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ABSTRACT. In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called
the cavity method for studying spin systems on the Bethe lattice, i.e., the random d-regular graph [Eur. Phys. J. B 20 (2001)
217–233]. Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a
number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called
Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In
addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula
for the free energy. The general results have interesting ramifications on several special cases. MSC: 05C80

1. INTRODUCTION

1.1. Disordered systems and the Bethe lattice. In 2001 in a ground-breaking contribution Mézard and Parisi pro-
posed an analytic but non-rigorous technique that they called the cavity method for the study of spin glasses on
the ‘Bethe lattice’1, known in combinatorics as the random d-regular graph [50]. Mézard and Parisi argued that the
Bethe lattice constitutes an attractive halfway point between classical ‘mean-field’ models such as the Sherrington-
Kirkpatrick model with complete interaction between all sites and spatial models such as the Edwards-Anderson
model. Indeed, the Bethe lattice induces a non-trivial metric on the sites, each of which interacts with only a
bounded number of others. But at the same time Mézard and Parisi showed that the model is amenable to analytic
methods, even though matters are significantly more complicated than in the fully connected case. They went on
to argue that the spin glass on the Bethe lattice exhibits many of the properties expected of real glassy systems,
such as replica symmetry breaking and the proliferation of pure states.

From the original contribution [50] sprang a truly enormous body of work that has had a transformative impact
on an astounding variety of subjects, ranging from physics to combinatorics to machine learning. Many of the
applications may appear unexpected, even surprising. Almost all of them hinge on the cavity method. Prominent
success stories include the development of ‘low-density parity check codes’, a rare example of a statistical physics
idea leading directly to an eminently useful, and widely used, algorithm [59]. A further example is a new algorithm
for the compressed sensing problem, a fundamental signal processing task [61]. Other important cavity method-
based contributions pertain to classical problems in mathematics, such as phase transitions in random graphs and
other random structures [43, 48, 49]. The cavity method has also been used to put forward predictions in machine
learning, including the capacity of the Hopfield model or on restricted Boltzmann machines [47].

Due to these numerous ramifications, vindicating the cavity method rigorously has become an important re-
search task at the junction of mathematical physics, combinatorics and computer science. There has been a lot of
progress recently, e.g., [10, 34, 21, 54]; we shall review the literature in greater detail in Section 2.5. However, much
of this work is concerned with special cases, mostly the ‘replica symmetric’ scenario where there is just a single
pure state.

The aim of the present paper is to move past such assumptions and special cases. We confirm several of the
key hypotheses of Mézard and Parisi, particularly the decomposition into pure states and the validity of the Belief
Propagation recurrence, the mainstay of the cavity calculations. Further, we obtain a general variational formula
for the free energy that is perfectly in line with the Mézard-Parisi ansatz. Additionally, we show that the free energy
can be computed from the Belief Propagation representation of the pure states of the model. We obtain these
results not merely for a specific model, but for a broad family of models on the Bethe lattice. The prime example
is, of course, the diluted spin glass model. But in addition, since the proof techniques that we develop are generic,

1Sometimes the d-regular infinite tree is referred to as the ‘Bethe lattice’. However, as Mézard and Parisi point out, the d-regular infinite
tree does not provide a particularly useful framework for the study of spin interactions because almost all sites belong to the boundary of the
tree. The random d-regular graph, which they and hence we call the Bethe lattice, provides a useful way out: while the local geometry around
a given vertex is just a d-regular tree, at long distances this tree ‘wraps around’.
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the results apply to models that are of eminent interest in other areas, particularly combinatorics, such as the Potts
antiferromagnet or the hard-core model. Crucially, the results apply universally to all parameter values (such as
degree, inverse temperature) of the respective models.

We should point out, however, that the present results fall short of fully corroborating the Mézard-Parisi ansatz.
Most importantly, while we prove that general random factor graph models possess pure state decompositions
represented by (approximate) Belief Propagation fixed points, an important prediction of the Mézard-Parisi ansatz
pertains to the relative geometry of these fixed points. Roughly speaking, Mézard and Parisi predict three differ-
ent scenarios, depending on the parameter values (such as temperature). In the replica symmetric case, there is
just one single pure state (or possibly a small bounded number due to inherent symmetries). Moreover, in the 1-
step replica symmetry breaking scenario an unbounded number of pure states occur, each represented by a Belief
Propagation fixed point. But these fixed points are predicted to exhibit a strong symmetry property that ensures,
e.g., that the empirical distributions of the Belief Propagation messages in the different pure states are (nearly)
identical. Finally, in the full replica symmetry breaking scenario we also expect an unbounded number of pure
states and assorted Belief Propagation fixed points, which are arranged hierarchically in the fashion of an ultra-
metric tree. While in the present paper we prove the existence of a pure state decomposition and of associated
Belief Propagation fixed points, our methods do not suffice to establish these more precise predictions as to the
geometry and relative weights of the pure states. A full verification of these predictions remains an important open
problem as it would, among other things, lead to a significantly simplified variational formula for the free energy.
For a more detailed discussion of the Mézard and Parisi ansatz, replica symmetry breaking, and ultrametricity we
refer to [48, 56, 57].

Technically the paper builds upon and continues two intertwined threads of prior work. First, we bring to
bear a variant of the ‘regularity method’ from combinatorics that we developed recently [11, 16, 26] in order to
establish the pure state decomposition and to vindicate the Belief Propagation equations. Second, we seize upon
Panchenko’s work on asymptotic Gibbs measures and the interpolation method, particularly in order to derive the
variational formula for the free energy [55, 56]. Both of these methods were previously applied with great success
to random graphs of Erdős-Rényi type. This line of work crucially exploited the relative geometric flexibility of the
Erdős-Rényi model, whose Poisson degree distribution facilitates coupling arguments. By contrast, the geometry
of the Bethe lattice is rigid. While this entails that the specification of the model, the cavity equations and their
solution are quite ‘clean’, the rigidity poses substantial technical challenges that the present paper resolves.

Before presenting the main results of the paper, which cover a broad family of problems that we call random
factor graph models, in Section 2, we illustrate the results and the concepts around which they revolve with the
spin glass model from the original contribution of Mézard and Parisi. We also work out an additional application
to the hard-core model and the independence number of the random regular graph. Several further applications,
including the Potts model and the MAX q-CUT problem, are worked out in Section 7.

1.2. The diluted spin glass. For integers d ≥ 3, n > 0 such that dn is even, let G=G(n,d) be the uniformly random
d-regular graph on the vertex set Vn = {v1, . . . , vn}. With each edge e ∈ E(G) comes a standard Gaussian Je . The
random variables (Je )e∈E(G) are mutually independent. For a given inverse temperature β > 0, the diluted spin
glass on G is the probability distribution on {±1}Vn defined by

µG(σ) = 1

Z (G)

Y
v w∈E(G)

1+ tanh(βJv w )σvσw

2
, (1.1)

where the partition function Z (G) ensures normalization. 2 Without the couplings Je , this would just be the ferro-
magnetic Ising model on G. But since the Je are independent Gaussians, some will be positive and others negative.
In effect, some edges induce ferromagnetic and others antiferromagnetic interactions, causing frustration. Thus,
µG is a spin glass model, the well-known diluted spin glass on the Bethe lattice.

There are two fundamental problems associated with this and numerous similar models: first, to character-
ize the structure of the Boltzmann distribution µG. Does it exhibit long-range correlations? Does it decompose
into one or several ‘pure states’, and if so, how can we characterize them? Second, to calculate the quantity
limn→∞ 1

n E[log Z (G)], which we call the free energy density. Its fundamental importance is due to the fact that

other important observables derive from it. Moreover, the singularities of the function β 7→ limn→∞ 1
n E[log Z (G)]

constitute the phase transitions of the model.

2The expression (1.1) is equivalent to the possibly more familiar formula µG(σ) ∝ exp
¡
β
P

v w σvσw
¢
.

2



Bethe states and the Boltzmann distribution. With respect to the first problem, Mézard and Parisi hypothesized
that the Boltzmann distribution always decomposes into one or a moderate (albeit not necessarily bounded) num-
ber of pure states. Further, they hypothesized that these pure states are characterized by fixed points of a recur-
rence called Belief Propagation. Our first theorem confirms this hypothesis.

To be precise, writing ∂v for the set of neighbors of a vertex v , let M (G) be the set of all families (νu→v )v∈Vn ,u∈∂v

such that νu→v ∈ [0,1]. We call νu→v the message from u to v . The messages need not be symmetric, i.e., possibly
νu→v 6= νv→u . Furthermore, Belief Propagation is the operator BP : M (G) →M (G), ν 7→ ν̂, where

ν̂v→u =
Q

w∈∂v\u 1+2tanh(βJv w )(νw→v −1/2)P
σ∈{±1}

Q
w∈∂v\u 1+2σ tanh(βJv w )(νw→v −1/2)

. (1.2)

The motivation behind this operator, and the origin of the name ‘cavity method’, is this. Suppose we fix a vertex v in
a d-regular graph along with a neighbor u. Now suppose we remove the vertex u, thereby creating a ‘cavity’. Then
the ‘ideal’ messageµG,u→v that we would like to compute is just the marginal probabilityµG−v,u(1) that u takes spin
1 in the subgraph obtained by removing v . If the Boltzmann distribution µG is free from long-range correlations,
then these ideal messages should plausibly be a fixed point of the BP operator. Indeed, if we remove v , then very
likely its former neighbors will be mutually far apart in the resulting graph. In effect, the joint distribution of their
spins should factorize. If so, then a straightforward calculation verifies that the ideal messages are a fixed point of
BP. In fact this reasoning goes back to Bethe’s classical work [16].

However, generally spin glass models do exhibit long-range correlations, a phenomenon called replica sym-
metry breaking (see, e.g., [18, 27] for proofs that replica symmetry breaking occurs in certain models). Yet the
fundamental hypothesis of Mézard and Parisi holds that the phase space {±1}Vn always decomposes into Bethe
states S1, . . . ,S` in such a way that the conditional distributions µG[ · |Sh] are free from long-range correlations. For-
mally, this means that if we pick a pair of vertices (vi , v j ) uniformly at random, then typically the conditional joint
distribution µG,vi ,v j [ · |Sh] of the spins of vi and v j is close to the product distribution µG,vi ( · |Sh)⊗µG,v j ( · |Sh), i.e.,

1

n2

X
1≤i< j≤n

°°°µG,vi ,v j ( · |Sh)−µG,vi ( · |Sh)⊗µG,v j ( · |Sh)
°°°

TV
= o(1). (1.3)

In effect, within each Bethe state the ‘ideal’ messages are predicted to be an approximate fixed point of the BP
operator. To be precise, for adjacent vertices u, v we writeµG,v→u[Sh] =µG−u,v (1|Sh) for the conditional probability
given Sh that v takes spin 1 in the subgraph of G with u removed. Then we expect that

1

n

nX
i=1

X
u∈∂vi

°°µG,vi→u[Sh]− µ̂G,vi→u[Sh]
°°

TV = o(1) where (µ̂G,v→u[Sh])v∈Vn ,u∈∂v = BP(µG,v→u[Sh])v∈Vn ,u∈∂v . (1.4)

Further, the cavity method predicts that the Boltzmann marginals can be obtained from the messages by a formula
quite similar to (1.2):

1

n

nX
i=1

¯̄̄̄
µG,vi (1|Sh)−

Q
w∈∂vi

1+2tanh(βJ )(µG,w [Sh]−1/2)P
σ∈{±1}

Q
w∈∂vi

1+2σ tanh(βJ )(µG,w [Sh]−1/2)

¯̄̄̄
= o(1). (1.5)

The following theorem establishes these conjectures rigorously. We say that G enjoys a property with high proba-
bility (‘w.h.p.’) if the probability that the property holds tends to one as n →∞.

Theorem 1.1. For any d ≥ 3, β > 0 the following is true. Let L = L(n) → ∞ be any integer sequence that tends to
infinity. Then there exists a decomposition S0 = S0(G),S1 = S1(G), . . . ,S` = S`(G), ` = `(G) ≤ L, of the phase space
{±1}n into non-empty sets such that µG(S0) = o(1) and such that with high probability (1.3)–(1.5) are satisfied for
h = 1, . . . ,`.

Crucially, and in contrast to much prior work in this area, Theorem 1.1 applies indiscriminately to all d ,β. While it
is expected that in the ‘high-temperature’ regime (small β) there is just a single pure state, it is widely conjectured
that for large d and β the number of pure states is unbounded. Thus, we do not expect that it will be possible to
replace the unbounded L in Theorem 1.1 by a constant. Yet Theorem 1.1 shows that the number of states can be
upper bounded by an arbitrarily slowly growing function L(n).
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The free energy. The Bethe states and their associated messages contain all the information needed to compute
the free energy. To be precise, once more following the ideas of Mézard and Parisi, we can set up a recurrence for
computing the difference E[log Z (G(n +1,d))]−E[log Z (G(n,d))], which in turn enables us to write a formula for
1
n E[log Z (G(n,d))] by telescoping. To set up such a recurrence it is necessary to crack the rigid geometry of the
random regular graph open a little bit. To this end, we resort to the idea of creating a few ‘cavities’. Specifically, we
delete a few random vertices and edges from G(n,d). Formally, let ω> 0 and let X ,Y be two independent Poisson
variables with mean ω. Moreover, let u1, . . . ,u X and v 1w 1, . . . , v Y w Y be sequences of uniformly random vertices
and edges of G, chosen independently. With S1, . . . ,S` the decomposition from Theorem 1.1, we introduce weights

zG,h =µG(Sh) ·
XY

i=1

Ã X
σ∈{±1}

Y
v∈∂ui

1+2σ tanh(βJvui )(µG,v→ui [σ|Sh]−1/2)

!−1

·
YY

i=1

¡
1+4tanh(βJv i w i )(µG,v i→w i [1|Sh]−1/2)(µG,w i→v i [1|Sh]−1/2)

¢−1

and zG = P`
h=1 zG,h . Further, let C (G) be the set of all vertices of degree less than d in the graph Gn,ω obtained

from G by removing u1, . . . ,u X and v 1w 1, . . . , v Y w Y . Then with high probability each c ∈C (G) has degree precisely
d − 1, and we write c ′ for the erstwhile d ’th neighbor of c. Further, with c 1,c 2, . . . a sequence of uniformly and
independently chosen elements of C (G) and (J i )i≥1 a sequence of independent standard Gaussians, we let

B(G) = E
"

log
X̀

h=1

zG,h

zG

X
σ∈{±1}

dY
i=1

1+2σ tanh(βJ i )(µG,c i→c ′
i
[Sh]−1/2)

¯̄̄̄
G

#

− d

2
E

"
log1+4tanh(βJ 1)

X̀
h=1

zG,h

zG
(µG,c 1→c ′

1
[1|Sh]−1/2)(µG,c 2→c ′

2
[1|Sh]−1/2)

¯̄̄̄
G

#
− d

2
log2.

The expression B(G) mirrors our recurrence for the difference E[log Z (G(n +1,d))]−E[log Z (G(n,d))]. Having cre-
ated a moderate number of cavities, we insert a new (n +1)st vertex, connected to d randomly chosen ‘cavities’.
The first summand above represents the ensuing change in the free energy. But this operation adds d more edges,
whereas a random regular graph with n+1 vertices only has d/2 more edges than one with n vertices. Therefore, a
correction term is needed. Hence the second summand.

Crucially, the functional B(G) depends only on the pure state decomposition from Theorem 1.1 and the associ-
ated messages. The following theorem shows that this information suffices to compute the free energy.

Theorem 1.2. For all d ≥ 3,β> 0 we have

lim
n→∞

1

n
E[log Z (G)] = liminf

ω→∞ liminf
n→∞ E[B(G)].

Entirely in line with the ideas developed in [50], Theorem 1.2 establishes a direct conceptual link between Belief
Propagation and the pure state decomposition from Theorem 1.1 and the free energy for all d ,β. Of course, in order
to evaluate B(G) it is necessary to actually determine the pure state decomposition along with the corresponding
Belief Propagation messages. The shape of this decomposition, and the practical difficulty of computing it, will
depend significantly on the parameters d ,β. Alternatively, as we see next, it is possible to derive a variational
formula for the free energy.

A variational formula. The variational formula comes in terms of an optimization problem on a space that resem-
bles the graphon space from the theory of graph limits [46]. To be precise, let ν : [0,1]2 → [0,1], (s, x) 7→ νs,x and
ν′ : [0,1]2 → [0,1], (s, x) 7→ ν′s,x be measurable maps. We define the cut distance between ν,ν′ by

D2(ν,ν′) = inf
ϕ,ϕ′ sup

S,X⊂[0,1]

¯̄̄̄Z
S

Z
X
νs,x (ω)−ν′ϕ(s),ϕ′(x)(ω)dx ds

¯̄̄̄
,

where ϕ,ϕ′ : [0,1] → [0,1] are measurable maps that preserve the Lebesgue measure and S, X ⊂ [0,1] are measur-
able. Obtain the space K by identifying any ν,ν′ with D2(ν,ν′) = 0. Then K endowed with the cut distance is a
compact metric space. In addition, write D for the space of probability measures on K.

The formula for the free energy comes as a variational problem on a subspaceD? ofD. Let N , M ≥ 0 be integers.
For µ ∈ K we define a randomly perturbed µ∗(N ,M) ∈ K as follows. Let (x i , j )i , j≥1 be a family of uniform random
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variables on [0,1] and let (J i , j )i , j≥1 be a family of standard Gaussians, all mutually independent. Then for s ∈ [0,1]
we define

z s =
NY

i=1

Ã X
σ∈{±1}

dY
j=1

1+2tanh(βJ i , j )(µs,x i , j −1/2)

!
MY

i=1

¡
1+4tanh(βJ i+N ,1)(µs,x i+N ,1 −1/2)(µs,x i+N ,2 −1/2)

¢
.

Further, let

t = t (s) = inf

½
θ ∈ [0,1] :

Z θ

0
zudu ≥ s

Z 1

0
zudu

¾
, and µ∗(N ,M)

s,x =µt ,x ∈K.

Now, suppose that π ∈D is a distribution, and write µπ ∈ K for a sample from π. Then we let D? be the set of all
π ∈D such that the perturbed µπ∗(N ,M) has distribution π again for all N , M ≥ 0.

The definition of D?, which is an adaptation of the one stated by Panchenko [55] in the case of models of
Erdős-Rényi type, mirrors a natural combinatorial invariance property of the graph Gn,ω with the random cavities.
Indeed, because the numbers X ,Y of deleted edges and vertices are Poisson with a large mean ω, for any fixed
N , M the random graph Gn,ω with X deleted vertices and Y deleted edges is close in total variation to the one
with merely X −N deleted vertices and Y −M deleted edges. Furthermore, because adding or removing a small
number of edges only affects the Boltzmann weights by a bounded factor, we should expect that the Bethe states
of these two factor graphs remain the same. But, of course, the relative probability masses of the Bethe states will
be different. Accordingly, the weights z s mirror the changes in the weights of the Bethe states upon re-insertion
of N vertices, each with d incident edges, and another M edges into Gn,ω. Once we take ω and n to infinity, the
closeness of the two random factor graphs in total variation translates into the statement that the distribution of
the messages emitted by the cavities of Gn,ω belongs to D?.

Finally, define a functional B :K→R by letting

B(µ) = E
h

log

Ã X
σ∈{±1}

Z 1

0

dY
i=1

1+2σ tanh(βJ i , j )(µs,x i , j −1/2)ds

!

− d

2
log

µ
1+4tanh(βJ 1,1)

Z 1

0
(µs,x1,1 −1/2)(µs,x1,2 −1/2)ds

¶i
− d

2
log2.

We are ready to state the variational formula for the free energy.

Theorem 1.3. For all d ≥ 3 and β> 0 we have lim
n→∞

1

n
E[log Zβ(G)] = min

π∈D?
E[B(µπ)].

Theorem 1.2 provides the combinatorial interpretation of the optimal π for Theorem 1.3: it is the kernel repre-
senting the messages (µG,c→c ′ [ · |Sh])c∈C (G),h=1,...,` sent out by the cavities on the individual Bethe states.

1.3. The hard-core model. As a second application we discuss the hard-core model on the random regular graph
G=G(n,d). This is a probability distribution on the collection of independents sets of G parametrized by λ> 0, the
fugacity. Formally, encoding subsets of the vertex set by their indicator vectors, we define

µG(σ) = λ
Pn

i=1σi

Z (G)

Y
1≤i< j≤n

1−1{vi ∈ ∂v j }σiσ j (σ ∈ {0,1}n),

with Z (G) the partition function that turns µG into a probability measure. Thus, µG(σ) = 0 unless the 1-entries of
σ form an independent set in G, in which case the weight of σ is proportional to λ taken to the power of the size of
the independent set.

The hard-core model, of great prominence in statistical physics, is of eminent importance in combinatorics as
well because it is closely related to the problem of finding the size of the largest independent set of the random
regular graph. For d large, this problem was solved by Ding, Sly, and Sun [35] using an intricate version of the
second-moment method guided by insights from the 1-step replica symmetry breaking (1RSB) version of the cavity
method. But according to the physics predictions [14], the 1RSB method runs into an inherent obstacle for small
d as the model exhibits a continuous phase transition to a more complicated ‘full replica symmetry breaking’ (full
RSB) phase. In Corollary 1.5 below we will derive a formula for the largest independent set size that holds for all d
and that accommodates the full RSB scenario.

But let us first deal with the free energy of the hard-core model, in and of itself a well-known problem. To
derive a variational formula for the free energy, obtain Kλ from the space of all measurable functions [0,1]2 →
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[0,λ/(1+λ)] by identifying any ν,ν′ with D2(ν,ν′) = 0. Then Kλ is a compact. In addition, we let Dλ be the space
of probability measures on Kλ. Similarly to the spin glass problem, the formula for the free energy comes as a
variational problem on a subspace D?

λ
of Dλ. This subspace is defined as follows. Let (x i , j )i , j≥1 be a family of

independent random variables, uniformly distributed on [0,1], and let N , M ≥ 0 be integers. Then for µ ∈ Kλ we
define a random µ∗(N ,M) ∈Kλ as follows. For s ∈ [0,1] let

z s =
NY

i=1

Ã
1+λ

dY
j=1

1−µs,x i , j

!
MY

i=1

¡
1−µs,x i+N ,1µs,x i+N ,2

¢
and t = t (s) = inf

½
θ ∈ [0,1] :

Z θ

0
z N ,M
µ,u ds ≥ s

Z 1

0
z N ,M
µ,u du

¾
and set

µ∗(N ,M)
s,x =µt ,x ∈K.

Further, suppose that π ∈Dλ is a distribution, and write µπ ∈Kλ for an element chosen from π. Then we let D?
λ

be

the set of all π ∈Dλ such thatµπ and µπ∗(N ,M) are identically distributed for all N , M ≥ 0. Finally, let B :Kλ→R be
the function defined by

B(µ) = E
"

log

Ã
1+λ

Z 1

0

dY
j=1

1−µs,x1, j ds

!
− d

2
log

µ
1−
Z 1

0
µs,x1,1µs,x1,2 ds

¶#
.

The variational formula for the free energy reads as follows.

Theorem 1.4. For all d ≥ 3 and λ> 0 we have

lim
n→∞

1

n
E[log Z (G)] =Φd ,λ, with Φd ,λ = min

π∈D?
λ

E[B(µπ)].

In the limit λ→∞ the distribution µG,λ concentrates on the maximum independent sets of the random graph.
As an application of Theorem 1.4 we therefore obtain the following result on the size of the largest independent
set, i.e., the independence number α(G) of the random graph.

Corollary 1.5. For all d ≥ 3 we have lim
n→∞

1

n
E[α(G)] = lim

λ→∞
λ · (Φd ,λ+1 −Φd ,λ).

The formula in Corollary 1.5 may not be easy to evaluate; in particular, it may be difficult to obtain a numerical
estimate for a given value of d . Nonetheless, since the proofs show that the optimal π in Theorem 1.4 is closely
related to the Belief Propagation fixed points on G, it should be possible to extract combinatorial information
about the independent set problem on random graphs. In any case, Theorem 1.4 and Corollary 1.5 put a lid on the
complexity of the problem.

1.4. Organization. In Section 2 we present the main results of the paper, which cover a broad family of random
factor graph models. At the end of Section 2 we are in a position to discuss related work in detail. Sections 3–6
deliver the proofs of these general results. Finally, in Section 7 we show how Theorems 1.1–1.4 and Corollary 1.5
follow from the general results in Section 2. In addition, we work through several more applications that have each
received considerable attention in their own right, such as the Potts antiferromagnet.

2. RANDOM FACTOR GRAPHS

In this section we present the main results of the paper, which cover a broad class of models called random factor
graphs. The class encompasses many well-studied examples of problems on random regular graphs or hyper-
graphs, including the spin glass model from the previous section. Some other cases, such as the hard-core model
or extremal cuts, can be dealt with by taking limits; we will come to that in Section 7.

2.1. Definitions. To define random factor graph models, we consider a finite set Ω 6= ; whose elements we call
spins. Moreover, for an integer k ≥ 2 we let (Ψ,P ) be a probability space of weight functions ψ : Ωk → (0,1). We
always denote by ψ an element of Ψ chosen from the distribution P . The space Ψ may be finite or infinite. In the
latter case we assume that

E[exp(1/ min
σ∈Ωk

ψ(σ))] <∞. (2.1)

Furthermore, we always assume that the distribution P is invariant under permutations of the coordinates. That
is, for any ψ ∈Ψ and for any permutation κ of {1, . . . ,k} the function ψκ : σ 7→ψ(σκ1 , . . . ,σκk ) belongs to Ψ as well
and ψκ has the same distribution as ψ. Additionally, let p be a probability distribution on Ω with p(ω) > 0 for all
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ω ∈Ω. Further, let d ≥ 3,n > 0 be integers and set m = bdn/kc. Let Vn = {v1, . . . , vn} be a set of variable nodes and
let Fm = {a1, . . . , am} be a set of constraint nodes.

Definition 2.1. Suppose that k divides dn. The random factor graph G =G(n,d , p,P ) consists of

• a weight function ψai ∈Ψ drawn from the distribution P independently for each i = 1, . . . ,m and
• an independent uniformly random bijection ∂G : Fm × {1, . . . ,k} →Vn × {1, . . . ,d}.

The definition resembles the pairing model of random regular graphs [41]. Accordingly, we use standard graph-
theoretic terminology. For instance, we call xi ∈Vn and a j ∈ Fm adjacent if there exist s ∈ [d ] and k ∈ [k] such that
∂G (a j , t ) = (xi , s). We also use the symbol ∂G (a j , t ) for the variable node xi such that ∂G (a j , t ) = (xi , s). Further, we
write ∂G xi for the set of all a j ∈ Fm that xi is adjacent to, and similarly for a j . We omit the index and just write
∂xi ,∂a j etc. where the reference to the random graph is apparent. In particular, G induces a bipartite graph on the
variable and constraint nodes, and thereby the shortest path metric on Vn ∪Fm . Hence, by extension of the above
notation, we write ∂`G u for the set of all nodes at distance precisely ` from u and ∇`G u for set of all variable nodes
at distance at most ` from u.

We let S be the event that G is simple, i.e., that there do not occur multiple edges between any variable and
constraint nodes. Moreover, we denote by G the conditional distribution of G given S . Let us make a note of the
following well known fact.

Fact 2.2 ([41]). We have P [G ∈S ] ∼ exp
£−(d −1)(k −1)/2−1{k = 2}(d −1)2/4

¤
.

The random factor graph induces a probability distribution on ΩVn . To define it, we introduce the shorthand
ψai (σ) =ψai (σ(∂(ai ,1)), . . . ,σ(∂(ai ,k))) for i ∈ [m] and σ ∈ΩVn . Thus, ψai (σ) is the weight that constraint node ai

gives to σ. Further, we introduce the total weight

ψG (σ) =
mY

i=1
ψai (σ) (σ ∈ΩVn ).

by multiplying up all the weight functions of the constraint nodes. The total weightsψG (σ) give rise to the partition
function and the Boltzmann distribution:

Z (G) = X
τ∈ΩVn

ψG (τ)
nY

i=1
p(σ(xi )), µG (σ) = ψG (σ)

Z (G)

nY
i=1

p(σ(xi )) (σ ∈ΩVn ) (2.2)

Since all the weight functions ψ ∈Ψ are strictly positive, the Boltzmann distribution is a well-defined probability
measure on the phase spaceΩVn .

We set out to investigate the structure of the Boltzmann distribution µG ( · ) and to compute the partition func-
tion Z (G) or, more specifically, its logarithm, which we call the free energy. In Section 2.2 we will prove the main
result of the paper, which provides that the Boltzmann distribution decomposes into a convex combination of
relatively simple distributions called Bethe states. But before we come to that, let us look at an example.

Example 2.3 (the k-spin model). Let Ω= {±1}, let k ≥ 2 be an integer and let β> 0 be a real parameter. The k-spin
model is a generalization of the spin glass model from the previous section, which corresponds to the special case
k = 2. The weight functions of the k-spin model read

ψβ,J (σ1, . . . ,σk ) = 1

2

Ã
1+ tanh(βJ )

kY
i=1

σi

!
(J ∈R).

Thus, Ψ= {ψβ,J : J ∈ R}, and the distribution P on Ψ is defined by choosing J from the standard Gaussian distribu-
tion. This distribution clearly satisfies (2.1). Geometrically, this model lives on a generalized Bethe lattice where all
variable nodes, representing the sites, have degree d, while all constraint nodes, representing the interactions, have
degree k.

The hard-core model from Section 1.3 cannot be expressed as a factor graph model directly because of the
requirement that all weight functions be strictly positive. But it is possible to arrive at the hard-core model by
taking suitable limits; see Section 7 for details.
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2.2. Bethe states. The Belief Propagation message-passing scheme provides the mainstay of the physicists’ non-
rigorous cavity method. Our first main result vindicates its use by showing that the Boltzmann distribution of any
random factor graph model can be described in terms of Belief Propagation fixed points.

To introduce Belief Propagation let M (G) be the message space, consisting of all families

ν= (νv→a ,νa→v )v∈Vn ,a∈Fn :v∈∂G a

of probability measures νv→a ,νa→v onΩ. For adjacent a, v we interpret νv→a as a ‘message’ from v to a, and νa→v

as a message in the reverse direction. We equip M (G) with the metric

D1(ν,ν′) = 1

n

X
v,a:v∈∂G a

°°νv→a −ν′v→a

°°
TV +°°νa→v −ν′a→v

°°
TV .

