be coupled identically. Hence,

EllogZ(G, ) | X+Y <Vn] =E[l0g Z(Gpi1,0) | &, X+ Y < Vn]. (6.3)

If, on the other hand, X + Y < v/n but & does not occur, then we can couple G,41, and G’,;Yw such that both
disagree on at most 2d constraint nodes. Indeed, suppose that vy,,,, , has d < d adjacent constraints in Gy.1,4.
Then the subgraph obtained by removing vy, ., ,, its d neighbors and another d — d random constraint nodes is
distributed precisely as Gn,w. Hence, we can obtain both G;,+1,, and G’,;,w from Gn,w by adding d (possibly distinct)
constraint nodes. Thus, (2.1) ensures that

E[logZ(G,) | X+Y <Vn]=E [logZ(GnH,w) |of, X+Y < \/ﬁ] +0(1). (6.4)
Furthermore, (2.1) ensures that
E[logZ(G} ) | X,Y],E[logZ(Gpi1,0) | X, Y] = O(n). (6.5)

Since P [X +Y > /n| = 0(n™?), (6.2)-(6.5) yield the second assertion.

Matters get slightly more complicated once we condition on .%. Since X + Y < log n with probability 1 - O(n~%),
due to (2.1) the event X + Y >logn contributes no more than an additive o(1) to the difference of the free energies.
Hence, we may condition on X + Y <logn. Let d’ be the vector comprising the variable degrees in G,,,,. Let 2 be
the set of all such sequences with entries either d or d — 1. A standard moment calculation shows that given any
possible d’, the event G, € .# has probability (1 + o(1)) exp [-(d-1)(k-1)/2-1{k =2}(d — 1)*/4] (cf. Fact 2.2).
Therefore, with O(-) hiding poly-logarithmic terms,

Pld' €2|X+Y <logn]=1-0(1/n). (6.6)

Similarly, let d comprise the variable degrees of the factor graph G, , obtained from G, by deleting the last d
constraint nodes. Then

Plde2|X+Y <logn]=1-0(1/n). (6.7)

Additionally, let & be the set of all factor graphs that have a constraint node that is adjacent to variable nodes of
degree less than d only. Then

P[Gua€&|X+Y <logn|,P[G,,c&|X+Y <logn] =0(n'"). (6.8)

Further, on the event 2 \ & we can couple G}, ,, and G, ,, identically, because there is no way of adding the missing
constraint nodes to G, ,, without obtaining a simple factor graph. Hence,

E[logZ(Gpw) | d€D, 6, , 28 X+Y <logn] =E [logZ(G;,w) lde®,Gp,g& X+Y <logn|. (6.9)
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But (6.9) does not yet suffice to prove (6.1) because outside the event 2 \ & the free energies of the two factor
graphs may differ by Q(n). Hence, we also need to consider the event 2’ that d has a single d —2 entry; this suffices
because

P[dg@u@’|X+Yslogn],uﬂ>[d¢@u@’|x+Yslogn =1-0(n™?) (6.10)

and thus the contribution of the complement of 2U2’ to the free energy difference is o(1) due to (2.1). Considering
the event @' is indeed necessary because Pld € 2' | X+ Y <logn] >P[d € 2' | X + Y <logn]. Indeed, while G,,,
is just a uniformly random simple factor graph with N, , variable and M,,, constraint nodes, G}, has a tilted
distribution, with each possible simple graph being weighed according to the number of extensions into a simple
graph with M, , constraints. In effect, since variable nodes of degree less than d —1 leave us with fewer extensions,
the event 2’ is less likely in G,, ,,. Yet because My, — M, is bounded, on the event 2’ we can couple G, and
G}, ,, such that both differ only in a bounded number of constraint nodes. As a consequence,

E[logZ(Gne) |d€ D, G, ¢8| X+Y <logn] =E [logZ(G/n,w) 1 deD, Gpowd 8| X+Y < 1ogn] +0(1). (6.11)

Additionally, we claim that also G, , given d € 2 and G, , given d € 2’ canbe coupled such that with probability
1— O(1/n) both differ only in O(1) constraint nodes and that, in effect,

E[108Z(Gn) | d€D, Gy, 6, X+ Y <logn] =E[log Z(G),,) | d € D', Gy #8,1 X+ Y <logn| + O().  (6.12)

To see this, let uy,..., us be the variables nodes of degree less than d in G}, ,; suppose, indeed, that all of them
have degree d — 1. Similarly, let u},...,u,_, be the cavities of G0, all of degree d — 1 except for u,_,, which has
degree d — 2. Pick a further variable node u’[ of degree d randomly. Then with probability 1 — O(n~!) the second
neighborhoods 6{uy, ..., ug}, 62{u’1 -, Uy} both have size £(k—1)(d - 1). Consequently, the subgraphs of G,, ,, and
Gy, obtained by removing uy,..., u, and up,..., u’é along with their neighbors, respectively, can be coupled such
that both coincide with probability 1—-O(1/n). Thus, G, ,, and G}, ,, can be coupled such that the expected number
of constraint nodes on which the two factor graphs differ is 0(1), whence we obtain (6.12).
To deal with the event &, we may assume that k = 2 due to (6.6). Furthermore, because of (6.8) and as

Pld' ¢2|Gpye&, | X+Y <logn] =0(/n), Pd¢2|6G,,€8,|X+Y <logn]=0(1/n), (6.13)

we may assume that d,d’ € 9. Since
P[Ghoeéld €2,X+Y <logn|=P[G,,c&|dec2,X+Y <logn] (6.14)
because the event & precludes certain extensions into a simple factor graph with M, ,, constraints, we just need
to consider the case that G, ,, € & and G ¢ & given thatd,d' € 9. Let uy, ..., up and uj,..., u;, be the cavities of
G, and G0, respectively. Pick one further constraint node b of G, ,. Then with probability 1 — O(1/n) the set
2{uy, ..., up} has size ¢(d — 1), and all variable nodes in this set have pairwise distance at least four. The same is
true of the set Oz{u’l, s u’[} U 0b with probability 1 — O@1/n). If these two events occur, then Guw and G,y can be

coupled such that they only differ on the O(1) constraint nodes that are adjacent to uy,..., uy and u’l, s u’[ and b.
Hence, we obtain a coupling such that G, ,, and G,, . only differ on O(1/n) variable nodes in expectation, and thus

E[logZ(G),,)|d €2,6,,€8,X+Y <logn| =E[logZ(Gpw) | d€D,G;,,¢8 X+Y <logn]+0(1).  (6.15)

Moreover, because given & there is precisely one constraint involving variables of degree d — 1 only with probability
1-0(1/n), we obtain

E[logZ(G},,) |d' €D,Gpue 8 X+Y <logn] =E[logZ(Gyw) |d€D,G;, , €8, X+Y <logn]+0(1). (6.16)

Combining (6.15)—(6.16), we obtain the left bound stated in (6.1).

We proceed similarly to derive the right bound in (6.1). Indeed, in this case we do not need to consider the event
& separately, because all additional constraint nodes are connected with a variable node that does not belong to
G, or Gy, ,, respectively. Hence, on the event 2 we can couple Gy, and Gy,11,, identically, and thus

n,w’
E[logZ(Gni1,0) |d€D,X+Y <logn| =E[log Z(G}, ) |d' € 2,X+Y <logn|. (6.17)

In effect, due to (6.10) we just need to construct a coupling in the event that Gn,w € 2' and G;'w € 2. To this end,
we proceed as above by coupling G, ,, G}, given the second neighborhoods of the cavities such that both only
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differ in an expected O(1/n) constraint nodes. Since P [d' € 2’ | X+ Y <logn|,P[d€ 2’| X +Y <logn| = O(1/n)
andP[de?'|X+Y <logn|=P[d €2'| X+Y <logn], the second part of (6.1) follows from (6.17). O

We are ready to compare the free energies of Z(G"), Z(G) and Z(G'), Z(G) and of the corresponding simple
graphs. We will carry the proofs out for the case of the simple random factor graph G; the other case is simply
obtained by skipping any deliberations pertinent to the event .%.

Lemma 6.5. We have

Z(Gy,)

Z(G) )
log— -
Z(G

$2@

=E[log{@1, Pnw)] + 00(1), E|lo =E[log{@1, fnw)] + 00).

n,w n,w

Proof. Let < be the event that G, ., has at least w/2 cavities, that all variable nodes have degree either d or d—1 and
that no two variable nodes of degree d —1 are adjacent to the same constraint node. Then P [«/] = 1 —exp(—Q, (w)).
Hence, (2.1) ensures that

Ellog(Z(G}, ,)! Z(Gnw))] = Eog(Z(G), )/ Z (G )t ] + 04 (1). (6.18)

Moreover, on « the random factor graph G}, , is obtained from G, ,, by adding one variable node # along with d
constraint nodes dy, ..., 44, whose weight functions are drawn from P independently. Further, on the event «f all
neighbors of the d; except ¥ belong to the set € of cavities. Therefore, we have the exact formula

ZGh.,)
ZGnw)

d
Z p()()l_[ Z Vo, MUtz =y, Vyeé&i\fc:o'y:‘ry},uﬁnwy(g>. (6.19)
EQ i=17eQd ’

To proceed, let (v; j);,; be a sequence of uniformly and independently chosen cavities v; ; € %. We claim that on
the event <,

Z(Gh ) |
log e ‘an]

nw

=0yp(1)+E

d

log< Y r Il X w,@lwp, =y, Yhelkl\h;:0,,, = rh},p@,m(g> )Gn,w‘ ) (6.20)
xXeQ i=l7eQk

Indeed, the only difference between (6.19) and (6.20) is that in the former the neighbours 04, \ ¥ are chosen from

