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Passivity-Based Iterative Learning Control for

Cycling Induced by Functional Electrical

Stimulation with Electric Motor Assistance
Vahideh Ghanbari, Victor H. Duenas, Panos J. Antsaklis, and Warren E. Dixon

Abstract—This paper examines the use of a learning control
method in a passivity-based framework to control a motorized
cycle-rider system with functional electrical stimulation (FES)
of the quadriceps muscle groups. FES-cycling with motorized
assistance has been used in the rehabilitation of people
with neurological conditions. The concepts of adaptation
and passivity are explored to compensate for the uncertain
nonlinear time-varying dynamics of the motorized FES cycle-
rider system. The system is modeled as a closed-loop feedback,
state-dependent switched system such that in each cycle, the
quadriceps muscle groups produce functional torque and the
electric motor provides assistance as needed. The output
strictly passive (OSP) feature of the closed-loop system is
proved by considering a learning control input. Then, an
adaptive update law, based on iterative learning control (ILC),
is developed to guarantee the convergence of the cadence
tracking error. Experimental results from seven able-bodied
participants are presented and discussed to demonstrate the
effectiveness of this approach. The average cadence tracking
error is 0.00±2.47 rpm for a desired trajectory of 50 rpm.

I. INTRODUCTION

Functional electrical stimulation (FES) utilized in the

lower body is a well-known rehabilitation technique, where

muscle contractions are triggered due to the potential field

applied across muscle groups to evoke functional tasks

[1]. Specifically, FES-cycling is applied to people with

neurological disorders such as spinal cord-injury, stroke,

or traumatic brain injury [2]. FES has several therapeutic

benefits resulting in the improvement of muscle strength

[3]. The FES cycle-rider dynamic model is a complex non-

linear system due to the time-varying nature of the muscle

dynamics, and the presence of disturbances, input delay,

and muscle fatigue. Various control method approaches

have been developed to address these challenges such

as proportional-derivative (PD) and proportional-integral-

derivative (PID) controllers [4], [5], [6], [7], [8]. FES-

cycling studies have used fuzzy logic control scheme in

[9], [10], and the comparison between fuzzy logic based

control design and PD controller design is discussed. The

results in [11], [12] investigate optimal stimulation patterns
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for FES-cycling to minimize the muscle stress time integral

based on optimal control schemes.

During FES-cycling, muscle forces produce torque pri-

marily about the knee joint, which is transferred to torque

about the crank axis. However, there are regions of the

crank cycle, where torque production is kinematically in-

efficient and thus, for efficient cycling the FES contribution

is restricted to certain regions of the crank cycle. To

maintain a constant cadence, an electric motor is used in

the regions where it is inefficient to stimulate the muscle

groups. The combination of FES and motor assist makes

the overall system a state-dependent switched system.

Recently, various studies have focused on motorized FES

cycle-rider systems. FES and a motor assist based on

fuzzy logic control methods are used to yield cadence

tracking in impaired populations [13]. In [14], switching

between muscle stimulation and a motor assist is studied to

address muscle fatigue. Motorized FES cycling systems are

studied in [15] to track a desired cadence and power output

simultaneously. Since the automatic cycle-rider process is

repetitive and possesses a number of uncertainties in its

dynamics, the utilization of a learning control technique

such as iterative learning control (ILC) scheme is very

desirable.

ILC is a well established adaptive technique for repeti-

tive tasks in which the control input is updated in each trial,

based on the previous performance information [16]. For

cyclic or repetitive nonlinear time-varying systems, ILC

represents a promising learning control method to achieve

asymptotic tracking. This paper employs ILC since the

dynamics of the motorized FES cycle-rider system are

repetitive. The purpose of ILC is to obtain asymptotic

tracking and improve the performance of such system after

a certain number of cycles/iterations. In, [17], [18], ILC

was applied for robust tracking control of FES systems, and

FES induced cycling based on repetitive learning control

(RLC) is studied in [19]. FES of the upper limbs using ILC

technique for rehabilitation purpose are studied in [20],

[21]. All previous results are based on Lyapunov-based

analysis and were able to show asymptotic tracking of the

system. In this paper, the combination of adaptation and

passivity are used to show L2 convergence of the closed-

loop system’s output.
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Property 4. 0 < bcycle < b̄, where b̄ ∈ R>0 is a known

constant.