Belief Propagation is the operator BP : M (G) →M (G) that maps ν to ν̂ defined by

ν̂v→a(σ) = p(σ)
Q

b∈∂v\a νb→v (σ)P
τ∈Ω p(τ)

Q
b∈∂v\a νb→v (τ)

, ν̂a→v (σ) =
P
τ∈Ω∂a 1{τv =σ}ψa(τ)

Q
w∈∂a\v νw→a(τw )P

τ∈Ω∂a ψa(τ)
Q

w∈∂a\v νw→a(τw )
. (2.3)

Further, a point ν ∈M (G) is an ε-Belief Propagation fixed point if D1(ν,BP(ν)) < ε.
For a thorough discussion and motivation of Belief Propagation we refer to [48]. The punch line is that on acyclic

factor graphs a Belief Propagation fixed point computation provably yields the marginals of the Boltzmann distri-
bution as well as the free energy. Since the random graph G contains only very few short cycles, one may therefore
expect that Belief Propagation renders meaningful information on random factor graphs as well, provided that the
Boltzmann distribution is free of long-range correlations.

Alas, in general long-range correlations do occur. Nevertheless, we will prove that the Boltzmann distribution
still decomposes into a convex combination of relatively few ‘Bethe states’, characterized by Belief Propagation
fixed points. To be precise, suppose that ; 6= S ⊂ΩVn is an event. Let v be a variable node and let a ∈ ∂G v . Then we
define µG ,v→a( · |S) as the conditional marginal of v given S under the Boltzmann distribution of the factor graph
G −a obtained from G by removing the constraint node a. In formulas, with

­ · ,µG ( · |S)
®

denoting the expectation
with respect to σ drawn from µG ( · |S), we have

µG ,v→a(σ | S) =
­

1{σv =σ}/ψa(σ),µG ( · |S)
®­

1/ψa(σ),µG ( · |S)
® (σ ∈Ω). (2.4)

Similarly, we let µG ,a→v ( · |S) be the conditional marginal of v under the Boltzmann distribution of the factor graph
obtained from G by removing all constraint nodes b ∈ ∂G v \ a and disregarding the prior of v :

µG ,a→v (σ | S) =
­

1{σv =σ}/(p(σ)
Q

b∈∂v\a ψb(σ)),µG ( · |S)
®­

1/(p(σv )
Q

b∈∂v\a ψb(σ)),µG ( · |S)
® (σ ∈Ω). (2.5)

We refer to µG ,v→a( · |S),µG ,a→v ( · |S) as the standard messages given S.

Definition 2.4. Let ε> 0. An event S ⊂Ωn is an ε-Bethe state of G if the following two conditions hold.

BS1: the standard messages given S are an ε-Belief Propagation fixed point.
BS2: if `,`′ ≤ 1/ε and if I ⊂Vn , J ⊂ Fm are independent uniformly random sets of sizes |I | = `, |J | = `′, then for

every σ ∈ΩVn we have

E
¯̄̄ ­

1{∀v ∈ I ∪∂J ∪∂2I :σv =σv },µG ( · |S)
®

−Y
v∈I

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a\v µw→a(σw |S)P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a ψa(τ)

Q
w∈∂a\v µw→a(τw |S)

· Y
a∈∂J

ψa(σ)
Q

w∈∂a µw→a(σw |S)P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µw→a(τw |S)

¯̄̄
< ε. (2.6)

Thus, on a Bethe state the standard messages form an approximate Belief Propagation fixed point. Further-
more, locally around a bunch of randomly chosen variable and constraint nodes the Boltzmann distribution is
characterized by the standard messages. In particular, setting `= 0 and `′ = 1 in BS2, we see that the conditional
joint distribution µG ,∂a( · |S) of the variables around a typical random constraint node a reads

µG ,∂a(σ | S) = ψa(σ)
Q

w∈∂a µw→a(σw |S)P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µw→a(τw |S)

+O(ε) (σ ∈Ω∂a). (2.7)
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Additionally, setting ` = 1 and `′ = 0, we find that the local distribution around a typical variable node v , i.e., the
distribution µG ,v∪∂2v ( · |S) induced on the second neighborhood of v , reads

µG ,v∪∂2v (σ | S) = p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a µw→a(σw |S)P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µw→a(τw |S)

+O(ε) (σ ∈Ωv∪∂2v ). (2.8)

Thus, for most variable nodes v the conditional Boltzmann marginal µG ,v ( · |S) satisfies

µG ,v (σ | S) = p(σ)
Q

a∈∂v µa→v (σ|S)P
χ∈Ω p(χ)

Q
a∈∂v µa→v (χ|S)

+O(ε) (σ ∈Ω). (2.9)

Apart from the conditioning on S, the formulas (2.7)–(2.9) coincide with the ones known in the acyclic case [48].
In addition, (2.6) implies that if we pick a few variable and/or constraint nodes randomly, then the joint distri-

bution of their neighborhoods approximately factorizes. Applied to `= 2, `′ = 0, this means that once we condition
on S, the joint distribution of two randomly chosen variable nodes is close to a product distribution:

1

n2

X
1≤i< j≤n

E
°°°µG ,vi ,v j ( · |S)−µG ,vi ( · |S)⊗µG ,v j ( · |S)

°°°
TV

=O(ε); (2.10)

in statistical physics jargon, the conditional distribution µG ( · |S) is replica symmetric.
Confirming the picture sketched by the cavity method and vindicating the use of Belief Propagation for the study

of the Boltzmann distribution, the following theorem shows that w.h.p. the Boltzmann distribution of a random
factor graph decomposes into a relatively small number of Bethe states.

Theorem 2.5. For any function L = L(n) →∞ there exists ε = ε(n) → 0 such that the following is true. There exists
a decomposition S0 = S0(G),S1 = S1(G), . . . ,S` = S`(G), `= `(G) ≤ L, of Ωn into non-empty sets such that µG(S0) ≤ ε
such that with high probability S1, . . . ,S` ⊂Ωn are ε-Bethe states. The same statement holds with G replaced by G.

An important feature of Theorem 2.5 is that the upper bound L on the size of the Bethe state decomposition
can be an arbitrarily slowly growing function of n. Thus, the Gibbs measure can generally be decomposed into
relatively few Bethe states, within which long-range correlations are negligible and where short-range correlations
are characterized by Belief Propagation.

2.3. The free energy. Apart from the structure of the Boltzmann distribution, a second key challenge is the compu-
tation of the free energy. More specifically, arguably the single most important quantity associated with a random
factor graph model is the free energy density

lim
n→∞

1

n
E
£
log Z (G)

¤
. (2.11)

Of course, it comes as no surprise that computing (2.11) generally poses a formidable challenge. In fact, even the
existence of the limit remains an unresolved problem in several interesting cases.

The next theorem provides a formula for (and en passant establishes the existence of) the limit (2.11) in terms
of the Bethe state decomposition from Theorem 2.5 for a broad class of models. We merely require a certain
‘convexity condition’. This condition can be stated neatly in terms of a space that resembles the graphon space
from combinatorics [46]. Specifically, let K be the space of all measurable maps [0,1]2 → P (Ω) modulo equality
(Lebesgue-)almost everywhere. We call these maps strong kernels. For (s, x) ∈ [0,1] and µ ∈ K we let µs,x ∈ P (Ω)
denote the function value of µ at (s, x). Further, for µ,µ′ ∈K we define the cut distance

D2(µ,µ′) = inf
ϕ,ϕ′ sup

S,X⊂[0,1]
ω∈Ω

¯̄̄̄Z
S

Z
X
µs,x (ω)−µ′

ϕ(s),ϕ′(x)(ω)dx ds

¯̄̄̄
, (2.12)

where the infimum is over all measurable ϕ,ϕ′ : [0,1] → [0,1] that preserve the Lebesgue measure and where the
supremum runs over all measurable S, X ⊂ [0,1]. Strictly speaking, D2( · , · ) is a pre-metric (as possibly D2(µ,ν) = 0
even thoughµ 6= ν). We therefore letK be the metric space where any twoµ,νwith D2(µ,ν) = 0 are identified. Then
K is a compact Polish space [40]. Additionally, we write D for the space of all probability distributions on K.

Crucially, the convexity assumption that we require comes solely in terms of the distribution P on the set Ψ of
weight functions. Namely, let x = (x i )i≥1 be a sequence of independent uniformly random points in [0,1], chosen
independently ofψ ∈Ψ. Writing E [ · ] for the expectation on x ,ψ, we make the following assumption.

9



For all µ,µ′ ∈K and for every integer `≥ 1,

E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µs,x i (σi )ds

!`#
+ (k −1)E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µ′
s,x i

(σi )ds

!`#

≥
kX

h=1
E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0
µs,xh (σh)

Y
i∈[k]\{h}

µ′
s,x i

(σi )ds

!`#
.

(POS)

We will see in Section 7 that POS is easily verified for several interesting models, including the spin glass model
from Section 1.

To obtain the formula for the free energy, we will represent the Bethe state decomposition of the random factor
graph by a point in K. Specifically, let X ,Y be random variables with distribution Po(ω) for an integer ω > 0,
mutually independent and independent of G . Then with S1, . . . ,S` the decomposition promised by Theorem 2.5
we introduce for i = 1, . . . ,`,

žG ,i =µG (Si ) ·
XY

i=1

ÃX
χ∈Ω

p(χ)
Y

a∈∂vi

X
τ∈Ω∂a

1{τvi =χ}ψa(τ)
Y

w∈∂a\vi

µw→a(τw |Si )

!−1

(2.13)

·
YY

i=1

Ã X
τ∈Ω∂ai

ψai (τ)
Y

w∈∂ai

µw→ai (τw |Si )

!−1

,

and we let žG =P`
i=1 žG ,i . It will emerge that combinatorially žG ,i /žG represents the probability mass of the Bethe

state Si in the factor graph G ′ where we remove the first Y constraint nodes a1, . . . , aY as well as the first X vari-
able nodes v1, . . . , vX along with their adjacent constraint nodes. While this removal operation has no discernible
impact on the free energy (so long as ω= o(n)), it enables us to set up a recurrence for computing this quantity.

The recurrence comes in terms of the messages sent out by those variable nodes that are left with degree d −1
after the removal operation. We thus set up a kernel that captures these messages. Specifically, let vh1 , . . . , vht be
the variable nodes of degree d − 1 in the factor graph G ′ and let b1, . . . ,bt be their G-neighbors that got deleted.
Then we define the kernel µ̌G ,X ,Y : [0,1]2 →P (Ω) by letting

µ̌G ,X ,Y :(s, x) 7→
tX

i=1

X̀
j=1

1

(
t −1 ≤ x < t ,

X
h< j

žG ,h < szG ≤ X
h≤ j

žG ,h

)
µG ,vhi

→bi ( · |S j ). (2.14)

Recalling that G , X ,Y are random, we write π̌n,ω ∈D for the distribution of µ̌G ,X ,Y . Analogously, we write π̌n,ω,S

for the distribution of µ̌G,X ,Y defined for the simple random factor graph.
Finally, we introduce a functional on the space D that encodes the recurrence for computing the free energy

from the Bethe state decomposition. Namely, let (x i , j )i , j≥1 be a family of random variables that are uniform on
[0,1], let (hi )i≥1 be a family of random variables that are uniform on {1, . . . ,k}, let (ψi )i≥1 be a sequence of samples
from P , and let µπ ∈K be a sample from π ∈D, all mutually independent; then

B(π) = E
h

log
Z 1

0

X
σ∈Ω

p(σ)
dY

i=1

X
τ∈Ωk :
τhi

=σ

ψi (τ)
Y

j 6=hi

µπs,x i , j
(τ j )ds −d(1−k−1) log

Z 1

0

X
τ∈Ωk

ψ1(τ)
kY

j=1
µπs,x1, j

(τ j )ds
i

. (2.15)

We obtain the following expression for the free energy.

Theorem 2.6. Assume that condition POS is satisfied. Then

lim
n→∞

1

n
E
£
log Z (G)

¤= liminf
ω→∞ liminf

n→∞ B(π̌n,ω), lim
n→∞

1

n
E
£
log Z (G)

¤= liminf
ω→∞ liminf

n→∞ B(π̌n,ω,S ).

In particular, the limit on the left hand side exists, and it can be computed from the Bethe state decomposition.

2.4. A variational formula. We proceed to state a variational formula for the free energy of the random factor
graph models akin to the one from Theorem 1.3 for the spin glass model. Namely, we express the limit (2.11)
variationally as the infimum of B(π) over π chosen from a certain subspace D? ⊂ D. The definition of D? is
an adaptation to the Bethe lattice of the invariance property that Panchenko [55] put forward in the case of the
Erdős-Rényi model.
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To define the subspaceD? letµ ∈K , let s ∈ [0,1] and let N , M ≥ 0 be integers. We introduce the random variable

z(s) =
NY

i=1

"X
σ∈Ω

p(σ)
dY

j=1

X
τ∈Ωk

1{τhi =σ}ψdi+ j (τ)
Y

h 6=hi

µs,xk(di+ j )+h (τh)

#
(2.16)

·
MY

i=1

" X
τ∈Ωk

ψd N+i (τ)
kY

j=1
µs,xdk(N+1)+ j (τ j )

#
.

Further, let

t = t (s) = inf

½
θ ∈ [0,1] :

Z θ

0
z(u)du ≥ s

Z 1

0
z(u)du

¾
and µ∗(N ,M)

s,x =µt ,x . (2.17)

Thus, for each µ ∈ K we obtain a random µ∗(N ,M) ∈ K. Further, given π ∈ D we can apply this operation to a
randomly chosen kernel µπ ∈K, thus obtaining a random kernel µπ∗(N ,M). We denote the distribution of µπ∗(N ,M)

by π∗(N ,M). Now, let D? be the set of all densities π ∈D such that π∗(N ,M) = π for all N , M ≥ 0. Then we obtain the
following self-contained formula for the free energy.

Theorem 2.7. Assume that POS holds. Then

lim
n→∞

1

n
E
£
log Z (G)

¤= lim
n→∞

1

n
E
£
log Z (G)

¤= min
π∈D?

B(π).

Admittedly, the variational formula may not be easy to evaluate. But Theorem 2.7 places a lid on the complexity
of the problem, and Theorem 2.6 provides an explicit combinatorial interpretation of the minimizer in terms of
Belief Propagation fixed points and Bethe states.

2.5. Discussion and related work. Over the past two decades an enormous amount of research, based on both
rigorous and non-rigorous techniques, has been devoted to random factor graph models. Much of this work has
been sparked by the cavity method advanced in the original contribution of Mézard and Parisi [50]. A survey of
this literature up until about 2008 can be found in [48]. More recently models of Bayesian inference problems such
as the stochastic block model have received a great deal of attention as well; this literature is surveyed in [1, 53, 61].

Rigorous work on random factor graphs and the cavity method can broadly be split into two categories. First,
contributions that investigate physics predictions on specific models. Many of these contributions, particularly
the earlier ones, rely on ‘classical’ techniques such as the second moment method, albeit frequently with physics-
inspired twists. Examples include work on the k-SAT threshold [4, 7, 22, 23, 33], which culminated in the proof of
the k-SAT threshold conjecture for large k [34], the Potts model and the random graph coloring problem [5, 12, 17,
36] or the hard-core model [28, 35]. Some recent work is based on the powerful but technically demanding idea of
‘spatial coupling’, which has led to important results in, e.g., coding theory [39] and random constraint satisfaction
problems [3]. A second line of work focused on the mathematical vindication of the cavity method in general, with
applications to specific models of interest. Examples include work on the role of spatial mixing [8, 29, 30, 31], the
use of the interpolation method [15, 45, 58], phase transitions in inference problems [13, 21], and contributions
based on the asymptotic analysis of the Boltzmann distribution such as the influential work of Panchenko [55] as
well as [11, 16]. The present paper belongs to this second category.

In the following we discuss the main results and methods of the paper and how they compare to prior mathe-
matical research. Subsequently we compare the present work with the physics intuition and discuss directions for
future research.

Mathematical work. We regard Theorem 2.5 as the main result of the paper. The theorem confirms in great gen-
erality one of the key assumptions behind the cavity method and explains the success of Belief Propagation as a
device for analyzing random regular factor graph models. Indeed, the existence of a Bethe state decomposition has
been conjectured explicitly, e.g., by Mézard and Montanari [48, Chapter 19]; see also Dembo and Montanari [29].

In a prior paper [25] we constructed a Bethe state decomposition for random factor graph models of Erdős-
Rényi type, where the constraint nodes independently choose k-tuples of adjacent variable nodes. While we will
be able to use some of the general tools developed in that work, the main argument breaks in the case of the Bethe
lattice due to its rigid geometry. Indeed, the construction of the Bethe state decomposition hinges on coupling
arguments involving, e.g., a coupling of a factor graph with n variable and m constraint nodes and another one with
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parameters n′ and m′ such that n = n′+O(1), m = m′+O(1). Due to the Poisson degree distribution and the Stein-
Chen property, such arguments are pretty straightforward in the Erdős-Rényi case. One might say that the Erdős-
Rényi graph resembles a gentle climbing wall with footholds supplied by the irregularity of the Poisson degree
distribution. By contrast, the Bethe lattice with its regular degree makes for a smooth cliff. As a consequence, the
Bethe lattice requires new ideas, leading to a rather subtle but ultimately elegant argument. The upshot is that
this proof, which we present in Section 4, can be expected to generalize to other random graph models with given
degrees. Apart from the appeal of such lattice-like models from a physics perspective, these models play a vital
role, e.g., in coding theory, where a suitably chosen degree sequence is apt to greatly boost performance [59].

Similarly, the variational formula for the free energy provided by Theorem 2.7 is a generalization and adapta-
tion of the formula established by Panchenko [55] for models of Erdős-Rényi type with spinsΩ= {±1}. Panchenko’s
proof relies on two ingredients: an interpolation argument and a coupling argument. So does ours. But while the
interpolation argument, an adaptation of the technique of Franz and Leone [37], goes through without too much
trouble, the coupling argument does not. Once more the rigidity of the Bethe lattice poses substantial challenges
that require subtle new arguments. A further, albeit relatively minor extension is that the present work applies to
relatively general models with two or more spins, subject only to the condition POS. A further similarity between
Panchenko’s work and ours is the embedding of discrete Boltzmann distributions into a compact metric space,
which enables us to pick convergent subsequences. While Panchenko resorts to the Aldous-Hoover represen-
tation, here we use the cut metric and the associated kernel space, which is convenient to link the combinatorial
representation of the measures in terms of messages directly with the free energy formula. That the Aldous-Hoover
representation is closely related to graph limits is, of course, a well known fact [32].

Furthermore, Bayati, Gamarnik and Tetali [15] applied the interpolation method to factor graph models, in-
cluding ones with regular degrees, to establish the existence of the limit limn→∞ 1

n E[log Z (G)] in certain cases via a
super-additivity argument. In the process they also used arguments based on ‘cavities’, i.e., the removal of a small
but linear number of vertices from the graph; a similar trick was used in [24] as well. But here, particularly in the
construction of the Bethe state decomposition, we need to tread much more carefully. In particular, while removal
of a small linear number of vertices does not shift the free energy too much, here we can only afford the creation of
a very small number of cavities in order to avoid a distortion of the Boltzmann distribution, an extremely volatile
object.

Theorem 2.6, which expresses the free energy density in terms of the Bethe state decomposition, is a synthesis
of Theorems 2.5 and 2.7. The proof shows that the free energy can be expressed in terms of a particular distribution
on kernels [0,1]2 →P (Ω), namely the one that encodes the Bethe state decomposition of the random factor graph
or, more specifically, the associated Belief Propagation messages. No corresponding result was previously known
even in the conceptually simpler Erdős-Rényi case.

Apart from the interpolation method and coupling arguments, the proofs of Theorems 2.5–2.7 rely on some of
the techniques that we developed in [11, 21, 26, 16], particularly the cut metric and its ramifications. The cut met-
ric, which we apply to kernel representations of probability distributions, was originally developed in the context
of the regularity method [38] and the theory of graph limits in combinatorics [46]. Here we use the cut metric and
certain assorted results, such as the ‘pinning lemma’ (Lemma 3.15 below) from [21] as tools, e.g., in the construc-
tion of the Bethe state decomposition.

While the present paper is concerned with diluted models where each node has a (fixed) bounded number of
neighbors, there is also a substantial literature on fully connected models. The prime example, of course, is the
Sherrington-Kirkpatrick model. The monographs of Panchenko [57] and Talagrand [60] provide an overview of
this literature. In particular, the TAP equations, the (simplified) fixed point equations that correspond to the Belief
Propagation equations in the fully connected case, have been established in several cases [9].

In Section 7 we work out several application of the general results to specific models, such as the spin glass
model from Section 1. Pointers to related work on the specific problems can be found there.

The physics perspective. The seminal work of Mézard and Parisi [50] marks the starting point of a substantial body
of physics work. Highlights include the Survey Propagation algorithm and precise predictions on phase transitions,
including satisfiability thresholds in combinatorial problems [43, 51, 49].

The results provided by Theorem 2.5–2.7 are perfectly in line with the physics predictions. But we should com-
ment on a subtle point that is apt to cause confusion. Namely, it has been pointed out that within the replica
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symmetric phase of certain models the support of the Boltzmann distribution may decompose into an exponen-
tially large number of tiny ‘clusters’ [49, 43], a phenomenon called ‘dynamic replica symmetry breaking’. Indeed,
it has been conjectured that each of these tiny clusters induces a Bethe state [48]; for the special case of the ran-
dom graph coloring problem, this can be verified rigorously [12]. At first glance this proliferation of Bethe states
may appear to contradict Theorem 2.5, where the number of Bethe states is upper-bounded by an arbitrarily slowly
growing function L(n). Yet the Bethe state decomposition is not unique, and despite the abundance of tiny clusters,
µG itself is replica symmetric (i.e., condition (2.10) holds for S =Ωn) throughout the dynamic RSB phase. In effect,
Theorem 2.5 would render just a single Bethe state that comprises all of the tiny clusters. By contrast, beyond the
dynamic RSB phase, within the so-called condensed phase, Theorem 2.5 would yield a non-trivial decomposition.
The existence of a condensed phase has been established rigorously in several examples [18, 21].

The variational formula for the free energy furnished by Theorem 2.7 is in line with the physics work, which
does, however, provide additional clues as to the structure of the minimizer of the functional B( · ). Specifically,
three different scenarios are expected to occur, depending on the model and the choice of its parameters. First,
the replica symmetric scenario with a single (or a bounded number of) Bethe states. Second, the so-called ‘one-
step replica symmetry breaking’ scenario, where there are an unbounded number of ‘independent’ Bethe states.
Third, the ‘full replica symmetry breaking’ scenario, where the Bethe states form a hierarchical structure; see [48]
for a detailed discussion. Clearly, in order to better evaluate the variational formula it would be very valuable
to establish this additional structural information rigorously; in the Erdős-Rényi case first attempts have been
undertaken in [56].

2.6. Organization. In Section 3 we introduce the necessary pieces of notation and state some basic results that we
will need. Then in Section 3.3 we revisit the cut metric. While much of what we need on this subject already appears
in earlier papers, there are a few general preparations that we need to make and that we carry out in that section.
Subsequently Section 4 deals with the proof of Theorem 2.5. In Sections 5 and 6 we then prove Theorem 2.7 about
the variational formula for the free energy. Section 6 also contains the proof of Theorem 2.6. Finally, in Section 7
we work through a few applications, including the spin glass and hard-core models from Section 1.

3. PRELIMINARIES

3.1. Basics. For an integer `≥ 1 we use the shorthand [`] = {1, . . . ,`}. Furthermore, the symbols O( · ),Ω( · ), . . . refer
to the limit n →∞ by default. To indicate asymptotics with respect to another variable K tending to infinity, we
write OK ( · ),ΩK ( · ), etc. Further, where set operations involve singletons, we usually omit braces. For instance, if
x ∈ X , then we just write X \ x rather than X \ {x}.

For a finite set X we let P (X ) be the set of all probability distributions on X , endowed with the total variation
distance. More generally, if (X ,A) is a measurable space, then P (X ) =P (X ,A) denotes the set of all probability
measures on this space. Further, for probability measures π,π′ ∈P (X ) we let Γ(π,π′) be the set of all couplings of
π,π′. Thus, γ ∈ Γ(π,π′) is a probability distribution on X ×X with marginals π,π′.

Suppose that X is a finite set, that n ≥ 1 is an integer and that µ ∈P (X n). Then we denote byσµ,σ1,µ,σ2,µ, . . . a
sequence of independent samples from µ. We omit the superscript µwhere it is evident from the context. Further,
if f : (X n)`→R is a function, then we write

­
f (σ1, . . . ,σ`),µ

®
for the expectation of f with respect to independent

samples from µ; thus, D
f (σ1, . . . ,σ`),µ

E
= X
σ1,...,σ`∈X n

f (σ1, . . . ,σ`)
Ỳ
i=1

µ(σi ).

Suppose that Ω,V 6= ; are finite sets. For a distribution µ ∈ P (ΩV ) and a set I ⊂ V we denote by µI the joint
distribution of the coordinates I . That is,

µI (σ) = X
τ∈Ωn

1{∀i ∈ I : τi =σi }µ(τ) (I ⊂V ,σ ∈ΩI ).

Forσ ∈ΩI we use the shorthandµ(σ) =µI (σ). Moreover, if I = {i1, . . . , il } we usually write µi1,...,il instead ofµ{i1,...,il }.
Additionally, if I ⊂V and τ ∈ΩV , then we let τI = (τi )i∈I be the restriction of τ to I .

We keep the notation from Section 2; in particular, Ω continues to denote a finite set of spins, p is a probability
distribution on Ω, Ψ is a measurable space of functions Ωk → (0,1), and P is a probability distribution on Ψ. In
addition throughout the paper we denote by

x i , x̂ i , si , x i , j , x ′
i , j , x ′′

i , j , x̂ i , j (i , j ≥ 1)
13



uniformly distributed random variables with values in [0,1]. Additionally,

ψ,ψi ,ψi , j ,ψ′
i , j ,ψ′′

i , j ,ψ̂i , j (i , j ≥ 1)

denote elements ofΨ drawn from the distribution P . Further,

hi ,hi , j ,h′
i , ĥi , j (i , j ≥ 1)

are uniformly distributed random variables with values in [k]. All of the above random variables are mutually
independent as well as independently of any other sources of randomness. These random variables yield random
functions that will play an important role: for i ≥ 1 we let

ϕi :Ωdk →R, σ 7→ X
χ∈Ω

p(χ)
dY

j=1
1{σk( j−1)+hi , j =χ}ψi , j (σ),

ϕ̂i :Ωdk →R, σ 7→ X
χ∈Ω

p(χ)
dY

j=1
1{σk( j−1)+ĥi , j

=χ}ψ̂i , j (σ).

3.2. Factor graphs. In Section 2 we already introduced the random factor graph model G(n,d , p,P ). To facilitate
the proofs we need the following abstract definition.

Definition 3.1. Suppose that (X ,A) is a measurable space. An X -factor graph G = (V ,F, (∂a)a∈F , (ψa)a∈F ,π) consists
of

• a finite set V of variable nodes,
• a finite set F of constraint nodes,
• a set ∂a ⊂V for each a ∈ F ,
• a function ψa : X ∂a → [0,∞) for each a ∈ F and
• a probability measure p on X V , called the prior.

A factor graph induces a bipartite graph on V ∪F , where x ∈ V is adjacent to a ∈ F iff v ∈ ∂a. Accordingly, for
a variable node v we let ∂v ⊂ F be the set of adjacent constraint nodes (i.e., a ∈ ∂v iff v ∈ ∂a). The bipartite graph
defines a metric on V ∪F , the shortest path metric. For a variable or constraint node u we let ∂`u = ∂`G u be the set

of all nodes at distance precisely ` from u. Moreover, ∇`u =V ∩ (u∪Si≤`∂i u) denotes the set of all variable nodes
at distance no more than ` from u.

Further, for an assignment σ ∈ΩV and a ∈ F we use the notation ψa(σ) =ψa(σ∂a) and we define

ψG (σ) = Y
a∈F

ψa(σ∂a) and Z (G) =
Z
X V

ψG (σ)dp(σ).

Providing that Z (G) > 0, we introduce a probability measure µG on X V , the Boltzmann distribution, by letting

dµG (σ) = ψG (σ)

Z (G)
dp(σ).

Mostly the factor graphs that we deal with will have a finite space X = Ω and the prior p will be the product
measure p=Nv∈V pv . In this case we introduce the standard messages given an event S ⊂ΩV as in Section 2: for a
constraint node a and v ∈ ∂a we let

µG ,v→a(σ | S) =
­

1{σv =σ}/ψa(σ),µG ( · |S)
®­

1/ψa(σ),µG ( · |S)
® (σ ∈Ω), (3.1)

µG ,a→v (σ | S) =
­

1{σv =σ}/(pv (σ)
Q

b∈∂v\a ψb(σ)),µG ( · |S)
®­

1/(pv (σv )
Q

b∈∂v\a ψb(σ)),µG ( · |S)
® (σ ∈Ω). (3.2)

In the case that S =ΩV is the entire phase space, we omit the conditioning from the notation and just write µG ,v→a

and µG ,a→v , respectively.

3.3. The cut metric revisited. The cut metric, defined in (2.12), plays a key role in the proofs of the main results. In
this section we summarize a few basic facts about the cut metric. Although some have been proved in prior work,
we will need to provide a few extensions and adaptations for our purposes. In addition to the continuous version
from (2.12), we also need a discrete version of the cut metric, which we present in Section 3.3.2.
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3.3.1. The continuous cut metric. We remember that K denotes the space of all measurable maps [0,1]2 →P (Ω),
up to equality almost everywhere; we call such maps strong kernels. The cut distance (2.12) induces a pre-metric
on this space [40]. Moreover, on the space K obtained by identifying points at cut distance 0 the cut distance yields
a metric. The elements of K are called weak kernels. We drop the attribute and just speak of kernels where there is
no danger of confusion.

Proposition 3.2 ([26]). Endowed with the cut distance K is a compact Polish space.