% without replacement, whereas the v; j are chosen independently, i.e., with replacement. But since we choose a

mere dk cavities (v;,j)je[a), je(k] Out of a total of at least w/2, the probability of hitting the same cavity twice is 0, (1),

and thus (6.20) follows from (2.1). Further, unravelling the definitions of p,,,, and ¢;, we see that

d
E 10g< Z p(x) H Z v (@), =y, Vhelkl\h; 0y, = Th}"“an,%> ’Gn,w
XEQ i=17eQk ’
=E[log(@y, hnw) | Gnol- 6.21)
Finally, the assertion follows from (6.18)-(6.21) by taking the expectation on G, ,,. ([

Lemma 6.6. We have

Z(G, )
:[E<log ) 1/’1,wﬁn,w>+0w(1)» [E[logZ(Gn'w)

Mp,w<isMp, n,w

!
n,w)

lo =
gZ(G

=[E<log . Wl,irﬁn,w>+0w(l)-

nw My <i<Mp

Proof. The proof is similar in spirit to the previous one. Once more we consider the event < that G, , has at least
/2 cavities, that all variable nodes have degree either d or d — 1 and that no two variable nodes of degree d — 1 are
adjacent to a common constraint node. Then P [«/] = 1 — exp(—Q, (w)) and

Ellog(Z(G}, )/ Z(Gpw))] = Ellog(Z(G) )/ Z(Gp )] + 0, (1). (6.22)
Moreover, we have the pointwise exact formula
Z(G), )
ZCne) <M,Z,M££MW ,Eaa,. Va2, = ”’“Gn,m%> : (6.23)
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With (v;,;);,; a sequence of independently chosen cavities v;,; € %, we claim that on 7,

E lOg w :Ou)(l)+[E

2@, ).
( ”"”)| (6.24)

-~  _ G y
ZGp) ! "
Indeed, the only difference is that in (6.24) the v; ; are chosen independently, whereas in (6.23) the neighbors of

the a; are chosen without replacement. But since M, ., — M n,0 18 bounded while there are at least w/2 cavities, the
two terms coincide up to o, (1). Finally, the construction of g, ensures that

Mnll) an R
10g< H )3 ‘I’I(T)Hl{a,,l] Tjhtg,, >|G”"” :

i=1 TeQk

Mﬂ w Mﬂ W N Mn ] Mn @
E 10g< H Z V’(T)Hl{o'v”—fj} MG, >’Gn,w =k 10g< @ Wll,in>’an , (6.25)
TeQk
and thus the assertion follows from (6.22)—(6.25) by taking the expectation. |

Finally, Proposition 6.2 is an immediate consequence of Lemmas 6.4, 6.5 and 6.6.

6.3. Proof of Proposition 6.3. Once more we will carry the proof out for the simple random factor graph, which
is the (slightly) more intricate case; the unconditional case follows by skipping any considerations pertaining to
the conditioning. The basic idea behind the proof of Proposition 6.3 is quite simple. With probability 1 — o0, (1) the
random graph Gn,w consists of N, , variable and ]\A/In’w constraint nodes and we have N, , = n— X and

My =Mpi1,0—d=dNyy/ k|l A(ldNpw!k] +Apy—dX-Y)-d

with independent Po(w) variables X, Y. Fix two integers ¢, ¢’ = 0. Given that X = £ and kM nw<ANpy—kl'—d(k-
1)¢,let Gy, [, ¢'] be the random factor graph obtained from G,, ,, by adding
e ¢ morevariable nodes 01 = vn,, ,+1,..., ¢ = UN, o +0 along with d¢ new constraintnodes a; j, i € [£], j € [d],
each with a weight function chosen from P independently; connect a random clone f;, j of each a;,; with
arandom clone of 7; and pair the other k-1 clones of 4; ; with random cavities of G, left pending by the
previous additions.
e ¢' more constraint nodes 4,..., 4, each endowed with a weight function chosen from P independently
and each connected with k random cavities of G, ,, left vacant by the previous operations.

The resulting random factor graph G, ,, [¢,¢'] is not necessarily simple. Yet the key insight behind Proposition 6.3
is that for any ¢, ¢’ the distribution of G,, ,, [¢,¢'] is close to that of the original graph G0, provided that w is big
enough. Moreover, the perturbation of the Boltzmann distribution that ensues upon going from G, , to G, ,, [¢,0]
is close to the perturbation induced by the *(¢,¢’)-operation. We introduce similar notation Gn,w[é,é’ ] for the
random graph without the conditioning on .%#.

To formalize this idea, we first compare the distributions of G, , and G, ,, [¢,¢']. For integers x, y we denote by
G, x,y the conditional Gnogiventhat X = xand Y = y.

Lemma®.7. Forany/(,¢' =0 wehave dry (Gpw, Gnw [¢,0']) = 0, (1) and analogously dry (Gp,w, Gnw [£,€']) = 00 (1).

Proof. The event o« ={w/2< X <2w,w/2 <Y < 2w} has probability 1 — 0, (1). Further, because X, Y are indepen-
dent Poisson variables with a large mean w while ¢, ¢’ are fixed, the total variation distance of the pairs (X, Y) and
(X-2¢,Y —¢") is of order Om(a)_l/z). Hence, given «f the total variation distance of Gn,w and @n'u)'x_gly_[/ is 0, (1);
in symbols,
a1y (Gno | &, Gnowx-cy-e | ) = 00(1). (6.26)
Further, let &/’ be the event that G, , enjoys the following additional properties.
(i) The last ¢ variable nodes of Gy, satisfy [0*{Un, , —¢+1,---) UNy o} \ €| = ¢d(k - 1). Hence, there are ¢d(k - 1)
distinct second neighbors, none of which is a cavity.

(ii’) The last ¢’ constraint nodes of Gn,w satisfy ‘a{aM"w_[,H,...,

“Mn_w} \ ‘g‘ = k¢'. Hence, there are k¢’ distinct
second neighbors, none of them a cavity.
(iii’) We have 0{vn,, ,—¢+15-- UNy oI O @y, _priys--or Gy, [} = 9.
(iv’) Let
U =CU0°IUN, - r+1)---r Ny} U olayy, ,—¢rs1r--r A, -
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Then for any constraint node a ¢ 6{1}1\;"@_4“,..., UN,, U ANf, 0410+ Qg , WE have [0dan | < 1. Thus,

only the constraint nodes adjacent to the last ¢ variable nodes or the a; with i > M, — £’ may be adjacent
to more than one variable node in %.
(v’) All variable nodes u € % have degree d or d — 1.

Additionally, let «/” be the event that Gn,w, x—¢,y—¢ has the following properties.

(i”) all variable nodes have degree either d or d — 1.
(ii”) no two variable nodes of degree d — 1 are adjacent to the same constraint node.

Then
P(Gpwesd | 4] =1-0,(1), PGrowx-rcy-o € ] =1-04,(). (6.27)

Furthermore, given «/" N &/, the random factor graph G, , x_¢.y_¢[¢,¢'] obtained by attaching ¢ new variable
nodes and ¢’ new constraint nodes is distributed precisely as G, ,, given &/’ N <. Indeed, the construction of the
enhanced factor graph Gn,w, x-¢,y—¢'[€,0'] expressly ensures that (i')-(iii’) are satisfied, and (iv')—(v") follow from
(i")-(ii"). Hence, (6.27) yields

drv (Gnw | G x-0,y-' 10,011 ) = 0, (D). (6.28)

Finally, since P [«/] = 1 — 0,(1), the assertion follows from (6.26) and (6.28). O

Let €[, ¢'] be the set of cavities of Gn,w [¢,¢'] and let pn[¢,¢'] € R be the kernel representing B, 100021007
Let i [¢,¢'] € D be the distribution of P, (¢, £']. Define €[£,£'], pn,w[¢,¢'] analogously for Gnw-

Lemma 6.8. Forany{,¢' =0 we have
@D(A*([ )r”nw[[ ¢ ]):Ow(l); @D( *(eé)»”nw[ﬁ [])—Ow(l)

Proof. The event o] = {w/2 < X,Y < 2w} occurs with probability 1 — o, (1). So does the event < that all variable
nodes of Gn,w have degree either d or d — 1, and thus the same is true of «f = <) N <#,. Moreover, the construction
of @n,w [4,¢'] is such that on the event «f we have the exact formula

Z(Gnwll,0') 4
—_— = (o) (o), , where
Z(Gnw) < [o: l_Hl Va0 He,@ >

pi(0)=) py H Y Wa,; @MUt =X, VwEa;j\ D10y =Ty},
XeQ j=1 Teﬂaai,j

Consequently, the joint distribution of the cavities €1¢,¢'] of Gn,w [¢,¢'] reads
(1vue 16,010, = 0TI, i@ T, wa,(0), e, , (@)

: (@eQ®).  (6.29)
<Hf:1 9i(@)T1E, wa, (0),u@n,w,<g>

B, 10,00%10,00(0) =

Thus, with probability 1 -0, (1), namely on the event &, 5,,,[¢,¢'] is just the kernel representing the right hand
side of (6.29) We claim that in this case §,,,[¢, ¢'] and ﬁz(ﬁf ) can be coupled to coincide with probability 1 —o0,(1).

Indeed, the weight functions associated with the 4; and the &; ; are chosen from P independently, and they are

connected to the cavities of G,, , by a random pairing. By comparison, we construct n(f, ) by adjoining ¢, ..., ¢,
and v, ..., ¥, that evaluate the kernel p, , at independent uniformly random points of the unit interval. Com-
binatorially, this is equivalent to attaching the new variable and constraint nodes to random cavities chosen with
replacement, rather than without replacement as in the construction of G, ,, [£, ']. But since the number of cavities
of G is Q,, (w), the two constructions have total variation distance o, (1). J

Proof of Proposition 6.3. The proposition is immediate from Lemmas 6.7 and 6.8. (]
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6.4. Proof of Proposition 6.1. We begin with the followinglemma, whose proofis similar to the proof of Lemma 5.5.