Property 5. |G(q(t))| 6 cG, where cG ∈ R>0 is a known

constant.

Property 6. |P (q(t), q̇(t))| 6 cP1
+ cP2

|q̇(t)|, where

cP1
, cP2

∈ R>0 are known constants [29].

Property 7. 0 < cb 6 Bσ 6 cB , ∀σ ∈ p, where cb, cB ∈
R>0 are known constants.

Property 8. Ṁ(q(t), q̇(t)) − 2V (q(t), q̇(t)) = 0 by skew

symmetry.

C. Dissipative and Passive Systems

Definition 1. [33] A dynamical system with supply rate

ω(u, y) is dissipative if there exists a positive definite

storage function V (x(t)) such that for all T > 0,

∫ T

0

ω(u, y)dt > V (x(T ))− V (x(0)), (16)

where u ∈ U ⊂ R
m, y ∈ Y ⊂ R

p, and x ∈ X ⊂ R
n,

denote the input and its corresponding output, respectively.

Definition 2. [23] A system is output strictly passive

(OSP) if it is dissipative with respect to the supply rate

ω(u, y) = uT y − ρyT y, for ρ > 0.

Definition 3. [22] The L2 norm of a signal is defined as

‖x(t)‖
2
,

√

∫

∞

0

x(t)
T
x(t)dt. (17)

III. MAIN RESULTS

In this section, the control input error uce(t) is defined

such that the learning control input ul(t) converges to the

desired control input ud(t), i.e., ul → ud. Two theorems

are represented in this section, one theorem shows that the

closed-loop switched system of the motorized FES cycle-

rider is output strictly passive, while the other one, based on

a control update law, shows that the cadence error trajectory

tends to zero.

A. Control Development

The control objective is to track a desired crank trajec-

tory. The tracking error signals e1, e2 : R>0 → R are

defined as

e1(t) = q(t)− qd(t), (18)

e2(t) = ė1(t) + αe1(t), (19)

where qd : R>0 → R is the desired crank position such

that its derivative exists and |q̇d| 6 cd1
, |q̈d| 6 cd2

, where

cd1
, cd2

∈ R>0 are known constants, and α ∈ R>0 is

a positive constant. Since the objective is to follow the

desired crank trajectory, e2(t) in (19) is considered as the

output of the system.

We propose the control input error as

uce(t) = ul(t)− ud(t), (20)

where ul : R>0 → R is the learning control input and

will be designed later based on iterative learning control

techniques, and ud : R>0 → R is the ideal input. Based on

the open-loop dynamics in (14) and the subsequent stability

analysis the controller is designed as

u(t) = −k1e2 − k2 |e2| − k3 |e1| |e2|

− k4 sgn(e2) + ul,
(21)

where k1, k2, k3, k4 ∈ R>0 are positive constants and

sgn : R → [−1, 1] is the signum function. Substituting

(21) into (14) yields

M(q(t))q̈(t) + V (q(t), q̇(t))q̇(t) + bcycleq̇(t)

+G(q(t)) + P (q(t), q̇(t)) + dr(t)

= Bσ(q(t), q̇(t))(−k1e2 − k2 |e2|

− k3 |e1| |e2| − k4 sgn(e2)) +Bσ(q(t), q̇(t))ul(t).

(22)

After some algebraic manipulation, the closed-loop dynam-

ics can be expressed as

M(q)ë1 + V (q, q̇)ė1 + bcycleė1 + χ

= Bσ(q, q̇)(−k1e2 − k2 |e2| − k3 |e1| |e2|

− k4 sgn(e2)) +Bσe(q, q̇)uce,

(23)

where

χ = (M(q)−M(qd))q̈d + (V (q, q̇)− V (qd, q̇d))q̇d

+ (G(q)−G(qd)) + P (q, q̇) + dr(t),
(24)

and

Bσe(q(t), q̇(t)) = min{Bσ(q(t), q̇(t)), Bσ(qd(t), q̇d(t))},
(25)

0 < cbe 6 Bσe 6 cBe
, ∀σe ∈ p, where cbe , cBe

∈ R>0

are known constants.