We continue to write D for the space of all probability measures on K. This space is endowed with the weak
topology. Since K is a compact Polish space, so is D. Hence, there is a natural metric on D that induces the weak
topology, the L1-Wasserstein metric. We take license to denote this metric by D2( · , · ) as well. Thus, recalling that
Γ(π,π′) is the set of all couplings of π,π′ ∈D, we have

D2(π,π′) = inf

½Z
K×K

D2(µ,µ′)dγ(µ,µ′) : γ ∈ Γ(π,π′)
¾

.

For π ∈D we let µπ ∈K denote a sample. We just write µwhere π is apparent.
By comparison to other metrics on the space of measurable functions [0,1]2 →P (Ω) the cut metric is extremely

weak; this is highlighted by the compactness of the space K provided by Proposition 3.2. Yet the cut metric is suf-
ficiently strong to ensure that certain functions that will be of vital interest to us are continuous. Indeed, suppose
that m,n > 0 are integers and that f :Ωm×n →R is a function. Then for µ ∈K we define the random variable­

f ,µ
®= X

σ∈Ωm×n
f (σ)

Z 1

0
· · ·
Z 1

0

mY
i=1

nY
j=1

µsi ,x j (σi , j )ds1 · · ·dsm .

Because we average out the si and the x i are uniform, the random variables
­

f ,µ
®

and
­

f ,ν
®

are identically dis-
tributed if D2(µ,ν) = 0. Thus, we may safely write

­
f ,µ
®

for µ ∈K.

Lemma 3.3. For any f :Ωm×n →R, `≥ 1 the map µ ∈K 7→ E
h­

f ,µ
®`i is continuous with respect to the cut metric.

The proof of Lemma 3.3 can be found in the appendix. For a probability distribution π ∈D we let
­

f ,π
®

be the
random variable

­
f ,µπ

®
, with µπ chosen independently of the x i . Since D carries the weak topology, Lemma 3.3

implies

Corollary 3.4. For any f :Ωm×n →R, `≥ 1 the map π ∈D 7→ E
h­

f ,π
®`i is continuous.

We recall the functional B( · ) from (2.15).

Corollary 3.5. The map π ∈D 7→B(π) is continuous.

Proof. Thanks to the tail bound (2.1), we can approximate the logarithms in (2.15) by polynomials. Therefore, the
assertion follows from Corollary 3.4. �

The set D? of π ∈ D that are invariant under the ∗(N , M)-operation is a closed subset of D. To see this, and
to interpret the ∗(N , M)-operation nicely in terms of operations that are continuous under the cut metric, we
introduce the following general transformation. Suppose that f :ΩN → (0,∞) is a function and that µ ∈K . Then
we define a random f ∗µ ∈K as follows. Letting

z s = z f ,µ
s = X

σ∈ΩN

f (σ)
NY

i=1
µs,x̂ i (σi ), z = z f ,µ =

Z 1

0
z f ,µ

s ds,

we introduce

t = t f ,µ
s = inf

½
θ ∈ [0,1] :

Z θ

0
zudu ≥ sz

¾
.

Now, f ∗µs,x =µt ,x . We emphasize that f ∗µ ∈K is random, dependent on x̂1, . . . , x̂ N . The kernel is characterized
by the identityZ 1

0

Z 1

0
gs,x · f ∗µs,x (ω)dsdx = 1

z

X
σ∈ΩN

f (σ)
Z 1

0

Z 1

0
gs,x ·µs,x (ω)z s dsdx for all g : [0,1]2 → [0,1],ω ∈Ω.

Further, since the x̂ i are uniform, we have D2( f ∗µ, f ∗ν) = 0 if D2(µ,ν) = 0. Hence, the ∗-operation extends to
weak kernels. Furthermore, for a distribution π we let f ∗π be the distribution of f ∗µπ.
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Lemma 3.6. For any function f :Ωk → (0,∞) the map K→D, µ 7→ f ∗µ is continuous.

The proof of Lemma 3.6 can be found in the appendix.
The ∗(N , M)-operation is an application of the above ∗-operation to a particular random function f . To define

this random function, we need one more piece of notation. Namely, for functions f :ΩM×N →R, g :ΩM×L →R we
define

f ⊕ g :ΩM×(N+L) →R, σ 7→ f
¡
(σi , j )i∈[M ], j∈[N ]

¢ · g
¡
(σi , j+N )i∈[M ], j∈[L]

¢
.

In words, we stick the first N ‘columns’ of σ into f and the last L columns into g and multiply the results. Recalling
the random functions ψ̂i , ϕ̂i from Section 3.1, we obtain the following.

Lemma 3.7. For any µ ∈K the random µ∗(N ,M) ∈K is distributed as
¡LN

i=1 ϕ̂i ⊕
LM

i=1 ψ̂i

¢∗µ.

Proof. This is immediate from the construction of µ∗(N ,M). �

Corollary 3.8. For any N , M the map µ ∈K 7→µ∗(N ,M) is continuous with respect to the cut metric.

Proof. Since D carries the weak topology, which is induced by the Wasserstein metric, the assertion follows from
Lemmas 3.6–3.7 and (2.1). �

As a further immediate consequence of Lemma 3.7 we obtain

Corollary 3.9. A distribution π ∈D belongs to D? if and only if π= ¡LN
i=1 ϕ̂i ⊕

LM
i=1 ψ̂i

¢∗π for all N , M.

In particular, Corollaries 3.8 and 3.9 imply that the map π 7→π∗(N ,M) is continuous for all N , M ≥ 0. Consequently,
D? is a closed subset of D.

3.3.2. The discrete version. Apart from the ‘continuous’ installment of the cut metric, defined on kernels, we also
need a discrete variant, defined on probability measures on discrete sets. To be precise, withΩ 6= ; our finite set of
spins and V another finite set of size n ≥ 1, we define a metric ∆2( · , · ) on P (ΩV ) as follows. Recalling that Γ(µ,ν)
is the set of all couplings of probability measures µ,ν onΩV , we let

∆2(µ,ν) = 1

n
min

γ∈Γ(µ,ν)
max
I⊂V

B⊂ΩV ×ΩV

ω∈Ω

¯̄̄̄
¯X
i∈I

X
(σ,τ)∈B

γ(σ,τ)(1{σi =ω}−1{τi =ω})

¯̄̄̄
¯ for µ,ν ∈P (ΩV ). (3.3)

Fact 3.10 ([25]). ∆2( · , · ) is a metric on P (ΩV ).

We refer to ∆2( · , · ) as the discrete cut metric.
Suppose that V is a finite set. A measure µ ∈ P (ΩV ) can be represented by a point µ̇ ∈ K . Indeed, assume

without loss that V = [n] and that Ω = [q]. Then the set ΩV can be ordered lexicographically as σ(1), . . . ,σ(qn ). We
define µ̇ ∈K by letting

µ̇s,x =
nX

i=1

qnX
j=1

1{(i −1)/n ≤ x < i /n}1

(X
h< j

µ(σ(h)) ≤ s < X
h≤ j

µ(σ(h))

)
δ
σ

( j )
i

.

Comparing (3.3) with the definition (2.12) of the continuous cut metric, we see that

D2(µ̇, ν̇) ≤∆2(µ,ν) (µ,ν ∈ΩV ). (3.4)

The discrete cut metric encodes a great deal of information about the discrete measures. A particularly impor-
tant case occurs when a measureµ ∈P (ΩV ) is close to a product measure. To be precise, we say thatµ is ε-extremal
if∆2(µ,

N
v∈V µv ) < ε. In words, µ is close to the product measure with the same marginals. In addition, µ ∈P (ΩV )

is (ε,`)-symmetric if

1

|V |`
X

v1,...,v`∈V

°°µv1,...,v` −µv1 ⊗·· ·⊗µv`

°°
TV < ε. (3.5)

Informally, if we choose ` coordinates randomly, then their joint distribution typically ‘nearly’ factorizes. The
following statement shows that these concepts are essentially equivalent, up to a moderate loss in the parameters.

Proposition 3.11 ([25]). For any Ω of size 1 < |Ω| <∞, any 0 < ε< 1/2 and any `≥ 2 there exists n0 > 0 such that for
all n > n0 and all µ ∈P (ΩV ) the following two statements hold.
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(i) If µ is (ε/9)3-symmetric, then µ is ε-extremal.
(ii) If µ is ε3/(128|Ω|)4`-extremal, then µ is (ε,`)-symmetric.

It is an elementary observation that probability measures that are close in the discrete cut metric cannot have
very different marginals. Formally, we have the following.

Lemma 3.12. For any two probability measures µ,ν onΩV we have
P

v∈V ‖µv −νv‖TV ≤ 2|Ω|∆2(µ,ν).

Proof. There exists ω ∈Ω such thatX
v∈V

(µv (ω)−νv (ω))∨0 ≥ 1

2|Ω|
X

v∈V
‖µv −νv‖TV. (3.6)

Let I = ©i ∈V :µi (ω) ≥ νi (ω)
ª

and B =ΩV ×ΩV . Then for any coupling γ ∈ Γ(µ,ν),X
i∈I

X
(σ,τ)∈B

γ(σ,τ) (1{σi =ω}−1{τi =ω}) =
X
i∈V

(µi (ω)−νi (ω))∨0. (3.7)

Combining (3.6) and (3.7) completes the proof. �

The converse bound, that close marginals imply closeness in the cut metric, holds for extremal measures.

Lemma 3.13. For any two ε-extremal µ,ν ∈P (ΩV ) we have D2(µ,ν) ≤ 2ε+Pv∈V ‖µv −νv‖TV.

Proof. Assume without loss that V = [n] and let µ̄=Nn
i=1µi and ν̄=Nn

i=1νi . Since µ,ν are ε-extremal, we have

∆2(µ, µ̄) < ε, ∆2(ν, ν̄) < ε. (3.8)

Let γi ∈P (Ω×Ω) be an optimal coupling of µi ,νi , i.e., ‖µi −νi‖TV =Pσ6=τγi (σ,τ). Then γ=Nn
i=1γi is a coupling

of µ̄, ν̄. Further, for any I ⊂ [n],B ⊂Ωn ×Ωn ,ω ∈Ωwe have¯̄̄̄
¯X
i∈I

X
(σ,τ)∈B

γ(σ,τ) (1{σi =ω}−1{τi =ω})

¯̄̄̄
¯≤X

i∈I

X
(σ,τ)∈B

γ(σ,τ)1{σi 6= τi } ≤
nX

i=1
‖µi −νi‖TV.

Hence, ∆2(µ̄, ν̄) ≤Pn
i=1 ‖µi −νi‖TV, and thus the assertion follows from (3.8) and the triangle inequality. �

We also make a note of the following enhanced triangle inequality.

Lemma 3.14 ([25]). Suppose that µ(1),ν(1), . . . ,µ(`),ν(`) are probability measures on ΩV and that u1, . . . ,u` ≥ 0 are
numbers such that

P`
i=1 ui = 1. Then

∆2

ÃX̀
i=1

uiµ
(i ),
X̀
i=1

uiν
(i )

!
≤ X̀

i=1
ui∆2(µ(i ),ν(i )).

Finally, we come to an important fact, intimately related to the Szemerédi regularity lemma from combina-
torics. Namely, any probability distribution µ ∈P (ΩV ) is close in the cut metric to a mixture of a ‘small’ number of
product measures. To state this results precisely, suppose that I ⊂V and that σ ∈ΩI . Let

S I ,σ = ©τ ∈ΩV : τI =σ
ª

be the sub-cube ofΩV where the entries of the coordinates in I coincide withσ. Further, assuming that µ ∈P (ΩV )
and µ(S I ,σ) > 0, we let

µI ,σ =µ[ · |S I ,σ] (3.9)

be the corresponding conditional distribution of µ. (If µ(S I ,σ) = 0, then we agree that µI ,σ is the uniform distribu-
tion on S I ,σ.) The following key lemma shows that µI ,σ is likely ε-symmetric for suitably random I ,σ.

Lemma 3.15 ([21, Lemma 3.5]). For any set Ω of size 1 < |Ω| < ∞ and any ε > 0 there exist n0 > 0 and a random
variable 0 < θ ≤ 2ε−4 log |Ω| such that for all n > n0 and all µ ∈P (ΩV ) the following holds. Let I ⊂V be a uniformly
random subset of size θ and choose σ ∈ΩI from µI . Then P

£
µI ,σ is ε-symmetric

¤> 1−ε.

We can apply Lemma 3.15 multiple times to obtain a decomposition of the setΩV into sub-cubes S1, . . . ,S` such
that µ[ · |Si ] is ε-symmetric. To obtain these sub-cubes we just choose the set I randomly as in Lemma 3.15 and let
σ range over all |Ω|θ possible assignments of I . We then obtain the following version of the regularity lemma.

Corollary 3.16 ([11]). For any finite set Ω 6= ; and any ε> 0 there exist L,n0 such that for all n > n0 the following is
true. For any µ ∈P (ΩV ) there exists a partition of ΩV into pairwise disjoint sets S0, . . . ,S`, `≤ L, such that µ(S0) < ε
and such that µ( · |Si ) is ε-symmetric for each 1 ≤ i ≤ `.
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3.3.3. Contiguity. Suppose thatΩ 6= ; is a finite set and let c ≥ 1. A probability distribution ν onΩn is c-contiguous
with respect to another probability distribution µ if

ν(σ) ≤ cµ(σ) for all σ ∈Ωn .

Moreover, µ,ν are mutually c-contiguous if each is c-contiguous with respect to the other.

Lemma 3.17. For any c ≥ 1,δ> 0 there exists ε> 0 such that for all large enough n the following is true. Assume that
µ ∈P (Ωn) is ε-extremal and that ν is c-contiguous with respect to µ. Then ν is δ-extremal and ∆2(µ,ν) < δ.

Proof. Choose 0 < ε¿ η¿ ζ¿ δ and assume that n > n0(ε) is sufficiently large and that µ is ε-extremal. Applying
Corollary 3.16 to the measure ν, we obtain a partition S0,S1, . . . ,S` of the cube Ωn into pairwise disjoint sets such
that ν(S0) < η and such that ν( · |Si ) is η-symmetric for every i = 1, . . . ,`. Moreover, ` is bounded by a number
L(η,Ω) > 0 that depends on η and |Ω| only.

Suppose that for every 1 ≤ i ≤ ` with ν(Si ) ≥ η/` we have

nX
j=1

‖ν j ( · |Si )−µ j ‖TV ≤ ζn. (3.10)

Then Lemma 3.13 yields ∆2(ν( · |Si ),µ) ≤ 2η+ζ. Hence, Lemma 3.14 shows that

∆2(ν,µ) ≤ 4η+ζ< δ. (3.11)

Further, (3.10) implies that
Pn

j=1 ‖ν j −µ j ‖TV ≤ ζ+2η. Hence, letting µ̄=Nn
i=1µi , ν̄=Nn

i=1νi and applying Lemma 3.13
a second time, we obtain ∆2(µ̄, ν̄) ≤ ζ+2η. Thus, invoking the ε-extremality of µ and (3.11), we conclude that

∆2(ν, ν̄) ≤∆2(ν,µ)+∆2(µ, µ̄)+∆2(µ̄, ν̄) ≤ (4η+ζ)+ε+ (ζ+2η) < δ. (3.12)

In summary, if (3.10) is satisfied, then (3.11) and (3.12) yield ∆2(ν,µ) < δ and ∆2(ν, ν̄) < δ, as claimed.
Thus, we are left to establish (3.10). Assume for contradiction that there is 1 ≤ i ≤ ` with ν(Si ) ≥ η/` andPn

j=1 ‖ν j ( · |Si )−µ j ‖TV > ζn. Then there exist J ⊂ [n] and ω ∈ Ω such that
P

j∈J ν j (ω|Si )−µ j (ω) > ζn/(2|Ω|). In
other words, the random variable X (σ) =P j∈J 1{σ j =ω} satisfies

〈X ,ν( · |Si )〉−­X ,µ
®> ζn/(2|Ω|) . (3.13)

Due to the η-symmetry of ν( · |Si ) and the ε-symmetry of µ, the second moments work out as

〈X (X −1),ν( · |Si )〉 = X
j , j ′∈J : j 6= j ′

­
1{σ j =σ j ′ =ω},ν( · |Si )

®≤ ηn +〈X ,ν( · |Si )〉2 ,
­

X (X −1),µ
®≤ εn +­X ,µ

®2 . (3.14)

Combining (3.13) and (3.14) with Chebyshev’s inequality and keeping in mind that ε¿ η¿ ζ, we conclude that
the event B = ©X (σ) ≥ ­X ,µ

®+ζ/(4|Ω|)ª satisfies

ν(B |Si ) ≥ 3/4, µ(B) ≤ ε1/4. (3.15)

However, if ν is c-contiguous with respect to µ, then (3.15) yields

cε1/4 ≥ cµ(B) ≥ ν(B) = ν(B |Si )ν(Si ) ≥ 3η/(4`) ≥ 3η/(4L(η,Ω)),

which contradicts the choice of the parameters ε,η. �

Corollary 3.18. For any δ> 0 there exists ε> 0 such that the following is true. Suppose that µ is ε-extremal and that
S ⊂Ωn is an event such that µ(S) ≥ δ. Then µ( · |S) is δ-extremal and ∆2(µ( · |S),µ) < δ.

Proof. Since µ(σ|S) ≤ µ(σ)/µ(S) for every σ, the conditional distribution µ( · |S) is 1/ε-contiguous with respect to
µ. Thus, the assertion follows from Lemma 3.17 immediately. �
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4. BETHE STATE DECOMPOSITIONS

In this section we prove Theorem 2.5. Before getting into the details, why might we expect the statement of the
theorem to be correct? In order to construct the desired decomposition of the phase space ΩVn we could at-
tempt to apply Lemma 3.15. The lemma shows that if we randomly pick a set I ⊂ Vn of a moderate size of, say,
I = O(loglogn), we will likely obtain a decomposition (SI ,σ)σ∈ΩI such that (2.10) is satisfied for most of its parts.
Formally, Lemma 3.15 guarantees that with high probability,

1

n2

X
1≤i< j≤n

D°°°µG ,vi ,v j ( · |SI ,σ)−µG ,vi ( · |SI ,σ)⊗µG ,v j ( · |SI ,σ)
°°°

TV
,µG

E
= o(1). (4.1)

Proposition 3.11 extends (4.1) from pairwise independence to independence of bounded numbers of randomly
chosen variable nodes. Thus, the pinning operation eliminates long-range correlations.

But why should short-range correlations be described by Belief Propagation? Recalling the standard messages
from (2.4)–(2.5), Belief Propagation (2.3) asserts that with high probability,

µG ,v→a(σ | SI ,σ) ∝ Y
b∈∂v\a

X
τ∈Ω∂b

1 {τx =σ}ψb(τ)
Y
y∈∂

µG ,y→b(τy | SI ,σ)+o(1). (4.2)

This last formula expresses the notion that once we remove x and its adjacent constraints ∂x, the spins assigned to
the variables y at distance two from x in G are (essentially) stochastically independent. This is very much in line
with the absence of long-range correlations: in G − (x ∪∂x), the variables y likely are far apart from one another
as G contains only few short cycles. (For a more detailed discussion of the intuition behind Belief Propagation we
refer to [48, Chapter 14].)

Yet (4.2) does not follow from (4.1) directly. Indeed, (4.1) merely states that the joint two randomly chosen
variables of G are likely approximately independent. But being second neighbors of x, the y variables in (4.2) are
anything but a uniformly random family of variable nodes. For random factor graph models of Erdős-Rényi type,
this difficulty is easily overcome [25] because the random factor graph obtained by removing x∪∂x has essentially
the same distribution as the original model (of order n−1). In effect, the original factor graph is distributed nearly
the same as the factor graph of order n −1 plus a new variable plus adjacent constraints connected to a uniformly
random family of variable nodes, and (4.1) applies to these random attachments. Of course, this trick does not work
on the Bethe lattice, where the variables y stand out as they have degree less than d . To cope with this difficulty,
we will consider an auxiliary model in which a random number of variable nodes along with their neighborhoods
are removed. Moreover, we will apply Lemma 3.15 not merely to the entire original factor graph G but also to
the variable nodes that have degree d −1 after the removal operation, which will enable us to establish the Belief
Propagation equations on the reduced factor graph. Finally, we will use the decorrelation property (4.1) together
with the tools from Section 3.3 to stitch the factor graph back up, i.e., to get back to the original model with no
variables and constraints removed. Let us now carry out this strategy in detail.

4.1. The construction. We aim to show that the Boltzmann distribution µG is well approximated by a collection
of no more than L Belief Propagation fixed points for an arbitrarily slowly growing L = L(n). As (4.2) shows, for a
given variable node v the corresponding fixed point equations involve the messages sent by the constraint a ∈ ∂v ,
which in turn are determined by the messages sent out by the variables w at distance precisely two from v . Thus,
to express a single application of the Belief Propagation operator we require information about the variable nodes
at distance two from v . Therefore, in addition to the Boltzmann distribution µG we will consider an enhanced
measure µ̂G that captures the joint distribution of the second neighborhoods.

To be precise, let G = (V ,F, (∂a)a∈F , (ψa)a∈F , p⊗n) be a factor graph. Then its Boltzmann distribution µG ‘lives’
on the space ΩG =ΩV . In addition, recalling that ∇2

G v consists of all variable nodes at distance at most two from
v , consider the space

Ω̂G = Y
v∈V

Ω∇2
G v

of second neighborhood assignments, whose elements we denote as τ = (τ(v, w))v∈V ,w∈∇2
G v . The factor graph G

induces an embedding

ΩG → Ω̂G , σ 7→ σ̂= (σ̂(v, w))v∈V ,w∈∇2
G v , where σ̂(x, y) =σ(y).

Thus, µG induces a probability distribution µ̂G on Ω̂G . For a variable v we denote by µ̂G ,v ∈P (Ω∇2
G v ) the marginal

distribution of µ̂G on the v-factor of Ω̂G .
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The enhanced measure µ̂G will play a vital role in the construction of the Bethe state decomposition. Indeed, by
comparison to the Erdős-Rényi case, the rigid geometry of the random regular graph causes significant difficulties.
More precisely, while the Belief Propagation messages are defined in terms of removing one or a few constraints,
such operations clearly destroy regularity. Hence, we need to create a bit of wiggling room. To this end, we remove
some variable nodes along with their adjacent constraint nodes, thereby leaving a few variable nodes with degree
d − 1 rather than d . We refer to these variables as ‘cavities’. Clearly, this operation loses some information and
would therefore by itself not suffice to prove Theorem 2.5. However, what saves the day is that the enhanced
measure µ̂G contains the extra information needed to stitch the graph back up without losing track of the Bethe
decomposition.

Unsurprisingly, the construction is subtle and involves several steps. It requires a number of carefully chosen
parameters. Specifically, given a slowly diverging monotonically increasing positive integer sequence L = L(n) →
∞ as in Theorem 2.5, we choose a sequence 0 < ξ= ξ(L) = o(1) that tends to zero monotonically sufficiently slowly,
a further sequence ω = ω(ξ) → ∞ that tends to infinity monotonically sufficiently slowly, as well as sequences
0 < ϑ = ϑ(ω) = o(1), 0 < ζ = ζ(ϑ) = o(1), 0 < β = β(ϑ) = o(1), 0 < α = α(β) = o(1), 0 < η = η(α) = o(1) and 0 < ε =
ε(η) = o(1) that tend monotonically to zero slowly enough. In summary, the pecking order reads

1 ¿ 1/ε¿ 1/η¿ 1/α¿ 1/β¿ 1/ζ¿ 1/ϑ¿ω¿ 1/ξ¿ L ¿ loglogn, (4.3)

and we always assume tacitly that n > n0 is sufficiently large.
We are ready to begin the construction. Let G∗ be the random factor graph obtained from G as follows. Let

θ∗ be a copy of the random variable θξ promised by Lemma 3.15; θ∗ is independent of G . Further, let U∗ be a
random set of θ∗ variable nodes of G and draw σ∗ from µG independently of θ∗ and U∗. Now, obtain G∗ from G
by changing the prior distribution to

pG∗ (σ) = Y
u∈U∗∪∂2U∗

1{σu =σ∗u}
Y

v 6∈U∗∪∂2U∗
p(σv ). (4.4)

Additionally, let ω be a random variable with distribution Po(ω) ∧ 2ω, independent of everything else, and let
W = {vn−ω+1, . . . , vn}. Finally, obtain G ′∗ from G∗ by removing the variable nodes in W along with their adjacent
constraint nodes.

Thus, in G ′∗ we pin the spins of the variable nodes in U∗ and their neighbors to the values observed under σ∗,
which is drawn from µG . Additionally, we create cavities by removing the last ω variable nodes along with their
adjacent constraints. The following lemma shows that the removal of the variable nodes in W does not shift the
marginals of the enhanced Boltzmann distribution much.

Lemma 4.1. With probability at least 1−ω−10 over the choice of θ∗, σ∗ and G the following statements are true.

(i) both µG∗ and µ̂G∗ are ξ1/4-extremal.
(ii) we have

P
v∈Vn \(W ∪∂2W ) ‖µ̂G∗,v − µ̂G ′∗,v‖TV <ϑn.

Proof. By construction, µ̂G∗ is identical to the measure obtained through the pinning procedure of Lemma 3.15
applied to the U∗-components of the space Ω̂G . Hence, Lemma 3.15 and Proposition 3.11 imply that µ̂G∗ is ξ1/4-
extremal with probability at least 1−ξ1/4. Since µG∗ is a projection of µ̂G∗ , we obtain (i).

Further, let V =Vn \ (W ∪∂2W ). If µ̂G∗ is ξ1/4-extremal, then by the definition of the cut metric the distribution
µ̂G∗,V induced on the neighborhoods of V is 2ξ1/4-extremal, because |V | ≥ n/2. Additionally, there is C = C (ω)
such that µ̂G∗,V is C -contiguous with respect to µ̂G ′∗,V with probability at least 1−ω−11. This follows from (2.1),
because G ′∗ is obtained from G∗ by removing no more than dω constraint nodes. Therefore, (ii) follows from (i)
and Lemma 3.17, provided that ξ,ω,ϑ are chosen appropriately in accordance with (4.3). �

The following proposition, which establishes the Belief Propagation equations on G ′∗, constitutes the main tech-
nical step of the proof.

Proposition 4.2. With probability at least 1−α9, G ′∗ enjoys the following properties.

(i) the standard messages (µG ′∗,v→a ,µG ′∗,a→v )v∈V (G ′∗),a∈∂v form an α9d -Belief Propagation fixed point.
(ii) we have X

v∈V (G ′∗)

X
σ∈Ω∇2 v

¯̄̄̄
¯µG ′∗ (σ)−

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a µG ′∗,w→a(σw )P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a :τv=χψa(τ)

Q
w∈∂a µG ′∗,w→a(τw )

¯̄̄̄
¯<α9d n.
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Before we prove Proposition 4.2 in Section 4.2, let us indicate how the theorem follows. As a final preparation we
need the following basic fact.

Lemma 4.3. For any factor graph G, for any variable node v, any S ⊂ ∂v and any σ ∈Ωwe have

µG−S,v (σ) =
­

1{σv =σ}/
Q

a∈S ψa(σ),µG ,v∪∂2v

®­
1/
Q

a∈S ψa(σ),µG ,v∪∂2v

® .

Proof. The partition function works out to be

Z (G −S) = X
σ∈ΩV (G)

Y
a∈F (G)\S

ψa(σ∂a)
Y

v∈V (G)
pG ,v (σv )

= X
σ∈ΩV (G)

Q
a∈F (G)ψa(σ∂a)

Q
v∈V (G) pG ,v (σv )Q

a∈S ψa(σ∂a)
= Z (G)

*
1/
Y
a∈S

ψa ,µG

+
.

Hence, for any τ ∈ΩV (G),

µG−S (τ) = 1

Z (G −S)

Y
a∈F (G)\S

ψa(τ∂a)
Y

v∈V (G)
pG ,v (σv )

= Z (G)

Z (G −S)

1

Z (G)

Q
a∈F (G)ψa(τ∂a)

Q
v∈V (G) pG ,v (σv )Q

a∈S ψa(τ∂a)
= µG (τ)­

1/
Q

a∈S ψa ,µG
®Q

a∈S ψa(τ∂a)
,

and the average in the denominator involves variables in v ∪∂2v only. �

Proof of Theorem 2.5. For any assignment χ ∈X =Qv∈U∗Ω
∇2v of the variables in U∗ and their neighborhoods let

S(χ) = {σ ∈ Ω̂G : ∀v ∈U∗, w ∈∇2v :σ(v, w) =χ(v, w)}.

Then (S(χ))χ∈X is a decomposition of Ω̂G into no more than q (1+d(k−1))θ∗ sub-cubes, corresponding to the neigh-
borhood assignments of the θ∗ variable nodes in U∗. As Lemma 3.15 shows, by choosing the functions from (4.3)
appropriately we can guarantee that q (1+d(k−1))θ∗ ≤ L. We are going to show that the decomposition (S(χ))χ meets
the requirements of the theorem w.h.p.

For χ ∈ X let G∗[χ] be the random factor graph G∗ given that σ∗(w) = χ(v, w) for all v ∈ U∗ and all w ∈ ∇2v .
Also let G ′∗[χ] be the factor graph obtained from G∗[χ] by removing the variables in W along with their adjacent
constraint nodes. Further, let Eχ be the event that the following four conditions are satisfied.

E1: Both µG∗[χ] and µ̂G∗[χ] are ξ1/8-extremal.
E2: We have X

v∈Vn \(W ∪∂2W )

°°°µ̂G∗[χ],v − µ̂G ′∗[χ],v

°°°
TV

<ϑn. (4.5)

E3: On G ′∗[χ] the standard messages form an α9d -BP fixed point and

X
v 6∈W ∪∂2W

X
σ∈Ω∇2 v

¯̄̄̄
¯µG ′∗[χ](σ)−

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a µG ′∗[χ],w→a(σw )P
s∈Ω p(s)

Q
a∈∂v

P
τ∈Ω∂a :τv=s ψa(τ)

Q
w∈∂a µG ′∗[χ],w→a(τw )

¯̄̄̄
¯<α9d n. (4.6)

E4: There are no more than α10d n constraint nodes a in G such that minσ∈Ωk ψa(σ) ≤ α1/4, nor are there
more than ε20n constraint nodes a such that minσ∈Ωk ψa(σ) ≤ ε.