Lemma 6.9. We have

E

10g<(01,ﬁ'n,w>_10g< @ Wl,i;ﬁn,w>] =B nw) +0u,(1),

Ny <i<Mpq

E

IOg<‘p1vﬁn,w>_10g< @ Wl,i:ﬁn,w>l = B(FEn,w) + 0y (1).

My,w<i<Mpy,y

Proof. Letnm =7, or m =7,,. Since E[M,, — Z\A/[n'a,] =d(k-1)/k+ 04(1), due to (2.1) it suffices to show that

E [log< ) 1[/”-,7[>] =04 (1) +E[Mp,, — M) -E[log(y, ,,7)]. (6.30)

Ny <i<Mp

Thus, we need to cope with the correlations between M,, ., — Mn,w and Gn,w or Gn,w, respectively. In other words,
we need to assess the correlations between M,, , — M, , and Ny, ,, M}, ,. With probability 1 —exp(—Q,, (w)) we have

Mpy—My,=W,  where W = dNpu/k] = ld(1 + Npw) k] +Apy — Apt1,w+d, (6.31)
with independent Bernoulli variables Ay, ), Ay+1,0- Thus, W < d + 1 and (2.1) ensures that

w
10g< D W1,i’”> 10g<®w1_i,ﬂ>
i=1

My,w<i<Mp,y

w
1 {|Nn,w - [E[Nn,w] | , |Mn,w - [E[Mn,w]| < \/wlogw}log<@ 1[/“.,71>
i=1

Furthermore, since X, Y are independent Poisson variables with mean w while W is bounded, for any 7, /2 such
that |2 —E[ Ny, 1l, 171 — E[M), ]| < /wlogw we obtain from (6.31) that

P[Mpw =l Nyy =] =(1+0,())P[Mpy,=m|Nyy=0W=h] forany0<h<d+]1.

E =E +04,(1)

_F +0,(1). (6.32)

Hence, introducing an independent copy W' of W, we obtain from (2.1) and (6.32) that

W/
E 10g< D 1//1,pﬂ> =E log<EBw1,,~,n> +0u(1). (6.33)
My, o<i<Mp,, i=1
Additionally, we claim thatforany0<sw=<d+1,
<@l~{+1lll/1 )
E [log————"| =E[log(y, ;,7)] + 0 (1). (6.34)
(@B, wy,0m) ' ¢

Indeed, as in the proof of Lemma 5.5 we obtain

w+l o ¢ w l
E (—<<g§”_=11 l’i’,’:))) =E <V’w+1’i6291% *n> . (6.35)
Further, (2.1), Corollary 3.4 and Proposition 6.3 yield
w l
E <ww+p€Bwi*n> =E[(Y07) ] + 0 (1. (6.36)
i=1

As the logarithm can be approximated arbitrarily well by polynomials due to (2.1), (6.34) follows from (6.35)-(6.36).
Finally, (6.30) follows from (6.33) and (6.34). ]

Proof of Proposition 6.1. Proposition 6.3 and Lemma 6.9 show that for any ¢ = 1 there exists w, > w,_; such that

for all sufficiently large n we have 7, ,, € CDI‘/ 000 and

1
;[ElogZ(G) = B(Finw,)—11¢. (6.37)
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Since © is compact, the sequence (%, ,), has a convergent subsequence, whose limit #Y lies in the closed set
D7, ; o Furthermore, because Lemma 3.3 shows that %8() is continuous, (6.37) yields
1
liminf —Elog Z(G) = B#Y) - 1/¢. (6.38)
n—oo n

*

Vese Thus, the first assertion follows

Additionally, (7(¥), has a subsequence that converges to 7 € D* =, D
from (6.38) and the continuity of 2(-) established by Corollary 3.5.

The second assertion concerning the simple random factor graph G is immediate from the first. Indeed, due
to (2.1) a standard application of Azuma’s inequality shows that n~%%!|log Z(G) - Elog Z(G)| — 0 in probability.

Hence, Fact 2.2 and Bayes’ rule imply that Elog Z(G) —Elog Z(G) = o(n). O

6.5. Proof of Theorem 2.6. We begin by showing that the free energy of G can be expressed in terms of the func-
tional 28 applied to 7, or 7, respectively. Once more we will carry the details out for G; the unconditioned
random factor graph G is easier to deal with, and the proofs are just obtained from the G case by dropping any
considerations regarding multiple edges.

Lemma 6.10. IfPOS is satisfied, then
1 1
lim —ElogZ(G) =liminfliminf2 (i, ), lim —Elog Z(G) =liminfliminf2(7,, ).
n—oon wW—00 N—00 n—oon wW—00 N—00

Proof. Proposition 6.2 and Lemma 6.9 show that for any € > 0 there exists wg such that for all w > wy there exists
ng such that for all n > ny we have n‘l[ElogZ (G) = AB(ft,,w) — €. Hence, for any € > 0 there is wg > 0 such that for all
w > wo we have

1
liminf—Elog Z(G) = liminf (i, ) — €. (6.39)
n—oco n n—oo
Indeed, since Propositions 5.1 and 6.1 show that (%[Elog Z(G)),, converges, (6.39) yields
1 1
lim —Elog Z(G) =liminf—Elog Z(G) = liminfliminf2 (7, ). (6.40)
n—oon n—oo n w—00 N—00

We are left to prove the converse inequality. The space ® is compact and separable. Therefore, for any w the
sequence (,,,), has a subsequence that converges to 7 € © such that liminf,,—.co B nw) = B (7). Further,
(7)), has a subsequence that converges to 7* such that

liminfB#“) = B#*). (6.41)
w—00
Proposition 6.3 shows that 7* € D*. Hence, Proposition 5.1 implies that
1
lim —ElogZ(G) < B(7") = liminf27“) = liminf liminf %8 (7). (6.42)
—oo n wW—00 W—00 —00
Thus, the assertion follows from (6.40)—(6.42). O

To proceed we need a small twist on Lemma 6.10. Namely, instead of using G, , as our reference point, we are
going to work with G, . Thus, let € be the set of cavities of G, ,, and let p, ,, » € & be the kernel representing
UG, ¢- Further, let ., »~ € D be the distribution of p, ¢, . Define py, o, 74, analogously with respect to Gy, .

Corollary 6.11. IfPOS is satisfied, then
1 1
lim —Elog Z(G) = liminfliminf%A(n,,,), lim —Elog Z(G) =liminfliminf %A (n, ¢ »).
n—oon w—00 N—00 n—oon wW—00 N—00

Proof. Since X, Y are Poisson variables with a large mean w, Mn,w and M, can be coupled so that both coincide
with probability 1 - o, (1). This coupling naturally extends to a coupling of Gn,w and G, , under which G, , = G nw
with probability 1 — o, (1). Consequently, recalling that 2 (-, -) stands for the Wasserstein metric on ©, we have
D0, Fnw) = 0w(1). Thus, the assertion follows from the Corollary 3.5. O

We recall the construction of the kernel fi¢ x,y € & from (2.14). Let 7, € ® be the distribution of fig x,v, and
define [ig x,y € &, 5,0, €D analogously with respect to G. Due to the inevitable divisibility condition required to
construct a regular factor graph, these kernels are defined whenever k|dn. The following proposition summarizes
the main step toward the proof of Theorem 2.6.
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Proposition 6.12. For any a > 0 there is wg > 0 such that for every w > wq there exists ny > 0 such that for all n > ny
with k|ldn we have

920 (ﬁn,a);nn,w) <a, 20 (ﬁn,w,y» Tnw,o) < d.

To prove Proposition 6.12 welet ¥ = {v; : i > N, ,} and « ={a; : i > My, ,} UUyey Ov be the sets of variable and
constraint nodes, respectively, that are present in G but not in G, 4. Similarly as in Section 6.3, conditioning on the
event that kM, , < dN,, —d(k—1)X — kY, we define an enhanced random factor graph G* by

¢ adding the variable nodes 7 to G, (, along with with d X new constraint nodes aﬁ pVE V, jeld]. Each aﬁ i
is adjacent to v and k — 1 random cavities of G, ),
¢ adding Y more constraint nodes a*f, e a’;, each connected with k random cavities of G, ,.

Of course, the cavities in the above construction are drawn without replacement and all weight functions are cho-
sen from P independently. We do notrequire that the outcome G* be simple. Let
' ={d,;:veV,jeld}uld] i<Y)
comprise the new constraint nodes.
Lemma 6.13. We have dv(G,G") = 0, (1).
Proof. Similarly as in the proof of Lemma 6.7, we consider the event & = {w/2 < X < 2w, w/2 < Y < 2w}, which has

probability 1 — o, (1). Further, let & be the event that G enjoys the following additional properties.

(') We have |0°7| =7 |d(k-1).
(ii") |0tam, y+1s--+r Am}l = k(m — My ) and 07 niap,,,,.--» am} = @.
(iii") If a¢ <f, then a is connected to the set d<f by at most one edge.

Additionally, let &” be the event that G, ,, has the following properties.

(i”) all variable nodes have degree either d or d — 1.
(ii”) no two cavities are adjacent to the same constraint node.