B. Passive Motorized FES Cycle and Rider Dynamics

To facilitate the subsequent analysis, positive constants

c1, c2, c3, c4, c5 ∈ R are defined as






































c1 = αM̄cd2
+ αcG + αcV c

2
d1
,

c2 = 1 + αb̄+ M̄cd2
+ cG + cV c

2
d1

+ αcV cd1

+
1

2
αcMcd1

+ αcP2
,

c3 = αM̄ + b̄+ cV cd1
+ cP2

,

c4 = 1

2
αcM ,

c5 = cdr
+ cP1

+ cP2
cd1

.
(26)

Theorem 1. Consider the closed-loop system in (23), if

the positive gains k1, k2, k3, k4 and the constant α are

selected such that,

M̄ <
1

α2
, (27)
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k1 > 0, (28)

c−1

b c3 < k2 <
c1c3 −

1

4
c22

α2cbc3 + c1cb − αcbc2
, (29)

k3 > cb
−1c4, (30)

k4 > cb
−1c5, (31)

where M̄ is defined in the Property 1 then, the closed loop

system (23) from the input uce to the output e2 is output

strictly passive (OSP).

Proof. Consider a storage function Vs(t) as

Vs =
1

2
Mė21 +

1

2
e21 + αMe1ė1, (32)

and can be expressed as

Vs =
1

2
Me22 +

1

2
e21 −

1

2
α2Me21, (33)

which is positive provided (27) is satisfied.

Let z(t) ,
[

e1(t) ė1(t)
]T

and z(t) be a Filippov

solution to the differential inclusion ż(t) ∈ K[h](z(t)),
where K [.] is defined in [34] and h is defined by (19) and

(23) as [35]

h ,

[

h1

h2

]

=

[

ë1
ė1

]

. (34)

Since (23) contains the sigmum function and the discontin-

uous control effectiveness Bσ and Bσe, the time derivative

of the storage function exists almost everywhere (a.e.), i.e.,

for almost all t. According to Lemma 1 in [36], the time

derivative of the storage function can be obtained such that

V̇s

a.e.
∈ ˙̃

V , where
˙̃
V is the generalized time derivative of (32)

along the Filippov trajectories of ż ∈ h(z) and is defined

as

˙̃
V , ∩

ξ∈∂V
ξTK





ë1
ė1
1



 . (35)

The storage function is continuously differentiable in z,

∂V = {∇V }, thus,

˙̃
V

a.e.
= ė1e1 + αMė21 +

1

2
αṀė1e1 − bcycleė

2
1 − αbcycleė1e1

− χ(ė1 + αe1) +Bσe(q, q̇)ucee2 − k1Bσ(q, q̇)e
2
2

− k2Bσ(q, q̇) |e2| e2 − k3Bσ(q, q̇) |e1| |e2| e2

− k4Bσ(q, q̇) |e2| .
(36)

After using Properties 1-7, and algebraic manipulation, (36)

can be upper bounded by using the Mean Value Theorem

as

˙̃
V 6 −(

1

cbe
)Γ1 |e2| − (

1

cbe
)

[

|e1|
|ė1|

]T

Γ2

[

|e1|
|ė1|

]

− (
1

cbe
)

[

|e1|
2

|ė1|
2

]T

Γ3

[

|ė1|
|e1|

]

− (
cb

cbe
)k1e

2
2 + e2uce,

(37)

where

Γ1 = k4cb − c5, (38)

Γ2 =

[

α2cbk2 − c1
1

2
(2αcbk2 − c2)

1

2
(2αcbk2 − c2) cbk2 − c3

]

, (39)

Γ3 =

[

2αcbk3 α2cbk3
0 cbk3 − c4

]

. (40)

Note that Γ1, Γ2, and Γ3 are positive definite matrices

provided (29), (30), and (31) are satisfied.

Integrating both sides of (37) and rearranging the terms

yields

∫ T

0

e2ucedt > Ṽ (T )− Ṽ (0) +

∫ T

0

Γ1 |e2| dt

+

∫ T

0

[

|e1|
|ė1|

]T

Γ2

[

|e1|
|ė1|

]

dt

+

∫ T

0

[

|e1|
2

|ė1|
2

]T

Γ3

[

|ė1|
|e1|

]

dt

+ k1(
cb

cbe
)

∫ T

0

e2e2dt.

(41)

The inequality in (41) can be further lower bounded as

∫ T

0

e2ucedt > −Ṽ (0) + k1(
cb

cbe
)

∫ T

0

e2e2dt. (42)

The passivity inequality is satisfied through (42) and ac-

cording to the Definition 2, the closed-loop system from the

input uce to the output e2 is output strictly passive (OSP).