Then (2.1), Lemma 4.1 and Proposition 4.2 yield E
£P

χµG (χ)(1−1Eχ) | E4
¤≤α8. Thus, Markov’s inequality shows

P

"X
χ
µG (χ)(1−1Eχ) ≥α4

#
≤ ε4. (4.7)

Hence, we are left to argue that S(χ) is an ε-Bethe state of G if the event Eχ occurs. As a first step, we are going
to show that the standard messages of G ′∗[χ], G∗[χ] are close: given Eχ, we claimX

σ∈Ω

X
v 6∈W ∪∂2W

X
a∈∂v

¯̄̄
µG∗[χ],v→a(σ)−µG ′∗[χ],v→a(σ)

¯̄̄
+
¯̄̄
µG∗[χ],a→v (σ)−µG ′∗[χ],a→v (σ)

¯̄̄
<α8d n. (4.8)

21



To see this, recall thatµG∗[χ],v→a is the marginal of v in the factor graph G∗[χ]−a and thatµG∗[χ],v→a is the marginal
of v in the factor graph obtained from G∗[χ] by removing all b ∈ ∂v\a and disregarding the prior. Hence, Lemma 4.3
shows that

µG∗[χ],v→a(σ) =
D

1{σv =σ}/ψa(σ),µG∗[χ],∇2v

E
D

1/ψa(σ),µG∗[χ],∇2v

E , (4.9)

µG∗[χ],a→v (σ) =
D

1{σv =σ}/(p(σ)
Q

b∈∂v\a ψb(σ)),µG∗[χ],∇2v

E
D

1/(p(σv )
Q

b∈∂v\a ψb(σ)),µG∗[χ],∇2v

E , (4.10)

and analogously for G ′∗[χ]. Providing ϑ ¿ αd , we obtain (4.8) from (4.5), (4.9), (4.10) and E2, E4. Further, the
estimate (4.8) and the fact that the standard messages of G ′∗[χ] are an α9d -BP fixed point imply that the standard
messages of G∗[χ] are an η-BP fixed point. Thus, we have established BS1.

In order to prove BS2, we estimate the derivatives of a term like in (4.6) as follows:¯̄̄̄
¯ ∂

∂νw (σ)

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a νw (σ(w))P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a ψa(τ)

Q
w∈∂a νw (τ(w))

¯̄̄̄
¯≤ 1

mina∈∂v,τ∈Ω∂a ψa(τ)2d
.

Hence, (4.5), (4.6), (4.8) and E4 and the bound |W ∪∂2W | =O(logn) yieldX
v∈Vn

X
σ∈Ω∇2 v

¯̄̄̄
¯µG∗[χ](σ)− p(σv )

Q
a∈∂v ψa(σ)

Q
w∈∂a µG∗[χ],w→a(σ(w))P

χ∈Ω p(χ)
Q

a∈∂v
P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µG∗[χ],w→a(τ(w))

¯̄̄̄
¯<α2d n. (4.11)

Additionally, we claim thatX
b∈Fm

X
σ∈Ω∂b

¯̄̄̄
µG∗[χ](σ)− ψb(σ)

Q
w∈∂b µG∗[χ],w→b(σ(w))P

τ∈Ω∂b ψb(τ)
Q

w∈∂b µG∗[χ],w→b(τ(w))

¯̄̄̄
< ε9n. (4.12)

To see this, suppose that b satisfies minσ∈Ωk ψb(σ) ≥ ε, that b ∈ ∂v for a variable node v such thatX
σ∈Ω∇2 v

¯̄̄̄
µG∗[χ](σ)− p(σv )

Q
a∈∂v ψa(σ)

Q
w∈∂a\v µG∗[χ],w→a(σw )P

κ∈Ω p(κ)
Q

a∈∂v
P
τ∈Ω∂a ψa(τ)1{τv = κ}

Q
w∈∂a\v µG∗[χ],w→a(τw )

¯̄̄̄
<αd (4.13)

and that X
σ∈Ω

¯̄̄̄
µG∗[χ],v→b(σ)− p(σ)

Q
a∈∂v\b µG∗[χ],a→v (σ)P

κ∈Ω p(κ)
Q

a∈∂v\b µG∗[χ],a→v (κ)

¯̄̄̄
< η1/4, (4.14)

X
a∈∂v

X
σ∈Ω

¯̄̄̄
µG∗[χ],a→v (σ)−

P
τ∈Ω∂a 1{τv =σ}ψa(τ)

Q
w∈∂a\v µG∗[χ],w→a(τw )P

τ∈Ω∂a ψa(τ)
Q

w∈∂a\v µG∗[χ],w→a(τw )

¯̄̄̄
< η1/4. (4.15)

All but ε10n constraint nodes b enjoy these properties, due to E4, (4.11) and because the standard messages of
G∗[χ] form an η-BP fixed point. For any such b and any σ ∈Ω∂b we obtain

µG∗[χ],∂b(σ) = X
τ∈Ω∇2 v

1{τ∂b =σ}µG∗[χ],∇2v (τ)

(4.13)= X
τ∈Ω∇2 v

1{τ∂b =σ}p(σv )
Q

a∈∂v ψa(τ)
Q

w∈∂a\v µG∗[χ],w→a(τw )P
κ∈Ω

Q
a∈∂v

P
τ′∈Ω∂a ψa(τ′)1{τ′v = κ}

Q
w∈∂a\v µG∗[χ],w→a(τ′w )

+O(αd )

(4.15)= p(σv )ψb(σ)
Q

w∈∂b\v µG∗[χ],w→b(σw )
Q

a∈∂v\b µG∗[χ],a→v (σv )
P
τ∈Ω∂a ψa(τ)

Q
w∈∂a\v µG∗[χ],w→a(τw )P

κ∈Ω∂b p(κv )ψb(κ)
Q

w∈∂b\v µG∗[χ],w→b(κw )
Q

a∈∂v\b µG∗[χ],a→v (κ)
P
τ∈Ω∂a ψa(τ)

Q
w∈∂a\v µG∗[χ],w→a(τw )

+O(αd )

= p(σv )ψb(σ)
Q

w∈∂b\v µG∗[χ],w→b(σw )
Q

a∈∂v\b µG∗[χ],a→v (σv )P
κ∈Ω∂b p(κv )ψb(κ)

Q
w∈∂b\v µG∗[χ],w→b(κw )

Q
a∈∂v\b µG∗[χ],a→v (κ)

+O(αd )

(4.14)= ψb(σ)
Q

w∈∂b µG∗[χ],w→b(σw )P
κ∈Ω∂b ψb(κ)

Q
w∈∂b µG∗[χ],w→b(κw )

+O(αd ),

whence (4.12) follows by averaging on b.
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Finally, BS2 follows from (4.11), (4.12), the ξ1/8-extremality of µ̂G∗[χ]. Indeed, let I , J be random sets of at most
1/ε variable/constraint nodes. For each b ∈ J pick a variable node vb ∈ ∂b. Because µ̂G∗[χ] is ξ1/8-extremal, Propo-
sition 3.11 yields

E

°°°°°µ̂G∗[χ],I∪{vb :b∈J } −
O

v∈I∪{vb :b∈J }
µ̂G∗[χ],v

°°°°°
TV

<α4. (4.16)

Furthermore, (4.11) and (4.12) imply that with probability at least 1−ε2 over the choice of I , J we have

∀b ∈ J :
X

σ∈Ω∂b

¯̄̄̄
µG∗[χ](σ)− ψb(σ)

Q
w∈∂b µG∗[χ],w→b(σ(w))P

τ∈Ω∂b ψb(τ)
Q

w∈∂b µG∗[χ],w→b(τ(w))

¯̄̄̄
< ε3,

∀v ∈ I :
X

σ∈Ω∇2 v

¯̄̄̄
¯µG∗[χ](σ)− p(σv )

Q
a∈∂v ψa(σ)

Q
w∈∂a µG∗[χ],w→a(σ(w))P

χ∈Ω p(χ)
Q

a∈∂v
P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µG∗[χ],w→a(τ(w))

¯̄̄̄
¯< ε3.

If these estimates hold, then for any configuration σ ∈ΩI∪∂J∪∂2 I we obtain¯̄̄ O
v∈I∪{vb :b∈J }

µ̂G∗[χ],v (σ) (4.17)

−Y
v∈I

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a\v µG∗[χ],w→a(σw )P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a ψa(τ)

Q
w∈∂a\v µG∗[χ],w→a(τw )

·Y
a∈J

ψa(σ)
Q

w∈∂a µG∗[χ],w→a(σw )P
τ∈Ω∂a ψa(τ)

Q
w∈∂a µG∗[χ],w→a(τw )

¯̄̄
< ε

2
.

Thus, BS2 follows from (4.16) and (4.17).
Finally, to obtain the Bethe state decomposition of the simple factor graph G, we merely recall that P [G ∈S ] =

Ω(1) by Fact 2.2. Hence, the claim about G follows immediately form the statement for G and Bayes’ rule. �

4.2. Proof of Proposition 4.2. By construction, the random factor graph G ′∗ comprises a pairing of variable clones
(vi ,h) ∈ Vn × [d ] and constraint clones (a j ,h) ∈ Fm × [d ]. But since we obtained G ′∗ from G∗ by removing some
variable nodes W along with their adjacent constraint nodes, not all of the variable clones (vi ,h) with i ≤ n−ω are
paired. We call variables with at least one unpaired clone cavities. Let C be the set of all cavities.

The basic idea behind the proof is as follows. We will add a new variable node v+ along with new adjacent
constraint nodes b1, . . . ,bd to G ′∗. Apart from v+, these new constraint nodes are adjacent to some of the cavities.
The fresh randomness afforded by this construction will facilitate the study of the standard messages from v+ to
the bi as well as the reverse messages. Then we will argue that v+ is essentially indistinguishable from a randomly
chosen variable node of G ′∗, thereby extending the analysis to almost all the messages of G ′∗.

Formally, since ω is a Poisson variable with mean ω truncated at 2ω, w.h.p. we have ω/2 ≤ |C | ≤ 2d(k − 1)ω.
Given that |C | ≥ d(k − 1), obtain G−∗ from G ′∗ by re-inserting one variable node v+ = vn−ω+1 along with d new
constraint nodes b1, . . . ,bd . For each of these constraint nodes a random clone (bi ,hi ), hi ∈ [k], is paired with a
random clone v+. In addition, the bi are paired randomly to k −1 cavities. The weight functions ψbi are chosen
independently from P . The following lemma shows that the distributions of G ′∗ and G−∗ are reasonably close.

Lemma 4.4. For any event E we have P
£
G ′∗ ∈ E

¤≤α−1P
£
G−∗ ∈ E

¤+O(α100).

Proof. We need to get a grip on the conditional distribution of the second neighborhood of v+ in G given G ′∗.
This is non-trivial because of the revised prior of G∗ introduced by the pinning operation (4.4); for the assignment
σ∗ is correlated with the neighborhood of v+ in G . To begin, let A be the event that no constraint node of G is
connected by two edges with the variable nodes vn−ω+1, . . . , vn and that all cavities have degree precisely d − 1.
Then (4.3) guarantees that

P [G ∈A ] = 1−O(ω2/n) = 1−O(n−1/2). (4.18)

Further, given A the total number of cavities of G ′∗ is equal to d(k −1)ω, and thus

P [|C | ≥ω/2 |A ] = 1−O(ω−1). (4.19)

Let A ′ be the event that A occurs, that |C | ≥ ω/2 and that the weight functions of all constraints adjacent to v+
take a minimum value of at leastα−1/(2dk). We condition on the event A ′, which occurs with probability 1+O(α100)
due to (2.1), (4.18) and (4.19).

Let N1,N2 be two possible outcomes of the depth-two neighborhoods of v+ in G given G ′∗. Thus, N1,N2 specify
the weight functions of the d constraints adjacent to v+, the pairing of the clones of v+ to those of these constraint
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nodes, and the pairing of these d constraint nodes and the cavities C . In addition, let G ′ be the random factor
graph obtained from G ′∗ by restoring the prior to p⊗n . Then we can set up a coupling (Γ1,Γ2) of G given G ′,N1,A ′
and of G given G ′,N2,A ′ such that under Γ the two random factor graphs differ in no more than 2dk edges: the
coupling simply switches the pairings occurring in N1 but not in N2, and vice versa. In effect, on A ′ the Boltz-
mann distributions µΓ1 ,µΓ2 are mutually α−1-contiguous. Consequently, since the priors are amended according
to samples from these respective Boltzmann distribution, we conclude that for any two outcomes N1,N2 of the
second neighborhood of v+ and for any possible outcome g of G ′∗,

P
£
G ′

∗ = g |N2,G ′,A ′¤≤α−1P
£
G ′

∗ = g |N1,G ′,A ′¤ . (4.20)

Combining (4.18)–(4.20), we conclude that for any possible g and for any 2ω/3 ≤ω0 ≤ 3ω/2,

P
£
G ′

∗ = g |ω=ω0
¤≤α−1P

£
G−

∗ = g |ω=ω0 +1
¤+O(α100). (4.21)

Finally, the assertion follows from (4.21) because dTV(ω,ω+ 1) = O(ω−1/2) = O(α200) and P [2ω/3 ≤ω≤ 3ω/2] =
1−exp(−Ω(ω)) = 1−O(α200). �

Lemma 4.4 shows that studying the messages received by and emanating from v+ is about as good as studying
the messages of a random variable node of G ′∗. The randomness involved in the attachment process will help, but
is not yet quite sufficient to actually verify the Belief Propagation equations. Namely, we also need to make sure
that the Boltzmann distribution of the cavities is extremal in order to argue that typically the joint distribution of
the variables where the new constraints b1, . . . ,bd are anchored factorizes. Unfortunately, we do not know a priori
that extremality holds. Indeed, while going from G to G ′∗ renders the Boltzmann distribution ξ1/4-extremal (by
Lemma 4.1), the cavities are too few in number to conclude that their joint distribution is extremal.

Hence, we will apply a second round of pinning. But this time we will pin the cavities directly. To be precise,
recalling the random variable θ+ = θζ from Lemma 3.15, let C+ ⊂C be a random subset of size θ+∧|C |. Further,
draw a sample σ+ from µG ′∗ . The choice of C+,σ+ is independent of the choice of the constraints b1, . . . ,bd , and
σ+ is independent of C+. Now, obtain G ′′∗ from G ′∗ by changing the prior to

pG ′′∗ (σ) ∝ pG ′∗ (σ)
Y

y∈C+
1{σ=σ+(y)}. (4.22)

Thus, we pin the cavities y ∈C+ to the spins observed under σ+, which are independent of b1, . . . ,bd .

Lemma 4.5. The joint distribution µG ′′∗,C of the cavities is ζ-symmetric with probability at least 1−ζ.

Proof. Since |C | ≥ ω/2 with probability 1−exp(−Ω(ω)), the assertion follows immediately from Lemma 3.15 and
the construction of G ′′∗. �

Additionally, obtain G+∗ from G−∗ by changing the prior as per (4.22) as well, i.e.,

pG+∗ (σ) ∝ pG−∗ (σ)
Y

y∈C+
1{σ=σ+(y)}. (4.23)

We are ready to verify the Belief Propagation equations for v+ on G+∗ .

Lemma 4.6. With probability 1−O(α90) the random factor graph G+∗ has the following properties:¯̄̄̄
¯µG+∗ ,bi→v+ (σ)−

P
τ∈Ω∂bi 1{τv+ =σ}ψbi (τ)

Q
w∈∂bi \v+ µG+∗ ,w→bi

(τy )P
τ∈Ω∂bi ψbi (τ)

Q
w∈∂bi \v+ µG+∗ ,w→bi

(τw )

¯̄̄̄
¯≤α70d ∀i ∈ [d ],σ ∈Ω,

(4.24)¯̄̄̄
¯µG+∗ ,v+→bi

(σ)−
p(σ)

Q
j 6=i
P
τ∈Ω∂b j 1{τv+ =σ}ψb j (τ)

Q
w∈∂b j \v+ µG+∗ ,w→b j

(τw )P
χ∈Ω p(χ)

Q
j 6=i
P
τ∈Ω∂b j ψb j (τ)1{τv+ =χ}

Q
w∈∂b j \v+ µG+∗ ,w→b j

(τw )

¯̄̄̄
¯≤α70d ∀i ∈ [d ],σ ∈Ω,

(4.25)¯̄̄̄
¯µG+∗ (σ)−

p(σ)
Qd

i=1ψbi (σ)
Q

w∈∂bi \v+ µG+∗ ,w→bi
(σw )P

χ∈Ω p(χ)
Qd

i=1

P
τ∈Ω∂bi 1{τv+ =χ}ψbi (τ)

Q
w∈∂bi \v+ µG+∗ ,w→bi

(τw )

¯̄̄̄
¯<α70d ∀σ ∈Ω∇2v+ .

(4.26)
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Proof. Lemma 4.5 shows that µG ′′∗,C is ζ-symmetric with probability at least 1− ζ. Suppose it is. Then Proposi-
tion 3.11 shows that µG ′′∗,C is (β,d(k − 1))-symmetric. We may also assume that |C | ≥ ω/2, an event that occurs
with probability at least 1−exp(−Ω(ω)) by the construction of G ′∗. Additionally, due to (2.1) we may assume that

min
σ∈Ωk

ψbi (σ) ≥α for all i ∈ [d ]. (4.27)

According to (3.2), the standard message µG+∗ ,b1→v+ is defined as the marginal of v+ in the factor graph obtained
from G+∗ by removing b2, . . . ,bd and replacing the prior of v+ by the uniform distribution. By construction, this
factor graph is obtained from G ′′∗ by adding the variable node v+ and constraint node b1 and replacing the prior of
v+ by the uniform distribution. Therefore,

µG+∗ ,b1→v+ (σ) =
P
τ∈Ω∂b1 1{τv+ =σ}ψb1 (τ)

D
1{∀w ∈ ∂b1 \ v+ :σw = τw },µG ′′∗,C

E
P
τ∈Ω∂b1 ψb1 (τ)

D
1{∀w ∈ ∂b1 \ v+ :σw = τw },µG ′′∗,C

E (σ ∈Ω). (4.28)

Further, the neighbors ∂b1 \ v+ are chosen uniformly from C (without replacement). Because |C | ≥ω/2 and µG ′′∗,C
is (β,d(k −1))-symmetric, we conclude that

P

"°°°°°µG ′′∗,∂b1\v+ −
O

w∈∂b1\v+
µG ′′∗,w

°°°°°
TV

≤β1/3

#
≥ 1−β1/3. (4.29)

Combining (4.27), (4.28) and (4.29), we obtain the estimate

E

¯̄̄̄
¯µG+∗ ,b1→v+ (σ)−

P
τ∈Ω∂b1 1{τv+ =σ}ψb1 (τ)

Q
w∈∂b1\x+ µG ′′∗,w (τw )P

τ∈Ω∂b1 ψb1 (τ)
Q

w∈∂b1\v+ µG ′′∗,w (τw )

¯̄̄̄
¯≤β1/4. (4.30)

Moreover, the factor graph G+∗ − b1 is obtained from G ′′∗ by adding v+ and b2, . . . ,bd . Hence, (4.27) implies that
µG+∗−b1,C is (2/α)dk -contiguous with respect toµG ′′∗,C . SinceµG ′′∗,C is ζ-symmetric, Proposition 3.11 and Lemma 3.17
yield ∆2(µG+∗−b1,C ,µG ′′∗,C ) <β. Because the neighborhood ∂b1 is random, Lemma 3.12 therefore yields

E
X

w∈∂b1\v+

°°°µG ′′∗,w −µG+∗ ,w→b1

°°°
TV

≤O(β). (4.31)

Combining (4.27), (4.30) and (4.31), we obtain (4.24).
The proofs of (4.25) and (4.26) are similar. Indeed, µG+∗ ,v+→b1

is the marginal of v+ in G+∗ −b1, which is obtained
from G ′′∗ by adding b2, . . . ,bd . Hence,

µG+∗ ,v+→b1
(σ) =

P
τ∈Ω{v+}∪∂2 v+ p(σ)1{τv+ =σ}

D
1{∀w ∈ ∂2v+ :σw = τw },µG ′′∗,C

EQd
i=2ψbi (τ)P

τ∈Ω{v+}∪∂2 v+ p(τv+ )
D

1{∀w ∈ ∂2v+ :σw = τw },µG ′′∗,C

EQd
i=2ψbi (τ)

.

Invoking the (β,d(k −1))-symmetry of µG ′′∗ and (4.27), we obtain

E

¯̄̄̄
¯µG+∗ ,v+→b1

(σ)−
P
τ∈Ω{v+}∪∂2 v+ p(σ)1{τv+ =σ}

Qd
i=2ψbi (τ)

Q
w∈∂2v+ µG ′′∗,w (τw )P

τ∈Ω{v+}∪∂2 v+ p(τv+ )
Qd

i=2ψbi (τ)
Q

w∈∂2v+ µG ′′∗,w (τw )

¯̄̄̄
¯≤β1/4.

Moreover, reordering the sums and products, we simplify the last expression and find

E

¯̄̄̄
¯µG+∗ ,v+→b1

(σ)−
p(σ)

Qd
i=2

P
τ∈Ω∂bi 1{τv+ =σ}ψbi (τ)

Q
w∈∂bi \v+ µG ′′∗,w (τw )P

χ∈Ω p(χ)
Qd

i=2

P
τ∈Ω∂bi 1{τv+ =χ}ψbi (τ)

Q
w∈∂bi \v+ µG ′′∗,w (τw )

¯̄̄̄
¯≤β1/4. (4.32)

Further, (4.27) ensures that for each i ∈ [d ] the distribution µG+∗−bi ,C is (2/α)dk -contiguous with respect to G ′′∗.
Consequently, since the neighbors of bi are chosen randomly from the set C of cavities, Proposition 3.11 and
Lemma 3.17 yield

dX
i=2

E

" X
w∈∂bi \v+

°°°µG ′′∗,w −µG+∗ ,w→bi

°°°
TV

#
≤O(β). (4.33)

Combining (4.32) and (4.33), we obtain (4.25).
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Moving on to (4.26), we considerσ ∈Ω{v+}∪∂2v+
. Since G+∗ is obtained from G ′′∗ by adding v+ along with b1, . . . ,bd ,

we have the exact formula

µG+∗ (σ) =
p(σ)

D
1{∀w ∈ ∂2v+ :σw =σw ,µG ′′∗

EQd
i=1ψbi (σ)P

χ∈Ω p(χ)
DQd

i=1

P
τ∈Ω∂bi 1{τv+ =χ}ψbi (τ)

Q
w∈∂bi \v+ 1{σw = τw },µG ′′∗

E (σ ∈Ω∇2v+ ).

Since ∂2v+ is a random set of cavities, the (β,d(k −1))-symmetry of µG ′′∗ and (4.27) ensure that

E

¯̄̄̄
¯µG+∗ (σ)−

p(σ)
Q

w∈∂2v+ µG ′′∗,w (σw )
Qd

i=1ψbi (σ)P
χ∈Ω p(χ)

Qd
i=1

P
τ∈Ω∂bi 1{τv+ =χ}ψbi (τ)

Q
w∈∂bi \v+ µG ′′∗,w (τw )

¯̄̄̄
¯≤β1/4. (4.34)

Finally, to complete the proof we combine (4.33) and (4.34). �

We set up the random factor graph G+∗ so as to facilitate the verification of the BP equations. But in a sense the
model is a bit ‘out of whack’ because the prior is pinned according to a configuration σ+ drawn from µG ′∗ rather
than µG−∗ ; see (4.23). Thus, with θ+ = θζ and C+ ⊂ C as before, draw σ++ from µG−∗ and let G++∗ be the random
factor graph obtained from G−∗ by changing the prior to

pG++∗ (σ) ∝ pG ′∗ (σ)
Y

w∈C+
1{σ=σ++(w)}.

Hence, σ++ takes v+,b1, . . . ,bd into account.

Corollary 4.7. With probability 1−O(α80) the bounds (4.24)–(4.26) hold with G+∗ replaced by G++∗ .

Proof. The only difference between G++∗ and G+∗ lies in the choice of the configuration to which the variable nodes
in C+ get pinned. But since G+∗ is obtained from G ′′∗ by the mere addition of d constraint nodes b1, . . . ,bd , (2.1)
shows that σ++ is α−1-contiguous with respect to the distribution of σ+ with probability 1−O(α80). Thus, the
assertion follows from Lemma 4.6. �

We are finally ready to go back to the random factor graph G ′′∗. Indeed, basically the only difference between
G++∗ and G ′′∗ is that the former has one more variable node, along with d adjacent constraint nodes. But since the
number of variable nodes of G ′′∗ is random, this difference should hardly be noticeable. Also G ′′∗ is invariant under
permutations of its variable nodes. Thus, whatever we can prove for the last variable node v+ of G++∗ carries over
to a random variable node of G ′′∗. The following corollary makes this precise.

Corollary 4.8. With probability 1−O(α70) we haveX
v∈Vn

X
b∈∂v

X
σ∈Ω

¯̄̄̄
¯µG ′′∗,b→v (σ)−

P
τ∈Ω∂b 1{τv =σ}ψb(τ)

Q
w∈∂b\v µG ′′∗,w→b(τw )P

τ∈Ω∂b ψb(τ)
Q

w∈∂b\v µG ′′∗,w→b(τw )

¯̄̄̄
¯≤ nα60d , (4.35)

X
v∈Vn

X
b∈∂v

X
σ∈Ω

¯̄̄̄
¯µG ′′∗,v→b(σ)−

p(σ)
Q

a∈∂v\b
P
τ∈Ω∂a 1{τv =σ}ψa(τ)

Q
w∈∂a\v µG ′′∗,w→a(τw )P

χ∈Ω p(χ)
Q

a∈∂v\b
P
τ∈Ω∂a 1{τv =χ}ψa(τ)

Q
w∈∂a\v µG ′′∗,w→a(τw )

¯̄̄̄
¯≤ nα60d (4.36)

X
v∈Vn

X
σ∈Ωx∪∂2 x

¯̄̄̄
¯µG ′′∗ (σ)−

p(σ)
Q

a∈∂v ψa(σ)
Q

w∈∂a\v µG ′′∗,w→a(σw )P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a 1{τv =χ}ψa(τ)

Q
w∈∂a\v µG ′′∗,w→a(τw )

¯̄̄̄
¯< nα60d . (4.37)

Proof. Consider the event E that in G ′′∗, for the variable node vn−ω with the largest index the estimateX
b∈∂vn−ω

X
σ∈Ω

¯̄̄̄
¯µG ′′∗,b→vn−ω (σ)−

P
τ∈Ω∂b 1{τ(vn−ω) =σ}ψb(τ)

Q
w∈∂b\vn−ω µG ′′∗,w→b(τ(w))P

τ∈Ω∂b ψb(τ)
Q

w∈∂b\vn−ω µG ′′∗,w→b(τw )

¯̄̄̄
¯≤α69 (4.38)

holds. Since G++∗ is obtained from G+∗ by the same process that produces G ′′∗ from G ′∗, Lemma 4.4 and Corollary 4.7
show that P

£
G ′′∗ ∈ E

¤= 1−O(α70). But since the distribution of G ′′∗ is invariant under permutations of the n −O(ω)
variable nodes of degree d , we can replace vn−ω in (4.38) by a random variable node of degree d . Thus, we obtain
(4.35). The two bounds (4.36) and (4.37) follow analogously. �

To complete the proof of Proposition 4.2, we finally need to get from G ′′∗ back to G ′∗. Thus, we need to undo the
additional pinning of the cavities that was required to verify the BP equations (4.35)–(4.37). The elegant insight
that makes this possible is that (4.35)–(4.37) really just describe a property of the joint distribution of the second
neighborhoods of the variable nodes vi , i 6= n −ω. Indeed, by Lemma 4.3 the standard messages, defined via the
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removal of a few constraints adjacent to a single variable node v , can be expressed easily in terms of the joint
distribution of the second neighborhood of v . Furthermore, Lemma 4.1 implies that the enhanced measure µ̂G ′∗
describing the second neighborhood distributions is ξ1/4-extremal, with ξ is near the top of the pecking order (4.3).
In effect, µ̂G ′∗ is impervious to the additional pinning required to go from G ′∗ to G ′′∗. Let us formalize this argument
to finish the proof of Proposition 4.2.

Proof of Proposition 4.2. By Lemma 4.1 the measure µ̂G∗ is ξ1/4-extremal with probability 1−ω−1. Consequently,
since G ′∗ is obtained by deleting O(ω) constraints, Lemma 3.17 and (2.1) ensure that µ̂G ′∗ is ϑ-extremal with prob-

ability 1−α10. Furthermore, µ̂G ′′∗ is nothing but the conditional distribution µ̂G ′∗ given the event S+ that the spins
of the θζ cavities C+ coincide with the ones of the reference configuration σ+. Since σ+ is drawn from µ̂G ′∗ , with
probability at least 1−ζ we have

µ̂G ′∗ (S+) ≥ ζq−θζ .

If so, and if µ̂G ′∗ is ϑ-extremal, then (4.3) and Corollary 3.18 imply that ∆2(µ̂G ′′∗ , µ̂G ′∗ ) ≤β. In summary,

P
h
∆2(µ̂G ′′∗ , µ̂G ′∗ ) ≤β

i
≥ 1−2ζ.