We have
P& =1-04(1), P[Ge&' | =1-0(1), P[Grwe&"]=1-0(D). (6.43)

Moreover, G given &' is distributed precisely as G* given &”. Thus, the assertion follows from (6.43). ]

Due to Lemma 6.13 we can apply Theorem 2.5 to G*. Let Sf, e S’; denote the resulting Bethe state decomposi-
tion of G*. Let T/ = S*n QY»\ for i € [¢). Further, we introduce

ZG#,i:<1{0’€S?}/ Z HP(TV) l_[ U’a(U’Vn\%T),M@#>,

1eQ” VEV acd?

tigr (@) L{o € T}

2gt i Xreqy [vey PO ) Huewrt Walo,T)

Her,i(0) = @eQ"\). (6.44)

Thus, ugr; € 2(QVn\).

Lemma 6.14. With probability 1 — 0, (1) the sets T, ..., T? are pairswise disjoint and we have
4
He# i (T) = UG, (TITf) forallte Tf and UG, (Tf) = ZG#‘,-/ Z Zgt - (6.45)
j=1

Proof. We recall from Section 4.1 that the decomposition S%,..., Sﬁ is constructed by pinning the values of a ran-
dom set U of variables to specific spins. Since the size of this set is bounded, with high probability we have
(€uUV)nU. = @. We will prove that in this case, g ;(0) = g, (O] Tf) forall i,o.

41



If(6u¥)NU. =@, then T},..., T} are pairwise disjoint. Thus, fix i € [¢] and o € T}. Then by the construction
of G*,

_ Z(G" . Ut (0)
Z(Gy,p) ZTEQ7’ [Toey PO [peort Walo,T) ’

Z(Gn,w) g
Z(g#“)’ =<1/ > TIran I wu(a,r),u@>=j;zg#,j. (6.47)

7eQV VeV acddt

(6.46)

MG, (0)

Combining (6.46) and (6.47), we obtain the second identity in (6.45). Further, combining the second part of (6.45)
with (6.46) and (6.47), we find

MG, (Tl#) B 26t i Z(Gn,w)

#) - U6, (0) Zf:ﬂ@#,j Z(G")

K, (0| T; “Zgt i+ Pt i (0) = lgr ;(0),

thereby establishing the first part of (6.45). O

W.h.p. each cavity v € € of G,,, has degree d — 1. In this case, we denote by b, the unique neighbour of v in G*
that is not present in G, .. Further, fori € [¢] let vg; € P(Q%) be the product measure

— #
Ver,i = @ et v, (1S}
VEE

In close analogy to the weights introduced in (2.13), we also define

-1
2 =pe(SH- 1 (Z o [1 X 1r=pv.® ] pG#'w_’a('[ww?))

veV \yeQ aedv reQoa weda\v

-1
Y
-]’[( Y wa@ [ pG#,wﬁa#(ms?)) . (6.48)
i=1 ! !

# #
7eQ%% weda;

Lemma 6.15. With probability 1 — o, (1) we have Zfz:l |zG#,h - é’m =o0(1) and

4
Z an,w(T;:) “I'I’Gn,w,(g(' | Tz) - VG#,h”TV = 0(1)
h=1

Proof. Fix h € [¢] and suppose that Sfl is an o(1)-Bethe state, which occurs with probability 1 — o, (1) due to Theo-
rem 2.5 and Lemma 6.13. Then by BS2 w.h.p. we have for any o € Q"'

#
i ((T|SZ) N l—[ ploy,) [Tacor Va(0) [1wesa ﬂG*‘,w—»a(wah) _
veV ZXEQ Haeav,- ZTEQBH Wty =xlya(1) [Tweoa NG#,w—’u(Twwh)

14 wa’; (U)Hweaa’; H'G#,WHLI? (UW|Sz)

(6.49)

) .
i1 Zreﬂaa? Var (1) Hweaaf He#,w—at (TwlS})
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Further, w.h.p. each cavity of G,,, has degree d — 1; in this case, denote by ¢, the unique neighbor of v in G* that is
absent in G, ,,. Then by (6.49) w.h.p. we have

ZG#h—NG#(Sh)< / Y. [Tran I valovy, 1), pee (- |sh)>

7eQV VeV acA*

(o)1 ()1 _alowlSh)
~HG#(Sh) Z l—[ plov)llacovWa weda\v H6#,w—a 0wy _
oeQVVE veV ploy) Haeau Yal0): erQ p(Y) Haeau zrggﬁd Hy =1}wa(r) Hweaa\u HG#,W—*u(TW|Sh)
wa# (0) Hwe@a’;f ”G”,w—»af (UW|S¢;)
SV )L ot Wat O ueoat Bt w—at Tw!S))
ZUEQazu [aecov [Tweoarv .uﬁ#,w—»a(o'ww#;)

' :l

(5 )
~Her ylg/ ZXeQ p(x) [Tacov Zreﬂad Hy =1ly.() [Tweoa\w HG#,WHQ(TLUlSZ)

#
Y Y ot Hyeoat Het w—at (0W|Sh)
1_[ oeQ) i i i

at (@)X req® Yat @) Hweauj‘ Het,w—at (TWISZ)

- 2*;. (6.50)

Summing on k completes the proof of the first assertion.

With respect to the second assertion, for o € Q% we have w.h.p.

UG, ¢ (O] Tz) = Ugr p(0) [by Lemma 6.14]

tigr (01S)
ZG* h ZreQV [Mvey PO et Walo,T)
-1
Y Tl raw I] walo,n

26t \req? vV aedt”
uja? (o) Hweéa:ﬁ' ”G#,Wﬂa;’ (UW|S#;1)

= per (S)) - [by (6.44)]

i=1 ZTEQaaf Vat (1) ngaaf He#,w—at (TwlS})
p0v) Hacov ¥a(0) [lweoa .UG#,w—m(waz)

. H = [by (6.49)]
vey ZXEQ Haeau,- ZTGQBM Wty =xlya(@) [Tweoa NG#,w—m(Twwh)
He# (Sz) Y Hweaa? IUG#,wﬂa? (UW|SZ)
2t n  j=1 Zrega“? Var (1) Hweaaf He#,w—at (TWIS’;)
[Tacov [wesa “G#,w~a(0w|si)
vey Z)CEQ Haeavi ZTEQM Hty = x}va(@) [1wesa HG#,w—>u(Tw|SZ)
=vgr 1, (0), [by (6.50)]
as claimed. ]
Proof of Proposition 6.12. Let vgr = Zf 1 IVG# Yt i=1 %¢#,; and let n & be the distribution of the kernel repre-

sentation vgr € K. Then up to a renumbering of the variable and constralnt nodes, figt x y € R is distributed as
the representation of vg+. Specifically, in (2.14) we renumbered the nodes such that 7 comprises the first X vari-
able nodes and such that the a?, i € [Y], are the first Y constraint nodes. Due to Lemma 6.13 and because G and
G are invariant under node permutations, we conclude that 2o (ﬂi,w, o nw,s) = 0y(1). Furthermore, combin-
ing Lemmas 3.14, 6.14 and 6.15, we see that ElAo(Ue,, %> Ver)] = 04 (1). Hence, invoking (3.4), we conclude that
El20(pnw,e) Ver)] = 0,(1). Thus, the triangle inequality yields 20 y,w,#, Tnw,») = 0,(1). The same argument
applies to 7, and 7, 4. O

As a final preparation toward the proof of Theorem 2.6, we need the following simple lemma.
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Lemma 6.16. For any fixed integer ¢ we have
20 (T n,w, Tntt,w) = 0p(1), 90 (T nw,o Tniew,.s) = 0w (1).

Proof. The random factor graph G, or G, respectively, has n — X variable nodes with probability 1 — o, (1).
Similarly, the number of variable nodes of G,/ or G,.¢,, is n+ ¢ — X with probability 1 — 0,(1). Since X is a
Poisson variable with mean w, we have dry(n+¢-X, n—X) = 0, (1). Hence, we can couple G, ¢, and G, as well as
G100 and G, in such a way that both coincide w.h.p. This coupling extends to the distributions p 4.7, Pn+e,0,5
and Pnw Pn+t,w- U

Proof of Theorem 2.6. Corollary 6.11 yields the free energy formula in terms of the distributions n,, and 7, »,
respectively. Furthermore, Proposition 6.12 implies together with Corollary 3.5 that

liminf liminf %(nnw)—hmlnf liminf 2B, ), (6.51)
W—00 p—oo,kldn —00 n—oo,kldn

liminf liminf @(nnwy)—hmlnf liminf B(t,0,.9), (6.52)
W—00 p—oo,kld W—00 p—oo,kldn

with the limit on 7z confined to integers such that k|dn each time. But Lemma 6.16 implies with Corollary 3.5 that
this divisibility condition does not alter the limits on the left hand side of these equations, i.e.,

liminf liminf ,%’(nn w) = hmlnfhmlnf,%’(nn ©)» (6.53)
W—00 p—oo,kld

liminf liminf %(nnwy) = llmlnfllmlnf%(nnwy) (6.54)

W—00 p—oo,kld

Thus, combining (6.51)-(6.54) and invoking Corollary 6.11, we obtain
1 1
lim —Elog Z(G) =liminfliminf% (i, ), lim —Elog Z(G) = liminfliminf2 (%, 4, »),
n—oon wW—00 Nn—00 n—oon w—00 Nn—00

where, of course, the limit is confined to n such that k|dn because G, G and 7, ,, 75, 4, are defined only for such
n; this is the assertion. O

7. APPLICATIONS

In Section 7.1 we prove that the spin glass model from Section 1.2 satisfies the condition POS; the results stated
in Section 1.2 are then immediate from those in Section 2. Further, in Sections 7.2 and 7.3 we apply the results
from Section 2 to two further models, the Potts antiferromagnet and the random regular k-SAT model. Finally, in
Section 7.4 we show how the theorems from Section 2 can be brought to bear on the hard-core model, thereby
proving the results stated in Section 1.3.