Note that Ṽ (0) only depends on the initial conditions of

e1, ė1 and it is a positive constant.

Remark 1. In Theorem 1, the OSP property of the feed-

back closed-loop system (23) during the time interval [0, T ]
is proven. In the passivity inequality of (42), the supply

rate function is ω(u, y) = e2uce − k1(
cb
cbe

)e2e2, according

to Definition 2.

C. Iterative Learning Control for Automatic Cycle and

Rider Dynamics

Now that the OSP property of the closed-loop system

(23) is established, an ILC update law, inspired from [26],

is added to the control framework. Based on the ILC, a

learning update law uk+1

l = F (uk
l , e

k
2) is defined to prove

that the output of the system (e2) converges to zero, in the

sense that e2 → 0 as k → ∞.

Theorem 2. Consider the learning control update law as

uk+1

l = uk
l − kle

k
2 (43)

where kl is a positive gain. If the conditions of Theorem

1 ((27)-(31)) are satisfied and

0 < kl < 2k1(
cb

cbe
), (44)
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Table I
SUMMARY OF AUTOMATIC CYCLE-RIDER SYSTEM PERFORMANCE FOR SEVEN SUBJECTS. THE TRANSITORY AND STEADY STATE OF THE RMS,

THE CADENCE TRACKING ERROR ė1 , AND THE PERCENTAGE OF ERROR FOR EACH SUBJECT ARE PROVIDED.

RMS ė1 % Error

Transitory Steady State Transitory Steady State Transitory Steady State

Subject 1 2.20±0.64 1.83±0.73 0.07±2.98 -0.01±1.92 0.42±4.79 -0.02±3.93
Subject 2 2.32±0.60 2.72±0.29 0.04±2.93 0.00±2.73 0.45±4.97 -0.00±5.48
Subject 3 1.58±0.46 1.86±0.53 0.04±2.55 -0.01±1.91 0.29±3.40 -0.03±3.88
Subject 4 2.11±0.65 1.97±0.40 -0.03±2.55 -0.00±1.99 0.16±4.59 -0.01±4.03
Subject 5 2.09±0.61 2.82±0.20 0.02±2.82 -0.01±2.83 0.26±4.61 -0.03±5.66
Subject 6 2.22±0.69 2.88±0.28 -0.10±2.98 -0.00±2.89 0.54±4.88 -0.02±5.79
Subject 7 2.49±0.61 3.00±0.17 0.02±2.96 -0.00±3.00 0.23±5.29 -0.00±6.01

Mean 2.15 2.44 0.01 -0.00 0.34 -0.01
STD 0.28 0.52 0.02 0.00 0.13 0.01

0  60 120 180 240 300 360

0

50

100

150

0

2

4

6

Figure 7. Switched control input among FES quadriceps femoris muscle
groups and electric motor over a single crank cycle for Subject 1.
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Figure 8. A zoom-in representation of the FES control input um, the
electric motor control input ue, the learning control input ul, and the
cadence tracking error ė1 over four revolutions for Subject 1.

square (RMS) of the cadence tracking error in Fig. 5

clearly illustrates the transitory and steady state behavior

of cadence tracking error ė1, showing the convergence of

the cadence tracking error for Subject 1. As evident from

Fig. 8c, ė1 has a steady state error of ±2.47 rpms. In

addition, Fig. 8d shows the contribution of the learning

controller ul over the same revolutions.

V. CONCLUSION

The passivity property of an automatic stationary cycle

where cycling is either produced by motorized assistance

or induced through muscle stimulation was studied. Due to

the uncertain nonlinear dynamics of the switched closed-

loop system, and the repetitive nature of the cycling task,

ILC was used to achieve the desired output trajectory.

The developed method ensured the L2 norm of the output

error trajectory converges to zero. The OSP property of

the system was proven and the ILC scheme based on

the Arimoto learning control update law was developed.

Results obtained from experiments on a recumbent sta-

tionary bicycle for seven able-bodied participants, where

the average cadence tracking error was 0.00±2.47 rpm

(0.01±4.97% error) for 50 rpm at steady state. Future

studies could apply the same approach to the control of

upper body limbs such as hand-cycling. Moreover, for

more general cases, the learning control update law could

be developed based on the output dissipativity property

of the closed-loop system in which, QSR-dissipativity, a

generalization of passivity, will be studied.
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