In addition (2.1) ensures that with probability at least 1−α10,¯̄̄̄½
a ∈ F (G ′

∗) : min
σ∈Ωk

ψa(σ) ≤α
¾¯̄̄̄

≤ nα1000d . (4.39)

Further, by Corollary 4.8 the bounds (4.35)–(4.37) hold with probability 1−O(α70).
Thus, we are left to prove statements (i) and (ii) under the assumption that ∆2(µ̂G ′′∗ , µ̂G ′∗ ) ≤ β and that (4.35)–

(4.37) and (4.39) hold. Applying Lemma 3.12, we obtainX
v∈V

°°°µ̂G ′′∗,v − µ̂G ′∗,v

°°°
TV

≤O(β). (4.40)

Further, Lemma 4.3 shows that the messages µG ′′∗,v→a , µG ′′∗,a→v and µG ′∗,v→a , µG ′∗,a→v can be expressed in terms
of the marginal distributions µ̂G ′′∗,v and µ̂G ′∗,v of the depth-two neighborhood. Indeed, according to (3.1)–(3.2), for
any a ∈ ∂v and σ ∈Ω,

µG ′′∗,v→a(σ) =
D

1{σv =σ}/ψa(σ), µ̂G ′′∗,v

E
D

1/ψa(σ), µ̂G ′′∗,v

E , µG ′′∗,a→v (σ) =
D

1{σv =σ}/(p(σ)
Q

b∈∂v\a ψb(σ)), µ̂G ′′∗,v

E
D

1/(p(σv )
Q

b∈∂v\a ψb(σ)), µ̂G ′′∗,v

E ,

and analogously for G ′∗. Hence, the total variation bound (4.40) and (4.39) imply thatX
v∈V

X
a∈∂v

°°°µG ′′∗,v→a −µG ′∗,v→a

°°°
TV

+
°°°µG ′′∗,a→v −µG ′∗,a→v

°°°
TV

=O(nα900d ). (4.41)

Combining (4.37) and (4.39)–(4.41), we obtain assertion (ii). Further, (4.35), (4.39) and (4.41) readily yield

X
v∈V

X
b∈∂v

X
σ∈Ω

¯̄̄̄
¯µG ′∗,b→v (σ)−

P
τ∈Ω∂b 1{τ(v) =σ}ψb(τ)

Q
w∈∂b\v µG ′∗,w→b(τ(w))P

τ∈Ω∂b ψb(τ)
Q

w∈∂b\v µG ′∗,w→b(τ(w))

¯̄̄̄
¯≤O(nα60d ). (4.42)

Moreover, combining (4.36), (4.39), (4.40) and (4.42), we obtain

X
v∈V

X
b∈∂v

X
σ∈Ω

¯̄̄̄
¯µG ′∗,v→b(σ)−

p(σ)
Q

a∈∂v\b µG ′∗,a→v (σ)P
χ∈Ω p(χ)

Q
a∈∂v\b µG ′∗,a→v (χ)

¯̄̄̄
¯≤O(nα50d ). (4.43)

Finally, (4.42) and (4.43) show that the standard messages are a O(α40d )-BP fixed point. �

5. THE FREE ENERGY: UPPER BOUND

5.1. Outline. In this section we derive the following upper bound on the free energy.

Proposition 5.1. Assume that POS is satisfied. Then

limsup
n→∞

1

n
E
£
log Z (G)

¤≤ inf
π∈D?

B(π), limsup
n→∞

1

n
E
£
log Z (G)

¤≤ inf
π∈D?

B(π).
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The proof of Proposition 5.1 consists of two parts. First, we will prove that any µ ∈K yields an upper bound on
E
£
log Z (G)

¤
. Specifically, recalling the notation from Section 3.1, let

B′(µ) = E log

*
nM

i=1
ϕi ,µ

+
, B′′(µ) = E log

* M
1≤i≤(k−1)dn/k

ψ1,i ,µ

+
.

Then we have the following generic upper bound, which may be of interest in its own right.

Proposition 5.2. Assume that POS is satisfied. Then E
£
log Z (G)

¤≤ o(n)+B′(µ)−B′′(µ) for any µ ∈K .

The proof of Proposition 5.2, based on the interpolation method, is relatively standard, although the fact that we
deal with regular graphs requires a bit of care. The details are carried out in Section 5.2. This is the only place where
condition POS is required.

The second step toward the proof of Proposition 5.1 is to show that for µ drawn from π ∈D? the upper bound
from Proposition 5.2 boils down to the expression B(π).

Proposition 5.3. For any π ∈D? we have B(π) = E[B′(µπ)−B′′(µπ)].

We prove Proposition 5.3 in Section 5.3.

Proof of Proposition 5.1. The first assertion is immediate from Propositions 5.2 and 5.3. To obtain the second asser-
tion, we apply Azuma’s inequality and (2.1) to see that n−0.51

¯̄
log Z (G)−E log Z (G)

¯̄
converges to zero in probability.

Hence, Fact 2.2 and Bayes’ rule show that E log Z (G) = E log Z (G)+o(n), and thus the second assertion follows from
the first. �

5.2. Proof of Proposition 5.2. We construct a family of random factor graph models parametrized by t ∈ [0,1]. The
free energy of the model at t = 1 will be easy to compute, and we will see that it is (nearly) equal to B′(µ)−B′′(µ).
The model with t = 0 essentially coincides with G . Furthermore, we will show that the derivative of the free energy
is non-negative for all t , thus obtaining the desired upper bound on E log Z (G).

To construct this interpolating family, fix µ ∈K and a small ε> 0. For t ∈ [0,1] let

mt = Po((1− t )exp(−ε)dn/k),

m′
t = Po(t exp(−ε)dn),

m′′
t = Po((1− t )(k −1)exp(−ε)dn/k),

all three mutually independent and independent of everything else. Given kmt +m′
t ≤ dn, we define the random

factor graph G t as follows.

INT1: the set of variable nodes is V = {s}∪Vn , and the set of spins is X =Ω∪ [0,1].
INT2: the set of constraint nodes is

Ft =
n

a1, . . . , amt , a′
1, . . . , a′

m′
t
, a′′

1 , . . . , a′′
m′′

t

o
.

INT3: each constraint node ai independently chooses a weight functionψai from P , and the ai are joined to
the variable nodes v1, . . . , vn by a random pairing of Vn × [d ] and {a1, . . . , amt }× [k].

INT4: each of the constraint nodes a′
i , i ∈ [m′

t ], is adjacent to the variable node s and one further variable
node from v1, . . . , vn ; the links between the a′

i and the v j are constructed by choosing a random pairing
between the h′

i -clone of each a′
i and the clones in Vn × [d ] that are not paired to a constraint node ah . The

weight function associated with a′
i reads

ψa′
i
(s,σ) = X

τ∈Ωk

1{τh′
i
=σ}ψ′

i (τ)
Y

h 6=h′
i

µs,x ′
i ,h

(τh).

INT5: the constraint nodes a′′
i , i ∈ [m′′

t ], are unary, adjacent to s only. Their weight functions read

ψa′′
i

(s) = X
τ∈Ωk

ψ′′
i (τ)

kY
h=1

µs,x ′′
i ,h

(τh).

INT6: the prior p is a product measure

dp(σ) = 1{σs ∈ [0,1], ∀1 ≤ i ≤ n :σvi ∈Ω}
nY

i=1
p
¡
σxi

¢
dσs ;
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thus, for each vi ∈Vn a spin fromΩ is chosen independently from p, and σs is uniform on [0,1].

Thus, the total weight, partition function and Boltzmann distribution of G t read

ψG t (σ) =
mtY
i=1

ψai (σ)
m′

tY
i=1

ψa′
i
(σ)

m′′
tY

i=1
ψa′′

i
(σ), (σs ∈ [0,1], σxi ∈Ω),

Z (G t ) = X
σx1 ,...,σxn ∈Ω

Z 1

0
ψG t (σ)dσs

nY
i=1

p(σxi ), dµG t (σ) = ψG t (σ)

Z (G t )
dp(σ). (5.1)

The following lemma establishes the monotonicity of the free energy in t ; its proof is the only place where we use
condition POS.

Lemma 5.4. Suppose that POS is satisfied. Then uniformly for all t ∈ (0,1) we have

1

n

∂

∂t
E
£
log Z (G t )

¤≥ o(1).

Proof. We recall the derivative of the Poisson density: for any λ> 0, `≥ 1,

∂

∂λ
P [Po(λ) = `] = ∂

∂λ

λ`

`!
exp(−λ) = λ`−1

(`−1)!
exp(−λ)− λ`

`!
exp(−λ) =P [Po(λ) = `−1]−P [Po(λ) = `] . (5.2)

The variable t affects the distribution of G t by way of the variables mt ,m′
t ,m′′

t . Specifically, let

λt = (1− t )exp(−ε)dn/k, λ′
t = t exp(−ε)dn, λ′′

t = (1− t )(k −1)exp(−ε)dn/k.

Recall that mt ,m′
t are conditional Poisson variables Po(λt ) and Po(λ′

t ), respectively, given that kmt +m′
t ≤ dn.

Since ε> 0 is independent of n, (5.2) shows that for any two integers mt ,m′
t ≥ 1,

1

n

∂

∂t
P
£
mt = mt , m′

t = m′
t

¤= exp(−Ω(n))+ 1

n

∂

∂t
P [Po(λt ) = mt ]P

£
Po(λ′

t ) = m′
t

¤
= exp(−Ω(n))+ 1

n

∂

∂t
P [Po(λt ) = mt ]P

£
Po(λ′

t ) = m′
t

¤
= exp(−Ω(n))+ (P [Po(λt ) = mt ]−P [Po(λt ) = mt −1])P

£
Po(λ′

t ) = m′
t

¤
exp(−ε)d/k

+ ¡P£Po(λ′
t ) = m′

t −1
¤−P£Po(λ′

t ) = m′
t

¤¢ ·P [Po(λt ) = mt ]exp(−ε)d . (5.3)

Further, given the event kmt +m′′
t ≤ dn −k let G ′

t be the random factor graph obtained from G t by adding one
more constraint node amt+1 as per INT3. Similarly, given kmt +m′′

t ≤ dn −1 obtain G ′′
t from G t by adding am′

t+1

according to INT4. Additionally, obtain G ′′′
t from G t by adding a unary am′′

t +1 as described in INT5. Since m′′
t is

independent of m′
t ,m′′

t , (5.2) and (5.3) yield

1

n

∂

∂t
E[log Z (G t )] = exp(−Ω(n))+

X
mt ,m′

t ,m′′
t ≥1

kmt+m′′
t ≤dn−k

E

log Z (G t )

¯̄̄̄ mt

m′
t

m′′
t

=
mt

m′
t

m′′
t

 · 1

n

∂

∂t
P

mt

m′
t

m′′
t

=
mt

m′
t

m′′
t



= exp(−Ω(n))−exp(−ε)
d

k

h
E log

Z (G ′
t )

Z (G t )
−kE log

Z (G ′′
t )

Z (G t )
+ (k −1)E log

Z (G ′′′
t )

Z (G t )

i
. (5.4)

Hence, it suffices to prove that for all 0 < t < 1,

E

·
log

Z (G ′
t )

Z (G t )

¸
−kE

·
log

Z (G ′′
t )

Z (G t )

¸
+ (k −1)E

·
log

Z (G ′′′
t )

Z (G t )

¸
≤ 0. (5.5)

By the definition of the Boltzmann distribution (5.1),

Z (G ′
t )

Z (G t )
=
D
ψamt +1 ,µG t

E
,

Z (G ′′
t )

Z (G t )
=
¿
ψa′

m′
t +1

,µG t

À
,

Z (G ′′′
t )

Z (G t )
=
¿
ψa′′

m′′
t +1

,µG t

À
.

Hence,

log
Z (G ′

t )

Z (G t )
= log

D
ψamt +1 ,µG t

E
=−X

`≥1

1

`

D
1−ψamt +1 ,µG t

E`
. (5.6)
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Further, in terms of the kernel representation µ̇G t of the Boltzmann distribution we obtain

E

·D
1−ψamt +1 ,µG t

E`¸= E"Ã1− X
σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µ̇G t ,z,x i (σi )dz

!`#
. (5.7)

Combining (5.6) and (5.7) yields

E

·
log

Z (G ′
t )

Z (G t )

¸
=−E

"X
`≥1

1

`

Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µ̇G t ,z,x i (σi )dz

!`#
. (5.8)

Due to (2.1) and Fubini’s theorem, we can exchange the sum and the expectation in (5.8); indeed, (2.1) yields

X
`≥1

E

¯̄̄̄
¯
Ã

1− X
σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µ̃G t ,z,x i (σi )dz

!` ¯̄̄̄
¯≤ X

`≥1
E

·
max
σ∈Ωk

|1−ψ(σ)|`
¸
<∞.

Thus, (5.8) becomes

E

·
log

Z (G ′
t )

Z (G t )

¸
=−X

`≥1

1

`
E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µ̃G t ,z,x i (σi )dz

!`#
. (5.9)

Following similar steps, we obtain expansions for the other two terms from (5.5) as well:

E

·
log

Z (G ′′
t )

Z (G t )

¸
=− 1

k

kX
h=1

X
`≥1

1

`
E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0
µ̃G t ,z,xh (σh)

Y
i 6=h

µz,x i (σi )dz

!`#
, (5.10)

E

·
log

Z (G ′′′
t )

Z (G t )

¸
=−X

`≥1

1

`
E

"Ã
1− X

σ∈Ωk

ψ(σ)
Z 1

0

kY
i=1

µz,x i (σi )dz

!`#
. (5.11)

Finally, the assertion follows from POS and (5.5), (5.9), (5.10) and (5.11). �

Proof of Proposition 5.2. Integrating t from 0 to 1 and applying Lemma 5.4, we obtain for any ε> 0,

E[log Z (G0)] ≤ E[log Z (G1)]+o(n). (5.12)

Letting

Y = log
Z 1

0

m′′
0Y

i=1

X
σ∈Ωk

ψ′′
i (σ)

kY
h=1

µz,x ′′
i ,h

(σh)dz,

we claim that for a certain number c = c(P ) > 0,

E log Z (G)+E[Y ] ≤ E log Z (G1)+εcn. (5.13)

Indeed, at t = 0 the variable node s is adjacent to the constraint nodes a′′
i , i ∈ [m′′

t ], only. Hence, G0 decomposes
into connected components, one of which comprises s and the a′′

i . Let G ′′
0 be this component, and let G ′

0 be the
remainder of G0. Then by construction we have E log Z (G ′′

0 ) = E[Y ]. Thus, (5.12) yields

E[log Z (G ′
0)]+E[Y ] = E[log Z (G0)] ≤ E[log Z (G1)]+o(n). (5.14)

Furthermore, G ′
0 consists of the variable nodes v1, . . . , vn and the constraint nodes a1, . . . , am1 , where m1 is a Pois-

son variable Po(exp(−ε)dn/k) conditioned on taking a value of at most dn/k. Thus, we can construct a random
factor graph with the same distribution as G from G ′

0 by simply adding dn/k−m1 further random k-ary constraint
nodes as per INT3. Since all weight functions ψ ∈Ψ take values in (0,2), we obtain c = c(P ) > 0 such that

E log Z (G) ≤ E log Z (G ′
0)+εcn. (5.15)

Combining (5.14) and (5.15), we obtain (5.13).
We further claim that there is a constant c ′ = c ′(P ) > 0 such that

1

n
E[Y ] ≤ εc ′+o(1)+B′′(µ). (5.16)

Indeed, B′′(µ) = E[Y | m′′
0 = (k − 1)dn/k]. In other words, we can think of B′′(µ) as the free energy of G ′′

0 given
that m′′

0 = (k −1)dn/k. Thus, obtain G ′′′
0 from G ′′

0 by adding (k −1)dn/k −m′′
0 more constraint nodes according to

INT5, or by removing some random constraint nodes if m′′
0 > (k−1)dn/k. Then B′′(µ) = E log Z (G ′′′

0 ). Since m′′
0 is a

Poisson variable with mean exp(−ε)(k −1)dn/k, with probability 1−exp(−Ω(n)) we do not need to add or remove
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more than 2ε(k −1)dn constraint nodes. The tail bound (2.1) therefore implies together with the Chernoff bound
that (5.16) is satisfied for a certain c ′ = c ′(P ).

By similar arguments, for a certain c ′′ = c ′′(P ) we have

1

n
E[log Z (G1)] ≤B′(µ)+εc ′′+o(1). (5.17)

Indeed, B′(µ) is nothing but the conditional expectation of log Z (G1) given that m′
1 = dn. Hence, if we pad G1 by

adding the missing dn −m′
1 constraint nodes a′

i according to INT4, then the total number of constraints added
does not exceed 2εdn with probability 1−exp(−Ω(n)). Hence, (5.17) follows from (2.1) and the Chernoff bound.

Finally, combining (5.12)–(5.17), we conclude that

1

n
E log Z (G) ≤B′(µ)−B′′(µ)+εc ′′′+o(1)

for a certain c ′′′ = c ′′′(P ) > 0. Since this is true for any fixed ε> 0, the assertion follows. �

5.3. Proof of Proposition 5.3. Following Panchenko [55], who worked with factor graphs of Erdős-Rényi type, we
are going to use the invariance property of π ∈D? under the ∗(N , M)-operation to simplify B′,B′′ separately.

Lemma 5.5. Suppose that π ∈D?. Then

E[B′′(µπ)] = d(k −1)n

k
E
£
log
­
ψ1,π

®¤
. (5.18)

Proof. Let φ= E£log
­
ψ1,π

®¤
for brevity. We claim that for any integer m ≥ 0,

E

"
log

­Lm+1
i=1 ψi ,π

®­Lm
i=1ψi ,π

® #=φ. (5.19)

Then (5.18) follows by summing (5.19) on 0 ≤ m < d(k −1)n/k.
Thus, we are left to prove (5.19). Since π ∈D?, Corollaries 3.4 and 3.9 imply that for any integer `≥ 1,

E

"Ã­Lm+1
i=1 ψi ,π

®­Lm
i=1ψi ,π

® !`#= E
* Lm

i=1ψiDLm
j=1ψ j ,π

E ⊕ψm+1,π

+`
= E
"*
ψm+1,

mM
i=1

ψi ∗π
+`#

= E
h­
ψm+1,π

®`i= Eh­ψ1,π
®`i .

Consequently, for all `≥ 1 we have

E

"Ã
1−

­Lm+1
i=1 ψi ,π

®­Lm
i=1ψi ,π

® !`#= Eh¡1−­ψ1,π
®¢`i . (5.20)

Further, because the continuous function z ∈ [−1,1] 7→ |z| is a uniform limit of polynomials, (5.20) yields

E

¯̄̄̄
¯
Ã

1−
­Lm+1

i=1 ψi ,π
®­Lm

i=1ψi ,π
® !` ¯̄̄̄¯= E ¯̄̄¡1−­ψ1,π

®¢` ¯̄̄
Therefore, invoking (2.1), we obtain

X
`≥1

1

`
E

¯̄̄̄
¯
Ã

1−
­Lm+1

i=1 ψi ,π
®­Lm

i=1ψi ,π
® !` ¯̄̄̄¯= X

`≥1

1

`
E
¯̄̄¡

1−­ψ1,π
®¢` ¯̄̄≤ X

`≥1
E

·
max
σ∈Ωk

|1−ψ1(σ)|`
¸
<∞.

Hence, by (5.20) and Fubini’s theorem,

E

"
log

­Lm+1
i=1 ψi ,π

®­Lm
i=1ψi ,π

® #=−X
`≥1

1

`
E

"Ã
1−

­Lm+1
i=1 ψi ,π

®­Lm
i=1ψi ,π

® !`#=−X
`≥1

1

`
E
h¡

1−­ψ1,π
®¢`i=φ,

which is (5.19). �

Lemma 5.6. Suppose that π ∈D?. Then E[B′(µπ)] = E log
­
ϕ1,π

®
.
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Proof. We use a similar argument as in the proof of Lemma 5.5. This time we set φ = E log
­
ϕ1,π

®
. It suffices to

show that for every n ≥ 0,

E

"
log

­Ln+1
i=1 ϕi ,π

®­Ln
i=1ϕi ,π

® #=φ. (5.21)

As in the proof of Lemma 5.5, we use that π ∈D? and apply Corollaries 3.4 and 3.9 to obtain for any `≥ 1,

E

"Ã­Ln+1
i=1 ϕi ,π

®­Ln
i=1ϕi ,π

® !`#= E
* Ln

i=1ϕiDLn
j=1ϕ j ,π

E ⊕ϕn+1,π

+` = E
"*
ϕn+1,

nM
i=1

ϕi ∗π
+`#

= E
h­
ϕ1,π

®`i . (5.22)

Hence, for any `≥ 1,

E

"Ã
1−

­Ln+1
i=1 ϕi ,π

®­Ln
i=1ϕi ,π

® !`#= Eh¡1−­ϕ1,π
®¢`i . (5.23)

Further, approximating the absolute value by polynomials, we obtain from (5.22) that

E

¯̄̄̄
¯
Ã

1−
­Ln+1

i=1 ϕi ,π
®­Ln

i=1ϕi ,π
® !` ¯̄̄̄¯= E ¯̄̄¡1−­ϕ1,π

®¢` ¯̄̄ .
Thus, (5.21) follows from (5.23) and Fubini’s theorem. �

Finally, Proposition 5.3 is immediate from Lemmas 5.5 and 5.6.

6. THE FREE ENERGY: LOWER BOUND

6.1. Outline. In this section we prove the following lower bound on the free energy that matches the upper bound
from Proposition 5.1. The lower bound does not require the assumption POS.

Proposition 6.1. We have

liminf
n→∞

1

n
E
£
log Z (G)

¤≥ inf
π∈D?

B(π), liminf
n→∞

1

n
E
£
log Z (G)

¤≥ inf
π∈D?

B(π).

Theorem 2.7 follows immediately from Propositions 5.1 and 6.1.
The proof of Proposition 6.1 is based on a kind of coupling argument that is colloquially referred to as the

‘Aizenman–Sims–Starr’ scheme. This technique has been applied with great success to random factor graphs of
Erdős-Rényi type, where the degree distribution is approximately Poisson [24, 16, 55]. The basic idea is to couple a
random factor graph with n variable nodes with a random factor graph with n +1 variable nodes and to calculate
the difference of their free energies very precisely. This coupling is very easy to set up in the Erdős-Rényi case due
to the Stein-Chen property of the Poisson distribution.

However, in the case of random regular graphs matters are more intricate. Due to the rigid local structure there
is no obvious way of coupling random regular factor graphs with n and n +1 variable nodes. As in Section 4, we
therefore resort to the idea of creating a bit of wiggling room by carving out a few cavities, in such a way that the
free energy does not change significantly. But the details of the construction are delicate.

Let n,ω be integers and let X ,Y be two independent Poisson variables with mean ω. The protagonist of the
proof is the random factor graph Gn,ω defined as follows. Let

Nn,ω = k∨(n −X ) and let ∆n,ω
d=Be(d Nn,ω/k −bd Nn,ω/kc)

be independent of Y . Further, set

Mn,ω = d∨¡bd Nn,ω/kc∧ ¡bd Nn,ω/kc+∆n,ω−d X −Y
¢¢

.

Then Gn,ω has Nn,ω variable nodes vi , i ∈ [Nn,ω], and Mn,ω constraint nodes ai , i ∈ [Mn,ω]. The weight functions
ψai are chosen independently from P . Furthermore, the variable and constraint nodes are linked through a ran-
dom (one-to-one) pairing

FMn,ω × [k] →VNn,ω × [d ].

Since kMn,ω ≤ d Nn,ω by construction, such a pairing exists, but some variable clones may go unpaired. We are
going to harness these unpaired ‘cavities’ to set up a coupling of Gn,ω and Gn+1,ω.
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To this end, consider a further random factor graph Ĝn,ω with Nn,ω variable nodes and M̂n,ω = Mn+1,ω−d con-
straint nodes. The weight functions are chosen independently from P , and the connections between the constraint
and variable nodes are induced by a random pairing

FM̂n,ω
× [k] →VNn,ω × [d ].

Rather than coupling Gn,ω and Gn+1,ω directly, we will couple Gn,ω and Ĝn,ω as well as Gn+1,ω and Ĝn,ω.
This construction leads to an approximate formula for the free energy of Gn,ω that comes in terms of the kernel

representation of the Boltzmann distribution of Ĝn,ω. To be precise, let Ĉ be the set of variables vi ∈VNn,ω with at
least one unpaired clone in Ĝn,ω. Consider the random kernel

ρ̂n,ω = µ̇Ĝn,ω,Ĉ ∈K

representing the joint distribution of the cavities Ĉ . Further, let π̂n,ω ∈D be the distribution of ρ̂n,ω. To deal with
the conditioning on the event S , we also introduce versions Gn,ω, Ĝn,ω of the above random factor graphs condi-
tional on S . Let ρ̃n,ω = µ̇Ĝn,ω,Ĉ ∈K be the kernel representation of the corresponding Boltzmann distribution, and
let π̃n,ω ∈D be the law of ρ̃n,ω. In Section 6.2 we will derive the following formula.

Proposition 6.2. For any ε> 0 there exists ω> 0 such that

liminf
n→∞ E

·
log

Z (Gn+1,ω)

Z (Gn,ω)

¸
−E
log

­
ϕ1, ρ̂n,ω

®− log

* M
M̂n,ω<i≤Mn,ω

ψ1,i , ρ̂n,ω

+≥−ε,

liminf
n→∞ E

·
log

Z (Gn+1,ω)

Z (Gn,ω)

¸
−E
log

­
ϕ1, ρ̃n,ω

®− log

* M
M̂n,ω<i≤Mn,ω

ψ1,i , ρ̃n,ω

+≥−ε.

There are still two gaps to fill toward the proof of Proposition 6.1. First, the estimate of the free energy provided
by Proposition 6.2 does not quite match the functional B(π̂n,ω). Second, the distribution π̂n,ω ∈D does not gen-
erally belong to the subspace D?. The following proposition deals with the second issue, which holds the key to
resolving the first. Recall that the topology of D is induced by the Wasserstein metric D2( · , · ). We introduce a
relaxed version of D? by letting

D?
ε,N ,M = ©π ∈D : D2(π,π∗(u,w)) ≤ ε for all u ≤ N and w ≤ M

ª
.

Since (2.1) and Lemma 3.6 show that the map π 7→ π∗(u,w) is continuous, D?
ε,N ,M is a closed subspace of the com-

pact Polish space D.

Proposition 6.3. For any ε,L > 0 there is ω0 > 0 such that for every ω>ω0 for large enough n we have

π̂n,ω, π̃n,ω ∈D?
ε,L,L .

The proof of Proposition 6.3 can be found in Section 6.3. Finally, in Section 6.4 we derive Proposition 6.1 from
Propositions 6.2 and 6.3.

6.2. Proof of Proposition 6.2. We assume throughout that ω>ω0 for a big enough ω0 =ω0(d ,P ) and that n suffi-
ciently large.

Obtain the random factor graph G ′
n,ω from Ĝn,ω by adding Mn −M̂n,ω new random constraint nodes ai , M̂n,ω <

i ≤ Mn , whose weight functions are drawn from P independently and that are linked with the variable nodes via a
random pairing with the cavities Ĉ of Ĝn,ω.

Further, if kM̂n,ω ≤ d Nn,ω−d(k −1), then obtain G ′′
n,ω from Ĝn,ω by adding one new variable node v̂ = vNn,ω+1

along with d random constraint nodes â1, . . . , âd adjacent to v̂ whose weight functions are drawn independently
from P . To be precise, the clones of v̂ are paired each with a uniformly random clone ĥi of âi for i = 1, . . . ,d , and the
remaining d(k −1) clones of the âi are paired with randomly chosen cavities of Ĝn,ω. If kM̂n,ω > d Nn,ω−d(k −1),
then obtain G ′′

n,ω from Ĝn,ω by just adding a new isolated variable node v̂ .
Obtain G′

n,ω,G′′
n,ω analogously from Ĝn,ω while conditioning on the event that the outcome is simple. If it is

impossible to add the required number of constraint nodes in such a way that the resulting factor graph is simple,
then do not add any.
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Lemma 6.4. For ω> 0 we have¯̄
E log Z (Gn,ω)−E log Z (G ′

n,ω)
¯̄= o(1),

¯̄
E log Z (Gn+1,ω)−E log Z (G ′′

n,ω)
¯̄= oω(1),¯̄

E log Z (Gn,ω)−E log Z (G′
n,ω)

¯̄= oω(1),
¯̄
E log Z (Gn+1,ω)−E log Z (G′′

n,ω)
¯̄= oω(1). (6.1)

Proof. Since d ≥ 3 and k ≥ 2,

M̂n,ω−bd Nn,ω/kc ≤ d Nn,ω/k +1+d/k −d −bd Nn,ω/kc ≤ 2−d(1−1/k) ≤ 1/2.

Because the left-hand side is an integer, we conclude that M̂n,ω ≤ bd Nn,ω/kc. Similarly,

M̂n,ω−
¡bd Nn,ω/kc+∆n,ω−d X −Y

¢≤ 2−d(1−1/k) ≤ 1/2.

Thus, Mn,ω ≥ M̂n,ω. Hence, Gn,ω and G ′ are identically distributed.
Moving on to the second claim, we consider the event A that the last variable node is adjacent to precisely d

distinct constraint nodes. Then

P
£
Gn+1,ω ∈A

¤= 1−O(ω/n), (6.2)

while G ′′
n,ω ∈A with certainty. Given A and given that X +Y ≤p

n, say, the subgraph G̃n+1,ω obtained from Gn+1,ω

by deleting ṽ along with its adjacent constraint nodes is distributed precisely as Ĝn,ω, and therefore G ′′
n,ω and

Gn+1,ω can be coupled identically. Hence,

E
£
log Z (G ′′

n,ω) | X +Y ≤p
n
¤= E£log Z (Gn+1,ω) |A , X +Y ≤p

n
¤

. (6.3)

If, on the other hand, X +Y ≤ p
n but A does not occur, then we can couple Gn+1,ω and G ′′

n,ω such that both
disagree on at most 2d constraint nodes. Indeed, suppose that vNn+1,ω has d̃ < d adjacent constraints in Gn+1,ω.
Then the subgraph obtained by removing vNn+1,ω , its d̃ neighbors and another d − d̃ random constraint nodes is
distributed precisely as Ĝn,ω. Hence, we can obtain both Gn+1,ω and G ′′

n,ω from Ĝn,ω by adding d (possibly distinct)
constraint nodes. Thus, (2.1) ensures that

E
£
log Z (G ′′

n,ω) | X +Y ≤p
n
¤= Ehlog Z (Gn+1,ω) |A , X +Y ≤p

n
i
+O(1). (6.4)

Furthermore, (2.1) ensures that

E
£
log Z (G ′′

n,ω) | X ,Y
¤

,E
£
log Z (Gn+1,ω) | X ,Y

¤=O(n). (6.5)

Since P
£

X +Y >p
n
¤= o(n−2), (6.2)–(6.5) yield the second assertion.