7.1. The spin glass. To derive the results on the spin glass model stated in Section 1 from the general theorems
in Section 2, we just need to verify the condition POS for the spin glass model. In Example 2.3 we introduced the
relevant weight function even in the more general case of the k-spin model; the case k = 2 corresponds to the spin
glass on the Bethe lattice.

Lemma 7.1. The k-spin model satisfies POS foralld = 3, >0 and all even k = 2.

Proof. The lemma is already implicit in [37, 58]; but let us carry the simple proof out for completeness. Let J be
a standard Gaussian. Upon substituting the weight functions from Example 2.3 into POS and multiplying by 2¢,
POS reads

E

1k ¢
+(k-1DE (l—tanh(ﬁ]) H(zys,xi—l)ds) ]
0 j=1

1 k ¢
(1 —tanh(BD) | [](2ksx —1) dS)
0 i=1

—kE =0. (7.1)

1 k ¢
(1 —tanh(B]) fo Q@usx, — D[] UGy, — 1)ds)
i=2

for all measurable y, i’ : [0,1]1? — [0, 1]. Expanding the first expectation yields

1 k ¢ ¢ |y , el k i
(1—tanh(ﬁ]) A H (2s,x; — l)ds) ] = Z (j)(—l)J[E tanh(8J)’ ([ H 2, x; — ) ]
i=1 j=0 i=1
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Since J is independent of the x;, the last expectation vanishes if j is odd, while tanh(f ni=oif j is even. Thus, in
order to establish (7.1) it suffices to show that for any even j = 2,
1k Y 1k Y 1 k J
E ( A [Tusx -1 ds) +(k-1) ( A [TCusx -1 ds) - k(fo Qusx, — D[]S, - l)ds) =0. (7.2
i=1 i=1 i=2
Let s1,...,s; € [0,1] be uniformly distribution and mutually independent as well as independent of the x;. Then
Fubini’s theorem yields

j
,=E|E H(zush,xl—l)(sl,...,sj (7.3)
h=1

1k J
E ( H(Zys,xi—l)ds)
0 j=1

el ([Tl 1)ds)j

J
(j(; (zﬂsxl -1 H(zusxz Dds)

=2

=Lt |E

E E

, ,xl_l)‘sln--;sj ‘ (7.4)
i
1

k-1
(24, 5, — |31,---,S[] . (7.5)

J
=E| ][] @usyx — 1)|sl,...,34
h=1

Since for even k we have X* + (k—1)Y* - kXY*~1 >0 forall X,Y € R, (7.3)—(7.5) yield (7.2). O

Dueto Lemma 7.1, Theorem 1.1 follows from Theorem 2.5, Theorem 1.2 follows from Theorem 2.6 and Theorem 1.3
follows from Theorem 2.7.

Remark 7.2. Indeed, together with Lemma 7.1 the results from Section 2 yield the Bethe state decomposition and the
corresponding formulas for the free energy for the k-spin model for any even k = 2.

7.2. The Potts model. For an integer g = 2 let Q = {1,..., g} be a set of g distinct colors Also let § > 0 be a real

parameter, the inverse temperature. The Potts antiferromagnet on G is the distribution on Q" defined by

-B Y. Nviedvj, o) =0}, (@eQ'm),

l<i<jsn

He,p(0) = 7 7.0 °
where the partition function Z5(G) provides normalization; we omit the reference to § where possible. Thus, for a
given o € Q¥ each monochromatic edge of G incurs an exp(—f) penalty factor.

The Potts antiferromagnet and the associated optimization problems, the MAX g-CUT problem, are of funda-
mental importance in combinatorics. Krzakala and Zdeborova [44] brought the cavity method to bear on this
model. In the following we show how the main results of the present paper apply to this model to underpin the
predictions from [44] rigorously. In particular, we specialize the Belief Propagation equations to the Potts model,
work out the variational formula for the free energy and apply this formula to the MAX g-CuUT problem on the
random regular graph.

The Potts model on G(#n, d) can be cast as a random factor graph model with a single weight function

vp: Q% —(0,1), (0,7) — exp(—fl{o = 1}).

Thus, k=2, ¥ = {yg} and P(yg) =1 and the prior distribution p is uniform on Q. Since the constraints are binary,
the random regular factor graph G can be identified with the usual random d-regular graph G, with the edges
representing the factor nodes.

Lemma 7.3. The Potts model satisfies condition POS for all > 0.

Proof. We plug the definition of ¢4 into POS and notice that the 1 - e~ P factors cancel. Hence, the desired inequal-
ity reads

q 1 ¢ q 1 ¢ q 1
E (Z f /Js,xl(a),us,xz(a)) +(Z f u’s,xl(a)u’s,xz(o)) —Z(Z f ,U«s,xl(U)N;,xz(U))
o=1J0 o=1J0 0=1J0
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Applying Fubini’s theorem to take the expectation on x;, x; inside, we find

l
q 1 q 4
E (Z Hs,x, (U)lls,xz(a)) = Z E H,Ush,xl (Uh)ﬂsh,xz(ah)
=170 O1,ye.,0p=1 h=1
q 4 4
= Z E|E Hﬂsh,xl(ah)‘sln--;s[ E Hush,xz(ah))slw--;s[
O1,..,0¢=1 h=1 h=1
q ¢ 2
= Y E|E ]‘[psh,xl(ah)‘sl,...,sg . 7.7)
O1,..,0¢=1 h=1
Similar manipulations yield
q ¢ q ¢ 2
E|{) f Hox, O, @) | = ) E|E Hu;h,xl(oh))sl,...,sg : (7.8)
0=1J0 O1y0ny0p=1 h=1
a / ¢ q ¢ e
EN{ X [ tom Wb, ] | = X E|E|TT bty @n)]s1,eensse [E| ] o, @R)|s1,onsse || 7.9)
o=1J0 100 p=1 h=1 h=1

Combining (7.7)-(7.9), we conclude that the Lh.s. of (7.6) is the expectation of a sum of squares, and thus non-
negative. (]

The message space .# (G) of the Potts model boils down to the set of all families (1y— w) ve v, weow, With gy, €
22(Q). With this simplification the Belief Propagation operator BP : #(G) — .#(G), v — ¥ of the Potts model reads

[Mweorul -1 - e_ﬁ)ﬂw—»v(a)
Y reallweanul —(1- e_ﬁ)Hva(T)
With respect to Bethe states, we expect that the phase space Q" decomposes into Sy, ..., Sy such that the condi-
tional distribution ug[-|S;] are free of long-range correlations, that their standard messages form an approximate
fixed point of BP and that the conditional marginals derive from the messages. In formulas, with high probability
over the choice of the graph and with (fg,y—u[* ISk uesv = BP(UG, v—ul-ISh]) uesy, we aim to show that

Vy—ulo) = (c€Q). (7.10)

1
pm;(n |ﬂG,vi,vj[-|5h] — 16,0, [ 1Sp] ®ﬂ@,vj['l5h]”w= o(1), @11)
1 n
— 2 2 lHewi—ul- 1] = fig,v—ul 1Sk} |y = 0(1), (7.12)
i=1uedv;

Hwe@ui 1-1- e_ﬁ)lJG,viaw(U)
Y reallwesr, 1 -(1- e PYug, v —w(T)

Ue,v; [a|Sp] — =o0(1). (7.13)

3

The following theorem establishes these facts.

Theorem 7.4. For any sequence L = L(n) — oo and all d = 3, 3 > 0 the following is true. With high probability G
admits a decomposition Sy, S, ..., S¢, £ < L, of the phase space Q" such that ug(So) = o(1) and such that (7.11)-(7.13)
are satisfied forh=1,...,¢.

Proof. This is immediate from Theorem 2.5 applied to the factor graph representation of the Potts model. (|

With respect to the free energy, let X, Y be two independent Poisson variables with mean w. Let u;,..., ux and
viwi,..., vy wy be uniformly random vertices and edges of G, chosen independently. With S;,...,S, the decom-
position from Theorem 7.4, we introduce the weights

X 1y -1
zon=psSH ][ [] 1-a - e P ug,v—u; (U|Sh)) [T (1 ~1-eh Y HG,v—w; (O1Sh) H6,wi—v; (1Sh)

i=1\oeQvedu; i=1 e}

and zg = 22:1 zg,p,. Further, let €(G) be the set of all vertices of degree less than d in the graph obtained from G
by removing vy,...,vx and vyw,,..., vy wy. Then with high probability each ¢ € €(G) has degree precisely d — 1,
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and we write ¢’ for the missing d’th neighbor of ¢. Then with ¢y, ¢2,... a sequence of uniformly and independently
chosen elements of € (G), we let

B(G) = logz 2 ZQHI—(I eﬁ)uGHcr(a)——logZTl—(l e P Zgyccﬁcrl(a)umrcr(a)‘ﬁ
oeQ)i=1 o€

Theorem 7.5. Foralld =3, >0 we havelim,,_. %[E[log Z(G)] =liminf,_ liminf,_ ., E[2B(G)].
Proof. This is an immediate consequence of Theorem 2.6 and Lemma 7.3. ]

Additionally, Theorem 2.7 yields a variational formula for the free energy. Writing out the specifics of the Potts
case, we see that D* consists of all 7 € D that satisfy the following property. For a measurable y : [0,1]*> — 22(Q)
with Q = [g] and integers N, M =0 let

N q d M q
2 = (ZH1—(1—e“’>us,x,»,j(a>)H(l—u—e‘ﬂ)Zus,x”,v,l<ows,w,2w>), and set

i=1\o=1j=1 i=1 o=1
1
t—t(s)—lnf{uE[O 1]/ NMds>sf zﬁ]b]t\’[du}
0

*(N,M) _

Then we let gy = U¢,x. Now ”DE is the set of all 7 € ® such that for a random p* € £ drawn from 7, the

perturbed p™* ™M € g again has distribution 7. Furthermore, in the Potts model the functional %(-) reads

d
log(z ]_[ 1-(1-e” )usxlj(o)ds)——log(l—(l e P Z[ psxll(a)psxlz(a)ds)]

Bp(m) =
0=1J0 j=1

Theorem 7.6. Foralld =3, >0 we have

1
lim —E[logZ(G)] = (I)d,ﬁ with (I)d,ﬁ = inf 93'3(71).
n—oo yn ne@E

As a further application we obtain a variational formula for the MAX g-CUT of the random regular graph, which
is defined as

MCy(6) = —- Z 1w e, o(v) = a(w)). (7.14)

20 [n]—'[q] vl

Thus, MCy(G) equals the total number of edges of G minus the ground state energy of the Potts model. In other
words, MC(G) is the maximum, over the choice of ¢ : [n] — [g], of the number of edges that link vertices of
different colors The MaXx g-CuT problem is well-studied in combinatorics and computer science. In particular,
the problem is well known to be NP-hard on worst-case instances.

n—oo d
Corollary 7.7. Foralld =3 we haveMC,;(G)/n — 5 +ﬁlim @y 41— DPg,p in probability.
—00

Proof. Since Azuma’s inequality shows that MC,(G) is concentrated within O(,/nlogn) about its mean, it suffices
to prove that

d
lun [E[MCq(G)] =— +ﬁ111n @g,6+1~Pa,p- (7.15)
Further, introducing #5(0) = 5 ZU w=1 Hw € 0v, o(v) = o(w)} and recalling (7.14), we can rewrite (7.15) as

1
lim —E
n—oon

min /(o)
o:[nl—1q]

= ﬁhm q)d B (Dd B+1- (7.16)

To prove (7.16) we write 16,5 € 2([q]V?) for the Potts distribution induced by a d-regular graph G = (V(G), E(G)).
Moreover, let us denote the Potts Hamiltonian by #7 and the partition function by Zg(G). It is well known that for
any € > 0 there exists B(€) > 0 such that for all 8 > By(€) and all d-regular graphs G we have

S, —¢e|lV(G)| = min JFg(0) <(H%G, . 7.17
(Heucp)—elVGl=  min H5(0) < (6 H,p) (7.17)
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Consequently, for all g > By (¢) we have

B+1 p+1
fﬁ (#6,uG,p)db—elV(G)] < pilin  FG(0) fﬁ (76, 1G,p) dD. (7.18)

Since (A, lig,p) = —%logZﬁ(G), (7.18) yields

log Z5(G) —log Zg,1(G) — €|V (G)| < Vr(rcl;%n[ H(0) <log Zg(G) —log Zp,1(G). (7.19)

Applying (7.19) to the random regular graph G and taking expectations, we obtain

min /g (0)

1 1 1
—F[log Z3(G)] — —E[log Zg,1(G)] —e < —F
p [log Z5(G)] p [log Zg+1(G)] —¢ imin

n

=— [IOgZ,s(G)] - —[E[logZﬁ+1(G)]. (7.20)

Hence, taking n — oo, we obtain for all 8 > Bg(€),

min /(o)
o:[nl—I[q]

min Jg(0)
o:[n]—[q]

Dyp—DPypi1—€< hmlnf E

ninf- <11msup—[E

n—oo N

=Qup-Pgp+1- (7.21)

Finally, there exists a subsequence (n;) along which E [ming;[nl]_,[q] Hon;,d) (U)] /n; converges to a number ¢ = 0.
Taking the limit of (7.20) along this subsequence, we obtain §{ < ®; 5—® 4 g1 < ¢+ for all > fy(e). Consequently,
the limit limg_.o, 4,5 — ®4,p+1 exists. Therefore, taking f — oo in (7.21), we conclude that

lim n—ltE[ min #g(0)
n—oo o:[n]l—[q]

exists as well and that (7.16) is satisfied. O

7.3. The regular k-SAT model. The k-SAT problem plays a major role in computer science, particularly in com-
putational complexity theory. In its optimization version, known as the Max k-SAT problem asks for the largest
number of clauses of a propositional formula in conjunctive normal form with clauses of length k that can be sat-
isfied simultaneously. Random instances of k-SAT and MAX k-SAT have been studied extensively as instructive
benchmarks [6].

We can express the MAX k-SAT problem as a factor graph model with spins Q = {—1,1} corresponding to the
Boolean values ‘true’ and ‘false’ as follows. With k = 2 an integer and 8 > 0 be a real parameter, we introduce the
weight functions

1-tanh
Wpp 21— 0,1), g — (ﬁZH 11171) (y e x115).

Let p be the uniform distribution on Q and let P be uniform on Wg = {wg,: x € Q). In terms of propositional
formulas, the semantics is that ¥ , encodes a k-clause whose ith literal is negated if y; = 1 and positive if y; = —
Thus, Hle xio; = 1if the truth assignment o fails to satisfy the clause, and Hle s;o; = —1 otherwise. In effect,
Wps(0) = (1 —tanh f)/2 — 0 as f — oo if o fails to satisfy the clause, whereas Y4 (o) = (1 +tanhf)/2 — 1if o is
satisfying. Hence, the random factor graph G models a random k-SAT formula in which every variable appears
precisely d times, the regular k-SAT model. We are going to derive variational formulas for its free energy and its
ground state energy.

Lemma 7.8. The regular k-SAT model satisfies POS foralld,k =3 and all > 0.

Proof. Once more this is already implicit in [37, 58], but we carry out the argument here for completeness. Let us
write y for a uniformly random element of {+1}*. Substituting v g,y into POS and cancelling positive constants, we
are left to verify the inequality

=20 (wu' eR). (7.22)

1k ¢ 1k ¢ 1 k ¢
E (fo H Hs,x; (Xi)ds) + (j(; H /J,s,x,- (Xi)ds) -(k-1) (fo s,z (X1) H.Uls,xz (xi)ds)
i=1 i=1 i=2
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Fubini’s theorem yields

l k
1 k 0
[E (‘/(‘) Hﬂs,xi(xi)ds :IE [E Hﬂsh,xl(xl)|sl,---;sé " (723)
i=1 h=1
1k ¢ ‘ k
E (/0 [T#sx, (x)ds| | =E|E ]‘[u;h,xl(xl)‘sl,...,sg , (7.24)
i=1 h=1
1 k ¢ ¢ ¢ k-1
E (fo ﬂs,xl(Xz)H#/s,xz(Xi)dS =E|E H#Sh,xl(xl)‘sl""’s[ E Hp’sh,xl(xz))sl,...,s[] ] (7.25)
i=2 h=1 h=1
Since X* + (k—1)Y* - kXY* 1 >0for X,Y =0, (7.23)-(7.25) yield (7.22). O

Due to Lemma 7.8 we can bring the results from Section 2 to bear on the random regular k-SAT model. Specif-
ically, for a measurable p : [0, 11?2 - 22(Q) with Q = {+1} and integers N,M =0 let (Xi,j)i,jzl be independent uni-
formly random elements of Q and let

k
z (Z H 1 -tanh(p) Z Xi kO H Xi,jTjlsx;; (TJ)) H (1 —tanh () Z H Xi+N,jTjHs,xin,j (Tj))-
i=1 =1

0€Q j=1 TeQk-1 TeQk j=1
Further, let

1
t:t(s):inf{ue[o,l]:f ﬁ’,ﬁ”ds>sf zﬁ]lﬁv[du}
0 0

and pﬁY;CM = Us,x. Then CDE consists of all 7 € D such that u™"™ has distribution 7. Furthermore, the functional
9B(-) reads

Bp(m) =

log(Z 2 Hl—tanh(ﬁ) > xlkcrl_[xz]f]usxl,(fﬂdsn

0eQY0 geQj=1 7eQk-1
N dk—1)
k

—dklog?2.

E ( Z 1—tanh,6f0 HXl’jTj#s,xl,j(Tj)dS)
j=1

1eQk

Let
(Dd,ﬁ = inf .%’3(7'[).
nE’DE

Theorem 7.9. Foralld, k=3, f>0 we havelim;_., %[E[logZ(G)] =Dy .
Proof. This follows immediately from Theorem 2.7 and Lemma 7.8. (]

As a further application we also obtain a variational formula for the MAX k-SAT problem. Specifically, with the
interpretation of o € Q" as a truth assignment, define #¢ (o) as the number of propositional clauses of G that
o fails to satisfy. Further, let OPT(G) = dn/k — min qx #(0) be the maximum number of clauses that can be
satisfied simultaneously. Following the steps of the proof of Corollary 7.7 precisely, we obtain the following result.

Corollary 7.10. Foralld, k=3 we have

n— oo

d
_OPT(G) — % +ﬁhm Dy pi1—Pap in probability.

7.4. The hard-core model. The proofs of Theorem 1.4 and Corollary 1.5 are not entirely straightforward because
the hard-core model cannot be cast directly as a factor graph model as in Section 2. This is because of the ‘hard’
constraint that o ,0,, = 0 for any adjacent v, w. We therefore prove Theorem 1.4 and Corollary 1.5 by way of a
relaxed ‘soft-core model’ and taking two limits, first in the ‘softness’ and then in the fugacity. Specifically, we obtain
arandom factor graph model with Q = {0, 1} and the prior p(0) = 1/(1+A) and p(1) = A/(1+A). In addition, to mimic
the hard-core constraints we would like to introduce a binary weight function that forbids its two adjacent variable
nodes from both taking the spin 1. But since it would take values {0, 1}, we instead introduce

wp: Q% —(0,1), (01,02) —~1-(1-eP)oi0,.
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Thus, > 0 is a ‘softness parameter’, and upon taking f — co we recover the hard-core constraint: ¥, (01,02) =
1-0107. Forany 5, A and d = 3 we obtain the random factor factor graph model G, s with the single binary weight
function 4.