Matters get slightly more complicated once we condition on S . Since X +Y ≤ logn with probability 1−O(n−k ),
due to (2.1) the event X +Y > logn contributes no more than an additive o(1) to the difference of the free energies.
Hence, we may condition on X +Y ≤ logn. Let d ′ be the vector comprising the variable degrees in Ĝn,ω. Let D be
the set of all such sequences with entries either d or d −1. A standard moment calculation shows that given any
possible d ′, the event Ĝn,ω ∈ S has probability (1+o(1))exp

£−(d −1)(k −1)/2−1{k = 2}(d −1)2/4
¤

(cf. Fact 2.2).
Therefore, with Õ( · ) hiding poly-logarithmic terms,

P
£
d ′ ∈D | X +Y ≤ logn

¤= 1−Õ(1/n). (6.6)

Similarly, let d comprise the variable degrees of the factor graph G−
n,ω obtained from Gn,ω by deleting the last d

constraint nodes. Then

P
£
d ∈D | X +Y ≤ logn

¤= 1−Õ(1/n). (6.7)

Additionally, let E be the set of all factor graphs that have a constraint node that is adjacent to variable nodes of
degree less than d only. Then

P
£
Ĝn,d ∈ E | X +Y ≤ logn

¤
,P
£
G−

n,ω ∈ E | X +Y ≤ logn
¤= Õ(n1−k ). (6.8)

Further, on the event D \E we can couple G′
n,ω and Gn,ω identically, because there is no way of adding the missing

constraint nodes to Ĝn,ω without obtaining a simple factor graph. Hence,

E
£
log Z (Gn,ω) | d ∈D, G−

n,ω 6∈ E , X +Y ≤ logn
¤= Ehlog Z (G′

n,ω) | d̂ ∈D, Ĝn,ω 6∈ E , X +Y ≤ logn
i

. (6.9)
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But (6.9) does not yet suffice to prove (6.1) because outside the event D \ E the free energies of the two factor
graphs may differ byΩ(n). Hence, we also need to consider the event D′ that d has a single d−2 entry; this suffices
because

P
£
d 6∈D∪D′ | X +Y ≤ logn

¤
,P
h

d̂ 6∈D∪D′ | X +Y ≤ logn
i
= 1−Õ(n−2) (6.10)

and thus the contribution of the complement of D∪D′ to the free energy difference is o(1) due to (2.1). Considering
the event D′ is indeed necessary because P[d̂ ∈ D′ | X +Y ≤ logn] > P[d ∈ D′ | X +Y ≤ logn]. Indeed, while Ĝn,ω

is just a uniformly random simple factor graph with Nn,ω variable and M̂n,ω constraint nodes, G−
n,ω has a tilted

distribution, with each possible simple graph being weighed according to the number of extensions into a simple
graph with Mn,ω constraints. In effect, since variable nodes of degree less than d−1 leave us with fewer extensions,
the event D′ is less likely in G−

n,ω. Yet because Mn,ω− M̂n,ω is bounded, on the event D′ we can couple Gn,ω and
G′

n,ω such that both differ only in a bounded number of constraint nodes. As a consequence,

E
£
log Z (Gn,ω) | d ∈D′, G−

n,ω 6∈ E , | X +Y ≤ logn
¤= Ehlog Z (G′

n,ω) | d̂ ∈D′, Ĝn,ω 6∈ E , | X +Y ≤ logn
i
+O(1). (6.11)

Additionally, we claim that also Gn,ω given d ∈D and G′
n,ω given d̂ ∈D′ can be coupled such that with probability

1−Õ(1/n) both differ only in Õ(1) constraint nodes and that, in effect,

E
£
log Z (Gn,ω) | d ∈D, G−

n,ω 6∈ E , | X +Y ≤ logn
¤= Ehlog Z (G′

n,ω) | d̂ ∈D′, Ĝn,ω 6∈ E , | X +Y ≤ logn
i
+Õ(1). (6.12)

To see this, let u1, . . . ,u` be the variables nodes of degree less than d in G−
n,ω; suppose, indeed, that all of them

have degree d −1. Similarly, let u′
1, . . . ,u′

`−1 be the cavities of Ĝn,ω, all of degree d −1 except for u′
`−1, which has

degree d −2. Pick a further variable node u′
`

of degree d randomly. Then with probability 1− Õ(n−1) the second
neighborhoods ∂2{u1, . . . ,u`}, ∂2{u′

1, . . . ,u′
`

} both have size `(k−1)(d −1). Consequently, the subgraphs of G−
n,ω and

Ĝn,ω obtained by removing u1, . . . ,u` and u′
1, . . . ,u′

`
along with their neighbors, respectively, can be coupled such

that both coincide with probability 1−Õ(1/n). Thus, Gn,ω and G′
n,ω can be coupled such that the expected number

of constraint nodes on which the two factor graphs differ is Õ(1), whence we obtain (6.12).
To deal with the event E , we may assume that k = 2 due to (6.6). Furthermore, because of (6.8) and as

P[d ′ 6∈D | Ĝn,ω ∈ E , | X +Y ≤ logn] = Õ(1/n), P[d 6∈D |G−
n,ω ∈ E , | X +Y ≤ logn] = Õ(1/n), (6.13)

we may assume that d ,d ′ ∈D. Since

P
£
Ĝn,ω ∈ E | d ′ ∈D, X +Y ≤ logn

¤≥P£G−
n,ω ∈ E | d ∈D, X +Y ≤ logn

¤
(6.14)

because the event E precludes certain extensions into a simple factor graph with Mn,ω constraints, we just need
to consider the case that Ĝn,ω ∈ E and G−

n,ω 6∈ E given that d ,d ′ ∈ D. Let u1, . . . ,u` and u′
1, . . . ,u′

`
be the cavities of

G−
n,ω and Ĝn,ω, respectively. Pick one further constraint node b of Ĝn,ω. Then with probability 1− Õ(1/n) the set

∂2{u1, . . . ,u`} has size `(d −1), and all variable nodes in this set have pairwise distance at least four. The same is
true of the set ∂2{u′

1, . . . ,u′
`

}∪∂b with probability 1− Õ(1/n). If these two events occur, then Gn,ω and Gn,ω′ can be
coupled such that they only differ on the Õ(1) constraint nodes that are adjacent to u1, . . . ,u` and u′

1, . . . ,u′
`

and b.
Hence, we obtain a coupling such thatGn,ω and Gn,ω′ only differ on Õ(1/n) variable nodes in expectation, and thus

E
£
log Z (G′

n,ω) | d ′ ∈D, Ĝn,ω ∈ E , X +Y ≤ logn
¤= E£log Z (Gn,ω) | d ∈D, G−

n,ω 6∈ E , X +Y ≤ logn
¤+Õ(1). (6.15)

Moreover, because given E there is precisely one constraint involving variables of degree d−1 only with probability
1−Õ(1/n), we obtain

E
£
log Z (G′

n,ω) | d ′ ∈D, Ĝn,ω ∈ E , X +Y ≤ logn
¤= E£log Z (Gn,ω) | d ∈D, G−

n,ω ∈ E , X +Y ≤ logn
¤+Õ(1). (6.16)

Combining (6.15)–(6.16), we obtain the left bound stated in (6.1).
We proceed similarly to derive the right bound in (6.1). Indeed, in this case we do not need to consider the event

E separately, because all additional constraint nodes are connected with a variable node that does not belong to
Ĝn,ω or G−

n,ω, respectively. Hence, on the event D we can couple G′′
n,ω and Gn+1,ω identically, and thus

E
£
log Z (Gn+1,ω) | d ∈D, X +Y ≤ logn

¤= E£log Z (G′′
n,ω) | d ′ ∈D, X +Y ≤ logn

¤
. (6.17)

In effect, due to (6.10) we just need to construct a coupling in the event that Ĝn,ω ∈ D′ and Ĝ−
n,ω ∈ D. To this end,

we proceed as above by coupling Ĝn,ω, G−
n,ω given the second neighborhoods of the cavities such that both only
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differ in an expected Õ(1/n) constraint nodes. Since P
£
d ′ ∈D′ | X +Y ≤ logn

¤
,P
£
d ∈D′ | X +Y ≤ logn

¤ = Õ(1/n)
and P

£
d ∈D′ | X +Y ≤ logn

¤≥P£d ′ ∈D′ | X +Y ≤ logn
¤
, the second part of (6.1) follows from (6.17). �

We are ready to compare the free energies of Z (G ′′), Z (Ĝ) and Z (G ′), Z (Ĝ) and of the corresponding simple
graphs. We will carry the proofs out for the case of the simple random factor graph Ĝ; the other case is simply
obtained by skipping any deliberations pertinent to the event S .

Lemma 6.5. We have

E

"
log

Z (G ′′
n,ω)

Z (Ĝn,ω)

#
= E£log

­
ϕ1, ρ̂n,ω

®¤+oω(1), E

·
log

Z (G′′
n,ω)

Z (Ĝn,ω)

¸
= E£log

­
ϕ1, ρ̃n,ω

®¤+oω(1).

Proof. Let A be the event that Ĝn,ω has at leastω/2 cavities, that all variable nodes have degree either d or d−1 and
that no two variable nodes of degree d−1 are adjacent to the same constraint node. Then P [A ] = 1−exp(−Ωω(ω)).
Hence, (2.1) ensures that

E[log(Z (G′′
n,ω)/Z (Ĝn,ω))] = E[log(Z (G′′

n,ω)/Z (Ĝn,ω))|A ]+oω(1). (6.18)

Moreover, on A the random factor graph G′′
n,ω is obtained from Gn,ω by adding one variable node v̂ along with d

constraint nodes â1, . . . , âd , whose weight functions are drawn from P independently. Further, on the event A all
neighbors of the âi except v̂ belong to the set Ĉ of cavities. Therefore, we have the exact formula

Z (G′′
n,ω)

Z (Ĝn,ω)
=
*X
χ∈Ω

p(χ)
dY

i=1

X
τ∈Ω∂âi

ψâi (τ)1{τx̂ =χ, ∀y ∈ ∂âi \ x̂ :σy = τy },µĜn,ω,Ĉ

+
. (6.19)

To proceed, let (v i , j )i , j be a sequence of uniformly and independently chosen cavities v i , j ∈ Ĉ . We claim that on
the event A ,

E

·
log

Z (G′′
n,ω)

Z (Ĝn,ω)

¯̄̄
Ĝn,ω

¸

= oω(1)+E
"

log

*X
χ∈Ω

p(χ)
dY

i=1

X
τ∈Ωk

ψi (τ)1{τhi =χ, ∀h ∈ [k] \ hi :σv i ,h = τh},µĜn,ω,Ĉ

+ ¯̄̄
Ĝn,ω

#
. (6.20)

Indeed, the only difference between (6.19) and (6.20) is that in the former the neighbours ∂âi \ v̂ are chosen from
Ĉ without replacement, whereas the v i , j are chosen independently, i.e., with replacement. But since we choose a
mere dk cavities (v i , j )i∈[d ], j∈[k] out of a total of at leastω/2, the probability of hitting the same cavity twice is oω(1),
and thus (6.20) follows from (2.1). Further, unravelling the definitions of ρ̃n,ω andϕ1, we see that

E

"
log

*X
χ∈Ω

p(χ)
dY

i=1

X
τ∈Ωk

ψi (τ)1{τhi =χ, ∀h ∈ [k] \ hi :σv i ,h = τh},µĜn,ω,Ĉ

+ ¯̄̄
Ĝn,ω

#
= E£log

­
ϕ1, ρ̃n,ω

® | Ĝn,ω
¤

. (6.21)

Finally, the assertion follows from (6.18)–(6.21) by taking the expectation on Ĝn,ω. �

Lemma 6.6. We have

E

"
log

Z (G ′
n,ω)

Z (Ĝn,ω)

#
= E
*

log
M

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̂n,ω

+
+oω(1), E

·
log

Z (G′
n,ω)

Z (Ĝn,ω)

¸
= E
*

log
M

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̃n,ω

+
+oω(1).

Proof. The proof is similar in spirit to the previous one. Once more we consider the event A that Ĝn,ω has at least
ω/2 cavities, that all variable nodes have degree either d or d −1 and that no two variable nodes of degree d −1 are
adjacent to a common constraint node. Then P [A ] = 1−exp(−Ωω(ω)) and

E[log(Z (G′
n,ω)/Z (Ĝn,ω))] = E[log(Z (G′′

n,ω)/Z (Ĝn,ω))|A ]+oω(1). (6.22)

Moreover, we have the pointwise exact formula

Z (G′
n,ω)

Z (Ĝn,ω)
=
* Y

M̂n,ω<i≤Mn,ω

X
τ∈Ω∂ai

ψai (τ)1{σ∂ai = τ},µĜn,ω,Ĉ

+
. (6.23)
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With (v i , j )i , j a sequence of independently chosen cavities v i , j ∈ Ĉ , we claim that on A ,

E

·
log

Z (G′
n,ω)

Z (Ĝn,ω)

¯̄̄
Ĝn,ω

¸
= oω(1)+E

"
log

*
Mn,ω−M̂n,ωY

i=1

X
τ∈Ωk

ψi (τ)
kY

j=1
1{σv i , j = τ j },µĜn,ω,Ĉ

+ ¯̄̄
Ĝn,ω

#
. (6.24)

Indeed, the only difference is that in (6.24) the v i , j are chosen independently, whereas in (6.23) the neighbors of
the ai are chosen without replacement. But since Mn,ω− M̂n,ω is bounded while there are at least ω/2 cavities, the
two terms coincide up to oω(1). Finally, the construction of ρ̃n,ω ensures that

E

"
log

*
Mn,ω−M̂n,ωY

i=1

X
τ∈Ωk

ψi (τ)
kY

j=1
1{σv i , j = τ j },µĜn,ω,Ĉ

+ ¯̄̄
Ĝn,ω

#
= E
"

log

*
Mn,ω−M̂n,ωM

i=1
ψ1,i , ρ̂n,ω

+ ¯̄̄
Ĝn,ω

#
, (6.25)

and thus the assertion follows from (6.22)–(6.25) by taking the expectation. �

Finally, Proposition 6.2 is an immediate consequence of Lemmas 6.4, 6.5 and 6.6.

6.3. Proof of Proposition 6.3. Once more we will carry the proof out for the simple random factor graph, which
is the (slightly) more intricate case; the unconditional case follows by skipping any considerations pertaining to
the conditioning. The basic idea behind the proof of Proposition 6.3 is quite simple. With probability 1−oω(1) the
random graph Ĝn,ω consists of Nn,ω variable and M̂n,ω constraint nodes and we have Nn,ω = n −X and

M̂n,ω = Mn+1,ω−d = bd Nn,ω/kc∧ ¡bd Nn,ω/kc+∆n,ω−d X −Y
¢−d

with independent Po(ω) variables X ,Y . Fix two integers `,`′ ≥ 0. Given that X ≥ ` and kM̂n,ω ≤ d Nn,ω−k`′−d(k−
1)`, let Ĝn,ω

£
`,`′

¤
be the random factor graph obtained from Ĝn,ω by adding

• `more variable nodes v̂1 = vNn,ω+1, . . . , v̂` = vNn,ω+` along with d` new constraint nodes âi , j , i ∈ [`], j ∈ [d ],

each with a weight function chosen from P independently; connect a random clone ĥi , j of each âi , j with
a random clone of v̂i and pair the other k−1 clones of âi , j with random cavities of Ĝn,ω left pending by the
previous additions.

• `′ more constraint nodes â1, . . . , â`′ , each endowed with a weight function chosen from P independently
and each connected with k random cavities of Ĝn,ω left vacant by the previous operations.

The resulting random factor graph Ĝn,ω
£
`,`′

¤
is not necessarily simple. Yet the key insight behind Proposition 6.3

is that for any `,`′ the distribution of Ĝn,ω
£
`,`′

¤
is close to that of the original graph Ĝn,ω, provided that ω is big

enough. Moreover, the perturbation of the Boltzmann distribution that ensues upon going from Ĝn,ω to Ĝn,ω
£
`,`′

¤
is close to the perturbation induced by the ∗(`,`′)-operation. We introduce similar notation Ĝn,ω[`,`′] for the
random graph without the conditioning on S .

To formalize this idea, we first compare the distributions of Ĝn,ω and Ĝn,ω
£
`,`′

¤
. For integers x, y we denote by

Ĝn,ω,x,y the conditional Ĝn,ω given that X = x and Y = y .

Lemma 6.7. For any `,`′ ≥ 0 we have dTV
¡
Ĝn,ω, Ĝn,ω

£
`,`′

¤¢= oω(1) and analogously dTV
¡
Ĝn,ω,Ĝn,ω

£
`,`′

¤¢= oω(1).

Proof. The event A = {ω/2 ≤ X ≤ 2ω,ω/2 ≤ Y ≤ 2ω} has probability 1−oω(1). Further, because X ,Y are indepen-
dent Poisson variables with a large mean ω while `,`′ are fixed, the total variation distance of the pairs (X ,Y ) and
(X −`,Y −`′) is of order Oω(ω−1/2). Hence, given A the total variation distance of Ĝn,ω and Ĝn,ω,X−`,Y −`′ is oω(1);
in symbols,

dTV
¡
Ĝn,ω |A , Ĝn,ω,X−`,Y −`′ |A

¢= oω(1). (6.26)

Further, let A ′ be the event that Ĝn,ω enjoys the following additional properties.

(i’) The last ` variable nodes of Ĝn,ω satisfy
¯̄
∂2{vNn,ω−`+1, . . . , vNn,ω } \ Ĉ

¯̄ = `d(k −1). Hence, there are `d(k −1)
distinct second neighbors, none of which is a cavity.

(ii’) The last `′ constraint nodes of Ĝn,ω satisfy
¯̄̄
∂{aM̂n,ω−`′+1, . . . , aM̂n,ω

} \ Ĉ
¯̄̄
= k`′. Hence, there are k`′ distinct

second neighbors, none of them a cavity.
(iii’) We have ∂{vNn,ω−`+1, . . . , vNn,ω }∩ {aM̂n,ω−`′+1, . . . , aM̂n,ω

} =;.
(iv’) Let

U = Ĉ ∪∂2{vNn,ω−`+1, . . . , vNn,ω }∪∂{aM̂n,ω−`′+1, . . . , aM̂n,ω
}.
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Then for any constraint node a 6∈ ∂{vNn,ω−`+1, . . . , vNn,ω }∪ aM̂n,ω−`′+1, . . . , aM̂n,ω
we have |∂a ∩U | ≤ 1. Thus,

only the constraint nodes adjacent to the last ` variable nodes or the ai with i > M̂n,ω−`′ may be adjacent
to more than one variable node in U .

(v’) All variable nodes u ∈U have degree d or d −1.

Additionally, let A ′′ be the event that Ĝn,ω,X−`,Y −`′ has the following properties.

(i”) all variable nodes have degree either d or d −1.
(ii”) no two variable nodes of degree d −1 are adjacent to the same constraint node.

Then

P
£
Ĝn,ω ∈A ′ |A ¤= 1−oω(1), P

£
Ĝn,ω,X−`,Y −`′ ∈A ′′ |A ¤= 1−oω(1). (6.27)

Furthermore, given A ′′ ∩A , the random factor graph Ĝn,ω,X−`,Y −`′ [`,`′] obtained by attaching ` new variable
nodes and `′ new constraint nodes is distributed precisely as Ĝn,ω given A ′∩A . Indeed, the construction of the
enhanced factor graph Ĝn,ω,X−`,Y −`′ [`,`′] expressly ensures that (i’)–(iii’) are satisfied, and (iv’)–(v’) follow from
(i”)–(ii”). Hence, (6.27) yields

dTV
¡
Ĝn,ω |A , Ĝn,ω,X−`,Y −`′ [`,`′] |A ¢= oω(1). (6.28)

Finally, since P [A ] = 1−oω(1), the assertion follows from (6.26) and (6.28). �

Let Ĉ [`,`′] be the set of cavities of Ĝn,ω
£
`,`′

¤
and let ρ̂n,ω[`,`′] ∈K be the kernel representing µĜn,ω[`,`′],Ĉ [`,`′].

Let π̂n,ω
£
`,`′

¤ ∈D be the distribution of ρ̂n,ω[`,`′]. Define C̃ [`,`′], ρ̃n,ω[`,`′] analogously for Ĝn,ω.

Lemma 6.8. For any `,`′ ≥ 0 we have

D2

³
π̂∗(`,`′)

n,ω , π̂n,ω
£
`,`′

¤´= oω(1), D2

³
π̃∗(`,`′)

n,ω , π̃n,ω
£
`,`′

¤´= oω(1).

Proof. The event A1 = {ω/2 ≤ X ,Y ≤ 2ω} occurs with probability 1−oω(1). So does the event A2 that all variable
nodes of Ĝn,ω have degree either d or d −1, and thus the same is true of A =A1 ∩A2. Moreover, the construction
of Ĝn,ω[`,`′] is such that on the event A we have the exact formula

Z (Ĝn,ω[`,`′])
Z (Ĝn,ω)

=
*Ỳ

i=1
ϕi (σ)

`′Y
i=1

ψâi (σ),µĜn,ω,Ĉ

+
, where

ϕi (σ) = X
χ∈Ω

p(χ)
dY

j=1

X
τ∈Ω∂âi , j

ψâi , j (τ)1{τv̂i =χ, ∀w ∈ ∂âi , j \ v̂i :σw = τw }.

Consequently, the joint distribution of the cavities C̃ [`,`′] of Ĝn,ω[`,`′] reads

µĜn,ω[`,`′],C̃ [`,`′](σ) =
D

1{∀u ∈ C̃ [`,`′] :σu =σu}
Q`

i=1ϕi (σ)
Q`′

i=1ψâi (σ),µĜn,ω
(σ)
E

DQ`
i=1ϕi (σ)

Q`′
i=1ψâi (σ),µĜn,ω,C̃

E (σ ∈ΩC̃ [`,`′]). (6.29)

Thus, with probability 1−oω(1), namely on the event A , ρ̃n,ω[`,`′] is just the kernel representing the right hand

side of (6.29) We claim that in this case ρ̃n,ω[`,`′] and ρ̃∗(`,`′)
n,ω can be coupled to coincide with probability 1−oω(1).

Indeed, the weight functions associated with the âi and the âi , j are chosen from P independently, and they are

connected to the cavities of Ĝn,ω by a random pairing. By comparison, we construct ρ̃∗(`,`′)
n,ω by adjoiningϕ1, . . . ,ϕ`

and ψ1, . . . ,ψ`′ that evaluate the kernel ρ̃n,ω at independent uniformly random points of the unit interval. Com-
binatorially, this is equivalent to attaching the new variable and constraint nodes to random cavities chosen with
replacement, rather than without replacement as in the construction of Ĝn,ω[`,`′]. But since the number of cavities
of Ĝ isΩω(ω), the two constructions have total variation distance oω(1). �

Proof of Proposition 6.3. The proposition is immediate from Lemmas 6.7 and 6.8. �
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6.4. Proof of Proposition 6.1. We begin with the following lemma, whose proof is similar to the proof of Lemma 5.5.

Lemma 6.9. We have

E

log
­
ϕ1, π̂n,ω

®− log

* M
M̂n,ω<i≤Mn,ω

ψ1,i , π̂n,ω

+=B(π̂n,ω)+oω(1),

E

log
­
ϕ1, π̃n,ω

®− log

* M
M̂n,ω<i≤Mn,ω

ψ1,i , π̃n,ω

+=B(π̃n,ω)+oω(1).

Proof. Let π= π̂n,ω or π= π̃n,ω. Since E[Mn,ω− M̂n,ω] = d(k −1)/k +oω(1), due to (2.1) it suffices to show that

E

log

* M
M̂n,ω<i≤Mn,ω

ψ1,i ,π

+= oω(1)+E[Mn,ω− M̂n,ω] ·E£log
­
ψ1,1,π

®¤
. (6.30)

Thus, we need to cope with the correlations between Mn,ω− M̂n,ω and Ĝn,ω or Ĝn,ω, respectively. In other words,
we need to assess the correlations between Mn,ω−M̂n,ω and N̂n,ω, M̂n,ω. With probability 1−exp(−Ωω(ω)) we have

Mn,ω− M̂n,ω =W, where W = bd Nn,ω/kc−bd(1+Nn,ω)/kc+∆n,ω−∆n+1,ω+d , (6.31)

with independent Bernoulli variables ∆n,ω,∆n+1,ω. Thus, W ≤ d +1 and (2.1) ensures that

E

log

* M
M̂n,ω<i≤Mn,ω

ψ1,i ,π

+= E
"

log

*
WM

i=1
ψ1,i ,π

+#
+oω(1)

= E
"

1
n¯̄

N̂n,ω−E[N̂n,ω]
¯̄
,
¯̄
M̂n,ω−E[M̂n,ω]

¯̄≤qω logω
o

log

*
WM

i=1
ψ1,i ,π

+#
+oω(1). (6.32)

Furthermore, since X ,Y are independent Poisson variables with mean ω while W is bounded, for any n̂,m̂ such
that |n̂ −E[N̂n,ω]|, |m̂ −E[M̂n,ω]| ≤pω logω we obtain from (6.31) that

P
£
M̂n,ω = m̂ | N̂n,ω = n̂

¤= (1+oω(1))P
£
M̂n,ω = m̂ | Nn,ω = n̂, W = h

¤
for any 0 ≤ h ≤ d +1.

Hence, introducing an independent copy W ′ of W , we obtain from (2.1) and (6.32) that

E

log

* M
M̂n,ω<i≤Mn,ω

ψ1,i ,π

+= E
"

log

*
W ′M
i=1

ψ1,i ,π

+#
+oω(1). (6.33)

Additionally, we claim that for any 0 ≤ w ≤ d +1,

E

"
log

­Lw+1
i=1 ψ1,i ,π

®­Lw
i=1ψ1,i ,π

® #= E£log
­
ψ1,1,π

®¤+oω(1). (6.34)

Indeed, as in the proof of Lemma 5.5 we obtain

E

"Ã­Lw+1
i=1 ψi ,π

®­Lw
i=1ψi ,π

® !`#= E"*ψw+1,
wM

i=1
ψi ∗π

+`#
. (6.35)

Further, (2.1), Corollary 3.4 and Proposition 6.3 yield

E

"*
ψw+1,

wM
i=1

ψi ∗π
+`#

= E
h­
ψw+1,π

®`i+oω(1). (6.36)

As the logarithm can be approximated arbitrarily well by polynomials due to (2.1), (6.34) follows from (6.35)–(6.36).
Finally, (6.30) follows from (6.33) and (6.34). �

Proof of Proposition 6.1. Proposition 6.3 and Lemma 6.9 show that for any ` ≥ 1 there exists ω` > ω`−1 such that
for all sufficiently large n we have π̂n,ω` ∈D?

1/`,`,` and

1

n
E log Z (G) ≥B(π̂n,ω` )−1/`. (6.37)
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Since D is compact, the sequence (π̂n,ω` )n has a convergent subsequence, whose limit π̂(`) lies in the closed set
D?

1/`,`,`. Furthermore, because Lemma 3.3 shows that B( · ) is continuous, (6.37) yields

liminf
n→∞

1

n
E log Z (G) ≥B(π̂(`))−1/`. (6.38)

Additionally, (π̂(`))` has a subsequence that converges to π̃ ∈ D? = T`D?
1/`,`,`. Thus, the first assertion follows

from (6.38) and the continuity of B( · ) established by Corollary 3.5.
The second assertion concerning the simple random factor graph G is immediate from the first. Indeed, due

to (2.1) a standard application of Azuma’s inequality shows that n−0.51| log Z (G)− E log Z (G)| → 0 in probability.
Hence, Fact 2.2 and Bayes’ rule imply that E log Z (G)−E log Z (G) = o(n). �

6.5. Proof of Theorem 2.6. We begin by showing that the free energy of G can be expressed in terms of the func-
tional B applied to π̂n,ω or π̃n,ω, respectively. Once more we will carry the details out for G; the unconditioned
random factor graph G is easier to deal with, and the proofs are just obtained from the G case by dropping any
considerations regarding multiple edges.

Lemma 6.10. If POS is satisfied, then

lim
n→∞

1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(π̂n,ω), lim

n→∞
1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(π̃n,ω).

Proof. Proposition 6.2 and Lemma 6.9 show that for any ε > 0 there exists ω0 such that for all ω > ω0 there exists
n0 such that for all n > n0 we have n−1E log Z (G) ≥B(π̃n,ω)−ε. Hence, for any ε> 0 there is ω0 > 0 such that for all
ω>ω0 we have

liminf
n→∞

1

n
E log Z (G) ≥ liminf

n→∞ B(π̃n,ω)−ε. (6.39)

Indeed, since Propositions 5.1 and 6.1 show that ( 1
n E log Z (G))n converges, (6.39) yields

lim
n→∞

1

n
E log Z (G) = liminf

n→∞
1

n
E log Z (G) ≥ liminf

ω→∞ liminf
n→∞ B(π̃n,ω). (6.40)

We are left to prove the converse inequality. The space D is compact and separable. Therefore, for any ω the
sequence (π̃n,ω)n has a subsequence that converges to π̃(ω) ∈D such that liminfn→∞B(π̃n,ω) = B(π̃(ω)). Further,
(π̃(ω))ω has a subsequence that converges to π̃∗ such that

liminf
ω→∞ B(π̃(ω)) =B(π̃∗). (6.41)

Proposition 6.3 shows that π̃∗ ∈D?. Hence, Proposition 5.1 implies that

lim
n→∞

1

n
E log Z (G) ≤B(π̃∗) = liminf

ω→∞ B(π̃(ω)) = liminf
ω→∞ liminf

n→∞ B(π̃n,ω). (6.42)

Thus, the assertion follows from (6.40)–(6.42). �

To proceed we need a small twist on Lemma 6.10. Namely, instead of using Ĝn,ω as our reference point, we are
going to work with Gn,ω. Thus, let C be the set of cavities of Gn,ω and let ρn,ω,S ∈ K be the kernel representing
µGn,ω,C . Further, let πn,ω,S ∈D be the distribution of ρn,ω,S . Define ρn,ω, πn,ω analogously with respect to Gn,ω.

Corollary 6.11. If POS is satisfied, then

lim
n→∞

1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(πn,ω), lim

n→∞
1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(πn,ω,S ).

Proof. Since X ,Y are Poisson variables with a large mean ω, M̂n,ω and Mn,ω can be coupled so that both coincide
with probability 1−oω(1). This coupling naturally extends to a coupling of Ĝn,ω and Gn,ω under which Gn,ω = Ĝn,ω

with probability 1−oω(1). Consequently, recalling that D2( · , · ) stands for the Wasserstein metric on D, we have
D2(πn,ω,S , π̃n,ω) = oω(1). Thus, the assertion follows from the Corollary 3.5. �

We recall the construction of the kernel µ̌G ,X ,Y ∈K from (2.14). Let π̌n,ω ∈D be the distribution of µ̌G ,X ,Y , and
define µ̌G,X ,Y ∈K, π̌n,ω,S ∈D analogously with respect to G. Due to the inevitable divisibility condition required to
construct a regular factor graph, these kernels are defined whenever k|dn. The following proposition summarizes
the main step toward the proof of Theorem 2.6.
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Proposition 6.12. For any α> 0 there is ω0 > 0 such that for every ω>ω0 there exists n0 > 0 such that for all n > n0

with k|dn we have

D2(π̌n,ω,πn,ω) <α, D2(π̌n,ω,S ,πn,ω,S ) <α.

To prove Proposition 6.12 we let V = {vi : i > Nn,ω} and A = {ai : i > Mn,ω}∪Sv∈V ∂v be the sets of variable and
constraint nodes, respectively, that are present in G but not in Gn,ω. Similarly as in Section 6.3, conditioning on the
event that kMn,ω ≤ d Nn,ω−d(k −1)X −kY , we define an enhanced random factor graph G# by

• adding the variable nodes V toGn,ω along with with d X new constraint nodes a#
v, j , v ∈ V , j ∈ [d ]. Each a#

v, j
is adjacent to v and k −1 random cavities of Gn,ω,

• adding Y more constraint nodes a#
1, . . . , a#

Y , each connected with k random cavities of Gn,ω.

Of course, the cavities in the above construction are drawn without replacement and all weight functions are cho-
sen from P independently. We do not require that the outcome G# be simple. Let

A # = {a#
v, j : v ∈ V , j ∈ [d ]}∪ {a#

i : i ≤ Y }

comprise the new constraint nodes.

Lemma 6.13. We have dTV(G,G#) = oω(1).

Proof. Similarly as in the proof of Lemma 6.7, we consider the event E = {ω/2 ≤ X ≤ 2ω,ω/2 ≤ Y ≤ 2ω}, which has
probability 1−oω(1). Further, let E ′ be the event that G enjoys the following additional properties.

(i’) We have |∂2V | = |V |d(k −1).
(ii’) |∂{aMn,ω+1, . . . , am}| = k(m −Mn,ω) and ∂V ∩ {aMn,ω , . . . , am} =;.

(iii’) If a 6∈A , then a is connected to the set ∂A by at most one edge.

Additionally, let E ′′ be the event that Gn,ω has the following properties.

(i”) all variable nodes have degree either d or d −1.
(ii”) no two cavities are adjacent to the same constraint node.

We have

P [E ] = 1−oω(1), P
£
G ∈ E ′¤= 1−o(1), P

£
Gn,ω ∈ E ′′¤= 1−o(1). (6.43)

Moreover, G given E ′ is distributed precisely as G# given E ′′. Thus, the assertion follows from (6.43). �

Due to Lemma 6.13 we can apply Theorem 2.5 to G#. Let S#
1, . . . ,S#

`
denote the resulting Bethe state decomposi-

tion of G#. Let T #
i = S#

i ∩ΩVn \V for i ∈ [`]. Further, we introduce

zG#,i =
*

1{σ ∈ S#
i }
. X
τ∈ΩV

Y
v∈V

p(τv )
Y

a∈A #

ψa(σVn \V ,τ),µG#

+
,

µG#,i (σ) = µG# (σ)1{σ ∈ T #
i }

zG#,i
P
τ∈ΩV

Q
v∈V p(τv )

Q
a∈A # ψa(σ,τ)

(σ ∈ΩVn \V ). (6.44)

Thus, µG#,i ∈P (ΩVn \V ).

Lemma 6.14. With probability 1−oω(1) the sets T #
1 , . . . ,T #

`
are pairswise disjoint and we have

µG#,i (τ) =µGn,ω (τ|T #
i ) for all τ ∈ T #

i and µGn,ω (T #
i ) = zG#,i

± X̀
j=1

zG#, j . (6.45)

Proof. We recall from Section 4.1 that the decomposition S#
1, . . . ,S#

`
is constructed by pinning the values of a ran-

dom set U∗ of variables to specific spins. Since the size of this set is bounded, with high probability we have
(C ∪V )∩U∗ =;. We will prove that in this case, µG#,i (σ) =µGn,ω (σ|T #

i ) for all i ,σ.
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If (C ∪V )∩U∗ =;, then T #
1 , . . . ,T #

`
are pairwise disjoint. Thus, fix i ∈ [`] and σ ∈ T #

i . Then by the construction
of G#,

µGn,ω (σ) = Z (G#)

Z (Gn,ω)
· µG# (σ)P

τ∈ΩV

Q
v∈V p(τv )

Q
a∈A # ψa(σ,τ)

, (6.46)

Z (Gn,ω)

Z (G#)
=
*

1
. X
τ∈ΩV

Y
v∈V

p(τv )
Y

a∈A #

ψa(σ,τ),µG

+
= X̀

j=1
zG#, j . (6.47)

Combining (6.46) and (6.47), we obtain the second identity in (6.45). Further, combining the second part of (6.45)
with (6.46) and (6.47), we find

µGn,ω (σ | T #
i ) = µGn,ω (σ)

µGn,ω (T #
i )

=
P`

j=1 zG#, j

zG#,i
· Z (G#)

Z (Gn,ω)
· zG#,i ·µG#,i (σ) =µG#,i (σ),

thereby establishing the first part of (6.45). �

W.h.p. each cavity v ∈C of Gn,ω has degree d −1. In this case, we denote by bv the unique neighbour of v in G#

that is not present in Gn,ω. Further, for i ∈ [`] let νG,i ∈P (ΩC ) be the product measure

νG#,i =
O
v∈C

µG#,v→bv
( · |S#

i ).

In close analogy to the weights introduced in (2.13), we also define

ž#
i =µG# (S#

i ) · Y
v∈V

ÃX
χ∈Ω

p(χ)
Y

a∈∂v

X
τ∈Ω∂a

1{τv =χ}ψa(τ)
Y

w∈∂a\v
µG#,w→a(τw |S#

i )

!−1

·
YY

i=1

 X
τ∈Ω∂a#

i

ψa#
i
(τ)

Y
w∈∂a#

i

µG#,w→a#
i
(τw |S#

i )

−1

. (6.48)

Lemma 6.15. With probability 1−oω(1) we have
P`

h=1

¯̄
zG#,h − ž#

h

¯̄= o(1) and

X̀
h=1

µGn,ω (T #
h )
°°µGn,ω,C ( · |T #

h )−νG#,h

°°
TV = o(1).

Proof. Fix h ∈ [`] and suppose that S#
h is an o(1)-Bethe state, which occurs with probability 1−oω(1) due to Theo-

rem 2.5 and Lemma 6.13. Then by BS2 w.h.p. we have for any σ ∈ΩV ∪C ,

µG# (σ|S#
h) ∼ Y

v∈V

p(σvi )
Q

a∈∂v ψa(σ)
Q

w∈∂a µG#,w→a(σw |S#
h)P

χ∈Ω
Q

a∈∂vi

P
τ∈Ω∂a 1{τv =χ}ψa(τ)

Q
w∈∂a µG#,w→a(τw |S#

h)

·
YY

i=1

ψa#
i
(σ)
Q

w∈∂a#
i
µG#,w→a#

i
(σw |S#

h)P
τ∈Ω∂a#

i
ψa#

i
(τ)
Q

w∈∂a#
i
µG#,w→a#

i
(τw |S#

h)
. (6.49)
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Further, w.h.p. each cavity of Gn,ω has degree d −1; in this case, denote by cv the unique neighbor of v in G# that is
absent in Gn,ω. Then by (6.49) w.h.p. we have

zG#,h =µG# (S#
h)

*
1
. X
τ∈ΩV

Y
v∈V

p(τv )
Y

a∈A #

ψa(σV \V ,τ),µG# ( · |S#
h)

+

∼µG# (S#
h)

X
σ∈ΩV ∪C

Y
v∈V

p(σv )
Q

a∈∂v ψa(σ)
Q

w∈∂a\v µG#,w→a(σw |S#
h)

p(σv )
Q

a∈∂v ψa(σ) ·Pχ∈Ω p(χ)
Q

a∈∂v
P
τ∈Ω∂a 1{χ= τv }ψa(τ)

Q
w∈∂a\v µG#,w→a(τw |S#

h)

·
YY

i=1

ψa#
i
(σ)
Q

w∈∂a#
i
µG#,w→a#

i
(σw |S#

h)

ψa#
i
(σ) ·P

τ∈Ω∂a#
i
ψa#

i
(τ)
Q

w∈∂a#
i
µG#,w→a#

i
(τw |S#

h)

=µG# (S#
h)
Y

v∈V

P
σ∈Ω∂2 v

Q
a∈∂v

Q
w∈∂a\v µG#,w→a(σw |S#

h)P
χ∈Ω p(χ)

Q
a∈∂v

P
τ∈Ω∂a 1{χ= τv }ψa(τ)

Q
w∈∂a\v µG#,w→a(τw |S#

h)

·
YY

i=1

P
σ∈Ω∂a#

i

Q
w∈∂a#

i
µG#,w→a#

i
(σw |S#

h)

ψa#
i
(σ) ·P

τ∈Ω∂a#
i
ψa#

i
(τ)
Q

w∈∂a#
i
µG#,w→a#

i
(τw |S#

h)

= ž#
h . (6.50)

Summing on h completes the proof of the first assertion.
With respect to the second assertion, for σ ∈ΩC we have w.h.p.

µGn,ω,C (σ|T #
h ) =µG#,h(σ) [by Lemma 6.14]

=µG# (S#
h) · µG# (σ|S#

h)

zG#,h
P
τ∈ΩV

Q
v∈V p(τv )

Q
a∈A # ψa(σ,τ)

[by (6.44)]

∼ µG# (S#
h)

zG#,h

Ã X
τ∈ΩV

Y
v∈V

p(τv )
Y

a∈A #

ψa(σ,τ)

!−1

·
YY

i=1

ψa#
i
(σ)
Q

w∈∂a#
i
µG#,w→a#

i
(σw |S#

h)P
τ∈Ω∂a#

i
ψa#

i
(τ)
Q

w∈∂a#
i
µG#,w→a#

i
(τw |S#

h)

· Y
v∈V

p(σvi )
Q

a∈∂v ψa(σ)
Q

w∈∂a µG#,w→a(σw |S#
h)P

χ∈Ω
Q

a∈∂vi

P
τ∈Ω∂a 1{τv =χ}ψa(τ)

Q
w∈∂a µG#,w→a(τw |S#

h)
[by (6.49)]

= µG# (S#
h)

zG#,h

YY
i=1

Q
w∈∂a#

i
µG#,w→a#

i
(σw |S#

h)P
τ∈Ω∂a#

i
ψa#

i
(τ)
Q

w∈∂a#
i
µG#,w→a#

i
(τw |S#

h)

· Y
v∈V

Q
a∈∂v

Q
w∈∂a µG#,w→a(σw |S#

h)P
χ∈Ω

Q
a∈∂vi

P
τ∈Ω∂a 1{τv =χ}ψa(τ)

Q
w∈∂a µG#,w→a(τw |S#

h)

= νG#,h(σ), [by (6.50)]

as claimed. �

Proof of Proposition 6.12. Let νG# =P`
i=1 ž#

i νG#,i /
P`

i=1 žG#,i and let π#
n,ω,S be the distribution of the kernel repre-

sentation ν̇G# ∈ K. Then up to a renumbering of the variable and constraint nodes, µ̌G#,X ,Y ∈ K is distributed as
the representation of νG# . Specifically, in (2.14) we renumbered the nodes such that V comprises the first X vari-
able nodes and such that the a#

i , i ∈ [Y ], are the first Y constraint nodes. Due to Lemma 6.13 and because G and
G are invariant under node permutations, we conclude that D2(π#

n,ω,S , π̌n,ω,S ) = oω(1). Furthermore, combin-
ing Lemmas 3.14, 6.14 and 6.15, we see that E[∆2(µGn,ω,C ,νG# )] = oω(1). Hence, invoking (3.4), we conclude that
E[D2(ρn,ω,S , ν̇G# )] = oω(1). Thus, the triangle inequality yields D2(πn,ω,S , π̌n,ω,S ) = oω(1). The same argument
applies to πn,ω and π̌n,ω. �

As a final preparation toward the proof of Theorem 2.6, we need the following simple lemma.
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Lemma 6.16. For any fixed integer ` we have

D2(πn,ω,πn+`,ω) = oω(1), D2(πn,ω,S ,πn+`,ω,S ) = oω(1).

Proof. The random factor graph Gn,ω or Gn,ω, respectively, has n − X variable nodes with probability 1− oω(1).
Similarly, the number of variable nodes of Gn+`,ω or Gn+`,ω is n +`− X with probability 1− oω(1). Since X is a
Poisson variable with meanω, we have dTV(n+`−X ,n−X ) = oω(1). Hence, we can coupleGn+`,ω andGn,ω as well as
Gn+`,ω and Gn,ω in such a way that both coincide w.h.p. This coupling extends to the distributions ρn,ω,S ,ρn+`,ω,S

and ρn,ω,ρn+`,ω. �

Proof of Theorem 2.6. Corollary 6.11 yields the free energy formula in terms of the distributions πn,ω and πn,ω,S ,
respectively. Furthermore, Proposition 6.12 implies together with Corollary 3.5 that

liminf
ω→∞ liminf

n→∞,k|dn
B(πn,ω) = liminf

ω→∞ liminf
n→∞,k|dn

B(π̌n,ω), (6.51)

liminf
ω→∞ liminf

n→∞,k|dn
B(πn,ω,S ) = liminf

ω→∞ liminf
n→∞,k|dn

B(π̌n,ω,S ), (6.52)

with the limit on n confined to integers such that k|dn each time. But Lemma 6.16 implies with Corollary 3.5 that
this divisibility condition does not alter the limits on the left hand side of these equations, i.e.,

liminf
ω→∞ liminf

n→∞,k|dn
B(πn,ω) = liminf

ω→∞ liminf
n→∞ B(πn,ω), (6.53)

liminf
ω→∞ liminf

n→∞,k|dn
B(πn,ω,S ) = liminf

ω→∞ liminf
n→∞ B(πn,ω,S ). (6.54)

Thus, combining (6.51)–(6.54) and invoking Corollary 6.11, we obtain

lim
n→∞

1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(π̌n,ω), lim

n→∞
1

n
E log Z (G) = liminf

ω→∞ liminf
n→∞ B(π̌n,ω,S ),

where, of course, the limit is confined to n such that k|dn because G, G and π̌n,ω, π̌n,ω,S are defined only for such
n; this is the assertion. �

7. APPLICATIONS

In Section 7.1 we prove that the spin glass model from Section 1.2 satisfies the condition POS; the results stated
in Section 1.2 are then immediate from those in Section 2. Further, in Sections 7.2 and 7.3 we apply the results
from Section 2 to two further models, the Potts antiferromagnet and the random regular k-SAT model. Finally, in
Section 7.4 we show how the theorems from Section 2 can be brought to bear on the hard-core model, thereby
proving the results stated in Section 1.3.

7.1. The spin glass. To derive the results on the spin glass model stated in Section 1 from the general theorems
in Section 2, we just need to verify the condition POS for the spin glass model. In Example 2.3 we introduced the
relevant weight function even in the more general case of the k-spin model; the case k = 2 corresponds to the spin
glass on the Bethe lattice.

Lemma 7.1. The k-spin model satisfies POS for all d ≥ 3, β> 0 and all even k ≥ 2.

Proof. The lemma is already implicit in [37, 58]; but let us carry the simple proof out for completeness. Let J be
a standard Gaussian. Upon substituting the weight functions from Example 2.3 into POS and multiplying by 2`,
POS reads

E

"Ã
1− tanh(βJ )

Z 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

!`#
+ (k −1)E

"Ã
1− tanh(βJ )

Z 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

!`#

−kE

"Ã
1− tanh(βJ )

Z 1

0
(2µs,x1 −1)

kY
i=2

(2µ′
s,x i

−1)ds

!`#
≥ 0. (7.1)

for all measurable µ,µ′ : [0,1]2 → [0,1]. Expanding the first expectation yields

E

"Ã
1− tanh(βJ )

Z 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

!`#
= X̀

j=0

Ã
`

j

!
(−1) jE

"
tanh(βJ ) j

ÃZ 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

! j#
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Since J is independent of the x i , the last expectation vanishes if j is odd, while tanh(βJ ) j ≥ 0 if j is even. Thus, in
order to establish (7.1) it suffices to show that for any even j ≥ 2,

E

"ÃZ 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

! j

+ (k −1)

ÃZ 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

! j

−k

ÃZ 1

0
(2µs,x1 −1)

kY
i=2

(2µ′
s,x i

−1)ds

! j#
≥ 0. (7.2)

Let s1, . . . , s j ∈ [0,1] be uniformly distribution and mutually independent as well as independent of the x i . Then
Fubini’s theorem yields

E

"ÃZ 1

0

kY
i=1

¡
2µs,x i −1

¢
ds

! j#
, = E

E" jY
h=1

(2µsh ,x1 −1)
¯̄̄
s1, . . . , s j

#k
 , (7.3)

E

"ÃZ 1

0

kY
i=1

¡
2µ′

s,x i
−1
¢

ds

! j#
= E
E" jY

h=1
(2µ′

sh ,x1
−1)

¯̄̄
s1, . . . , s j

#k
 , (7.4)

E

"ÃZ 1

0

¡
2µs,x1 −1)

¢ kY
i=2

(2µ′
s,x2

−1)ds

! j#
= E
"

jY
h=1

(2µsh ,x1 −1)
¯̄̄
s1, . . . , s`

#
E

"
jY

h=1
(2µ′

sh ,x1
−1)

¯̄̄
s1, . . . , s`

#k−1

. (7.5)

Since for even k we have X k + (k −1)Y k −k X Y k−1 ≥ 0 for all X ,Y ∈R, (7.3)–(7.5) yield (7.2). �

Due to Lemma 7.1, Theorem 1.1 follows from Theorem 2.5, Theorem 1.2 follows from Theorem 2.6 and Theorem 1.3
follows from Theorem 2.7.

Remark 7.2. Indeed, together with Lemma 7.1 the results from Section 2 yield the Bethe state decomposition and the
corresponding formulas for the free energy for the k-spin model for any even k ≥ 2.

7.2. The Potts model. For an integer q ≥ 2 let Ω = {1, . . . , q} be a set of q distinct colors Also let β > 0 be a real
parameter, the inverse temperature. The Potts antiferromagnet on G is the distribution onΩVn defined by

µG,β(σ) = 1

Zβ(G)
exp

"
−β X

1≤i< j≤n
1{vi ∈ ∂v j , σ(vi ) =σ(v j )}

#
, (σ ∈ΩVn ),

where the partition function Zβ(G) provides normalization; we omit the reference to β where possible. Thus, for a
given σ ∈ΩVn each monochromatic edge of G incurs an exp(−β) penalty factor.

The Potts antiferromagnet and the associated optimization problems, the MAX q-CUT problem, are of funda-
mental importance in combinatorics. Krzakala and Zdeborová [44] brought the cavity method to bear on this
model. In the following we show how the main results of the present paper apply to this model to underpin the
predictions from [44] rigorously. In particular, we specialize the Belief Propagation equations to the Potts model,
work out the variational formula for the free energy and apply this formula to the MAX q-CUT problem on the
random regular graph.

The Potts model on G(n,d) can be cast as a random factor graph model with a single weight function

ψβ :Ω2 → (0,1), (σ,τ) 7→ exp(−β1{σ= τ}).

Thus, k = 2, Ψ= {ψβ} and P (ψβ) = 1 and the prior distribution p is uniform on Ω. Since the constraints are binary,
the random regular factor graph G can be identified with the usual random d-regular graph G, with the edges
representing the factor nodes.

Lemma 7.3. The Potts model satisfies condition POS for all β> 0.

Proof. We plug the definition ofψβ into POS and notice that the 1−e−β factors cancel. Hence, the desired inequal-
ity reads

E

"Ã
qX

σ=1

Z 1

0
µs,x1 (σ)µs,x2 (σ)

!`
+
Ã

qX
σ=1

Z 1

0
µ′

s,x1
(σ)µ′

s,x2
(σ)

!`
−2

Ã
qX

σ=1

Z 1

0
µs,x1 (σ)µ′

s,x2
(σ)

!`#
≥ 0 (µ,µ′ ∈K). (7.6)
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Applying Fubini’s theorem to take the expectation on x1, x2 inside, we find

E

"Ã
qX

σ=1

Z 1

0
µs,x1 (σ)µs,x2 (σ)

!`#
=

qX
σ1,...,σ`=1

E

"Ỳ
h=1

µsh ,x1 (σh)µsh ,x2 (σh)

#

=
qX

σ1,...,σ`=1
E

"
E

"Ỳ
h=1

µsh ,x1 (σh)
¯̄̄
s1, . . . , s`

#
E

"Ỳ
h=1

µsh ,x2 (σh)
¯̄̄
s1, . . . , s`

##

=
qX

σ1,...,σ`=1
E

"
E

"Ỳ
h=1

µsh ,x1 (σh)
¯̄̄
s1, . . . , s`

#2#
. (7.7)

Similar manipulations yield

E

"Ã
qX

σ=1

Z 1

0
µ′

s,x1
(σ)µ′

s,x2
(σ)

!`#
=

qX
σ1,...,σ`=1

E

"
E

"Ỳ
h=1

µ′
sh ,x1

(σh)
¯̄̄
s1, . . . , s`

#2#
, (7.8)

E

"Ã
qX

σ=1

Z 1

0
µs,x1 (1)µ′

s,x2
(1)

!`#
=

qX
σ1,...,σ`=1

E

"
E

"Ỳ
h=1

µsh ,x1 (σh)
¯̄̄
s1, . . . , s`

#
E

"Ỳ
h=1

µ′
sh ,x1

(σh)
¯̄̄
s1, . . . , s`

##
. (7.9)

Combining (7.7)–(7.9), we conclude that the l.h.s. of (7.6) is the expectation of a sum of squares, and thus non-
negative. �

The message space S (G) of the Potts model boils down to the set of all families (µv→w )v∈Vn ,w∈∂w , with µv→w ∈
P (Ω). With this simplification the Belief Propagation operator BP : S (G) →S (G), ν 7→ ν̂ of the Potts model reads

ν̂v→u(σ) =
Q

w∈∂v\u 1− (1−e−β)µw→v (σ)P
τ∈Ω

Q
w∈∂v\u 1− (1−e−β)µw→v (τ)

(σ ∈Ω). (7.10)

With respect to Bethe states, we expect that the phase spaceΩn decomposes into S1, . . . ,S` such that the condi-
tional distribution µG[ · |Si ] are free of long-range correlations, that their standard messages form an approximate
fixed point of BP and that the conditional marginals derive from the messages. In formulas, with high probability
over the choice of the graph and with (µ̂G,v→u[ · |Sh])u∈∂v = BP(µG,v→u[ · |Sh])u∈∂v , we aim to show that

1

n2

X
1≤i< j≤n

°°°µG,vi ,v j [ · |Sh]−µG,vi [ · |Sh]⊗µG,v j [ · |Sh]
°°°

TV
= o(1), (7.11)

1

n

nX
i=1

X
u∈∂vi

°°µG,vi→u[ · |Sh]− µ̂G,vi→u[ · |Sh]
°°

TV = o(1), (7.12)

1

n

nX
i=1

X
σ∈Ω

¯̄̄̄
¯µG,vi [σ|Sh]−

Q
w∈∂vi

1− (1−e−β)µG,vi→w (σ)P
τ∈Ω

Q
w∈∂vi

1− (1−e−β)µG,vi→w (τ)

¯̄̄̄
¯= o(1). (7.13)

The following theorem establishes these facts.

Theorem 7.4. For any sequence L = L(n) →∞ and all d ≥ 3, β > 0 the following is true. With high probability G
admits a decomposition S0,S1, . . . ,S`, `≤ L, of the phase spaceΩn such thatµG(S0) = o(1) and such that (7.11)–(7.13)
are satisfied for h = 1, . . . ,`.

Proof. This is immediate from Theorem 2.5 applied to the factor graph representation of the Potts model. �

With respect to the free energy, let X ,Y be two independent Poisson variables with mean ω. Let u1, . . . ,u X and
v 1w 1, . . . , v Y w Y be uniformly random vertices and edges of G, chosen independently. With S1, . . . ,S` the decom-
position from Theorem 7.4, we introduce the weights

zG,h =µG(Sh)
XY

i=1

Ã X
σ∈Ω

Y
v∈∂ui

1− (1−e−β)µG,v→ui (σ|Sh)

!−1 YY
i=1

Ã
1− (1−e−β)

X
σ∈Ω

µG,v i→w i (σ|Sh)µG,w i→v i (σ|Sh)

!−1

and zG =P`
h=1 zG,h . Further, let C (G) be the set of all vertices of degree less than d in the graph obtained from G

by removing v 1, . . . , v X and v 1w 1, . . . , v Y w Y . Then with high probability each c ∈ C (G) has degree precisely d −1,
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and we write c ′ for the missing d ’th neighbor of c. Then with c 1,c 2, . . . a sequence of uniformly and independently
chosen elements of C (G), we let

B(G) = E
"

log
X̀

h=1

zG,h

zG

X
σ∈Ω

dY
i=1

1− (1−e−β)µG,c i→c ′
i
(σ)− d

2
log

X̀
h=1

zG,h

zG
1− (1−e−β)

X
σ∈Ω

µG,c 1→c ′
1
(σ)µG,c 2→c ′

2
(σ)

¯̄̄̄
G

#
.

Theorem 7.5. For all d ≥ 3,β> 0 we have limn→∞ 1
n E[log Z (G)] = liminfω→∞ liminfn→∞ E[B(G)].

Proof. This is an immediate consequence of Theorem 2.6 and Lemma 7.3. �

Additionally, Theorem 2.7 yields a variational formula for the free energy. Writing out the specifics of the Potts
case, we see that D? consists of all π ∈D that satisfy the following property. For a measurable µ : [0,1]2 → P (Ω)
withΩ= [q] and integers N , M ≥ 0 let

z N ,M
µ,s =

NY
i=1

Ã
qX

σ=1

dY
j=1

1− (1−e−β)µs,x i , j (σ)

!
MY

i=1

Ã
1− (1−e−β)

qX
σ=1

µs,x i+N ,1 (σ)µs,x i+N ,2 (σ)

!
, and set

t = t (s) = inf

½
u ∈ [0,1] :

Z u

0
z N ,M
µ,u ds ≥ s

Z 1

0
z N ,M
µ,u du

¾
.

Then we let µ∗(N ,M)
s,x = µt ,x . Now D?

β
is the set of all π ∈ D such that for a random µπ ∈ K drawn from π, the

perturbed µπ∗(N ,M) ∈K again has distribution π. Furthermore, in the Potts model the functional B( · ) reads

Bβ(π) = E
"

log

Ã
qX

σ=1

Z 1

0

dY
j=1

1− (1−e−β)µs,x1, j (σ)ds

!
− d

2
log

Ã
1− (1−e−β)

qX
σ=1

Z 1

0
µs,x1,1 (σ)µs,x1,2 (σ)ds

!#
.

Theorem 7.6. For all d ≥ 3, β> 0 we have

lim
n→∞

1

n
E[log Z (G)] =Φd ,β with Φd ,β = inf

π∈D?
β

Bβ(π).

As a further application we obtain a variational formula for the MAX q-CUT of the random regular graph, which
is defined as

MCq (G) = dn

2
− 1

2
min

σ:[n]→[q]

nX
v,w=1

1{w ∈ ∂v, σ(v) =σ(w)}. (7.14)

Thus, MCq (G) equals the total number of edges of G minus the ground state energy of the Potts model. In other
words, MCq (G) is the maximum, over the choice of σ : [n] → [q], of the number of edges that link vertices of
different colors The MAX q-CUT problem is well-studied in combinatorics and computer science. In particular,
the problem is well known to be NP-hard on worst-case instances.

Corollary 7.7. For all d ≥ 3 we have MCq (G)/n
n →∞−→ d

2
+ lim
β→∞

Φd ,β+1 −Φd ,β in probability.

Proof. Since Azuma’s inequality shows that MCq (G) is concentrated within O(
p

n logn) about its mean, it suffices
to prove that

lim
n→∞

1

n
E[MCq (G)] = d

2
+ lim
β→∞

Φd ,β+1 −Φd ,β. (7.15)

Further, introducing HG(σ) = 1
2

Pn
v,w=1 1{w ∈ ∂v, σ(v) =σ(w)} and recalling (7.14), we can rewrite (7.15) as

lim
n→∞

1

n
E

·
min

σ:[n]→[q]
HG(σ)

¸
= lim
β→∞

Φd ,β−Φd ,β+1. (7.16)

To prove (7.16) we writeµG ,β ∈P ([q]V (G)) for the Potts distribution induced by a d-regular graph G = (V (G),E(G)).
Moreover, let us denote the Potts Hamiltonian by HG and the partition function by Zβ(G). It is well known that for
any ε> 0 there exists β0(ε) > 0 such that for all β>β0(ε) and all d-regular graphs G we have­

HG ,µG ,β
®−ε|V (G)| ≤ min

σ:V (G)→[q]
HG (σ) ≤ ­HG ,µG ,β

®
. (7.17)
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Consequently, for all β>β0(ε) we haveZ β+1

β

­
HG ,µG ,b

®
db −ε|V (G)| ≤ min

σ:V (G)→[q]
HG (σ) ≤

Z β+1

β

­
HG ,µG ,b

®
db. (7.18)

Since
­
HG ,µG ,β

®=− ∂
∂β log Zβ(G), (7.18) yields

log Zβ(G)− log Zβ+1(G)−ε|V (G)| ≤ min
σ:V (G)→[q]

HG (σ) ≤ log Zβ(G)− log Zβ+1(G). (7.19)

Applying (7.19) to the random regular graph G and taking expectations, we obtain

1

n
E[log Zβ(G)]− 1

n
E[log Zβ+1(G)]−ε≤ 1

n
E

·
min

σ:[n]→[q]
HG(σ)

¸
≤ 1

n
E[log Zβ(G)]− 1

n
E[log Zβ+1(G)]. (7.20)

Hence, taking n →∞, we obtain for all β>β0(ε),

Φd ,β−Φd ,β+1 −ε≤ liminf
n→∞

1

n
E

·
min

σ:[n]→[q]
HG(σ)

¸
≤ limsup

n→∞
1

n
E

·
min

σ:[n]→[q]
HG(σ)

¸
≤Φd ,β−Φd ,β+1. (7.21)

Finally, there exists a subsequence (nl ) along which E
£
minσ:[nl ]→[q] HG(nl ,d)(σ)

¤
/nl converges to a number ξ ≥ 0.