Lemma7.11. The model G, g satisfies POS foralld = 3,1 >0, § € (0,00].

Proof. Substituting 5 into POS and noticing that 1 — e P >0, we see that it suffices to verify the inequality

1 l 1 ¢ 1 4
E (fo ps,xl(l)ps,xzu)ds) +( fo ,u's,xl(l)u's’xz(l)ds) —2( fo us,xl(l)p’s,xz(l)ds) =0 (mu'efR). (7.26)

By Fubini’s theorem,

1 ¢ 14 ¢ 14
E (f() #S,xl(l)#&xz(l)) =E Hﬂsh,xl(l)ﬂsh,xz(l) =E|E l_[llsh,xl(l)|sl,u-rsé E Hﬂsh,xZ(l)‘slr-u,S[
h=1 h=1 h=1
¢ 2
=E|E | [T tspes s1,-0] |, (7.27)
h=1
and analogously
1 4 ¢ 2
E UO ,u’syxl(l)u’s,xz(l)) —E|E Hu;h’xl(l)|sl,...,.€[] : (7.28)
1 . 4 14 e
E ([) ﬂs,xl(l)us,xz(l)) =E|E }Eﬂsh,xl(l)|81,...y85 E }[[lﬂsh,xl(l)‘sl,...,.?g (7.29)
Combining (7.27)—(7.29), we conclude that the L.h.s. of (7.26) is the expectation of a square. ]

We proceed to prove Theorem 1.4. In light of Lemma 7.11, Theorem 2.7 readily yields a variational formula
for Gy g. The main issue that we have to confront is that the resulting variational problem for given A,  ranges
over a spaces that depends on these parameters. In effect, it is not a priori clear that these variational problems
bear any relationship to the one stated in Theorem 2.7. To deal with this issue, let ©, be the set of all 7 € ® that
are supported on u € £ such that ug (1) < A/(1 + A) for all s, x € [0,1]. Further, for 7 € ©; we let 7*s™M be the
distribution obtained by the adjoining operation with respect to the weight function . Finally, let

@/’{ﬁ ={me®, :forall N,M =0 we have 7*# V"M = m}.
Lemma 7.12. For any N,M =0 the map € © ) — n*~>™NM js continuous.
Like in the case of Lemma 3.7, the proof is based on arguments involving the cut metric. The details can be

found in Appendix A.

5 (N,M)

Lemma 7.13. Let N, M = 0 be integers. Uniformly for all m € © ) we havern — oM g5 B — oo,

Proof. Lete>0Forany ue £ let Z ﬁl ﬁM (s) be the weight from (2.16) with respect to the weight function v g. Then
we see that, uniformly for all y and s,

z7 =~ 2zZyds) as poo. (7.30)
Furthermore, if pg » < A/(1+ A) for all s, x, then for all 8 € (0,00] we have
1 \V A Y
zNnM 2(—) (1—(—) ) 0. 7.31
wh =157 1+A > (7.31)
Combining (7.30) and (7.31) and recalling the construction of u*#"""™) we can construct a measurable map ¢ :

[0,1] — [0, 1] that preserves the Lebesgue measure such that for large enough g for all §, X < [0, 1],

#p(NM) _x oo (N, M)
LLﬂs,x _'ué(s),x dxds

Thus, 90 (u*ﬁ(N’M) , ,u*°°(N'M7) < ¢ for large B. Since ©, is endowed with the W) -metric, the assertion follows. O

<E.

Lemma 7.14. The set R is closed.
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Proof. We can view £, as a scaled version of the space of weak kernels. Therefore, since R is complete, so is K is
complete. Hence, any Cauchy sequence in £ has a limit within this set, and thus &, is a closed subspace of &. U

Corollary 7.15. The set® is closed.

Proof. By Lemma 7.14 there exists an increasing sequence of continuous functions u, : 8 — [0, 1] that converges
pointwise to 1 —18,. Thus, D) =Np>1 {7 € D : [ u,dn = 0} is closed in the weak topology. O

Corollary 7.16. We haveliminf, .., +E [log Z(Gy )] = infyen+ B).
Proof. Since D* is compact, Proposition 6.1 shows that there exists 7 € D* such that
1
li’glinfE[E [log Z(Gyp)| = B(n). (7.32)

The construction of the 7 for which the lower bound is attained is based on Proposition 6.2, whose proof shows
that the measure 7 g for which the lower bound is attained in the limit of a sequence of distributions (73, g ) n=1
that come from random factor graphs with the weight function y . Specifically, we considered a random factor
graph G, g ;,» with a random number of ‘cavities’ for a slowly growing w = w, — co. With u, € P(Q°) the joint
Boltzmann distribution of the spins of the cavities ¢, the measure 7, g , is defined as the distribution of the rep-
resentation of y, as an element of .#. Thus, we just need to show that these representations converge to points in
£

The proof of this fact is based on Corollary 3.16. Specifically, let € > 0. We obtain a decomposition Sy, ..., Sy of
Q into classes by pinning a random set ©, of cavities. The size |©,| of this set depends on € only and

14
Ao (in, fin) <€, where i =) p(S) @ pu(-1S). (7.33)
i=1 VEE
Now, consider a cavity v € €\ 0, let 1 < i < ¢ and consider a configuration ¢ € S; with ¢, = 1. Obtain ¢’ by
setting o/, =0 and ¢’, = 0, for all w # v. Then ¢’ € S; and the construction of the Boltzmann distribution ensures
that y,(01S;) < Aun(0’|S;). Hence, u,(1]S;) < A/(1+ A). Since |@,| is bounded in terms of € only, whereas || =
w5 /2 — oo with high probability, we deduce from (7.33) that the representation 1, € & satisfies 20 ({1, 1) < € with
high probability. Since, furthermore, the Wasserstein metric induces the weak topology on ©, we conclude that
7,61 CONVErges to a point 7 on in the closure of D; but since D is closed, we conclude that 7 € ©,. Finally,
Corollary 7.15 implies that 7 € D3 N D* = DZ' Thus, the assertion follows from (7.32). O

We are ready to establish the lower bound on the free energy.
Proposition 7.17. Foralld = 3,1 >0 we haveliminf,_.., %[E[log Z(Gpo0) 2Dy 2.

Proof. For any 5,1 > 0 Corollary 7.16 supplies 73,5 € ’Dj{ such that

|
hrfr_l)g}f%[E[logZ(G,m)] = Bapmap). (7.34)
Now consider the sequence (1, 5) g=1,2,...- Since D is compact, a subsequence (a,p;)j converges to 1, € D,,ie.,
lim 2 (7T/1,ﬁj ,7y) =0. (7.35)
j—oo
. *p; (N,M) . . . .
Further, since Ty ﬁj =TAB; forall j and N, M = 0, Lemma 7.13 implies that for all pairs N, M =0,
i)
: *0o(N,M)y _
jllnolo@D (”A,ﬁj R nl,ﬁj )=0. (7.36)

Combining (7.35) and (7.36) with Lemma 7.12, we conclude that 7, € @;. Finally, since for every § > 0 we have
Barp() = Ba () on Dy, the assertion follows from (7.34) and the continuity of the functional 84,1 o (-). 0O

A separate argument is needed to derive the upper bound on the free energy. Basically, we will prove the fol-
lowing proposition by checking that the interpolation argument from Section 5 goes through for the hard-core
model.

Proposition 7.18. Foralld =3, >0 we havelimsup,,_, %[E[log Z(Gpo0) =Dy 2.
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With ¢; and ¥, ; defined with respect to the hard-core weight function ¥, let

93’(u)=[Elog<@<P,-,u>, @”(u)=[E108< S, V’u’ﬂ>-

i=1 1<i<dn/2
Lemma 7.19. Forany A >0 and any j1 € 8) we haveE [log Z(G) )| < B' (1) — B (1) + o(n).

Proof. This follows along the lines of the proof of Proposition 5.2. In that proof we required the assumption that
all weight functions are strictly positive, but only in one place. Namely, we required positivity in order expand the
logarithm into a power series in equations (5.9)—(5.11). Yet this approximation is still valid in the hardcore model.
Indeed, the term <Wamt+1  HG, >, whose logarithm we calculate in (5.9), is lower-bounded by 1 - A/(1 + 1), because

in the hard-core model the marginal probability that a single variable node has spin one is upper-bounded by
A/(1+ Q). Similarly, the arguments of the logarithms in (5.10) and (5.11) are lower-bounded by 1-A/(1+A) because
MHE .Q;L. O

Proof of Proposition 7.18. Based on Lemma 7.19, we follow the proof of Proposition 5.3 to complete the proof of
Proposition 7.18. Specifically, we claim that for any 7 € CD/’{,

E[B" (u™)] = —[E [log (Yoo, )], and E[%'(u™)] =Elog{¢,, 7). (7.37)

This follows along the lines of Lemmas 5.5 and 5.6. In both cases we assumed that the weight functions are strictly
positive in order to ensure that the arguments of the logarithms on the Lh.s. are bounded away from zero so that
the logarithmic series applies. But the condition 7 € D} guarantees that

n
<®‘pi’/«t> =>(1/Q+A)" and < @ VII,i'M> >(1/(1 +/l))dn/2.

i=1 1<i=dn/2

Thus, the same manipulations as before yield (7.37). Finally, the assertion follows from (7.37) and Lemma 7.19. [J
Proof of Theorem 1.4. The theorem is an immediate consequence of Propositions 7.17 and 7.18. O

Proof of Corollary 1.5. For a graph G = (V(G), E(G)) let g 2 € 22({0, 1}V@) denote the hard-core model on G with
fugacity A, and let Z; (G) be the corresponding partition function. Further, let @3 (G) = ¥ ev(G) (0w, UG 1) be the
average size of an independent set drawn from p ;. Additionally, we write a(G) for the maximum independent
set size. It is well known that

ay(G) = % log Z) (G) (7.38)

and that
ay(G) A= oo a(G)
[V(G)] V(G|

As an immediate consequence of (7.38) we obtain

uniformly for all G. (7.39)

M1 g, (G) <ap1(G)/A,
108 Zy.41(G) —10g Z) (G) = dz
0gZ3+1(G) —log Z,(G) j/; t {za,l(G)/(/%Ll)-

Hence, (7.39) shows that for any € > 0 there exists 1o > 0 such that for all 1 = A and all d-regular graphs G we have
A
1-8a(G) = ma;t(G) = A(ogZy+1(G) —1log Z1(G)) < ay(G) = a(G). (7.40)

Applying (7.40) to the random graph G, and taking expectations, we obtain

a6 )] a(G)

(1—5)[E[ <E[AlogZy+1(G) —log Z;(G)] <E . (7.41)

Theorem 1.4 guarantees that the sequence ([E [)L(log Z3+1(G) —log Zy (G))]) converges, and thus (7.41) yields
a(G)

—] SAD@g a1 —DPap) = hmlnf[E

(1-¢)limsupkE (7.42)

n—oo
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Further, there exists a subsequence (n;);>1 along which E[a(G)/n] converges to «. € [0, 1], whence (7.41) yields
A-8ax <A D@g a1~ Pa) < . (7.43)

Since (7.43) holds for every € > 0 for large enough A, we conclude thatlimj .., A(®4 1+1 —®4,1) exists. Hence, taking
the limit € — 0, and thus A — oo, in (7.42) completes the proof. ]

Acknowledgement. The first author thanks Max Hahn-Klimroth for helpful discussions on the cut metric.
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APPENDIX A. PROOF OF LEMMAS 3.6 AND 7.12

The proof of Lemma 3.6 requires the regularity lemma for measures from [26].% Let A denote the Lebesgue measure.
For u € £ and measurable S, X < [0, 1] we write

1
Hsx = mfsfxﬂs,deds‘E 2,

with the convention that pg x is uniform if A(S)A(X) = 0. Further, let X = (X}, ..., Xk), S = (S1,...,S) be a partitions
of [0,1) into pairwise disjoint measurable sets. We write #X,#8 for the number K, L of classes, respectively. Then u
is e-regular with respect to (X, S) if there exists R c [#X] x [#S] such that the following conditions hold.

REG1: A(X;) >0and A(S;) > 0forall (i, j) € R.

REG2: ¥ ; heg MX)A(S)) > 1—e.

REG3: forall (i, j) € R and almost all 5, s' € S; we have IIin Wsx— ,U,S/'xdx”TV < eAM(X)).
REG4: if (i, j) € R, then for every U c X; with A(U) = eA(X;) and every T < §; with A(T) = €A(S;) we have

s, x; — |y <e.
A refinement of a partition (X, S) is a partition (X’,S’) such that for every pair (i’, j') € [#X'] x [S'] there is a pair
(i, j) € [#X] x [S] such that (le,,S;.,) < (X;,S)).

Theorem A.1 ([26]). For any € > 0 there exists N = N(g,Q) such that for every u € £ the following is true. Every
partition (Xo, So) with #Xo +#So < 1/¢ has a refinement (X, S) such that #X + #S < N with respect to which (i is
e-regular.

Additionally, we need the strong cut metric, defined by

Do(p,v) = sup
S$,X,w

fs fX Hsx(@) = Vs x(w)dxds (w,vex),

3The arguments in the appendix are special cases of more general results on the cut metric from [19].
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where S, X range over measurable subsets of the unit interval and w € Q. It is well known that Dg (-, -) induces a
metric on £'.

For y,v € % we define uev: [0,1]° — 2(Q?) by u@v; x, x, = ls,x, ®s,x,- Since [0, 112 with the Lebesgue measure
is isomorphic as a measure space to [0, 1] with the Lebesgue measure, we can view u & v as a strong P2(Q?)-valued
kernel. In particular, it makes sense to apply the strong cut metric to these kernels.

]2

Proposition A.2. The map (i, v) — K& v is continuous with respect to the strong cut metric.

Proof. Given ¢ > 0 pick a small enough § > 0 and assume that Do(u, ¢') < 8. Due to the triangle inequality it
suffices to prove that Do(u® v, ¢/ @ v) < ¢ for every v. Thus, we need to show that for any X < [0, 112, S< [0,1] and
o, TE,

Uxfs(us’xl (0) = s 1, (0)) Vs, (D) dsdxrdxp | < €. (A.1)

To this end, we may assume that A(S) > €2 and that J sVsx, (T)ds > g2 forall (x1, x2) € X. Further, with z = fol Vs x, (T)dS
consider the variable transformation

d
dr= Zﬂﬁéfl_f, (A.2)
z
Let T be the inverse image of S under the transformation (A.2). Then we obtain for any X; < [0, 1],
fX 1 fs (k5,21 (0) = s 1, (0)) Vs x, (T)dsdxy = 2 fX 1 fT Htx (0) =y y, (0)drdx;. (A.3)

But the assumption D (u, 1) < & implies that the double integral on the r.h.s. of (A.3) is bounded by £* in absolute
value (providing 6 is small enough). Thus, (A.1) follows. ]

Proof of Lemma 3.6. We may assume without loss that f(r) = 1{r = o} for some o0 € Q. Lete >0, pick a = a(e),
¢ = ¢(a) > 0 small enough and assume that y,v € £ are such that Do(u,v) < 6 for a small enough 6 = §(¢) > 0.
Applying Theorem A.1 twice, we obtain (X, S) with respect to which both p,v are ¢-regular, and L = #X + #S is
bounded in terms of ¢ only. Let R’ be the set of all pairs for which REG1-REG4 are satisfied for both g, v and that
satisfy A(X;,S;) > 58/ L. Assuming that 9 is sufficiently small, we obtain

8 ..
lts;,x; = Vs, x; 1 < forall (i, j)e R'. (A.4)
Furthermore, consider the random variables
k
zi =[] ts;x, (0n), z=) z,
h=1 i<#S
k
! ! !
zi= [ vsiunon), 2= z
h=1 i<#S

and define u',v' € & as follows. To construct y, partition the interval [0, 1] into pairwise disjoint sets T;, i € [#S],
of measure z;/z and fill the strip T; x [0, 1] with a suitably scaled copy of (15 x)ses; xe[o,1]- Construct v analogously
from the z\. Then 2o, f * u) = Pa(V', f * v) = 0. Furthermore, Proposition A.2 shows that with probability at
least 1 — a we have

#S

Y AS)Izi - zil < a?,

i=1

provided that ¢, 6 are chosen small enough. Since also z = a because the function f is strictly positive, we conclude
that with probability at least 1 — @ we have 2(u/,v') < @. We thus obtain a coupling of the random variables
f * i, f * v under which the expected cut distance is bounded by ¢, as desired. ]

Proof of Lemma 7.12. We proceed precisely as in the proof of Lemma 3.6, up until the point where the positivity

of f is used. In the setup of Lemma 7.12, the function f may take the value 0 on kernels that take the value 1

with positive probability; however, since we are assuming that the values of the kernels are bounded by A/(1 + A).

Therefore, the function f always attains values that are bounded away from 0. ([
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APPENDIX B. PROOF OF LEMMA 3.3
The proof of Lemma 3.3 requires the following operation. For functions f: QM*N — R, g: QPN — R we define

fog: QMHIN g o— f((oiietmy,jein) - & ((Oivm,j+n)ierny, jerny) -

Thus, the first M rows of o go into f, the last L rows go into g and we multiply the results.

We define a corresponding operation on kernels. Namely, for y,v € £ we define p® v : [0, 1% - 2(Q?) by
U Vs x=Usx®Vyx. Since ([0, 113,10 1) is isomorphic ([0,1], 1), we can view y® v as a P(Q?)-valued kernel, and
the cut metric extends to these kernels. Since the cut metric is invariant under swapping the axes, Proposition A.2
readily yields the following.

Proposition B.1. The map (u,v) — p® v is continuous with respect to the cut metric.
As a final preparation toward the proof of Lemma 3.3 we need the following fact.
LemmaB.2. Forany f:Q— R the map p€ &— E(f,u) is continuous.

Proof. We may assume without loss that f(r) = 1{o = 7} for some o € Q. Then

1 1
EQf 1) = fo fo ps.x(0)dxds,

and it is immediate from the definition of the cut metric that the integral on the right hand side is a continuous
function of p. (]

Proof of Lemma 3.3. Let f: Q™" — R and let u € &. Define v = (u®")®™. Then v is a kernel with values in Q"
and the definition of (-, -) ensures that E(f, u) = E{f,v). This already shows that the map p — E{f,u) is contin-
uous, because the map p— v is continuous by Proposition A.2 and B.1 and the map v — E(f,v) is continuous by
Lemma B.2. Now fix an integer ¢ > 2 and let n = v®/. Then

E[(f,m)] =E[(fm)]

and thus the continuity of the map y— E [( f p)[] follows from Proposition B.1 and Lemma B.2. ]
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