Taking the limit of (7.20) along this subsequence, we obtain ξ≤Φd ,β−Φd ,β+1 ≤ ξ+ε for allβ>β0(ε). Consequently,
the limit limβ→∞Φd ,β−Φd ,β+1 exists. Therefore, taking β→∞ in (7.21), we conclude that

lim
n→∞n−1E

·
min

σ:[n]→[q]
HG(σ)

¸
exists as well and that (7.16) is satisfied. �

7.3. The regular k-SAT model. The k-SAT problem plays a major role in computer science, particularly in com-
putational complexity theory. In its optimization version, known as the MAX k-SAT problem asks for the largest
number of clauses of a propositional formula in conjunctive normal form with clauses of length k that can be sat-
isfied simultaneously. Random instances of k-SAT and MAX k-SAT have been studied extensively as instructive
benchmarks [6].

We can express the MAX k-SAT problem as a factor graph model with spins Ω = {−1,1} corresponding to the
Boolean values ‘true’ and ‘false’ as follows. With k ≥ 2 an integer and β > 0 be a real parameter, we introduce the
weight functions

ψβ,χ : {±1}k → (0,1), σ 7→ 1− tanh
¡
β
Qk

i=1χiσi
¢

2
(χ ∈ {±1}k ).

Let p be the uniform distribution on Ω and let P be uniform on Ψβ = {ψβ,χ : χ ∈ Ωk }. In terms of propositional
formulas, the semantics is thatψβ,χ encodes a k-clause whose i th literal is negated if χi = 1 and positive if χi =−1.

Thus,
Qk

i=1χiσi = 1 if the truth assignment σ fails to satisfy the clause, and
Qk

i=1 siσi = −1 otherwise. In effect,
ψβ,s (σ) = (1− tanhβ)/2 → 0 as β→ ∞ if σ fails to satisfy the clause, whereas ψβ,s (σ) = (1+ tanhβ)/2 → 1 if σ is
satisfying. Hence, the random factor graph G models a random k-SAT formula in which every variable appears
precisely d times, the regular k-SAT model. We are going to derive variational formulas for its free energy and its
ground state energy.

Lemma 7.8. The regular k-SAT model satisfies POS for all d ,k ≥ 3 and all β> 0.

Proof. Once more this is already implicit in [37, 58], but we carry out the argument here for completeness. Let us
writeχ for a uniformly random element of {±1}k . Substitutingψβ,χ into POS and cancelling positive constants, we
are left to verify the inequality

E

"ÃZ 1

0

kY
i=1

µs,x i (χi )ds

!`
+
ÃZ 1

0

kY
i=1

µ′
s,x i

(χi )ds

!`
− (k −1)

ÃZ 1

0
µs,x1 (χ1)

kY
i=2

µ′
s,x2

(χi )ds

!`#
≥ 0 (µ,µ′ ∈K). (7.22)
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Fubini’s theorem yields

E

"ÃZ 1

0

kY
i=1

µs,x i (χi )ds

!`#
= E
"
E

"Ỳ
h=1

µsh ,x1 (χ1)
¯̄̄
s1, . . . , s`

#k#
, (7.23)

E

"ÃZ 1

0

kY
i=1

µ′
s,x i

(χi )ds

!`#
= E
"
E

"Ỳ
h=1

µ′
sh ,x1

(χ1)
¯̄̄
s1, . . . , s`

#k#
, (7.24)

E

"ÃZ 1

0
µs,x1 (χ2)

kY
i=2

µ′
s,x2

(χi )ds

!`#
= E
"
E

"Ỳ
h=1

µsh ,x1 (χ1)
¯̄̄
s1, . . . , s`

#
E

"Ỳ
h=1

µ′
sh ,x1

(χ2)
¯̄̄
s1, . . . , s`

#k−1#
. (7.25)

Since X k + (k −1)Y k −k X Y k−1 ≥ 0 for X ,Y ≥ 0, (7.23)–(7.25) yield (7.22). �

Due to Lemma 7.8 we can bring the results from Section 2 to bear on the random regular k-SAT model. Specif-
ically, for a measurable µ : [0,1]2 → P (Ω) with Ω = {±1} and integers N , M ≥ 0 let (χi , j )i , j≥1 be independent uni-
formly random elements ofΩ and let

z N ,M
µ,s =

NY
i=1

Ã X
σ∈Ω

dY
j=1

1− tanh(β)
X

τ∈Ωk−1

χi ,kσ
k−1Y
j=1

χi , jτ jµs,x i , j (τ j )

!
MY

i=1

Ã
1− tanh

¡
β
¢ X
τ∈Ωk

kY
j=1
χi+N , jτ jµs,x i+N , j (τ j )

!
.

Further, let

t = t (s) = inf

½
u ∈ [0,1] :

Z u

0
z N ,M
µ,u ds ≥ s

Z 1

0
z N ,M
µ,u du

¾
.

and µN ,M
s,x = µt ,x . Then D?

β
consists of all π ∈D such that µπ,N ,M has distribution π. Furthermore, the functional

B( · ) reads

Bβ(π) = E
"

log

Ã
qX

σ∈Ω

Z 1

0

X
σ∈Ω

dY
j=1

1− tanh(β)
X

τ∈Ωk−1

χi ,kσ
k−1Y
j=1

χi , jτ jµs,x i , j (τ j )ds

!#

+ d(k −1)

k
E

"Ã X
τ∈Ωk

1− tanhβ
Z 1

0

kY
j=1
χ1, jτ jµs,x1, j (τ j )ds

!#
−dk log2.

Let

Φd ,β = inf
π∈D?

β

Bβ(π).

Theorem 7.9. For all d ,k ≥ 3, β> 0 we have limn→∞ 1
n E[log Z (G)] =Φd ,β.

Proof. This follows immediately from Theorem 2.7 and Lemma 7.8. �

As a further application we also obtain a variational formula for the MAX k-SAT problem. Specifically, with the
interpretation of σ ∈ Ωn as a truth assignment, define HG (σ) as the number of propositional clauses of G that
σ fails to satisfy. Further, let OPT(G) = dn/k −minσ∈Ωk HG (σ) be the maximum number of clauses that can be
satisfied simultaneously. Following the steps of the proof of Corollary 7.7 precisely, we obtain the following result.

Corollary 7.10. For all d ,k ≥ 3 we have

1

n
OPT(G)

n →∞−→ d

k
+ lim
β→∞

Φd ,β+1 −Φd ,β in probability.

7.4. The hard-core model. The proofs of Theorem 1.4 and Corollary 1.5 are not entirely straightforward because
the hard-core model cannot be cast directly as a factor graph model as in Section 2. This is because of the ‘hard’
constraint that σvσw = 0 for any adjacent v, w . We therefore prove Theorem 1.4 and Corollary 1.5 by way of a
relaxed ‘soft-core model’ and taking two limits, first in the ‘softness’ and then in the fugacity. Specifically, we obtain
a random factor graph model withΩ= {0,1} and the prior p(0) = 1/(1+λ) and p(1) =λ/(1+λ). In addition, to mimic
the hard-core constraints we would like to introduce a binary weight function that forbids its two adjacent variable
nodes from both taking the spin 1. But since it would take values {0,1}, we instead introduce

ψβ :Ω2 → (0,1), (σ1,σ2) 7→ 1− (1−e−β)σ1σ2.
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Thus, β > 0 is a ‘softness parameter’, and upon taking β→∞ we recover the hard-core constraint: ψ∞(σ1,σ2) =
1−σ1σ2. For any β,λ and d ≥ 3 we obtain the random factor factor graph model Gλ,β with the single binary weight
function ψβ.

Lemma 7.11. The model Gλ,β satisfies POS for all d ≥ 3,λ> 0,β ∈ (0,∞].

Proof. Substituting ψβ into POS and noticing that 1−e−β > 0, we see that it suffices to verify the inequality

E

"µZ 1

0
µs,x1 (1)µs,x2 (1)ds

¶`
+
µZ 1

0
µ′

s,x1
(1)µ′

s,x2
(1)ds

¶`
−2

µZ 1

0
µs,x1 (1)µ′

s,x2
(1)ds

¶`#
≥ 0 (µ,µ′ ∈K). (7.26)

By Fubini’s theorem,

E

"µZ 1

0
µs,x1 (1)µs,x2 (1)

¶`#
= E
"Ỳ

h=1
µsh ,x1 (1)µsh ,x2 (1)

#
= E
"
E

"Ỳ
h=1

µsh ,x1 (1)
¯̄̄
s1, . . . , s`

#
E

"Ỳ
h=1

µsh ,x2 (1)
¯̄̄
s1, . . . , s`

##

= E
"
E

"Ỳ
h=1

µsh ,x1 (1)
¯̄̄
s1, . . . , s`

#2#
, (7.27)

and analogously

E

"µZ 1

0
µ′

s,x1
(1)µ′

s,x2
(1)

¶`#
= E
"
E

"Ỳ
h=1

µ′
sh ,x1

(1)
¯̄̄
s1, . . . , s`

#2#
, (7.28)

E

"µZ 1

0
µs,x1 (1)µ′

s,x2
(1)

¶`#
= E
"
E

"Ỳ
h=1

µsh ,x1 (1)
¯̄̄
s1, . . . , s`

#
E

"Ỳ
h=1

µ′
sh ,x1

(1)
¯̄̄
s1, . . . , s`

##
. (7.29)

Combining (7.27)–(7.29), we conclude that the l.h.s. of (7.26) is the expectation of a square. �

We proceed to prove Theorem 1.4. In light of Lemma 7.11, Theorem 2.7 readily yields a variational formula
for Gλ,β. The main issue that we have to confront is that the resulting variational problem for given λ,β ranges
over a spaces that depends on these parameters. In effect, it is not a priori clear that these variational problems
bear any relationship to the one stated in Theorem 2.7. To deal with this issue, let Dλ be the set of all π ∈D that
are supported on µ ∈ K such that µs,x (1) ≤ λ/(1+λ) for all s, x ∈ [0,1]. Further, for π ∈Dλ we let π∗β(N ,M) be the
distribution obtained by the adjoining operation with respect to the weight function ψβ. Finally, let

D?
λ,β =

©
π ∈Dλ : for all N , M ≥ 0 we have π∗β(N ,M) =πª .

Lemma 7.12. For any N , M ≥ 0 the map π ∈Dλ 7→π∗∞(N ,M) is continuous.

Like in the case of Lemma 3.7, the proof is based on arguments involving the cut metric. The details can be
found in Appendix A.

Lemma 7.13. Let N , M ≥ 0 be integers. Uniformly for all π ∈Dλ we have π∗β(N ,M) →π∗∞(N ,M) as β→∞.

Proof. Let ε> 0 For any µ ∈K let Z N ,M
µ,β (s) be the weight from (2.16) with respect to the weight function ψβ. Then

we see that, uniformly for all µ and s,

Z N ,M
µ,β (s) → Z N ,M

µ,∞ (s) as β→∞. (7.30)

Furthermore, if µs,x ≤λ/(1+λ) for all s, x, then for all β ∈ (0,∞] we have

Z N ,M
µ,β (s) ≥

µ
1

1+λ
¶N µ

1−
µ

λ

1+λ
¶2¶M

> 0. (7.31)

Combining (7.30) and (7.31) and recalling the construction of µ∗β(N ,M), we can construct a measurable map ξ :
[0,1] → [0,1] that preserves the Lebesgue measure such that for large enough β for all S, X ⊂ [0,1],¯̄̄̄Z

S

Z
X
µ
∗β(N ,M)
s,x −µ∗∞(N ,M)

ξ(s),x dx ds

¯̄̄̄
< ε.

Thus, D2(µ∗β(N ,M),µ∗∞(N ,M)) < ε for large β. Since Dλ is endowed with the W1-metric, the assertion follows. �

Lemma 7.14. The set Kλ is closed.
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Proof. We can view Kλ as a scaled version of the space of weak kernels. Therefore, since K is complete, so is Kλ is
complete. Hence, any Cauchy sequence in Kλ has a limit within this set, and thus Kλ is a closed subspace of K. �

Corollary 7.15. The set Dλ is closed.

Proof. By Lemma 7.14 there exists an increasing sequence of continuous functions un : K→ [0,1] that converges
pointwise to 1−1Kλ. Thus, Dλ =Tn≥1

©
π ∈D :

R
undπ= 0

ª
is closed in the weak topology. �

Corollary 7.16. We have liminfn→∞ 1
n E
£
log Z (Gλ,β)

¤≥ infπ∈D?
λ
B(π).

Proof. Since D? is compact, Proposition 6.1 shows that there exists π ∈D? such that

liminf
n→∞

1

n
E
£
log Z (Gλ,β)

¤≥B(π). (7.32)

The construction of the π for which the lower bound is attained is based on Proposition 6.2, whose proof shows
that the measure πλ,β for which the lower bound is attained in the limit of a sequence of distributions (πλ,β,n)n≥1

that come from random factor graphs with the weight function ψβ. Specifically, we considered a random factor

graph Gλ,β,n,ω with a random number of ‘cavities’ for a slowly growing ω = ωn →∞. With µn ∈ P (ΩC ) the joint
Boltzmann distribution of the spins of the cavities C , the measure πλ,β,n is defined as the distribution of the rep-
resentation of µn as an element of M . Thus, we just need to show that these representations converge to points in
Kλ.

The proof of this fact is based on Corollary 3.16. Specifically, let ε > 0. We obtain a decomposition S1, . . . ,S` of
ΩC into classes by pinning a random setΘε of cavities. The size |Θε| of this set depends on ε only and

∆2(µn , µ̄n) < ε, where µ̄n = X̀
i=1

µ(Si )
O
v∈C

µv ( · |Si ). (7.33)

Now, consider a cavity v ∈ C \Θε, let 1 ≤ i ≤ ` and consider a configuration σ ∈ Si with σv = 1. Obtain σ′ by
setting σ′

v = 0 and σ′
w =σw for all w 6= v . Then σ′ ∈ Si and the construction of the Boltzmann distribution ensures

that µn(σ|Si ) ≤ λµn(σ′|Si ). Hence, µv (1|Si ) ≤ λ/(1+λ). Since |Θε| is bounded in terms of ε only, whereas |C | ≥
ωn/2 →∞ with high probability, we deduce from (7.33) that the representation µ̌n ∈K satisfies D2(µ̌n ,Kλ) < εwith
high probability. Since, furthermore, the Wasserstein metric induces the weak topology on D, we conclude that
πλ,β,n converges to a point π on in the closure of Dλ; but since Dλ is closed, we conclude that π ∈ Dλ. Finally,
Corollary 7.15 implies that π ∈Dλ∩D? =D?

λ
. Thus, the assertion follows from (7.32). �

We are ready to establish the lower bound on the free energy.

Proposition 7.17. For all d ≥ 3,λ> 0 we have liminfn→∞ 1
n E[log Z (Gλ,∞)] ≥Φd ,λ.

Proof. For any β,λ> 0 Corollary 7.16 supplies πλ,β ∈D?
λ

such that

liminf
n→∞

1

n
E
£
log Z (Gλ,β)

¤≥Bd ,λ,β(πλ,β). (7.34)

Now consider the sequence (πλ,β)β=1,2,.... Since Dλ is compact, a subsequence (πλ,β j ) j converges to πλ ∈Dλ, i.e.,

lim
j→∞

D2(πλ,β j ,πλ) = 0. (7.35)

Further, since π
∗β j

(N ,M)

λ,β j
=πλ,β j for all j and N , M ≥ 0, Lemma 7.13 implies that for all pairs N , M ≥ 0,

lim
j→∞

D2(πλ,β j ,π∗∞(N ,M)
λ,β j

) = 0. (7.36)

Combining (7.35) and (7.36) with Lemma 7.12, we conclude that πλ ∈D?
λ

. Finally, since for every β > 0 we have
Bd ,λ,β( · ) ≥Bd ,λ,∞( · ) on Dλ, the assertion follows from (7.34) and the continuity of the functional Bd ,λ,∞( · ). �

A separate argument is needed to derive the upper bound on the free energy. Basically, we will prove the fol-
lowing proposition by checking that the interpolation argument from Section 5 goes through for the hard-core
model.

Proposition 7.18. For all d ≥ 3,λ> 0 we have limsupn→∞
1
n E[log Z (Gλ,∞)] ≤Φd ,λ.
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Withϕi andψ1,i defined with respect to the hard-core weight function ψ∞, let

B′(µ) = E log

*
nM

i=1
ϕi ,µ

+
, B′′(µ) = E log

* M
1≤i≤dn/2

ψ1,i ,µ

+
.

Lemma 7.19. For any λ> 0 and any µ ∈Kλ we have E
£
log Z (Gλ,∞)

¤≤B′(µ)−B′′(µ)+o(n).

Proof. This follows along the lines of the proof of Proposition 5.2. In that proof we required the assumption that
all weight functions are strictly positive, but only in one place. Namely, we required positivity in order expand the
logarithm into a power series in equations (5.9)–(5.11). Yet this approximation is still valid in the hardcore model.

Indeed, the term
D
ψamt +1 ,µG t

E
, whose logarithm we calculate in (5.9), is lower-bounded by 1−λ/(1+λ), because

in the hard-core model the marginal probability that a single variable node has spin one is upper-bounded by
λ/(1+λ). Similarly, the arguments of the logarithms in (5.10) and (5.11) are lower-bounded by 1−λ/(1+λ) because
µ ∈Kλ. �

Proof of Proposition 7.18. Based on Lemma 7.19, we follow the proof of Proposition 5.3 to complete the proof of
Proposition 7.18. Specifically, we claim that for any π ∈D?

λ
,

E[B′′(µπ)] = dn

2
E
£
log
­
ψ∞,π

®¤
, and E[B′(µπ)] = E log

­
ϕ1,π

®
. (7.37)

This follows along the lines of Lemmas 5.5 and 5.6. In both cases we assumed that the weight functions are strictly
positive in order to ensure that the arguments of the logarithms on the l.h.s. are bounded away from zero so that
the logarithmic series applies. But the condition π ∈D?

λ
guarantees that*

nM
i=1

ϕi ,µ

+
≥ (1/(1+λ))n and

* M
1≤i≤dn/2

ψ1,i ,µ

+
≥ (1/(1+λ))dn/2.

Thus, the same manipulations as before yield (7.37). Finally, the assertion follows from (7.37) and Lemma 7.19. �

Proof of Theorem 1.4. The theorem is an immediate consequence of Propositions 7.17 and 7.18. �

Proof of Corollary 1.5. For a graph G = (V (G),E(G)) let µG ,λ ∈ P ({0,1}V (G)) denote the hard-core model on G with
fugacity λ, and let Zλ(G) be the corresponding partition function. Further, let αλ(G) =Pv∈V (G)

­
σv ,µG ,λ

®
be the

average size of an independent set drawn from µG ,λ. Additionally, we write α(G) for the maximum independent
set size. It is well known that

αλ(G) =λ ∂

∂λ
log Zλ(G) (7.38)

and that
αλ(G)

|V (G)|
λ→∞−→ α(G)

|V (G)| uniformly for all G . (7.39)

As an immediate consequence of (7.38) we obtain

log Zλ+1(G)− log Zλ(G) =
Z λ+1

λ

αt (G)

t
dt

(
≤αλ+1(G)/λ,

≥αλ(G)/(λ+1).

Hence, (7.39) shows that for any ε> 0 there exists λ0 > 0 such that for all λ≥λ0 and all d-regular graphs G we have

(1−ε)α(G) ≤ λ

1+λαλ(G) ≤λ(log Zλ+1(G)− log Zλ(G)) ≤αλ(G) ≤α(G). (7.40)

Applying (7.40) to the random graph Gλ and taking expectations, we obtain

(1−ε)E

·
α(G)

n

¸
≤ E£λ(log Zλ+1(G)− log Zλ(G))

¤≤ E·α(G)

n

¸
. (7.41)

Theorem 1.4 guarantees that the sequence
¡
E
£
λ(log Zλ+1(G)− log Zλ(G))

¤¢
n converges, and thus (7.41) yields

(1−ε) limsup
n→∞

E

·
α(G)

n

¸
≤λ(Φd ,λ+1 −Φd ,λ) ≤ liminf

n→∞ E

·
α(G)

n

¸
. (7.42)
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Further, there exists a subsequence (nl )l≥1 along which E[α(G)/n] converges to α∗ ∈ [0,1], whence (7.41) yields

(1−ε)α∗ ≤λ(Φd ,λ+1 −Φd ,λ) ≤α∗. (7.43)

Since (7.43) holds for every ε> 0 for large enoughλ, we conclude that limλ→∞λ(Φd ,λ+1−Φd ,λ) exists. Hence, taking
the limit ε→ 0, and thus λ→∞, in (7.42) completes the proof. �

Acknowledgement. The first author thanks Max Hahn-Klimroth for helpful discussions on the cut metric.
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APPENDIX A. PROOF OF LEMMAS 3.6 AND 7.12

The proof of Lemma 3.6 requires the regularity lemma for measures from [26].3 Letλdenote the Lebesgue measure.
For µ ∈K and measurable S, X ⊂ [0,1] we write

µS,X = 1

λ(S)λ(X )

Z
S

Z
X
µs,x dxds ∈P (Ω),

with the convention that µS,X is uniform if λ(S)λ(X ) = 0. Further, let X = (X1, . . . , XK ),S = (S1, . . . ,SL) be a partitions
of [0,1) into pairwise disjoint measurable sets. We write #X ,#S for the number K ,L of classes, respectively. Then µ
is ε-regular with respect to (X ,S) if there exists R ⊂ [#X ]× [#S] such that the following conditions hold.

REG1: λ(Xi ) > 0 and λ(S j ) > 0 for all (i , j ) ∈ R.
REG2:

P
(i , j )∈R λ(Xi )λ(S j ) > 1−ε.

REG3: for all (i , j ) ∈ R and almost all s, s′ ∈ S j we have ‖RXi
µs,x −µ′

s′,x dx‖TV < ελ(Xi ).
REG4: if (i , j ) ∈ R, then for every U ⊂ Xi with λ(U ) ≥ ελ(Xi ) and every T ⊂ S j with λ(T ) ≥ ελ(S j ) we have°°µS,Xi −µT,U

°°
TV < ε.

A refinement of a partition (X ,S) is a partition (X ′,S ′) such that for every pair (i ′, j ′) ∈ [#X ′]× [S ′] there is a pair
(i , j ) ∈ [#X ]× [S] such that (X ′

i ′ ,S′
j ′ ) ⊂ (Xi ,S j ).

Theorem A.1 ([26]). For any ε > 0 there exists N = N (ε,Ω) such that for every µ ∈ K the following is true. Every
partition (X 0,S0) with #X 0 + #S0 ≤ 1/ε has a refinement (X ,S) such that #X + #S ≤ N with respect to which µ is
ε-regular.

Additionally, we need the strong cut metric, defined by

D2(µ,ν) = sup
S,X ,ω

¯̄̄̄Z
S

Z
X
µs,x (ω)−νs,x (ω)dxds

¯̄̄̄
(µ,ν ∈K ),

3The arguments in the appendix are special cases of more general results on the cut metric from [19].
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where S, X range over measurable subsets of the unit interval and ω ∈Ω. It is well known that D2( · , · ) induces a
metric on K .

Forµ,ν ∈K we defineµ⊕ν : [0,1]3 →P (Ω2) byµ⊕νs,x1,x2 =µs,x1⊗µs,x2 . Since [0,1]2 with the Lebesgue measure
is isomorphic as a measure space to [0,1] with the Lebesgue measure, we can view µ⊕ν as a strong P (Ω2)-valued
kernel. In particular, it makes sense to apply the strong cut metric to these kernels.

Proposition A.2. The map (µ,ν) 7→µ⊕ν is continuous with respect to the strong cut metric.

Proof. Given ε > 0 pick a small enough δ > 0 and assume that D2(µ,µ′) < δ. Due to the triangle inequality it
suffices to prove that D2(µ⊕ν,µ′⊕ν) < ε for every ν. Thus, we need to show that for any X ⊂ [0,1]2, S ⊂ [0,1] and
σ,τ ∈Ω, ¯̄̄̄Z

X

Z
S

¡
µs,x1 (σ)−µ′

s,x1
(σ)
¢
νs,x2 (τ)dsdx1dx2

¯̄̄̄
< ε. (A.1)

To this end, we may assume thatλ(S) > ε2 and that
R

S νs,x2 (τ)ds > ε2 for all (x1, x2) ∈ X . Further, with z = R 1
0 νs,x2 (τ)ds

consider the variable transformation

dt = νs,x2 (τ)ds

z
. (A.2)

Let T be the inverse image of S under the transformation (A.2). Then we obtain for any X1 ⊂ [0,1],Z
X1

Z
S

¡
µs,x1 (σ)−µ′

s,x1
(σ)
¢
νs,x2 (τ)dsdx1 = z

Z
X1

Z
T
µt ,x1 (σ)−µ′

t ,x1
(σ)dtdx1. (A.3)

But the assumption D2(µ,µ′) < δ implies that the double integral on the r.h.s. of (A.3) is bounded by ε4 in absolute
value (providing δ is small enough). Thus, (A.1) follows. �

Proof of Lemma 3.6. We may assume without loss that f (τ) = 1{τ = σ} for some σ ∈ Ωk . Let ε > 0, pick α = α(ε),
ξ = ξ(α) > 0 small enough and assume that µ,ν ∈ K are such that D2(µ,ν) < δ for a small enough δ = δ(ξ) > 0.
Applying Theorem A.1 twice, we obtain (X ,S) with respect to which both µ,ν are ξ-regular, and L = #X + #S is
bounded in terms of ξ only. Let R ′ be the set of all pairs for which REG1–REG4 are satisfied for both µ,ν and that
satisfy λ(X i ,S j ) > ξ8/L. Assuming that δ is sufficiently small, we obtain

|µSi ,X j −νSi ,X j | < ξ8 for all (i , j ) ∈ R ′. (A.4)

Furthermore, consider the random variables

zi =
kY

h=1
µSi ,xh (σh), z = X

i≤#S
zi ,

z ′
i =

kY
h=1

νSi ,xh (σh), z ′ = X
i≤#S

z ′
i

and define µ′,ν′ ∈ K as follows. To construct µ′, partition the interval [0,1] into pairwise disjoint sets Ti , i ∈ [#S],
of measure zi /z and fill the strip Ti × [0,1] with a suitably scaled copy of (µs,x )s∈Si ,x∈[0,1]. Construct ν′ analogously
from the z ′

i . Then D2(µ′, f ∗µ) = D2(ν′, f ∗ν) = 0. Furthermore, Proposition A.2 shows that with probability at
least 1−α we have

#SX
i=1

λ(Si )|zi − z ′
i | <α2,

provided that ξ,δ are chosen small enough. Since also z ≥α because the function f is strictly positive, we conclude
that with probability at least 1−α we have D2(µ′,ν′) < α. We thus obtain a coupling of the random variables
f ∗µ, f ∗ν under which the expected cut distance is bounded by ε, as desired. �

Proof of Lemma 7.12. We proceed precisely as in the proof of Lemma 3.6, up until the point where the positivity
of f is used. In the setup of Lemma 7.12, the function f may take the value 0 on kernels that take the value 1
with positive probability; however, since we are assuming that the values of the kernels are bounded by λ/(1+λ).
Therefore, the function f always attains values that are bounded away from 0. �
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APPENDIX B. PROOF OF LEMMA 3.3

The proof of Lemma 3.3 requires the following operation. For functions f :ΩM×N →R, g :ΩL×N →R we define

f ⊗ g :Ω(M+L)×N →R, σ 7→ f
¡
(σi , j )i∈[M ], j∈[N ]

¢ · g
¡
(σi+M , j+N )i∈[L], j∈[N ]

¢
.

Thus, the first M rows of σ go into f , the last L rows go into g and we multiply the results.
We define a corresponding operation on kernels. Namely, for µ,ν ∈ K we define µ⊗ν : [0,1]3 → P (Ω2) by

µ⊕νs,t ,x =µs,x ⊗νt ,x . Since ([0,1]2,λ⊗λ) is isomorphic ([0,1],λ), we can view µ⊗ν as a P (Ω2)-valued kernel, and
the cut metric extends to these kernels. Since the cut metric is invariant under swapping the axes, Proposition A.2
readily yields the following.

Proposition B.1. The map (µ,ν) 7→µ⊗ν is continuous with respect to the cut metric.

As a final preparation toward the proof of Lemma 3.3 we need the following fact.

Lemma B.2. For any f :Ω→R the map µ ∈K 7→ E
­

f ,µ
®

is continuous.

Proof. We may assume without loss that f (τ) = 1{σ= τ} for some σ ∈Ω. Then

E
­

f ,µ
®= Z 1

0

Z 1

0
µs,x (σ)dxds,

and it is immediate from the definition of the cut metric that the integral on the right hand side is a continuous
function of µ. �

Proof of Lemma 3.3. Let f : Ωm×n → R and let µ ∈ K. Define ν = (µ⊕n)⊗m . Then ν is a kernel with values in Ωmn

and the definition of 〈 · , · 〉 ensures that E
­

f ,µ
® = E­ f ,ν

®
. This already shows that the map µ 7→ E

­
f ,µ
®

is contin-
uous, because the map µ 7→ ν is continuous by Proposition A.2 and B.1 and the map ν 7→ E

­
f ,ν
®

is continuous by
Lemma B.2. Now fix an integer `≥ 2 and let η= ν⊗`. Then

E
h­

f ,µ
®`i= E£­ f ,η

®¤
and thus the continuity of the map µ 7→ E

h­
f ,µ
®`i follows from Proposition B.1 and Lemma B.2. �
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